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ABSTRACT. The power series expansions of the hypergeometric functions p+1Fp(a, b1, ..., bp; c1, ..., cp; z) con-

verge either, inside the unit disk |z| < 1, or outside this disk |z| > 1. Nørlund’s expansion in powers of z/(z − 1)

converges in the half plane <(z) < 1/2. For arbitrary z0 ∈ C/, Bühring’s expansion in inverse powers of z − z0

converges outside the disk |z − z0| = max{|z0|, |z0 − 1|}. None of them converge on the whole indented closed unit

disk |z| ≤ 1, z 6= 1. In this paper we derive new expansions in terms of rational functions of z that converge in

different regions, bounded or unbounded, of the complex plane that contain the indented closed unit disk. We give

either, explicit formulas for the coefficients of the expansions or recurrence relations. The key point of the analysis

is the use of multi-point Taylor expansions in appropriate integral representations of p+1Fp(a, b1, ..., bp; c1, ..., cp; z).

We show the accuracy of the approximations by means of several numerical experiments.

2000 AMS Mathematics Subject Classification: 33C05; 41A58; 41A20, 65D20

Keywords & Phrases: Generalized hypergeometric functions. Approximation by rational functions. Two and
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1. Introduction

For p, n ∈ N| and ak ∈ C/, k = 1, 2, ..., p, we use the notation ~a := (a1, a2, ..., ap) and (~a)n := (a1)n(a2)n···(ap)n.

The hypergeometric function p+1Fp(a,~b;~c; z) is defined by means of the power series expansion

p+1Fp(a,~b;~c; z) ≡ p+1Fp

(
a,~b

~c

∣∣∣∣∣ z
)

:=
∞∑
n=0

(a)n(~b)n
(~c)nn!

zn. (1)

This series converges absolute and uniformly inside the unit disk |z| < 1 [[1], Chap. 16, Sec. 10, eq. 16.10.2]

for any complex value of the parameters a, bk and ck; k = 1, 2, 3, ..., p, with 1− ck /∈ N| . For later convenience,

we define the region Λ := {(a,~b,~c) ∈ C/ 2p+1 ; 1 − ck /∈ N| , k = 1, 2, ..., p}. We define also γ := (c1 + c2 + · · · +
cp) − (a + b1 + b2 + · · · + bp). Then, on the unit circle |z| = 1, the series is convergent if <γ > 0, convergent

except at the point z = 1 when −1 < <γ ≤ 0, and diverges when <γ ≤ −1. Outside this disk, p+1Fp(a,~b;~c; z)

is defined by means of analytic continuation. The branch obtained by introducing a cut from 1 to ∞ on the
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real axis is the principal branch of the function. In the remaining of the paper we assume, without any further

mention, that |arg(1 − z)| < π. For numerical computations we can use the right hand side of (1) to compute

p+1Fp(a,~b;~c; z) only in the disk |z| ≤ ρ < 1, with ρ depending on numerical requirements, such as precision and

efficiency.

On the other hand, consider the connection formula [[1], Chap. 16, Sec. 8, eqs. 16.8.7 and 16.8.8],

p+1Fp

(
a1, a2, ..., ap+1

b1, b2, ..., bp

∣∣∣∣∣ z
)

=

p+1∑
k=1

∏p+1
s=1,s 6=k Γ(as − ak)/Γ(as)∏p
s=1 Γ(bs − ak)/Γ(bs)

1

(−z)ak
×

p+1Fp

(
ak, b1 + 1− ak, b2 + 1− ak, ..., bp + 1− ak,

ak + 1− a1, ak + 1− a2, ..., ∗, ..., ak + 1− ap+1

∣∣∣∣∣ 1

z

)
,

(2)

where the symbol ∗ indicates that the entry ak + 1 − ak is omitted. From this formula and (1) we see that

p+1Fp(a,~b;~c; z) may also be written as a series expansion in terms of inverse powers of z, convergent outside

the unit disk |z| > 1 (it also converges at the unit circle |z| = 1 for certain values of the parameters). Then, for

numerical computations we can use (2) and the right hand side of (1) to compute p+1Fp(a,~b;~c; z) in the exterior

of the disk |z| ≥ ρ > 1, and again, the value of ρ depends on numerical requirements.

A different expansion in powers of z/(z − 1) was obtained by Nørlund [[10], eq. (1.21)], [[1], Chap. 16, Sec.

10, eq. 16.10.2],

p+1Fp

(
a,~b

~c

∣∣∣∣∣ zζ
)

= (1− z)−a
∞∑
k=0

(a)k
k!

(
z

z − 1

)k
p+1Fp

(
−k,~b
~c

∣∣∣∣∣ ζ
)
, ζ ∈ C/. (3)

When |ζ − 1| < 1, the series on the right-hand side converges in the half-plane <z < 1/2. Also, for arbitrary

complex z0, an expansion in inverse powers of z − z0, valid in the region |z − z0| > max{|z0|, |z0 − 1|} and

|arg(z0 − z)| < π (it excludes the origin z = 0), was derived by Bühring [3], [[1], Chap. 16, Sec. 8, eq. 16.8.9],

p+1Fp

(
a1, ..., ap+1

b1, ..., bp

∣∣∣∣∣ z
)

=

p+1∑
j=1

(z0 − z)−aj
Γ(aj)

∞∑
n=0

Γ(aj + n)

n!

p+1∏
k=1,k 6=j

Γ(ak − aj − n)

Γ(ak)

p∏
k=1

Γ(bk)

Γ(bk − aj − n)

× p+1Fp

(
a1 − aj − n, ..., ap+1 − aj − n

b1 − aj − n, ..., bp − aj − n

∣∣∣∣∣ z0
)

1

(z − z0)n
.

(4)

For the case that ak−aj is an integer (k 6= j), the coefficients of expansion (4) become indeterminate, a limiting

process is needed (see [3] for further details) and the convergence of the expansion becomes slower.

Other expansions in powers of 1 − z, convergent in the unit disk centered at z = 1, can be found in [3].

The coefficients of these expansions are given in terms of an infinite series whose terms must be computed by

means of intrincated formulas, see [3] form more details. Other more or less complicated expansions in terms

of generalized hypergeometric functions may be found in [[1], Chap. 16, Sec. 10, eq. 16.10.1].

The Tayor expansion at z = 0 (1), the Taylor expansion at z = ∞ (1)-(2), Nørlund’s expansion (3) and

Bühring’s expansion (4) are given in terms of elementary functions of z. On the other hand, for general values

of the parameters (a,~b,~c), none of them is convergent in unbounded regions of C/ containing the indented closed

unit disk D∗ := {z ∈ C/ ; |z| ≤ 1, z 6= 1}. Moreover, in general, the convergence of the these expansions become

slower when z approaches the indented unit circle C∗ := {z ∈ C/ ; |z| = 1, z 6= 1}.

In this paper we investigate new convergent expansions of p+1Fp(a,~b;~c; z) that, as well as the above men-

tioned expansions, are given in terms of elementary functions of z. On the other hand, we are seeking for
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expansions that are convergent in larger regions of the complex z−plane; in particular, unbounded regions con-

taining in their interior the indented closed unit disk D∗, and then, expecting a faster convergence in the vicinity

of the indented unit circle C∗. The starting point is the following integral representation of p+1Fp(a,~b;~c; z):

p+1Fp

(
a,~b

~c

∣∣∣∣∣ z
)

=

p∏
s=1

(
A(bs, cs)

∫
L

tbs−1s (1− ts)cs−bs−1dts
)

(1− Tz)−a, T :=

p∏
s=1

ts, (5)

where, every ts−integration path L; s = 1, 2, 3, ..., p, is identical, and (1 − zT )−a = 1 when z = 0. The

hypersurface
∏p
s=1 ts = 1/z of C/ p must contain in its interior the integration region {(t1, t2, ..., tp) ∈ C/ p;

tk ∈ L}. We consider four different possibilities for the path L and the constant A(b, c) that we detail in

Appendix 2. The expansions derived below do not depend on which one of these four possibilities we consider.

But we need to consider the four of them in order to have at our disposal at least one integral representation

for every (a,~b,~c) ∈ Λ; as each one is valid in a different region of the parameters ~b and ~c and none of them is

valid in the whole region (a,~b,~c) ∈ Λ.

For reasons that will be clear in a moment, we assume that, in any of the four cases, the contour L involved

in (5) is squeezed (analytically deformed) as much as possible around the real interval [0, 1]; in such a way that

we may consider that T , the product of the ts−variables, is as close to the real interval [0, 1] as we wish. That

is, T ∈ X := {z ∈ C/ ; |z − x| < ε for some x ∈ [0, 1] and small enough ε > 0}. In the remaining of the paper the

parameter ε represents a small enough positive number.

The work presented in this paper is based on the ideas introduced in [7] and [8] for the hypergeometric

functions 2F1(a, b; c; z) and 3F2(a, b1, b2; c1, c2; z), where the starting point is the Euler form of the integral (5)

with p = 1 and p = 2 respectively, which is only valid for <ck > <bk > 0 (see Appendix 2). Then, apart from

the generalization from 3 or 5 parameters to 2p+ 1 parameters, in this paper we derive new type of expansions

that are valid in larger domains of the complex z−plane than the ones derived in [7] and [8]. They are also

valid in a larger region Λ for the parameters a, bk and ck.

When we replace f(T ) := (1 − zT )−a in integral (5) by the standard Taylor series expansion of f(T ) at

T = 0, interchange summation and integration, and use the integral representations of the beta function given in

[[2], Chap. 5, Sec. 12], we obtain the power series expansion (1) (see Appendix 2). The Taylor series expansion

of f(T ) at T = 0 converges uniformly in z for any T ∈ X (for any t := (t1, t2, ..., tp) in any of the four multiple

integration domains considered in (5)) if |z| < 1. Then, expansion (1) is convergent in the unit disk |z| < 1.

For purposes that will become clear later, it is more convenient to consider the above argument about the

region of convergence of the right hand side of (1) from a different point of view, which is the following. The

domain of convergence of (1) (the disk |z| < 1) is determined by the two following requirements: (i) For any

t in the domain of integration in (5), the domain X for the variable T , must be contained in the domain of

convergence of the series expansion of f(T ): a disk D of center T = 0 and radius r > 1, D = {T ∈ C/, |T | < r}.
(ii) The branch point T = 1/z of f(T ) must be located outside that domain D, which means that z must be

located in a region S = the inverse to the exterior of D: S = (DEXT)−1 = {z ∈ C/, |z| < r−1}. Therefore, the

smaller D is (the smaller r), the bigger the domain S of validity of (1) is. But D must satisfy (i) and then the

smallest possible r is r = 1 + ε and S = {z ∈ C/, |z| < 1} (see Fig. 1).

In this paper we explore the following idea. Instead of the Taylor series expansion of f(T ) at T = 0, we

consider the Taylor series expansion of f(T ) at a different base point T = w; moreover, we consider two and

three-point Taylor expansions of f(T ) at conveniently chosen base points [4], [5]. The mentioned base points

must be chosen in such a way that the domain D of convergence of the expansions satisfy the two above

mentioned requirements:

(i) X ⊂ D (the domain of the variable T must be contained in D);
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(ii) z ∈ S := (DEXT)−1 (z must be located in a region S = the inverse to the exterior of D).

Then, replacing f(T ) in (5) by these new expansions and interchanging summation and integration, we will

obtain new expansions for p+1Fp(a,~b;~c; z) convergent for z ∈ S. The larger S is, the better, and one expects

that, the smaller D is (containing X), the bigger S will be. The first possibility that we explore in Section 2 is

an expansion of f(T ) at a generic point T = w. We re-derive in this way Nørlund’s expansion, with recurrence

relations for the coefficients, an error bound and new domains of convergence. In Section 3 we explore a two-

point Taylor expansion of f(T ); the simplest expansion is obtained when we choose T = 0 and T = 1 as base

points. On the other hand, in order to enlarge the domain of convergence S as much as possible, it is more

convenient to use a two-point Taylor expansion of f(T ) at two conveniently chosen points of the interval [0, 1].

We obtain in this way unbounded regions of convergence that contain the indented closed unit disk D∗ in their

interior. Section 4 is analog to section 3, but considering a three-point Taylor expansion instead of a two-point

expansion. For simplicity in the exposition, we only consider in Section 4 two particularly interesting selections

of base points for the three-point Taylor expansion, relegating the general case to Appendix 1. We obtain in

this way convergence regions larger than those obtained in Section 3. Some final remarks and comments, as

well as some numerical experiments are given in Section 5. Finally, in Appendix 2 we derive the four integral

representations of the form (5) mentioned above.

1/z

0 1

Re T

Im T

r

z
0

Re z

Im z

1/rD S

(a) (b)

Figure 1. The disk of convergence D of the Taylor expansion of f(T ) at T = 0 is shown in figure (a) for a

certain r (> 1), and the region S, inverse of the exterior of D, is shown in figure (b). The smaller D is, the

larger S is. The smallest possible value of r for which X ⊂ D is any r = 1 + ε.

2. An expansion for 2<(wz) < 1 with arbitrary w ∈ C/

In this section we re-derive expansion (3), analyzing new convergence regions and obtaining a recurrence

relation for the coefficients of the expansion and an error bound. The results are summarized in the following

theorem.

Theorem 1. For arbitrary w ∈ C/, define W := max{|w|, |1−w|} and the region S := {z ∈ C/, |1−wz| > |z|W}
(see Figure 2 (b) and (d)). Then, for any z ∈ S and (a,~b,~c) ∈ Λ,

p+1Fp

(
a,~b

~c

∣∣∣∣∣ z
)

= (1− wz)−a
n−1∑
k=0

(a)k
k!

(
wz

wz − 1

)k
p+1Fp

(
−k,~b
~c

∣∣∣∣∣ 1

w

)
+Rn

(
a,~b

~c

∣∣∣∣∣ z
)
, (6)
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where the remainder term is uniformly bounded in compacts of S in the form∣∣∣∣∣Rn
(
a,~b

~c

∣∣∣∣∣ z
)∣∣∣∣∣ ≤M(a,~b,~c, z)

∣∣∣∣ zW

1− wz

∣∣∣∣n , (7)

with M(a,~b,~c, z) > 0 independent on n. Moreover, for <ck > <bk > 0; k = 1, 2, 3, ..., p,∣∣∣∣∣Rn
(
a,~b

~c

∣∣∣∣∣ z
)∣∣∣∣∣ ≤ eπ|=a|Γ(n+ <a)

|Γ(a)|n!

|zW |n

(|1− wz| − |zW |)n+<a
∼ n<a−1

(
|zW |

|wz − 1| − |zW |

)n
, n→∞. (8)

The terms of the expansion may be computed by means of the recurrence relation

p+1Fp

(
−k,~b
~c

∣∣∣∣∣ 1

w

)
= p+1Fp

(
1− k,~b

~c

∣∣∣∣∣ 1

w

)
− 1

w

(
p∏
s=1

bs
cs

)
p+1Fp

(
1− k,−−−→b+ 1

−−−→
c+ 1

∣∣∣∣∣ 1

w

)
, k = 1, 2, 3, ...,

(9)

with

p+1Fp

(
0,~b

~c

∣∣∣∣∣ 1

w

)
= 1,

where we have defined
−−−→
a+ 1 := (a1 + 1, a2 + 1, ..., ap + 1).

Proof. Consider the standard Taylor expansion of the function f(T ) = (1 − zT )−a at a generic point w =

u+ vi ∈ C/, u, v ∈ R| :

f(T ) =

n−1∑
k=0

(a)k z
k

k!
(1− wz)−a−k (T − w)k + rn(T ), (10)

with

rn(T ) := (1− wz)−a
∞∑
k=n

(a)k
k!

(
z(w − T )

wz − 1

)k
= (1− wz)−a (a)n

n!

(
z(T − w)

1− wz

)n
2F1

(
a+ n, 1

n+ 1

∣∣∣∣∣ z T − w1− wz

)
.

(11)

Expansion (10) satisfies condition (i) for D = {T ∈ C/, |T − w| < W + ε}. It also satisfies condition (ii), that

is, 1/z /∈ D, for z ∈ S. A straightforward computation shows that, for u = <w ≥ 1/2, the domain S is the

half-plane S = {z = x+ iy;x, y ∈ R| , 2<(wz) = 2ux− 2vy < 1}; whereas for u < 1/2, it is the disk S = {z ∈ C/,
|z + (1− 2u)−1w̄| < (1− 2u)−1|w − 1|} (see Figure 2 (b) and (d)).

Then, for z ∈ S, we can introduce the expansion (10) in (5) and interchange summation and integration to

obtain (6) with

Rn

(
a,~b

~c

∣∣∣∣∣ z
)

:=

(
p∏
s=1

A(bs, cs)

∫
L

tbs−1s (1− ts)cs−bs−1dts

)
rn(T ). (12)

On the one hand, from the Cauchy’s integral form for the remainder rn(T ), we have that

|rn(T )| ≤ C(a, z)

∣∣∣∣ zW

1− wz

∣∣∣∣n , (13)

with C(a, z) > 0 independent on n. On the other hand, from the Euler integral representation of the Gauss

hypergeometric function [[11], Chap. 15, Sec. 6, eq. 15.6.1] we find that

|rn(T )| ≤
∣∣∣(1− wz)−a∣∣∣ |(a)n|

n!

∣∣∣∣ zW

1− wz

∣∣∣∣n 2F1

(
<a+ n, 1

n+ 1

∣∣∣∣∣
∣∣∣∣ zW

1− wz

∣∣∣∣
)
. (14)
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Introducing (13) into (12) we obtain (7). Introducing (14) into the Euler form of L in (12) (see Appendix 2,

case (a)), and after straightforward computations, we obtain (8).

The three-terms recurrence relation (9) follows straightforwardly from the integral representation (5) with

a = −k, k integer. tu

1/z

0 1

Re T

Im T

1

Re z

Im z

D
S(1+i)/2

z
-i

(a) w =
1 + i

2
. (b) w =

1 + i

2
.

1/z

0 1

Re T

Im T

D

i

1

Re z

Im z

S

z

i

(c) w = i. (d) w = i.

Figure 2. The minimal domain of convergence D of the standard Taylor expansion of f(T ) at T = w containing

X is a disk of center at T = w and radius r =max{|w|, |1−w|}+ ε (figures (a) and (c)). The region S, inverse

of the exterior of D is: the half-plane S = {z = x + iy;x, y ∈ R| , 1 − 2<(wz) > 0} if <w ≥ 1/2 (figure (b)) or

the disk of center w̄/(2<w − 1) and radius |w − 1|/(1− 2<w) if <w < 1/2 (figure (d)).

3. An expansion for |(1− qz)(1 + qz − z)| > |(1/2− q)z|2 with 0 ≤ q < (2−
√

2)/4

As it has been pointed out in [6] (in a different context), the use of a two-point Taylor expansion [4], [5]

with base points in the interval [0, 1] is preferable to the use of a standard Taylor expansion. With a two-point

Taylor expansion we can avoid the singularity T = 1/z of f(T ) in its domain of convergence and, at the same

time, include X in its interior, in a more efficient way (see Figure 3(a)).

Therefore, in this section, we consider the two-point Taylor expansion of the function f(T ) = (1− zT )−a at

two base points T = q and T = 1 − q, for a certain positive number q ∈ [0, 1]. The results are summarized in

the following theorem.
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Theorem 2. For arbitrary q ∈ [0, q0], with q0 := (2−
√

2)/4, define the region (see Figure 3(b))

Sq := {z ∈ C/ ; (1− qz)(1 + qz − z)| > (1/2− q)2|z|2}. (15)

Then, for any z ∈ Sq and (a,~b,~c) ∈ Λ,

p+1Fp

(
a,~b

~c

∣∣∣∣∣ z
)

=

N−1∑
n=0

n∑
k=0

(
n

k

)
(q(1− q))n−k(−1)k

p∏
s=1

(bs)k
(cs)k

[
An(a, z) p+1Fp

(
−k,−−−→b+ k

−−−→
c+ k

∣∣∣∣∣ 1
)

+

p∏
s=1

bs + k

cs + k
Bn(a, z) p+1Fp

(
−k,−−−−−−→b+ k + 1

−−−−−−→
c+ k + 1

∣∣∣∣∣ 1
)]

+RN

(
a,~b

~c

∣∣∣∣∣ z
)
,

(16)

where, for n = 0, 1, 2, ..., the coefficients An(a, z) and Bn(a, z) are obtained from the following recurrence

relation:

An+1(a, z) =
M11(z, n, a, q)An(a, z) +M12(z, n, a, q)Bn(a, z)

(n+ 1)(4q2 − 4q + 1)(z − 1− q(1− q)z2)
,

Bn+1(a, z) =
M21(z, n, a, q)An(a, z) +M22(z, n, a, q)Bn(a, z)

(n+ 1)(4q2 − 4q + 1)(z − 1− q(1− q)z2)
,

(17)

M11(z, n, a, q) :=z(a+ 2n)[1− (1 + 2q2 − 2q)z],

M12(z, n, a, q) :=z2(−n+ q(q − 1)(a+ 1)) + z(2aq(1− q) + 1 + 3n)− 2n− 1,

M21(z, n, a, q) :=− z(2− z)(a+ 2n),

M22(z, n, a, q) :=z2(n(1 + 4q − 4q2) + 2(1 + a)q(1− q))− (a+ 2 + 6n)z + 4n+ 2,

(18)

and

A0(a, z) :=
(1− q)(1− zq)−a − q(1− z(1− q))−a

1− 2q
, B0(a, z) :=

(1− z(1− q))−a − (1− zq)−a

1− 2q
. (19)

The coefficients p+1Fp(−k,~b;~c; 1) may be recursively computed by using (9). The rate of convergence of (16) is

of power type: ∣∣∣∣∣RN
(
a,~b

~c

∣∣∣∣∣ z
)∣∣∣∣∣ ≤M(a,~b,~c, z)

∣∣∣∣ (1− 2q)2z2

4(1− qz)(1 + (q − 1)z)

∣∣∣∣N , (20)

with M(a,~b,~c, z) > 0 independent on N . When <ck > <bk > 0; k = 1, 2, ..., p; M(a,~b,~c, z) is also independent

on ~b and ~c.

Proof. From Theorem 1 of [4] we have that:

f(T ) =

N−1∑
n=0

[An(a, z) +Bn(a, z)T ][(T − q)(T + q − 1)]n + rN (T ), T ∈ Dq, (21)

where Dq is a Cassini’s oval with foci at T = q and T = 1 − q and radius r > 0 that we determine below:

Dq = {T ∈ C/, |(T − q)(T + q − 1)| < r}, and rN (T ) is the two-point Taylor remainder [[4], Theorem 1].

An explicit formula for the coefficients An(a, z) and Bn(a, z) may be derived from [4], but we omit it here

for simplicity. Instead, we derive the recurrence relation (17) from the differential equation satisfied by f(T ):

(1− zT )f ′ = azf . To this end we introduce expansion (21) and

f ′(T ) =

∞∑
n=0

{[(2n+ 1)Bn(a, z)− (n+ 1)(An+1(a, z) + 2q(1− q)Bn+1(a, z))]+

(n+ 1)[2An+1(a, z) +Bn+1(a, z)]T}(T − q)n(T + q − 1)n
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into the differential equation (1−zT )f ′ = azf . Equating coefficients of (T − q)n(T + q−1)n and T (T − q)n(T +

q − 1)n we obtain (17)-(19).

Now we determine the radius r. The interval [0, 1] is contained in the Cassini oval Dq when its radius

r ≥ SupT∈[0,1]{|(T − q)(T − 1 + q)|} = Max{q(1 − q), (1/2 − q)2}. This happens for r ≥ (1/2 − q)2 when

0 ≤ q ≤ q0 := (2−
√

2)/4, where q0 is the solution of the equation q(1− q) = (1/2− q)2. Then, expansion (21)

satisfies condition (i) for r > (1/2− q)2 and q ∈ [0, q0]. On the other hand, it satisfies condition (ii) if 1/z /∈ Dq

[4], that is, for any

r <

∣∣∣∣(1

z
− q
)(

1

z
+ q − 1

)∣∣∣∣ .
The smallest r that we can take is r = (1/2− q)2 + ε and then, the largest Sq we can choose is (15). Then, for

z ∈ Sq, we can introduce expansion (21) in (5) and interchange summation and integration to obtain (16), with

RN

(
a,~b

~c

∣∣∣∣∣ z
)

:=

p∏
s=1

(
A(bs, cs)

∫
L

tbs−1s (1− ts)cs−bs−1dts
)
rN (T ). (22)

From Theorem 1 of [4] we have that the remainder in the expansion (21) may be bounded in the form |rN (T )| ≤
C(a, z)|(T − q)(T + q − 1)/r|N , T ∈ Dq, where C(a, z) > 0 is independent of T and N . When T ∈ X, we have

that |rN (T )| ≤ C(a, z)[(1/2− q)2/r]N . Introducing this bound in (22) and after straightforward computations

we obtain (20). When <ck > <bk > 0; k = 1, 2, ..., p, we may use the Euler form of (5) (see Appendix 2, case

(a)) to see that M(a,~b,~c, z) is independent on ~b and ~c. tu

Two particularly interesting corollaries of Theorem 2 are obtained for q = 0 and for q = q0. In the first

case, the analytic form of (16) is the simplest possible one; in the second case, the convergence region Sq is the

largest possible one. They are analyzed in the following two subsections.

3.1. Case q = 0: an expansion for |z|2 < 4|1− z|

From Theorem 2 we see that the simplest form of the analytic expansion (16) is obtained for q = 0, that

is, when we consider the two point Taylor expansion of the function f(T ) at the end points of the T− domain:

T = 0 and T = 1. In this case, a simple explicit formula for the coefficients An(a, z) and Bn(a, z) is given in

[4]. We formulate the result in the form of a corollary:

Corollary 1. Define the region (see Figure 3(b))

S0 := {z ∈ C/ ; |z|2 < 4|1− z|} = {x+ iy;x, y ∈ R| , y4 + (2x2 − 16)y2 + (x4 − 16x2 + 32x− 16) < 0}.

Then, for any z ∈ S0 and (a,~b,~c) ∈ Λ,

p+1Fp

(
a,~b

~c

∣∣∣∣∣ z
)

=
N−1∑
n=0

(−1)n
p∏
s=1

(bs)n
(cs)n

[
An(a, z) p+1Fp

(
−n,−−−→b+ n

−−−→c+ n

∣∣∣∣∣ 1
)

+

p∏
s=1

bs + n

cs + n
Bn(a, z) p+1Fp

(
−n,−−−−−−→b+ n+ 1

−−−−−−→
c+ n+ 1

∣∣∣∣∣ 1
)]

+RN

(
a,~b

~c

∣∣∣∣∣ z
)
,

(23)

where, for n = 0, 1, 2, ..., the coefficients An(a, z) and Bn(a, z) are given explicitly by

An(a, z) :=
1

n!

n∑
k=0

(n+ k − 1)!

k!(n− k)!
[(−1)nn− (−1)kk(1− z)k−a−n](a)n−kz

n−k,

Bn(a, z) :=
1

n!

n∑
k=0

(n+ k)!

k!(n− k)!
[(−1)k(1− z)k−a−n + (−1)n+1](a)n−kz

n−k,

(24)
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and may also be obtained from the following recurrence relation:

An+1(a, z) =
−z(a+ 2n)An(a, z) + [1 + n(2− z)]Bn(a, z)

n+ 1
,

Bn+1(a, z) =
z(2− z)(a+ 2n)An(a, z) + [z(a+ 2) + n(6z − z2 − 4)− 2]Bn(a, z)

(n+ 1)(1− z)
,

(25)

with A0(a, z) = 1 and B0(a, z) = (1− z)−a − 1.

The coefficients p+1Fp(−n,~b;~c; 1) may be recursively computed using (9). The rate of convergence of (23) is

of power type: ∣∣∣∣∣RN
(
a,~b

~c

∣∣∣∣∣ z
)∣∣∣∣∣ ≤M(a,~b,~c, z)

∣∣∣∣ z2

4(1− z)

∣∣∣∣N , (26)

with M(a,~b,~c, z) > 0 independent on N . When <ck > <bk > 0; k = 1, 2, ..., p; M(a,~b,~c, z) is also independent

on ~b and ~c.

1/z
-6 -4 -2 2 4

-4

-2

2

4

Re z

Im z

z
Re T

Im T

0 1

1/2D S00

(a) (b)

Figure 3. The minimal domain of convergence D0 = {T ∈ C/, |T (T−1)| < r} of the two-point Taylor expansion

(21) containing X is a Cassini oval of radius r = 1/4 + ε and foci T = 0 and T = 1 (figure (a)). The region

S0, inverse of the exterior of D0, is the region shown in figure (b): S0 = {z ∈ C/ ; |z|2 < 4|1− z|}.

Proof. Formula (24) is derived in [4]. Formulas (23), (25) and (26) follow from (16), (17) and (20) setting

q = 0. tu

3.2. Case q = (2−
√

2)/4: an expansion for |z2 − 8z + 8| > |z|2

When we want to maximize the size of the convergence region Sq, the optimal election of the base points q

and 1−q is that one that minimizes the region Dq. In the minimal region Dq, the end points of the interval [0, 1],

as well as the middle point T = 1/2 are on the boundary of the Cassini’s oval Dq (see Fig. 4(a)). As we have

seen above, this happens for q = q0 := (2 −
√

2)/4. With this choice, the Cassini’s oval Dq0 of convergence of

the two-point Taylor expansion is the smallest possible two-point Cassini’s oval that contains X. We formulate

the result in the form of a corollary:

Corollary 2. Define the region (see Figure 4(b))

Sq0 = {z ∈ C/ ; |z2 − 8z + 8| > |z|2} = {x+ iy;x, y ∈ R| , 4 + 5x2 − x3 + 3y2 − x(8 + y2) > 0}.
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Then, for any z ∈ Sq0 and (a,~b,~c) ∈ Λ,

p+1Fp

(
a,~b

~c

∣∣∣∣∣ z
)

=

N−1∑
n=0

n∑
k=0

(
n

k

)
8k−n(−1)k

p∏
s=1

(bs)k
(cs)k

[
An(a, z) p+1Fp

(
−k,−−−→b+ k

−−−→
c+ k

∣∣∣∣∣ 1
)

+

p∏
s=1

bs + k

cs + k
Bn(a, z) p+1Fp

(
−k,−−−−−−→b+ k + 1

−−−−−−→
c+ k + 1

∣∣∣∣∣ 1
)]

+RN

(
a,~b

~c

∣∣∣∣∣ z
)
,

(27)

where, for n = 0, 1, 2, ..., the coefficients An(a, z) and Bn(a, z) are obtained from the recurrence relation

An+1(a, z) =
M11(z, n, a, q0)An(a, z) +M12(z, n, a, q0)Bn(a, z)

(n+ 1)(8z − 8− z2)
,

Bn+1(a, z) =
M21(z, n, a, q0)An(a, z) +M22(z, n, a, q0)Bn(a, z)

(n+ 1)(8z − 8− z2)
,

(28)

with
M11(z, n, a, q0) :=4z(a+ 2n)[4− 3z],

M12(z, n, a, q0) :=− z2(16n+ 2(a+ 1)) + 4z(a+ 4 + 12n)− 16(2n+ 1),

M21(z, n, a, q0) :=16z(z − 2)(a+ 2n),

M22(z, n, a, q0) :=4z2(6n+ 1 + a)− 16z(a+ 2 + 6n) + 32(2n+ 1),

and

A0(a, z) =
√

2 [(1− q0)(1− z q0)−a− q0(1− z(1− q0))−a], B0(a, z) =
√

2 [(1− z(1− q0))−a− (1− z q0)−a].

The functions p+1Fp(−k,~b;~c; 1) may be recursively computed using (9). The rate of convergence of (27) is of

power type: ∣∣∣∣∣RN
(
a,~b

~c

∣∣∣∣∣ z
)∣∣∣∣∣ ≤M(a,~b,~c, z)

∣∣∣∣ z2

z2 − 8z + 8

∣∣∣∣N ,
with M(a,~b,~c, z) > 0 independent on N . When <ck > <bk > 0; k = 1, 2, ..., p; M(a,~b,~c, z) is also independent

on ~b and ~c.

1/z
1
Re T

Im T

D
0

0.5 q0

zS

2
Re z

Im z

1
3

q0

(a) (b)

Figure 4. The minimal domain of convergence Dq0 of the two-point Taylor expansion of f(T ) at T = q0 =

(2−
√

2)/4 and T = 1− q0 = (2 +
√

2)/4 containing X is a Cassini’s oval of radius r = 1/8 + ε and foci T = q0

and T = 1 − q0 (figure (a)). The region Sq0 , inverse of the exterior of Dq0 , is the region shown in figure (b):

Sq0 = {z ∈ C/ ; |z2 − 8z + 8| > |z|2}.

Proof. Just set q = q0 in the proof of Theorem 2. tu
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4. Expansions in larger domains

As it has been pointed out in [6] (in a different context), the use of a three-point Taylor expansion [5] with

base points in the interval [0, 1] is preferable to the use of a two-point Taylor expansion in order to better

avoid the singularity T = 1/z of f(t) in its domain of convergence, and, at the same time, to include X in its

interior (see Figure 5(a)). Therefore, in this section we consider the three-point Taylor expansion of the function

f(T ) = (1− zT )−a. For simplicity in the exposition, we consider here the three base points T = 0, T = 1/2 and

T = 1 (subsection 4.1) and the three base points T = q0 := (2 −
√

3)/4, T = 1/2 and T = 1 − q0 (subsection

4.2). Because of the long expressions involved in the expansion, we relegate the general case T = q, T = 1/2

and T = 1− q, q ∈ [0, 1/2), to Appendix 1.

4.1. An expansion for |z|3 < 6
√

3|(1− z)(2− z)|

The simplest form of the general analytic expansion derived in Appendix 1 is obtained for q = 0:

Corollary 3. Define the region (see Figure 5(b))

S0 := {z ∈ C/ ; |z|3 < 6
√

3|(1− z)(2− z)|} = {x+ iy;x, y ∈ R| , 108[(1− x)2 + y2][(2− x)2 + y2] > (x2 + y2)3}.

Then, for any z ∈ S0 and (a,~b,~c) ∈ Λ,

p+1Fp

(
a,~b

~c

∣∣∣∣∣ z
)

=

N−1∑
n=0

(−1)n
n∑
k=0

(
n
k

)
(−2)k−n

p∏
s=1

(
(bs)k
(cs)k

(bs + k)n
(cs + k)n

) [
An(a, z)p+1Fp

(
−n,−−−−−−→b+ n+ k

−−−−−−→
c+ n+ k

∣∣∣∣∣ 1
)

+

p∏
s=1

bs + n+ k

cs + n+ k
Bn(a, z)p+1Fp

(
−n,−−−−−−−−−→b+ n+ k + 1

−−−−−−−−−→
c+ n+ k + 1

∣∣∣∣∣ 1
)

+

p∏
s=1

(bs + n+ k)(bs + n+ k + 1)

(cs + n+ k)(cs + n+ k + 1)
Cn(a, z)p+1Fp

(
−n,−−−−−−−−−→b+ n+ k + 2

−−−−−−−−−→
c+ n+ k + 2

∣∣∣∣∣ 1
)]

+RN

(
a,~b

~c

∣∣∣∣∣ z
)
,

(29)

where, for n = 0, 1, 2, ..., the coefficients An(a, z), Bn(a, z) and Cn(a, z) are obtained from the recurrence relation

An+1(a, z) =
1

2(n+ 1)
{2[3n(z − 2)− 2]Bn(a, z) + 4z(3n+ a)An(a, z) + n(5z − 6)Cn(a, z)},

Bn+1(a, z) =
1

2(n+ 1)(z2 − 3z + 2)
{4z(3n+ a)(26z − 3z2 − 24)An(a, z) + 2[48− 4z(18 + 5a) + 6z2(4 + 3a)+

3n(48− 96z + 50z2 − 3z3)]Bn(a, z) + [4(20− 6z(5 + a) + 5z2(2 + a))+

n(264− 516z + 262z2 − 15z3)]Cn(a, z)},

Cn+1(a, z) =
1

(n+ 1)(z2 − 3z + 2)
{4z(3n+ a)(12− 12z + z2)An(a, z) + 2[2(6(3 + a)z − (6 + 5a)z2 − 12)+

3n(z3 − 24z2 + 48z − 24)]Bn(a, z) + [4(2z(9 + 2a)− 3z2(2 + a)− 12)+

n(5z3 − 132z2 + 276z − 144)]Cn(a, z)},
(30)

with A0(a, z) = 1, B0(a, z) = 4(1− z/2)−a − (1− z)−a − 3 and C0(a, z) = 2 + 2(1− z)−a − 4(1− z/2)−a.

The functions p+1Fp(−n,~b;~c; 1) may be recursively computed using (9). The rate of convergence of (29) is

of power type: ∣∣∣∣∣RN
(
a,~b

~c

∣∣∣∣∣ z
)∣∣∣∣∣ ≤M(a,~b,~c, z)

∣∣∣∣ z3

6
√

3(1− z)(2− z)

∣∣∣∣N ,
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with M(a,~b,~c, z) > 0 independent on N . When <ck > <bk > 0; k = 1, 2, ..., p; M(a,~b,~c, z) is also independent

on ~b and ~c.

Proof. Set q = 0 in the proof of Theorem 3 in Appendix 1. tu

-15 -10 -5 5

-10

-5

5

10

Re z

Im z

1/z

z

0.2 0.4 0.6 0.8 1

Re T

Im T

S
0

Dq0
q 0

(a) (b)

Figure 5. The minimal domain of convergence D0 of the three-point Taylor expansion of f(T ) at T = 0,

T = 1/2 and T = 1 containing X is a Cassini oval of radius r = (12
√

3)−1 + ε and foci at T = 0, T = 1/2

and T = 1 (figure (a)). The region S0, inverse of the exterior of D0, is the region shown in figure (b):

S0 = {z ∈ C/; |z|3 < 6
√

3|(1− z)(2− z)|}.

4.2. An expansion for |z|3 < |(2− z)(z2 − 16z + 16)|

When we want to maximize the size of the convergence region Sq for the variable z, the optimal election of

the base points q and 1− q is that one that minimizes the region Dq (see Fig. 6(a)). As we derive in Appendix

1, this happens for q = q0 := (2 −
√

3)/4. With this choice, the Cassini’s oval Dq0 is the smallest possible

three-point Cassini’s oval containing X. We formulate the result in the form of a corollary.

Corollary 4. Define the region (see Figure 6(b))

Sq0 :={z ∈ C/ ; |z|3 < |(2− z)| |z2 − 16z + 16| } = {x+ iy;x, y ∈ R| ,

256− x(768− 864x+ 448x2 − 105x3 + 9x4) + 6y2(48− 64x+ 27x2 − 3x3) + 3y4(19− 3x) > 0}.

Then, for any z ∈ Sq0 and (a,~b,~c) ∈ Λ,

p+1Fp

(
a,~b

~c

∣∣∣∣∣ z
)

=

N−1∑
n=0

n∑
k=0

(
n
k

)
(−2)k−n

p∏
s=1

(bs)k
(cs)k

[
An(a, z)Hq

n

(−−−→
b+ k

−−−→
c+ k

)
+

p∏
s=1

bs + k

cs + k
Bn(a, z)Hq

n

(−−−−−−→
b+ k + 1

−−−−−−→
c+ k + 1

)
+

p∏
s=1

(bs + k)(bs + k + 1)

(cs + k)(cs + k + 1)
Cn(a, z)Hq

n

(−−−−−−→
b+ k + 2

−−−−−−→
c+ k + 2

)]
+RN

(
a,~b

~c

∣∣∣∣∣ z
)
,

(31)

with

Hq
n

(
~b

~c

)
:=

n∑
m=0

(
n
m

)
16n−m(−1)m

p∏
s=1

(bs)m
(cs)m

p+1Fp

(
−m,−−−→b+m
−−−→c+m

∣∣∣∣∣ 1
)
. (32)

For n = 0, 1, 2, ..., the coefficients An(a, z), Bn(a, z) and Cn(a, z) are obtained from the recurrence (36) with

q = (2−
√

3)/4.
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The functions p+1Fp(−n,~b;~c; 1) may be recursively computed using (9). The rate of convergence of (31) is

of power type: ∣∣∣∣∣RN
(
a,~b

~c

∣∣∣∣∣ z
)∣∣∣∣∣ ≤M(a,~b,~c, z)

∣∣∣∣ z3

(z2 − 16z + 16)(2− z)

∣∣∣∣N ,
with M(a,~b,~c, z) > 0 independent on N . When <ck > <bk > 0; k = 1, 2, ..., p; M(a,~b,~c, z) is also independent

on ~b and ~c.

Proof. Set q = q0 in the proof of Theorem 3. tu

1/z

0.25
1

Re T

Im T

0.75
0

Dq0
z

S

2
Re z

Im z

1 3 19/34 5

q0

(a) (b)

Figure 6. The minimal domain of convergence Dq0 of the three-point Taylor expansion of f(T ) at T = q0 =

(2−
√

3)/4, T = 1/2 and T = 1 − q0 = (2 +
√

3)/4 containing X is a Cassini oval of radius r = 1/32 + ε and

foci T = q0, T = 1/2 and T = 1− q0 (figure (a)). The region Sq0 , inverse of the exterior of Dq0 , is the region

shown in figure (b): Sq0 = {z ∈ C/ ; |z|3 < |(2− z)(z2 − 16z + 16)| }.

5. Concluding remarks and numerical experiments

In Section 2 we have used a standard one-point Taylor expansion of f(T ) = (1 − zT )−a with the smallest

possible convergence region D containing X (the domain of T ): an expansion at the point t = w and convergence

radius r =max{|w|, |w − 1|} + ε. Then, the inverse of the complement of this disk D is the largest possible

region S that we can obtain with a one-point Taylor expansion of f(T ): <z < 1 or, in general, the semi-plane

2<(zw) < 1 (when <w ≥ 1/2).

In Section 3 we have improved this idea using a two-point Taylor expansion of f(T ) with two base points

located in the interval [0, 1] and, in Section 4 and Appendix 1, a three-point Taylor expansion. In this way,

we have obtained expansions with larger domains of convergence S, some of them unbounded, and containing

the indented closed unit disk |z| ≤ 1, z 6= 1. In order to enlarge the convergence region S, we may consider

the possibility of expanding f(T ) at four or more points located in the interval [0, 1]. In fact, one gets new

approximations valid in regions S larger than the ones shown in Figs. 3(b), 4(b), 5(b) or 6(b); but the integrals

defining the coefficients of the expansion, as well as the recurrences for the functions An(a, z), Bn(a, z),...,

become more and more complicated.

In this paper we have generalized our previous work [7] and [8] for the 2F1(a, b; c; z) and 3F2(a, b1, b2; c1, c2; z)

functions to arbitrary p+1Fp(a,~b;~c; z) functions in three different directions. On the one hand, obviously, we

have extended the number of parameters (3 or 5) to an arbitrary number 2p + 1. On the other hand, we

have considered new base points for the two and three-point Taylor expansions of the function f(T ). We have
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optimized in this way the shape of the domain of convergence of the expansions of f(T ), obtaining new and

larger domains for the variable z in the expansion of p+1Fp(a,~b;~c; z). We have also considered multiple loop

integral representations (5), (cases (b), (c) and (d) detailed in Appendix 2), instead of the multiple Euler integral

representation used in [7] and [8] that are particular cases of (5) (see Appendix 2, case (a)). These integral

representations are necessary to extend the range of validity of the parameters a, ~b and ~c to any complex value

(except 1− ck ∈ N| ).

All the expansions are given in terms of rational functions of z and the parameters bk and ck, multiplied by

factors of the form (1−uz)−a for different constants u. We have derived a precise bound for the remainder only

for the expansion given in Section 2. We have not given a precise bound for the remainder in the expansions

given in sections 3, 4 and Appendix 1 because: (i) we do not have at our disposal an appropriate expression for

the remainder rN (T ) of the two and three-point Taylor expansions of f(T ) that would let the derivation of an

accurate constant C(a, z) and (ii) the loop integrals considered in (5) (cases (b), (c) and (d) in Appendix 2) are

less appropriate than the Euler integral (5) (case (a) in Appendix 2) when we want to find and accurate form

of the bounding constant M(a,~b,~c, z).

The following tables show some numerical experiments for the 4F3(a,~b;~c; z) and 8F7(a,~b;~c; z) functions. We

compare the accuracy of the approximations given in sections 2, 3 and 4 with the power series definition (1),

the connection formula (1)-(2) and Bühring’s formula (4).

The first row in the tables represents the number n of terms used in either of the expansions. The remaining

rows represent the relative error obtained with the indicated approximations. In Bühring’s formula (4) and

formula (6) of Theorem 1 we have taken the base point w = 1/2 for the Taylor expansion.

These numerical experiments confirm that the approximations derived from a three-point Taylor expansion

((29) and (31)) are more accurate than the approximations derived from a two-point Taylor ((23) and (27))

or a standard Taylor expansion (6): three-point Taylor expansions provide more uniform approximations than

two-point or standard Taylor series.

When we take values of z close to 0, our 5 new approximations are more competitive than Bühring’s formula

or the standard Taylor series definition. Also, when the difference between any couple of parameters aj is close

or equal to an integer, our 5 approximations are more competitive than Bühring’s approximation. We may

observe that formula (31) is the most accurate one.

Parameter values: p = 3, a = 1,~b =
(
1
2 ,

4
3 ,

5
6

)
,~c =

(
5
3 ,

7
5 ,

5
7

)
, z = − 1+i

5 .

Approximation 0 2 4 6

Power series definition (1) 8.971e-2 2.829e-3 1.368e-4 7.742e-6

Connection formula (1)-(2) — — — —

Bühring’s formula z0 = 1/2 (4) 6.371e-1 1.844e-1 6.933e-2 2.828e-2

Theorem 1: formula (6) 4.702e-2 5.770e-4 7.870e-6 1.127e-7

Corollary 1: formula (23) 8.932e-3 1.551e-6 3.325e-10 7.676e-14

Corollary 2: formula (27) 7.280e-4 3.829e-8 2.201e-12 2.376e-16

Corollary 3: formula (29) 1.943e-4 8.069e-11 4.189e-17 2.345e-23

Corollary 4: formula (31) 2.155e-6 4.879e-13 1.190e-19 3.003e-26
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Parameter values: p = 3, a = 1,~b =
(
1
2 ,

4
3 ,

5
6

)
,~c =

(
5
3 ,

7
5 ,

5
7

)
, z = −3 + i.

Approximation 0 2 4 6

Power series definition (1) — — — —

Connection formula (1)-(2) 8.182e-2 2.442e-3 1.384e-4 9.510e-6

Bühring’s formula z0 = 1/2 (4) 1.101e-1 1.361e-3 2.099e-5 3.474e-7

Theorem 1: formula (6) 3.474e-1 1.021e-1 3.301e-2 1.115e-2

Corollary 1: formula (23) 2.705e-1 5.812e-2 1.645e-2 5.089e-3

Corollary 2: formula (27) 2.799e-2 1.134e-3 5.157e-5 2.476e-6

Corollary 3: formula (29) 4.963e-2 6.413e-4 1.053e-5 1.873e-7

Corollary 4: formula (31) 3.102e-3 1.518e-5 8.371e-8 4.880e-10

Parameter values: p = 3, a = 1,~b =
(
1
2 ,

4
3 ,

5
6

)
,~c =

(
5
3 ,

7
5 ,

5
7

)
, z = exp( iπ4 ).

Approximation 0 2 4 6

Power series definition (1) 3.701e-1 1.598e-1 9.907e-2 7.070e-2

Connection formula (1)-(2) 4.657e-1 1.722e-1 1.029e-1 7.22e-2

Bühring’s formula z0 = 1/2 (4) 6.007e-1 1.757e-1 6.512e-2 2.606e-2

Theorem 1: formula (6) 2.393e-1 7.884e-2 2.952e-2 1.171e-2

Corollary 1: formula (23) 1.959e-1 1.416e-2 1.222e-3 1.125e-4

Corollary 2: formula (27) 4.168e-2 1.167e-3 3.610e-5 1.169e-6

Corollary 3: formula (29) 2.256e-2 1.085e-4 6.332e-7 3.959e-9

Corollary 4: formula (31) 4.522e-3 1.232e-5 3.713e-8 1.172e-10

Parameter values: p = 3, a = 1, ~b = (2, 3, 1) , ~c = (2, 3, 4) , z = 1
2 exp( 7iπ

6 ).

Approximation 0 2 4 6

Power series definition (1) 1.179e-1 5.519e-3 4.757e-4 5.429e-5

Connection formula (1)-(2) — — — —

Bühring’s formula z0 = 1/2 (4) — — — —

Theorem 1: formula (6) 1.081e-1 2.746e-3 8.254e-5 2.695e-6

Corollary 1: formula (23) 2.492e-2 2.843e-5 4.064e-8 6.312e-11

Corollary 2: formula (27) 3.416e-3 1.276e-6 5.058e-10 2.032e-13

Corollary 3: formula (29) 1.823e-3 1.454e-8 1.322e-13 3.370e-15

Corollary 4: formula (31) 6.574e-4 2.401e-9 7.157e-15 3.265e-15

6. Appendix 1. An expansion for 6
√

3 |(1− qz)(2− z)(1 + qz − z)| > |(1− 2q)z|3

We generalize in this section the expansion given in Section 4: we consider the three-point Taylor expansion

of the function f(T ) = (1− zT )−a at three-points T = q, T = 1/2 and T = 1− q, q ∈ [0, 1/2). The results are

summarized in the following theorem.
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Parameter values: p = 7, a = 1,~b =
(
1
2 ,

1
3 ,

3
4 ,

5
7 ,

3
8 ,

7
6 ,

5
9

)
, ~c =

(
12
11 ,

2
3 ,

5
4 ,

6
7 ,

6
5 ,

9
10 ,

5
12

)
, z = 2

3 exp( 2iπ
3 ).

Approximation 0 2 4 6

Power series definition (1) 3.748e-2 2.369e-3 3.921e-4 8.987e-5

Connection formula (1)-(2) — — — —

Bühring’s formula z0 = 1/2 (4) 4.515e-2 2.352e-3 2.963e-4 5.377e-5

Theorem 1: formula (6) 2.464e-1 1.715e-2 1.236e-3 9.052e-5

Corollary 1: formula (23) 1.200e-2 3.011e-5 1.244e-7 5.885e-10

Corollary 2: formula (27) 2.640e-2 3.445e-5 4.698e-8 6.538e-11

Corollary 3: formula (29) 1.797e-3 6.212e-8 3.113e-12 2.047e-16

Corollary 4: formula (31) 2.923e-3 7.305e-8 1.908e-12 1.419e-16

Parameter values: p = 7, a = 1,~b =
(
1
2 ,

1
3 ,

3
4 ,

5
7 ,

3
8 ,

7
6 ,

5
9

)
, ~c =

(
12
11 ,

2
3 ,

5
4 ,

6
7 ,

6
5 ,

9
10 ,

5
12

)
, z = −2− 2i.

Approximation 0 2 4 6

Power series definition (1) — — — —

Connection formula (1)-(2) 9.630e-3 1.115e-4 4.577e-6 2.786e-7

Bühring’s formula z0 = 1/2 (4) 2.122e-2 1.591e-4 2.206e-6 3.710e-8

Theorem 1: formula (6) 5.809e-1 2.132e-1 8.042e-2 3.075e-2

Corollary 1: formula (23) 6.942e-2 7.813e-3 1.608e-3 3.893e-4

Corollary 2: formula (27) 1.779e-1 8.749e-3 4.497e-4 2.359e-5

Corollary 3: formula (29) 2.684e-2 2.381e-4 3.198e-6 4.812e-8

Corollary 4: formula (31) 1.057e-1 1.809e-3 3.248e-5 5.975e-7

Theorem 3. For arbitrary q ∈ [0, q0], with q0 := (2−
√

3)/4, define the region (see Figures 5(b) or 6(b))

Sq := {z ∈ C/ ; 6
√

3 |(1− qz)(2− z)(1 + qz − z)| > |(1− 2q)z|3}. (33)

Then, for any z ∈ Sq and (a,~b,~c) ∈ Λ,

p+1Fp

(
a,~b

~c

∣∣∣∣∣ z
)

=

N−1∑
n=0

n∑
k=0

(
n
k

)
(−2)k−n

p∏
s=1

(bs)k
(cs)k

[
An(a, z)Hq

n

(−−−→
b+ k

−−−→
c+ k

)
+

p∏
s=1

bs + k

cs + k
Bn(a, z)Hq

n

(−−−−−−→
b+ k + 1

−−−−−−→
c+ k + 1

)
+

p∏
s=1

(bs + k)(bs + k + 1)

(cs + k)(cs + k + 1)
Cn(a, z)Hq

n

(−−−−−−→
b+ k + 2

−−−−−−→
c+ k + 2

)]
+RN

(
a,~b

~c

∣∣∣∣∣ z
)
,

(34)

with

Hq
n

(
~b

~c

)
:=

n∑
m=0

(
n
m

)
(q(1− q))n−m(−1)m

p∏
s=1

(bs)m
(cs)m

p+1Fp

(
−m,−−−→b+m
−−−→c+m

∣∣∣∣∣ 1
)
. (35)

For n = 0, 1, 2, ..., the coefficients An(a, z) and Bn(a, z) are obtained from the following recurrence relation:

An+1(a, z) =
M11(z, n, a, q)An(a, z) +M12(z, n, a, q)Bn(a, z) +M13(z, n, a, q)Cn(a, z)

2(n+ 1)(1− 2q)4(z − 2) ((q − 1)qz2 + z − 1)
,

Bn+1(a, z) =
M21(z, n, a, q)An(a, z) +M22(z, n, a, q)Bn(a, z) +M23(z, n, a, q)Cn(a, z)

2(n+ 1)(1− 2q)4(z − 2) ((q − 1)qz2 + z − 1)
,

Cn+1(a, z) =
M31(z, n, a, q)An(a, z) +M32(z, n, a, q)Bn(a, z) +M33(z, n, a, q)Cn(a, z)

(n+ 1)(1− 2q)4(z − 2) ((q − 1)qz2 + z − 1)
,

(36)
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with

M11(z, n, a, q) :=4z(a+ 3n)
(
(2(q − 1)q(8(q − 1)q + 1) + 1)z2 + 3(4(q − 1)q − 1)z − 16(q − 1)q + 2

)
,

M12(z, n, a, q) :=2
(
2(a+ 1)(q − 1)q(8(q − 1)q − 1)z3 − 2z2(2(q − 1)q(−6a+ 8(q − 1)q − 5) + 1)

−24(a+ 2)(q − 1)qz + 3n(z − 1)
((

32(q − 1)2q2 + 1
)
z2 + 4(8(q − 1)q − 1)z − 32(q − 1)q + 4

)
+32(q − 1)q + 6z − 4) ,

M13(z, n, a, q) :=4(q − 1)q
(
z2
(
−4(a+ 6)q2 + 4(a+ 6)q + 5a+ 12

)
+ 6(a+ 2)(q − 1)qz3 − 6(a+ 6)z + 24

)
+ n

(
(4(q − 1)q(2(q − 1)q(16(q − 1)q + 27) + 3) + 5)z3 − 3(8(q − 1)q(6(q − 1)q − 7) + 7)z2−

8(q − 1)q(16(q − 1)q + 53)z + 240(q − 1)q + 4(7z − 3)) ,

M21(z, n, a, q) :=4z(a+ 3n)(z(4(q − 1)q(3z + 2)− 3z + 26)− 24),

M22(z, n, a, q) :=2(2z(a(4(q − 1)q(3(z − 1)z + 2) + 9z) + 12z((q − 1)q(z − 2) + 1))− 4(5a+ 18)z+

3n(z(z(4(q − 1)q(9z − 10)− 3z + 50)− 96) + 48) + 48),

M23(z, n, a, q) :=z3
(
4(a+ 2)q

(
−4q3 + 8q2 + q − 5

)
+ 3n(8(q − 1)q(2(q − 1)q + 7)− 5)

)
+ 2z2

(
16q4(a+ 5n+ 2)−

32q3(a+ 5n+ 2) + 12q2(a+ 4n− 2) + 4q(a+ 8n+ 14) + 10a+ 131n+ 20
)
−

12z(2a+ n(4(q − 1)q + 43)− 8(q − 1)q + 10) + 8(3n(11− 4(q − 1)q)− 8(q − 1)q + 10),

M31(z, n, a, q) :=4z(a+ 3n)(z((1− 8(q − 1)q)z − 12) + 12),

M32(z, n, a, q) :=2(2(z(a(z(−2(q − 1)q(3z − 2)− 5) + 6)− 6z((q − 1)q(z − 2) + 1) + 18)− 12)+

3n(z(z(4(q − 1)q(6− 5z) + z − 24) + 48)− 24)),

M33(z, n, a, q) :=4z
(
a
(
(q − 1)q

(
4− 3z2

)
− 3z + 4

)
− 6z((q − 1)q(z − 2) + 1) + 18

)
+

n
(
z
(
(5− 8(q − 1)q(8(q − 1)q + 13))z2 + 48(q − 1)qz + 96(q − 1)q − 132z + 276

)
− 144

)
− 48,

A0(a, z) :=
4q2(1− z/2)−a + (1− qz)−a + q(−4(1− z/2)−a + (1 + (−1 + q)z)−a − (1− qz)−a)

(1− 2q)2
,

B0(a, z) :=
4(1− z/2)−a − (1 + (−1 + q)z)−a − 2q(1 + (−1 + q)z)−a − 3(1− qz)−a + 2q(1− qz)−a

(1− 2q)2
,

C0(a, z) :=
−2(2+a)(2− z)−a + 2(1 + (−1 + q)z)−a + 2(1− qz)−a

(1− 2q)2
.

The functions p+1Fp(−m,~b;~c; 1) may be recursively computed using (9). The rate of convergence of (34) is of

power type: ∣∣∣∣∣RN
(
a,~b

~c

∣∣∣∣∣ z
)∣∣∣∣∣ ≤M(a,~b,~c, z)

∣∣∣∣ (1− 2q)z3

6
√

3(1− qz)(1 + (q − 1)z)(2− z)

∣∣∣∣N , (37)

with M(a,~b,~c, z) > 0 independent on N . When <ck > <bk > 0; k = 1, 2, ..., p; M(a,~b,~c, z) is also independent

on ~b and ~c.

Proof. From [5] we have that:

f(T ) =

N−1∑
n=0

[An(a, z)+Bn(a, z)T+Cn(a, z)T 2][(T−q)(T−1/2)(T+q−1)]n+rN (T ), T ∈ Dq, (38)

where Dq is a Cassini’s oval with foci at T = q, T = 1/2 and T = 1 − q and radius r > 0 that we determine

below: Dq = {T ∈ C/, |(T − q)(T − 1/2)(T + q − 1)| < r}, and rN (T ) is the three-point Taylor remainder [[5],

Theorem 1].

An explicit formula for the coefficients An(a, z), Bn(a, z) and Cn(a, z) may be derived from [5], but it is

very involved and we omit them here for simplicity. Instead, we derive the recurrence relation (36) from the
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differential equation satisfied by f(T ): (1− zT )f ′ = azT . We have that

f ′(T ) =

∞∑
n=0

[A′n(a, z) +B′n(a, z)T + C ′n(a, z)T 2][(T − q)(T − 1/2)(T − 1 + q)]n, (39)

with

A′n(a, z) :=(3n+ 1)Bn(a, z) +
3n

2
Cn(a, z)+

(n+ 1)

[
An+1(a, z)

2
+ q(1− q)

(
An+1(a, z) +

3

2
Bn+1(a, z) +

3

4
Cn+1(a, z)

)]
,

B′n(a, z) :=(3n+ 2)Cn(a, z)− 3(n+ 1)An+1(a, z)− (n+ 1)(1 + 2q(1− q))Bn+1(a, z)− 3(n+ 1)

4
Cn+1(a, z),

C ′n(a, z) :=3(n+ 1)An+1(a, z) +
3(n+ 1)

2
Bn+1(a, z) +

(
5(n+ 1)

4
− 2q(1− q)

)
Cn+1(a, z).

Introducing (38) and (39) into the differential equation (1 − zT )f ′ = azf and equating coefficients of [(T −
q)(T − 1/2)(T + q− 1)]n, T [(T − q)(T − 1/2)(T + q− 1)]n and T 2[(T − q)(T − 1/2)(T + q− 1)]n, we obtain (36).

Expansion (38) converges inside a Cassini’s oval with foci at T = q, T = 1/2 and T = 1 − q and radius

r > 0 of the form Dq = {T ∈ C/, |(T − q)(T − 1/2)(T + q − 1)| < r}. The interval [0, 1] is contained in the

Cassini oval Dq when its radius r ≥ SupT∈[0,1]{|(T − q)(T −1 + q)|} = Max{q(1− q)/2, (1−2q)3/(12
√

3)}. This

happens for r ≥ (1 − 2q)3/(12
√

3) when 0 ≤ q ≤ q0 := (2 −
√

3)/4, where q0 is the solution of the equation

q(1 − q)/2 = (1 − 2q)3/(12
√

3). Then, expansion (38) satisfies condition (i) for r > |(1 − 2q)3/(12
√

3) with

q ∈ [0, q0]. On the other hand, it satisfies condition (ii) if 1/z /∈ Dq [4], that is, for any

r <

∣∣∣∣(1

z
− q
)(

1

z
− 1

2

)(
1

z
+ q − 1

)∣∣∣∣ .
The smallest r we can take is r = (1 − 2q)3/(12

√
3) + ε and then, the largest Sq we can choose is (33). Then,

for z ∈ Sq, we can introduce the expansion (38) in (5) and interchange summation and integration. We obtain

(34)-(35) with

RN

(
a,~b

~c

∣∣∣∣∣ z
)

:=

p∏
s=1

(
A(bs, cs)

∫
L

tbs−1s (1− ts)cs−bs−1dts
)
rN (T ). (40)

From Theorem 1 of [5] we have that the remainder in the expansion (38) may be bounded in the form |rN (T )| ≤
C(a, z)|(T−q)(T−1/2)(T+q−1)/r|N , T ∈ Dq, where C(a, z) > 0 is independent of T and N . When T ∈ X, we

have that |rN (T )| ≤ C(a, z)[(1− 2q)3/(12
√

3)]2N/rN . Introducing this bound in (40) and after straightforward

computations we obtain (37). When <ck > <bk > 0; k = 1, 2, ..., p, we may use the Euler form of (5) (see

Appendix 2, case (a)) to see that M(a,~b,~c, z) is independent on ~b and ~c. tu

7. Appendix 2

In this section we derive four versions of formula (5),

p+1Fp

(
a,~b

~c

∣∣∣∣∣ z
)

=

(
p∏
s=1

A(bs, cs)

∫
L

tbs−1s (1− ts)cs−bs−1dts

)
(1− Tz)−a, T :=

p∏
s=1

ts, (41)

according to four different possibilities for the path L and the constant A(b, c):

(a) The path is L = [0, 1] and

A(b, c) :=
Γ(c)

Γ(b)Γ(c− b)
. (42)



19

In this case, formula (41) is valid for <(ck − bk) > <(bk) > 0; k = 1, 2, 3, ..., p.

(b) The path L starts and terminates at t = 0 and encircles the point t = 1 once in the positive direction. At

the point where L cuts the positive real axis we have that arg(t) = 0 and arg(1− t) = π, (see Figure 7(b)). On

the other hand,

A(b, c) :=
eiπ(b−c)Γ(1 + b− c)Γ(c)

2πiΓ(b)
. (43)

In this case, formula (41) is valid for ck − bk /∈ N| and <(bk) > 0; k = 1, 2, 3, ..., p.

(c) The path L starts and terminates at t = 1 and encircles the point t = 0 once in the positive direction. At

the point where L cuts the negative real axis we have that arg(t) = π and arg(1− t) = 0, (see Figure 7(c)). On

the other hand,

A(b, c) :=
e−iπbΓ(1− b)Γ(c)

2πiΓ(c− b)
. (44)

In this case, formula (41) is valid for bk /∈ N| and <(ck − bk) > 0; k = 1, 2, 3, ..., p.

(d) The path L starts and terminates at an arbitrary point P on the real axis between t = 0 and t = 1, it

encircles the points 0 and 1 once in the positive direction and then once in the negative direction. At the point

P of L we have that arg(t) =arg(1− t) = 0 (see Figure 8). On the other hand,

A(b, c) :=
eiπ(1−c)Γ(c)

4Γ(b)Γ(c− b) sin(πb) sin(π(c− b))
. (45)

In this case, formula (41) is valid for bk and ck − bk /∈ N| ; k = 1, 2, 3, ..., p.

In any case we have that (1 − zT )−a = 1 when z = 0 and the p−dimensional (complex) integration region

Lp must be bounded by the hypersurface T = 1/z of real dimension 2p − 2. In any of the four cases, the

multiple integral representation (41) is a generalization of the respective integral representation of the Gauss

hypergeometric function 2F1(a, b; c; z) given in [[11], Chap. 15, Sec. 6, eqs. 15.6.1, 15.6.2, 15.6.4 or 15.6.5].

None of them covers all the possible values of the parameters (a,~b,~c) ∈ Λ, but all together do.

As we have indicated in the introduction, we assume that the contours L described in cases (b), (c) and

(d) are squeezed (analytically deformed) as much as possible around the real interval [0, 1], as it is indicated in

figures 7 and 8.

1arg(1-t)=0

arg(1-t)=2π P
Re(t)

Im(t)

0 0 arg(t)=0

arg(t)=2π

Im(t)

Re(t)1
P

(b) (c)

Figure 7. The p identical integration contours L in (41), cases (b) and (c), may be deformed to the respective

contours (b) and (c) depicted in this figure. The horizontal segments are assumed to be sticked to the real

interval [0, 1] and the radius ε of the circles is infinitesimally small. At the point P of figure (b) we have that

arg(t) = 0 and arg(1− t) = π. At the point P of figure (c) we have that arg(t) = π and arg(1− t) = 0.
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0 1

arg(t)=0

arg(t)=0

arg(1-t)=0
arg(1-t)=0arg(t)=2π

arg(t)=2
arg(1-t)=2
arg(1-t)=2π

π
π

P Re(t)

Im(t)

Figure 8. The p identical integration contours L in (41), case (d), may be deformed to the contour depicted in

this figure. The horizontal segments are assumed to be sticked to the real interval [0, 1] and the radius ε of the

circles is infinitesimally small. At the point P we have that arg(t) =arg(1− t) = 0.

The derivation of any of the integral representations [[11], Chap. 15, Sec. 6, eqs. 15.6.1, 15.6.2, 15.6.4 or

15.6.5] of the 2F1 function is straightforward; for example, [[11], Chap. 15, Sec. 6, eq. 15.6.5] is derived in [[12],

Chap. 4, Sec. 5], in particular in [[12], p. 153, eq. (7)] (see also [[9], p.58, eq. (8)]). But we are not aware of

any reference for the multiple integral representations (5) of the p+1Fp function in any or the four cases (a)-(d).

Nevertheless, the derivation of these multiple integral representations is a straightforward generalization of the

derivation of the corresponding simple integral representations of the 2F1 function. In order to derive (5) (for

any version (a)-(d)) we replace the expansion

(1− Tz)−a =

∞∑
n=0

(a)n
n!

(zT )n, |zT | < 1,

into the right hand side of (41), interchange sum and integral and use the reflection formula of the gamma

function. We also use different integral representations of the beta function [[2], Chap. 5, Sec. 12, eqs. 5.12.1,

5.12.10 or 5.12.12] depending on the case (a), (b)-(c) or (d) under consideration:

∫
L

ta−1(1− t)b−1dt =
Γ(a)Γ(b)

Γ(a+ b)
×


1, case (a),

2ieiπb sin(πb), case (b),
2ieiπa sin(πa), case (c),

−4eiπ(a+b) sin(πa) sin(πb), case (d).

(46)

We obtain the series expansion (1) of the function p+1Fp(a,~b;~c; z). Therefore, the right hand side of (41)

represents the analytic continuation in the variable z of p+1Fp(a,~b;~c; z), defined by the right hand side of (1),

from the disk |z| < 1 to the region |arg(1− z)| < π. tu
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