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Aggregation of individual rankings through fusion
functions: criticism and optimality analysis
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Abstract—Throughout this paper, our main idea is to
analyze from a theoretical and normative point of view
different methods to aggregate individual rankings. To do
so, first we introduce the concept of a general mean on
an abstract set. This new concept conciliates the Social
Choice –where well-known impossibility results as the
Arrovian ones are encountered– and the Decision-Making
approaches –where the necessity of fusing rankings is
unavoidable–. Moreover it gives rise to a reasonable defi-
nition of the concept of a ranking fusion function that does
indeed satisfy the axioms of a general mean. Then we will
introduce some methods to build ranking fusion functions,
paying a special attention to the use of score functions, and
pointing out the equivalence between ranking and scoring.
To conclude, we prove that any ranking fusion function
introduces a partial order on rankings implemented on
a finite set of alternatives. Therefore, this allows us to
compare rankings and different methods of aggregation, so
that in practice one should look for the maximal elements
with respect to such orders defined on rankings.

Index Terms—Ranking; Social Choice; Decision-
Making; General Means; Aggregation; Score Functions,
Ranking Optimality.

I. INTRODUCTION

Human activities usually involve some decision-
making procedure in order to select an alterna-
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tive among several ones. In spite of some of the
decisions being made without need of too much
thought, difficult or challenging problems could
demand complex solutions as well as the opinion
of more than one expert, so that their evaluations
should then be fused someway.

Decision-Making can be seen as the process of
choosing the most appropriate one among a set of
alternatives according to previously stated criteria.
In general, its methods provide as a result a ranking
of the alternatives. (see e.g. [3], [5], [10], [11], [12],
[17], [18], [23]).

At this stage, we point out two crucial facts in
this approach: On the one hand, from a theoretical
point of view, the famous Arrow’s impossibility
theorem in mathematical Social Choice (see e.g. [2],
[16]) clearly states that under an apparently mild
set of common sense criteria that one may impose
to a rule that fuses individual preferences into a
social one, in order to retrieve or reflect in some
way the main features of each of the individual
components, it actually happens that the criteria
are actually incompatible, so that no perfect rule
is possible. On the other hand, in practical situa-
tions encountered in Decision-Making, aggregations
should be done in some reasonable manner, and
rankings need compulsorily be fused. This does
not mean that Social Choice and Decision-Making
are incompatible theories. Instead, we may consider
them as complementary, so that even if we already
know that no social rule will accomplish all the
criteria that appear either in the Arrovian approach
or in other alternative settings encountered in Social
Choice ([16]), we should search for rules that satisfy
other optimal properties from a more practical point
of view.

It seems then crucial to conciliate the Social
Choice and Decision-Making approaches by fur-
nishing some new key concept relative to aggre-
gation rules that, on the one hand and unlike the
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classical Social Choice settings (see [16]), lead to
possibility results, and, on the other hand, it may be
accepted by decision-makers as a definition of what
a ranking fusion function should be.

To do so, we will work with a variation of a new
axiomatic theoretical setting, recently introduced
(see [7]) –in contexts of Information Sciences, So-
cial Choice and Decision Making– to understand
what a mean on an abstract set should be. Then
we will introduce ranking fusion functions and
score functions that do indeed satisfy the conditions
involved in the axioms of that new frame.

When several methods for a decision-making
problem are applied, the decision-maker will have
more available information to determine a single
ranking in a reasonable way. This process is usually
called rank aggregation and the problem of aggre-
gating several ranks for the same set of objects in a
robust and reasonable way has a long and interesting
history that goes back at least two centuries [14].
While the philosophical aspects of rank aggregation
have been debated extensively, several proposals of
a mathematical approach for rank aggregation have
been introduced in the last years in the context
of Decision-Making, see for example [1], [4], [9],
[13], [19], [20]. Nevertheless, in most of them
their authors do not provide minimal criteria that
those rank aggregation methods should accomplish.
Unlike those proposals, here we will introduce the
concept of a ranking fusion function as one ac-
complishing that new system of axioms, formerly
introduced to set well the concept of a mean in
several interdisciplinary branches of Mathematics.

Obviously, different aggregation rules, even when
they fit well in the new set of suitable axioms that,
as mentioned above, we will introduce in the spirit
of [7], could generate different rankings. So, it is
reasonable to ask ourselves: Is there a ranking that
could be considered optimal in some sense?

To give a reasonable answer to this last question,
it is helpful to define some kind of ordering on dif-
ferent rankings. Thus, a ranking can be considered
better than another one if it is so with respect to
such ordering, once it has been implemented on the
family of all possible rankings. Notice, in addition,
that the fact of having an ordering defined on a set
of rankings also gives us information to compare
methods of aggregation or ranking fusions: given
two methods of aggregation that act on the same set
of rankings, we will consider the resulting outputs

arising after the corresponding fusions, and then
we will compare them by means of the ordering
implemented. The best fused ranking as regards
the ordering should be the one that we will finally
select.

Bearing this in mind, in the final sections of the
manuscript we will show that the ranking fusion
functions that we will introduce do indeed generate
a partial order on the set of all possible rankings
on a finite set. This fact is crucial because it can
be used, accordingly, to detect optimality among a
family of rankings.

II. OBJECTIVES AND ORGANIZATION OF THE
MANUSCRIPT

The main aims of this paper are the following:
1) Introduce a new rigorous axiomatic setting to

aggregate individual preferences and rankings,
as well as to formalize means on abstract sets.

2) Find a suitable notion of a ranking fusion
functions, that could conciliate Social Choice
and Decision-Making approaches.

3) Define the concept of a score function, and
establish a key equivalence between ranking
fusion functions and score functions.

4) Show that any ranking fusion function gives
rise to a partial order on the family of all possi-
ble rankings, so providing us with a technique
to compare different methods of aggregation
of rankings, in order to detect which one is
optimal.

Once the targets have been established, the
present manuscript is organized accordingly, as fol-
lows:
1.– In the section III of Preliminaries, we include

definitions and some previous results that are
crucial for the setting and understanding of the
main achievements of the manuscript. In spite
of these being already known in the specialized
literature, we have decided to include them here
for the sake of completeness.

2.– The next section IV is crucial. There we in-
troduce the theoretical axiomatics of a general
mean on any abstract set. This key concept con-
ciliates Social Choice and Decision-Making,
so that new methods of aggregation in both
disciplines should be designed now in a way
that they satisfy the conditions of this new set
of axioms. The system of axioms introduced
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here is new. It constitutes a slight modification
of a more restrictive axiomatic system that
was recently introduced in [7] in an inter-
disciplinary setting that includes Information
Sciences.

3.– In section V the formal definition of a ranking
fusion function is introduced along with some
examples and properties. The key fact now
is that ranking fusion functions do accomplish
the axioms of a general mean, introduced in
section IV. This gives theoretical support and
consistency to our approach throughout the
present manuscript.

4.– In section VI it is introduced the notion of an
score function. This is also a crucial concept,
because there is an equivalence between rank-
ing fusion functions and score functions. After
proving that equivalence, we may observe that
score functions also fit well in that new setting
of general means. Other auxiliary notions to
be used in the generation of ranking fusion
functions are also introduced in this section.

5.– Section VI is devoted to establish a relationship
among orders on the sets of rankings and
ranking fusion functions. Any ranking fusion
function induces a partial order on the set of all
rankings that could be defined on a finite set..
Again, this is a crucial fact, because it allows
us to compare different methods of ranking
fusions in order to select the optimal one, that
can be determined as the method that gives rise
to the best output ranking with respect to the
order that had been implemented on the set of
all rankings. We also provide some examples
for the use of particular ranking fusion func-
tions introduced in the previous sections. Our
aim when choosing the examples introduced
was just to show how to use ranking fusion
functions as well as score functions. Thus, we
have decided not to search for sophisticated
situations, so that the examples given here may
perhaps look as naive. Nevertheless, the inten-
tion behind was to use them to illustrate step-
by- step how the concepts previously defined
work in practice. Indeed, some of the examples
furnished here has already appeared in this
literature: the first one may be seen in [11] and
[17], whereas the second one appears in [21].
Incidentally, we point out that the aggregating
procedures used by the experts involved in

both examples are quite diverse. We insist on
this fact, with this examples, our aim here is
to show how the processes described before
work. Being our paper theoretical, so that we
introduce a key new concept (namely, a general
mean) and show that ranking fusion functions
and score functions are general means that,
in addition, define a partial order on all the
rankings that could be defined on a finite set,
we think that, as in any pedagogical book
that establishes and develops a new concept
some easy-to-understand examples should be
included to highlight the key concepts intro-
duced, for the sake of a better understanding.

6.– Finally, before the Conclusion, in section VIII,
some further remarks are provided. We point
out that, in the present paper, it is not our
intention to introduce algorithms not to analyze
a concrete –and more or less sophisticated–
problem or possible application (e.g. Informa-
tion Retrieval). This will be left for further on-
going research. Here we introduce the theoret-
ical basis and support to do so in next future.

We furnish now a “top-down” picture of the
contents of the present manuscript:

A DISCUSSION ON SOCIAL CHOICE vs.
DECISION MAKING: THE KEY CONCEPT
OF A GENERAL MEAN
This is a new conciliating abstract concept,
introduced axiomatically.

↓
RANKING FUSION FUNCTIONS:
A key in this approach is that they are general
means.

↓
SCORE FUNCTIONS:
Construction of score functions. The concept is
supported by the following crucial fact: there
exists an equivalence between score functions
and ranking fusion functions, as general means.

↓
SEARCHING FOR OPTIMALITY. RANK-
ING FUSION FUNCTIONS INDUCE PAR-
TIAL ORDERS ON RANKINGS:
This allows us to compare different aggregation
procedures looking for the best rankings, as
maximal elements with respect to the partial
order induced.
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To conclude this section, we give here a list
of relevant mathematical symbols used throughout
the paper. Despite this notation being of common
use in the literature about binary relations, ordered
structures or partitions of sets, we also include it for
the sake of a better understanding.
Q: binary relation on a set; ¬: negation; ∧ :

jointly with; ∨: or; %: preorder on a set; P: profile
of preferences; A: set of all agendas; ≥: usual total
order on real numbers; R: set of all real numbers; ~A:
ordered partition on a set A of alternatives; ℘(A): set
of all ordered partitions;R: ranking fusion function;
θ: position function; πi: i-th projection function; ϑA:
ordered partition generating map associated to A.

III. PRELIMINARIES

This section contains definitions and some pre-
vious results that are crucial for the setting and
understanding of the main achievements of the
manuscript. In spite of them being known in the
specialized literature, we include them for the sake
of completeness.

A. Preferences
Let X denote a nonempty set.

Definition III.1. A binary relation Q on X is a
subset of the Cartesian product X ×X . Given two
elements x, y ∈ X , we will use the standard notation
xQy to express that the pair (x, y) belongs to Q.

Associated to a binary relation Q on a set X , we
consider its negation (respectively, its transpose) as
the binary relation Qc (respectively, Qt) on X given
by (x, y) ∈ Qc ⇔ (x, y) /∈ Q for every x, y ∈ X
(respectively, given by (x, y) ∈ Qt ⇔ (y, x) ∈ Q,
for every x, y ∈ X). We also define the adjoint Qa
of the given relation Q, as Qa = (Qt)c.

A binary relation R defined on a set X is called:
(i) reflexive if xQx holds for every x ∈ X ,

(ii) irreflexive if ¬(xQx) holds for every x ∈ X ,
(iii) symmetric if Q and Qt coincide,
(iv) antisymmetric if Q∩Qt ⊆ {(x, x) : x ∈ X},
(v) asymmetric if Q∩Qt = ∅,

(vi) total if Q∪Qt = X ×X ,
(vii) transitive if xQy ∧ yQz ⇒ xQz for every

x, y, z ∈ X .

In the particular case of a nonempty set where
some kind of ordering has been defined, the stan-
dard notation is different.

Definition III.2. A preorder % on X is a binary
relation on X which is reflexive and transitive. An
antisymmetric preorder is said to be an order, and
a symmetric preorder is called an equivalence. A
total preorder % on a set X is a preorder such
that if x, y ∈ X then (x % y) ∨ (y % x) holds.
If % is a preorder on X , then as usual we denote
the associated asymmetric relation by � and the
associated equivalence relation by ∼ and these are
defined by x � y ⇔ (x % y) ∧ ¬(y % x) and
x ∼ y ⇔ (x % y) ∧ (y % x).

A total preorder % defined on a nonempty set X
is usually called a preference on X .

B. Arrow’s impossibility results

Suppose that A is a finite set of alternatives with
at least three elements. Let us assume that a finite
number of n agents define on A their preferences.
Thus, each individual will be represented by a num-
ber i ∈ Nn = {1, . . . , n}, and her/his preference
will be a total preorder %i defined on A.

Definition III.3. A profile P of preferences is then
a n-tuple (%1, . . . ,%n) such that %i stands for the
preference of the agent i ∈ Nn. A nonempty subset
of A is said to be an agenda. If A denotes the set of
all agendas, a choice function is a map C : A → A
such that for every a ∈ A we have that C(a) ⊆ a. A
social choice rule f is a map that assigns a choice
function CP to each profile P of preferences.

Definition III.4. The Arrovian model consists of a
finite set A of at least three alternatives, a finite set
of n ≥ 3 agents, and a set of choice rules satisfying
the following conditions:
(i) Standard domain: Each rule f acts on all

possible profiles of preferences on A, and given
a profile P , f assigns to P a choice rule CP
that has in its domain all nonempty agendas.

(ii) Strong Pareto condition: For every profile P
and every pair of alternatives x, y ∈ A such
that for every i ∈ Nn we have that x %i y,
and there is also at least one element j ∈ Nn

for which x �j y, it holds true that, for every
agenda a ∈ A, if x ∈ a, then y /∈ CP(a).

(iii) Independence of irrelevant alternatives: For
every agenda a and each pair of profiles P and
P ′ whose restriction to the agenda a coincide,
the rules CP and CP ′ that f assigns to those
profiles, should satisfy that CP(a) = CP ′(a).
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(iv) Transitive explanation: For each profile P
there exists a total preorder %P,f such that the
corresponding choice rule CP that f assigns to
P satisfies that CP(a) = {x ∈ a : x %P,f y
for all y ∈ a}, for any agenda a.

(v) Non-dictatorship: There is no agent i ∈ Nn

such that for every profile P , every agenda a
and any x, y ∈ A it holds true that x %i y
implies that if x ∈ a then y /∈ CP(a), where
CP is the choice rule that f assigns to P .

Theorem III.5. (Arrow’s impossibility theorem):
The Arrovian model is empty. That is, the five con-
ditions that appear in the model are incompatible
for any rule f , provided that A,Nn are finite with
at least three elements each.

Remark III.6. Many different proofs of this result
are encountered in the literature. It was originally
published by Kenneth J. Arrow in [2]. For studies
in depth on results of this kind see [16]. Once it was
known that the Arrovian model leads to incompat-
ibility, alternative approaches were introduced. But
most of the new models also lead to impossibility
results (see e.g Ch. 8 and ff. in [16]). However, in
some models some possibility results may appear.
In those models, a topology defined on the space of
preferences is indeed decisive (see [8]). After that,
other studies tried to keep some, but obviously not
all, of the restrictions in the Arrovian model when
searching for suitable aggregation rules.

IV. GENERAL MEANS

Now we introduce the concept of a general mean
on a nonempty abstract set X . As a matter of fact,
our approach to build ranking fusion functions will
be based in this key concept instead of the Arrovian
approach. As aforesaid, in practice a decision-maker
should compulsorily do aggregations of preferences
and rankings. Thus, a clear idea about what could
we understand as a mean in a totally abstract setting
could be helpful for that purpose.

The task of finding a new axiomatic system to
define abstract means was done in [7], looking for
practical applications into multidisciplinary contexts
that include Information Sciences. As a matter of
fact, Definition IV.1 included below is a slight
variation (indeed a bit less restrictive) that the one
introduced in [7].

Thus, if we adopt now the concept of a general
mean as a new setting to aggregate different in-

dividual rankings, avoiding the Arrovian approach
that leads to impossibility results, the output ranking
resulting of the computation of corresponding mean
will indeed act as a social ranking. The good news
is that general means do actually exist in most
contexts, as analyzed in [7].

Definition IV.1. A sequence of X-valued maps
(Mn)∞n=1, where each Mn is defined on the Cartesian
product Xn, is said to be a general mean on X if
it satisfies the following axioms:
• GM1 (Anonymity-neutrality) For every n ∈ N

and (x1, . . . , xn) ∈ Xn it holds true that
Mn(x1, . . . , xn) = Mn(xσ(1), . . . , xσ(n)) for any
permutation σ of the set {1, . . . , n}.

• GM2 (Unanimity) For any n ∈ N and x ∈ X it
holds true that Mn(x, . . . (n times) . . . , x) = x.

• GM3 (Stability) Given n ∈ N and
(x1, . . . , xn) ∈ Xn, it holds that Mn+1(x1,
. . . , xn,Mn(x1, . . . , xn)) = Mn(x1, . . . , xn).

If (Mn)∞n=1 is a general mean on X , given
k elements {x1, . . . , xk}, the element x̄ =
Mk(x1, . . . , xk) ∈ X is usually called the mean of
the elements xi (i = 1, . . . , k).

V. RANKING FUSION FUNCTIONS

The main concept of a ranking fusion function
is introduced now (see Definition V.3 below) as a
particular kind of a mean, in the new setting just
introduced above in Definition IV.1. This concept
can be considered as a bridge where Social Choice
and Decision-Making meet, so that it conciliates
both approaches.

Definition V.1. Again we denote by Nn the set
{1, . . . , n} for each natural number n ∈ N.

Given a finite and nonempty set of alternatives
A = {a1, . . . , an}, define ℘

A = {(A1, . . . , Ak) :
{A1, . . . , Ak} is a partition of A}. Henceforward,
each element of ℘A is said to be an ordered partition
of the set of alternatives A. So ℘A is the family of
all ordered partitions of the set of alternatives A.

Definition V.2. Given an ordered partition ~A =
(A1, . . . , Ak) ∈ ℘

A, with Ai = {ai1, . . . , aipi}, we
will associate to it, in a natural way, the following
total preorder % ~A or ranking on the set of alterna-
tives A, given as follows: a11 ∼ ~A . . . ∼ ~A a1p1 � ~A

a21 ∼ ~A . . . ∼ ~A a2p2 � ~A . . . � ~A ak1 ∼ ~A . . . ∼ ~A akpk
meaning that the alternative aij and ai(j+1) are
equivalent, i.e. it is not possible to discern among
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TABLE I
EXAMPLE OF SEVEN RANKINGS FOR SIX ALTERNATIVES.

Ranking
~A1 a2 > a4 ∼ a5 > a1 > a3 > a6
~A2 a3 ∼ a5 > a1 > a4 > a2 ∼ a6
~A3 a5 > a2 > a3 > a4 > a1 > a6
~A4 a5 > a3 ∼ a2 > a4 > a6 > a1
~A5 a5 ∼ a2 > a1 > a4 > a3 > a6
~A6 a3 > a2 ∼ a1 > a4 ∼ a6 > a5
~A7 a5 > a3 > a2 ∼ a4 > a1 > a6

the two alternatives, and amn is better than the
alternative a(m+1)l for each i ∈ Nk, j ∈ Npi−1,
m ∈ Nk−1, n ∈ Npm and l ∈ Npm+1 . For
example, ({a1, a2}, {a3}, {a4, a5, a6}) denoted the
ranking a1 ∼ ~A a2 � ~A a3 � ~A a4 ∼ ~A a5 ∼ ~A a6.

The total preorder % ~A is said to be the natural
preference associated to the ordered partition ~A.

Definition V.3. Let A be a finite set of alternatives.
A ranking fusion function (RFF) for A is any
general mean defined on the family ℘

A of all the
ordered partitions of the set A. Equivalently, it is
a general mean defined on the set of all the total
preorders that may be defined on A.

Example V.4. Let ~Ai = (Ai1, . . . , Aiki) ∈ ℘
A for

i ∈ Nm and A = {a1, . . . , an}. Define

• A′1 =
m⋃
i=1

Ai1 and

• A′j =
m⋃
i=1

Aij −
j−1⋃
l=1

A′l for each j = 2, . . . , n

with Aij = ∅ provided that j > ki.

Let R0 :
∞⋃
m=1

℘m
A → ℘

A be the map de-

fined by R0( ~A1, . . . , ~Am) = (A1, . . . , Ak) where
(A1, . . . , Ak) comes from (A′1, . . . , A

′
m) after re-

moving the A′j which are empty. Notice here that
always A′1 6= ∅. Formally, for every j ∈ Nk we
have that Aj = A′i, where i = min{l : A′l 6= ∅ and
A′l 6= Ah for each h < j}. It is straightforward to
see that R0 is a ranking fusion function.

Now, we will apply this ranking fusion func-
tion to the rankings of the alternatives A =
{a1, . . . , a6} shown in the Table I. The Table II
shows the subsets A′j with j ∈ N6 and Aj with
j = 1, . . . , k = 3. Therefore, R0( ~A1, . . . , ~A7) =
({a2, a3, a5}, {a1, a4}, {a6}), i.e. the fusion of these
seven rankings is a2 ∼ a3 ∼ a5 > a1 ∼ a4 > a6.

Proposition V.5. Let R :
∞⋃
j=1

℘j
A → ℘

A be a ranking

fusion function and γ : ℘A → ℘
A be a bijection.

TABLE II
FUSION OF THE SEVEN RANKINGS.

j 1 2 3 4 5 6
A′

j {a2, a3, a5} {a1, a4} ∅ {a6} ∅ ∅
Aj {a2, a3, a5} {a1, a4} {a6}

Then the function Rγ :
∞⋃
j=1

℘j
A → ℘

A defined

by Rγ( ~A1, . . . , ~Am) = γ−1(R(γ( ~A1), . . . , γ( ~Am)))
is also a ranking fusion function, called the γ-
conjugate of R.

Proof. It is plain that if R satisfies GM1
and GM2, so does Rγ too. On the other
hand, with respect to GM3 we have
that: Rγ( ~A1, . . . , ~Am,Rγ( ~A1, . . . , ~Am)) =
Rγ( ~A1, . . . , ~Am, γ

−1(R(γ( ~A1), . . . , γ( ~Am)))) =
γ−1(R(γ( ~A1), . . . , γ( ~Am), γ(γ−1(R(γ( ~A1), . . . ,
γ( ~Am)))))) = γ−1(R(γ( ~A1), . . . , γ( ~Am),R(γ( ~A1),
. . . , γ( ~Am)))) = γ−1(R(γ( ~A1), . . . , γ( ~Am))) =
Rγ( ~A1, . . . , ~Am). Therefore, Rγ also satisfies
GM3. Hence, it is a ranking fusion function.

Definition V.6. Given a set A of alternatives, a
ranking fusion function R :

∞⋃
j=1

℘j
A → ℘

A such

that for each ~A1, . . . , ~Am ∈ ℘
A it holds true that:

R( ~A1, . . . , ~Am) = R( ~A1, . . . , ~Am, ~A1), is said to be
unaffected by duplications of ranking.

Remark V.7. In many typical situations it is in-
teresting that repeated rankings do not affect to
the final output ranking got after the aggregation.
A trivial example appears when the rankings are
already ordered, and we would like to select a
maximal one as regards that given order. By this
reason we analyze now when a ranking fusion
function is not affected by repetitions of rankings.

In the abstract framework of abstract means de-
fined on nonempty set, other properties of this kind
have already been studied in depth in Section 4 of
[7], under the name of iterativity properties.

Proposition V.8. Let R :
∞⋃
j=1

℘j
A → ℘

A be a

ranking fusion function. Then R′ :
∞⋃
j=1

℘j
A → ℘

A

defined byR′( ~A1, . . . , ~Am) = R( ~A′1, . . . , ~A′k), with
{ ~A′1, . . . , ~A′k} = { ~A1, . . . , ~Am}, is a RFF that is
unaffected by duplications of ranking.

Proof. Clearly, since R satisfies GM1, and the fact
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that the removal of copies of some ranking does
not have consequences on that condition, the new
fusion functionR′ also accomplishes GM1. Let ~A ∈
℘
A. Then R′( ~A, . . . (n times) . . . , ~A) = R( ~A) = ~A

and therefore R′ also satisfies GM2. In addition, as
regards GM3, let { ~A′1, . . . , ~A′k} = { ~A1, . . . , ~Am}.

Case 1: If R′( ~A1, . . . , ~Am) ∈ { ~A′1, . . . , ~A′k} then
we have that: R′( ~A1, . . . , ~Am,R′( ~A1, . . . , ~Am)) =
R( ~A′1, . . . , ~A′k) = R′( ~A1, . . . , ~Am).

Case 2: If R′( ~A1, . . . , ~Am) 6∈ { ~A′1, . . . , ~A′k} then
it follows that: R′( ~A1, . . . , ~Am,R′( ~A1, . . . , ~Am)) =
R( ~A′1, . . . , ~A′k,R′( ~A1, . . . , ~Am)) = R( ~A′1,
. . . , ~A′k,R( ~A′1, . . . , ~A′k)) = R( ~A′1, . . . , ~A′k) =
R′( ~A1, . . . , ~Am). Therefore, R satisfies GM3 and,
consequently, it is a ranking fusion function which
is clearly unaffected by duplications of ranking.

VI. SCORE FUNCTIONS

In the present section we will formally introduce
the concept of an A-score function on a finite set of
alternatives A, taking into account its corresponding
set ℘A of ordered partitions.

The main definition to be introduced here (namely
Definition VI.3 below) is not whimsical. It seeks to
have an abstract frame of reference, and a way of
acting that respects the previous context of general
means and ranking fusion functions. By this reason,
we will define this concept through a new system of
axioms. Then we will prove a key equivalence be-
tween ranking fusion functions and score functions.

To start with, first we include some auxiliary
previous definitions.

Definition VI.1. Let A stand for a finite set of
alternatives whose cardinality is n. The function
θ : A × ℘

A → Nn defined, for each a ∈ A and
~A = (A1, . . . , Ak) ∈ ℘A, as follows:

θ(a, ~A) =


1 if a ∈ A1

1 + Card(
l−1⋃
p=1

Ap) if a ∈ Al for l ≥ 2

is said to be a position function.

For example, working with the set A =
{a1, . . . , a6} and the ordered partition ~A =
({a1}, {a3, a4}, {a2, a5}, {a6}) we have that:
θ(a1, ({a1}, {a3, a4}, {a2, a5}, {a6})) = 1,
θ(a2, ({a1}, {a3, a4}, {a2, a5}, {a6})) = 1 +

Card({a1, a3, a4}) = 4,

θ(a3, ({a1}, {a3, a4}, {a2, a5}, {a6})) = 1 +
Card({a1}) = 2,
θ(a4, ({a1}, {a3, a4}, {a2, a5}, {a6})) = 1 +

Card({a1}) = 2,
θ(a5, ({a1}, {a3, a4}, {a2, a5}, {a6})) = 1 +

Card({a1, a3, a4}) = 4,
θ(a6, ({a1}, {a3, a4}, {a2, a5}, {a6})) = 1 +

Card({a1, a3, a4, a2, a5}) = 6.

Definition VI.2. Let A be a set of alternatives,
n = Card(A) and ρA : Nn → A be
the bijection given by ρA(i) = ai. The
function ϑA : (Nn)n → ℘

A defined by
ϑA(k1, . . . , kn) = {(A1) if ki = kj for each i, j ∈
Nn and (A1, ϑA′(k

′
1, . . . , k

′
p)) otherwise}, where

A1 = {ρA(i) : ki = max(k1, . . . , kn)}, A′ = A \A1,
p = n − Card(A1), (k′1, . . . , k

′
p) is (k1, . . . , kn)

after removing the ki’s such that ρA(i) ∈ A1, and
obviously ϑA′(k

′
1, . . . , k

′
p) is recursively got as

we did with ϑA(k1, . . . , kn), if necessary defining
new sets A′′ = A′ \ A′1, etc., is called the ordered
partition generating map associated to A.

For example, ϑA(2, 5, 2, 4, 1, 5) =
({a2, a6}, {a4}, {a1, a3}, {a5}).

Notice that if we start with an ordered parti-
tion ~A of the set A, and we consider now the
n-tuple (θ(a1, ~A), . . . , θ(an, ~A)) ∈ (Nn)n, then
ϑA(θ(a1, ~A), . . . , θ(an, ~A)) retrieves ~A but ordered
in the opposite sense.

Henceforward πi will denote the i−th projection
function defined on the domain Nn, 1 ≤ i ≤ n,
where N stands for the set of natural numbers.

Definition VI.3. Let A be a set of n alternatives.
A function M :

∞⋃
m=1

℘m
A → Nn is said to be an A-

score function if for each strictly positive m ∈ N it
accomplishes the following conditions:
• SF1 The restriction of M to ℘m

A is
commutative, that is M( ~A1, . . . , ~Am) =
M( ~Aσ(1), . . . , ~Aσ(m)) for any permutation σ of
the set Nm = {1, . . . ,m}.

• SF2 Let j, l ∈ Nn. If θ(aj, ~Ai) ≤ θ(al, ~Ai)
for each i ∈ Nm then πj(M( ~A1, . . . , ~Am)) ≥
πl(M( ~A1, . . . , ~Am)).

• SF3 ϑA(M( ~A1, . . . , ~Am, ϑA(M( ~A1, . . . ,
~Am)))) = ϑA(M( ~A1, . . . , ~Am)).

• SF4 πi(M( ~A1, . . . , ~Am)) ≤
πi(M( ~A1, . . . , ~Am+1)) for each i ∈ Nn.
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Proposition VI.4. Let A be a set of n alternatives
and M an A-score function. The following proper-
ties hold true:
• If θ(a, ~Ai) = 1 for each i ∈ Nm then
θ(a, ϑA(M( ~A1, . . . , ~Am))) = 1.

• If θ(a, ~Ai) = n for each i ∈ Nm then
θ(a, ϑA(M( ~A1, . . . , ~Am))) = n.

• If ~Ai = ~Aj for each i, j ∈ Nm then
θ(a, ϑA(M( ~A1, . . . , ~Am))) = θ(a, ~A1) for any
a ∈ A.

Proof. All this is immediate.

Example VI.5. Let A = {a1, . . . , an}. We introduce
now two ranking fusion functions on a finite set
A of n alternatives. Both of them will be used
henceforward, and are based on the concept of an
A-score function just launched in Definition VI.3.
1.- Let M1 : ℘m

A → Nn be defined by
M1( ~A1, . . . , ~Am) = (b1, . . . , bn) with bj =

mn −
m∑
i=1

θ(aj, ~Ai), for each j ∈ Nn =

{1, . . . , n}. Define R1 :
∞⋃
m=1

℘m
A → ℘

A by

R1( ~A1, . . . , ~Am) = (A1, . . . , Ak) such that:
(i) A1 = {aj ∈ A : bj = max(b1, . . . , bn)},
(ii) for every i = 2, . . . , k, Ai = {aj ∈ A :

aj 6∈
⋃
h<i

Ah and bj ≥ bl for each l such

that al 6∈
⋃
h<i

Ah}.

(iii) (A1, . . . , Ak) ∈ ℘A.
Then R1 is a ranking fusion function.

2.- Let M2 :
∞⋃
m=1

℘m
A → Nn be defined by

M2( ~A1, . . . , ~Am) = (b1, . . . , bn), with bj =
n∑
l=1

m∑
i=1

p(θ(aj, ~Ai), θ(al, ~Ai)) for each j ∈ Nn,

where p : Nn ×Nn → {0, 1} is given by

p(j, l) =

{
1 if j < l
0 otherwise .

Define R2 :
∞⋃
m=1

℘m
A → ℘

A by declaring that

R2( ~A1, . . . , ~Am) = (A1, . . . , Ak) such that:
(i) A1 = {aj ∈ A : bj = max(b1, . . . , bn)},

(ii) for each i = 2, . . . , k, Ai = {aj ∈ A :
bj 6∈

⋃
h<i

Ah and bj ≥ bl for each l such

that al 6∈
⋃
h<i

Ah}.

(iii) (A1, . . . , Ak) ∈ ℘A.

Then R2 is a ranking fusion function.
Thus, if we have at hand the following three

rankings:
~A1 = ({a1}, {a2}, {a3}, {a4}), i.e. a1 > a2 >
a3 > a4,
~A2 = ({a2}, {a1}, {a3, a4}), i.e. a2 > a1 >
a3 ∼ a4, and
~A3 = ({a1}, {a2, a3}, {a4}), i.e. a1 > a2 ∼
a3 > a4,

then we get M1( ~A1, ~A2, ~A3) = (12 − (1 + 2 +
1), 12 − (2 + 1 + 2), 12 − (3 + 3 + 2), 12 − (4 +
3 + 4)) = (8, 7, 4, 1). Therefore R1( ~A1, ~A2, ~A3) =
({a1}, {a2}, {a3}, {a4}). In other words, here we
have that a1 > a2 > a3 > a4. Similarly
R2( ~A1, ~A2, ~A3) = ({a1}, {a2}, {a3}, {a4}).

Also, if we consider now the following three
rankings:

~A1 = ({a1}, {a2}, {a3}, {a4}), i.e. a1 > a2 >
a3 > a4,
~A2 = ({a4}, {a1}, {a2}, {a3}), i.e. a4 > a1 >
a2 > a3, and
~A3 = ({a2}, {a3}, {a1}, {a4}), i.e. a2 > a3 >
a1 > a4,

then we obtain M1( ~A1, ~A2, ~A3) = (12 − (1 + 2 +
3), 12−(2+3+1), 12−(3+4+2), 12−(4+1+4)) =
(6, 6, 3, 3). In the same way, M2( ~A1, ~A2, ~A3) =
(0 + 2 + 2 + 2, 1 + 0 + 3 + 2, 1 + 0 + 0 + 2, 1 +
1 + 1 + 0) = (6, 6, 3, 3). Hence R1( ~A1, ~A2, ~A3) =
R2( ~A1, ~A2, ~A3) = ({a1, a2}, {a3, a4}). In other
words both fusion ranking functions give rise to the
ranking: a1 ∼ a2 > a3 ∼ a4.

In both examples, the function Mi (with i ∈
{1, 2}) plays a fundamental role in order to obtain
the ranking fusion function Ri. The following the-
orem generalizes and formalizes this process.

This Theorem VI.6 is essential to our approach,
since it establishes the relationship –in fact an
equivalence once Theorem VI.9 below is proved–
between A-score functions and ranking fusion func-
tions.

Theorem VI.6. Let A = {a1, . . . , an}. For each

A-score function M :
∞⋃
m=1

℘m
A → Nn it holds

true that the function RM :
∞⋃
m=1

℘m
A → ℘

A, given

by RM( ~A1, . . . , ~Am) = ϑA(M( ~A1, . . . , ~Am)) is a
ranking fusion function.
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Proof. The anonymity-neutrality condition GM1 for
RM follows from the commutativity of M . We will
prove now the unanimity condition GM2 for RM ,
by induction on m. For m = 1 we may notice
that by the condition SF2 and the definition of
ϑA it follows that ϑA(M( ~A)) = ~A and therefore
RM( ~A) = ϑA(M( ~A)) = ~A. If we use the inductive
hypothesis (IH) RM( ~A, . . . , ~A︸ ︷︷ ︸

m−times

) = ~A, then we get

that: RM( ~A, . . . , ~A︸ ︷︷ ︸
(m+1)−times

) = ϑA(M( ~A, . . . , ~A︸ ︷︷ ︸
(m+1)−times

)) (by

definition) = ϑA(M( ~A, . . . , ~A︸ ︷︷ ︸
m−times

, ϑA(M( ~A, . . . , ~A︸ ︷︷ ︸
m−times

))))

(by IH) = ϑA(M( ~A, . . . , ~A︸ ︷︷ ︸
m−times

)) (by SF3) = ~A, again

by IH. Finally, the weak compatibility condition
GM3 is straightforwardly got from the definition of
RM and SF3.

Now we introduce a preparatory lemma, in order
to prove the aforementioned equivalence between
ranking fusion functions and score functions.

Lemma VI.7. Let A = {a1, . . . , an} be a
set of alternatives. For each ranking fusion

function R :
∞⋃
m=1

℘m
A → ℘

A the function

MR :
∞⋃
m=1

℘m
A → Nn given by MR( ~A1, . . . , ~Am) =

[m(n + 1) − θ(a1,R( ~A1, . . . , ~Am)), . . . ,
m(n + 1) − θ(an,R( ~A1, . . . , ~Am))] is such
that ϑA(MR( ~A1, . . . , ~Am)) = R( ~A1, . . . , ~Am).

Proof. It follows that ϑA(MR( ~A1, . . . , ~Am)) =
ϑA(m(n + 1) − θ(a1,R( ~A1, . . . , ~Am)), . . . ,m(n +
1) − θ(an,R( ~A1, . . . , ~Am)))). In addition, we
have that θ(ai, ϑA(MR( ~A1, . . . , ~Am)))) <
θ(aj, ϑA(MR( ~A1, . . . , ~Am))) ⇔ πi(MR( ~A1, . . . ,
~Am)) > πj(MR( ~A1, . . . , ~Am)) ⇔
m(n + 1) − θ(ai,R( ~A1, . . . , ~Am)) >
m(n + 1) − θ(aj,R( ~A1, . . . , ~Am)) ⇔
θ(ai,R( ~A1, . . . , ~Am)) < θ(aj,R( ~A1, . . . , ~Am)).
In an analogous way it is possible to
prove that θ(ai, ϑA(MR( ~A1, . . . , ~Am)))) =
θ(aj, ϑA(MR( ~A1, . . . , ~Am))) if, and only
if, θ(ai,R( ~A1, . . . , ~Am)) = θ(aj,R( ~A1,
. . . , ~Am)). Therefore, ϑA(MR( ~A1, . . . , ~Am)) =
R( ~A1, . . . , ~Am).

Example VI.8. Consider the ranking fusion
function R1 and ~A1, ~A2 and ~A3 of Example VI.5.
Then, R1( ~A1, ~A2, ~A3) = ({a1, a2}, {a3, a4}). So,
θ(a1,R1( ~A1, ~A2, ~A3)) = θ(a2,R1( ~A1, ~A2, ~A3)) = 1
and θ(a3,R1( ~A1, ~A2, ~A3)) = θ(a4,R1( ~A1, ~A2,
~A3)) = 3. Therefore, MR1( ~A1, ~A2, ~A3) =
(14, 14, 12, 12). Hence, ϑA(MR1( ~A1, ~A2, ~A3)) =
ϑA(14, 14, 12, 12) = ({a1, a2}, {a3, a4}) =
R1( ~A1, ~A2, ~A3).

Finally, we are ready to prove now the result that,
jointly with Theorem VI.6 above, establishes the
crucial equivalence existing between ranking fusion
functions and A-score functions.

Theorem VI.9. Let A = {a1, . . . , an} be a

set of alternatives. Let R :
∞⋃
m=1

℘m
A → ℘

A

be a ranking fusion function such that if
θ(aj,R( ~A1, . . . , ~Am)) ≤ θ(al,R( ~A1, . . . , ~Am))
and θ(aj, ~Am+1) ≤ θ(al, ~Am+1) for some
~Am+1 ∈ ℘

A and j, l ∈ Nn, then it holds true
that θ(aj,R( ~A1, . . . , ~Am+1)) ≤ θ(al,R( ~A1, . . . ,

~Am+1)). Then, the function MR :
∞⋃
m=1

℘m
A → Nn

defined by MR( ~A1, . . . , ~Am) = (m(n +
1) − θ(a1,R( ~A1, . . . , ~Am)), . . . ,m(n + 1) −
θ(an,R( ~A1, . . . , ~Am))) is an A-score function.

Proof. The condition SF1 directly follows from the
commutativity of R.

Let us check now the condition SF2: To do so,
let j, l ∈ Nn. We will prove SF2 by induction in m.

When m = 1, it follows that if θ(aj, ~A1) ≤
θ(al, ~A1) then πj(MR( ~A1)) = πj(m(n + 1) −
θ(a1,R( ~A1)), . . . ,m(n + 1) − θ(an,R( ~A1))) =
πj(m(n+1)−θ(a1, ~A1), . . . ,m(n+1)−θ(an, ~A1)) =
m(n + 1) − θ(aj, ~A1) ≥ m(n + 1) − θ(al, ~A1) =
πl(MR( ~A1)).

Now we use the inductive hypothesis, namely
if θ(aj, ~Ai) ≤ θ(al, ~Ai) for each i ∈ Nm then
πj(MR( ~A1, . . . , ~Am)) ≥ πl(MR( ~A1, . . . , ~Am)).
The inductive step goes now as follows: If
θ(aj, ~Ai) ≤ θ(al, ~Ai) for each i ∈ Nm+1

then, by the inductive hypothesis, we have
that πj(MR( ~A1, . . . , ~Am)) ≥ πl(MR( ~A1, . . . , ~Am)).
So πj(m(n+1)−θ(a1,R( ~A1, . . . , ~Am)), . . . ,m(n+
1) − θ(an,R( ~A1, . . . , ~Am))) ≥ πl(m(n +
1) − θ(a1,R( ~A1, . . . , ~Am)), . . . ,m(n +
1) − θ(an,R( ~A1, . . . , ~Am))). Hence
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m(n + 1) − θ(aj,R( ~A1, . . . , ~Am) ≥
m(n + 1) − θ(al,R( ~A1, . . . , ~Am)). Therefore,
θ(aj,R( ~A1, . . . , ~Am)) ≤ θ(al,R( ~A1, . . . , ~Am)).
Since, θ(aj, ~Am+1) ≤ θ(al, ~Am+1) then
by the conditions of the statement
imposed to R, we have that θ(aj,R( ~A1,
. . . , ~Am+1)) ≤ θ(al,R( ~A1, . . . , ~Am+1)). Thus
(m+ 1)(n+ 1)− θ(aj,R( ~A1, . . . , ~Am+1)) ≥ (m+
1)(n+ 1)− θ(al,R( ~A1, . . . , ~Am+1)). Consequently,
we conclude that πj(MR( ~A1, . . . , ~Am+1)) ≥
πl(MR( ~A1, . . . , ~Am+1)).

Concerning the condition SF3, by
Lemma VI.7 and GM3 we have that
ϑA(MR( ~A1, . . . , ~Am, ϑA(MR( ~A1, . . . , ~Am)))) =
R( ~A1, . . . , ~Am,R( ~A1, . . . , ~Am)) =
R( ~A1, . . . , ~Am) = ϑA(MR( ~A1, . . . , ~Am)).

Finally, the condition SF4 also holds true
because, for each i ∈ Nn, it follows that
πi(MR( ~A1, . . . , ~Am)) ∈ (Nm(n+1)−1 − Nm(n+1)−n)

and similarly πi(MR( ~A1, . . . , ~Am+1)) ∈
(N(m+1)(n+1)−1 − N(m+1)(n+1)−n). Hence
it is clear that πi(MR( ~A1, . . . , ~Am)) <
πi(MR( ~A1, . . . , ~Am+1)).

VII. OPTIMALITY ANALYSIS: RANKING FUSION
FUNCTIONS INDUCE PARTIAL ORDERS ON THE

SET OF ALL THE POSSIBLE RANKINGS

Suppose that we have at hand different ranking
fusion functions, or more generally different meth-
ods that, given a finite collection of total preorders
defined on a nonempty set, combine them someway,
so that the final output is another total order.

Which is the best ranking fusion function, or the
optimal method of combination?

Bearing in mind the idea of setting optimality
in some theoretical suitable way, a possible for-
malization that fits well our purposes could be the
definition, directly, of some ordering (e.g., a total
preorder, a partial order, etc.) on the set of rankings.
Once this has been done, a first fusion method could
be considered better than a second one when the
final rankings got as output of the first method
acting on a k-tuple of rankings or preferences is
better, as regards to the ordering defined on the set
of rankings, that the corresponding output ranking
furnished by the second method. This fact is a key
in the approach we follow in the present manuscript.

In this section we introduce an ordering to com-
pare rankings, or, so-to-say, a “ranking of rankings”.
As commented in Section I (Objectives), this allows
us to find a gateway to the discussion about opti-
mality of aggregation methods.

To do so, first we show how a partial order on
the set of all the possible rankings that can be on a
finite set A of n alternatives actually gives rise to
a ranking fusion function. And, conversely, then we
will also show that some suitable kinds of ranking
fusion functions induce partial orders on the set of
rankings defined on A.

To start with, let A be a finite set of n alternatives.
It is now possible to define a (partial) order, that we
will denote �, in order to compare rankings on a
finite set A of n alternatives. We proceed as follows:
Given two rankings ~A1, ~A2 on the set A, we declare
that ~A1 � ~A2 if and only if for any alternatives
a1, a2 ∈ A with a2 � ~A1

a1, it holds that a2 � ~A2
a1.

We may observe now that the rankings ~Aρ =
({ρ(1)}, . . . , {ρ(n)}), where ρ : Nn → A is any
bijection, constitute the maximal elements for this
order �, whereas the ranking ~A = (A) is the only
infimum. Indeed, the resulting partially ordered set
is an inf-semilattice in the sense of [15, Def. O-1.8].

It is plain that, if (℘A,�) is an inf- (sup)-

semilattice, then the function R :
∞⋃
m=1

℘m
A → ℘

A

defined by R( ~A1, . . . , ~Am) = inf( ~A1, . . . , ~Am) is
actually a ranking fusion function.

An analogous situation arises if we take
R( ~A1, . . . , ~Am) = sup( ~A1, . . . , ~Am). Nevertheless,
these ranking fusion functions are useless when
dealing with for some particular inf- (sup-) semi-
lattices. The reason is that in several cases (as it
happens with respect to the order �) they return as
output the bottom (top) ranking.

This unpleasant situation can be avoided when
the order defined on the collection of rankings
is total, as, for example, the following one:
~A �ρ ~B if and only if ~A = ~B or θ(ρ(i0), ~A) <
θ(ρ(i0), ~B), where ρ : Nn → A is a bijection, and
i0 ∈ Nn is the smallest index such that θ(ρ(i0), ~A) 6=
θ(ρ(i0), ~B).

The problem with the ranking fusion function
defined above, with respect to the total order �ρ,
is that it could return as output one of the rankings
given as input. And, in addition, this is based on a
bijection ρ which can be quite arbitrary. As a matter
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of fact, it is enough that one of the rankings be
~Aρ = (ρ(1), . . . , ρ(n)) for the function R to lead to
as output or final result the ranking ~Aρ, even when
all the other rankings are equal and coincide with
a ranking ~A different from ~Aρ. Thus, under these
hypotheses ~Aρ should be considered in a sense as
the perfect ranking.

At this point we have just seen that partial orders
defined on ℘

A –set of all possible rankings on
a finite set A– generate ranking fusion functions.
To complete the panorama, we prove now that,
conversely, some particular kind of ranking fusion
functions can generate a partial order on ℘A.
Proposition VII.1. Let A be a finite and
nonempty set of n alternatives. Let R :
∞⋃
m=1

℘m
A → ℘

A be a ranking fusion function

such that the self-distributive law holds, that is:
R( ~A,R( ~B, ~C)) = R(R( ~A, ~B),R( ~A, ~C)) (SD).
Then the structure (℘(A),�R), where ~A �R
~B if and only if R( ~A, ~B) = ~A is a partially or-
dered set (poset). In addition, if R is also asso-
ciative when restricted to m = 2, that is, when
R( ~A,R( ~B, ~C)) = R(R( ~A, ~B), ~C), then it holds
true that (℘(A),�R) is a bounded inf-semillatice.

Proof. First we will prove that �R is a partial order.
Reflexivity: Since R is idempotent (i.e., it satis-
fies the condition GM2), then for each ranking
~A we have that R( ~A, ~A) = ~A. Therefore
~A �R ~A holds true.
Antisymmetry: If ~A �R ~B and ~B �R ~A then
by the anonymity-neutrality condition GM1,
that R satisfies by definition, we get ~A =
R( ~A, ~B) = R( ~B, ~A) = ~B.
Transitivity: If ~A �R ~B and ~B �R ~C then we
have that the following equalities hold true:
(*) R( ~A, ~B) = ~A; (**) R( ~B, ~C) = ~B.
So, by the condition GM1, we have that
R( ~B, ~A) = ~A and also R(~C, ~B) = ~B.
Therefore, R( ~A, ~C) = R(~C,R( ~A, ~B)) (by
GM1 and (*)) = R(R(~C, ~A),R(~C, ~B)) (by
(SD)) = R( ~B,R( ~A, ~C)) (by GM1 and (**)) =
R(R( ~B, ~A),R( ~B, ~C)) (by (SD)) = R( ~A, ~B)
(by GM1, (*) and (**)) = ~A(by(∗)). Hence,
by definition of �R, we arrive at ~A �R ~C.

Finally we will prove that, for each pair of
rankings ( ~A, ~B) ∈ ℘(A) × ℘(A), their infimum
is R( ~A, ~B): By (SD) and GM2, we see that

R( ~A, ~B) = R(R( ~A, ~A), ~B)) = R( ~A,R( ~A, ~B)).
Thus, by definition of �R, we get that R( ~A, ~B) �R
~A. Similarly it is proved that R( ~A, ~B) �R ~B.
Therefore, R( ~A, ~B) is a lower bound of ~A and
~B. Now suppose that ~C is another lower bound.
Then, once more by definition of �R, we get
~C = R(~C, ~A) as well as ~C = R(~C, ~B). So, by SD
jointly with the condition GM2 of idempotence, we
obtain ~C = R(~C, ~C) = R(R(~C, ~A),R(~C, ~B)) =
R(~C,R( ~A, ~B)). Therefore, again by definition of
�R, ~C �R R( ~A, ~B). Hence, R( ~A, ~B) is the infi-
mum of ~A and ~B.

Illustrative examples
Our aim when choosing the examples introduced

at the end of this Section VI is just to show how to
use ranking fusion functions and A-score functions
to find maximal elements on rankings defined on
a finite set A. Above all, at this stage we want to
be didactic and explanatory. Bearing this in mind,
we have decided not to search for sophisticated
situations, nor even algorithms. Thus, the examples
given here may perhaps look as naive, but they
are easy-to-understand, and the intention behind
these examples is to illustrate step-by- step how the
concepts previously defined work in practice. We
want to explain in a clear and understandable way
–even if the examples look simple– how ranking
fusion functions give rise to partial orders on the
set of all possible rankings on a finite set A, and
how to use this fact to search for optimality among
rankings.

Indeed, some of the examples furnished here had
already appeared in this literature: the first one may
be seen in [11] and [17], whereas the second one
appears in [21]. Incidentally, we point out that the
aggregating procedures used by the experts involved
in both examples are quite diverse, as mentioned in
Table VI and Table XI below. In fact, the preference
relations used may even be Atanassov’s intuitionis-
tic multiplicative ones, as in the second example.
However, we insist on this, our aim here is to show
the scope of the processes described before.

First example (See [11], [17]).
Suppose that an investor intends to invest part of

her/his capital in a company. By means of a suitable
market analysis the investor reduces the spectrum of
possible companies into six, namely:
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TABLE III
ASSESSMENT OF EXPERT e1 .

e1 a1 a2 a3 a4 a5 a6
x1 0.7 0.8 0.6 0.7 0.5 0.9
x2 0.8 0.6 0.9 0.7 0.6 0.7
x3 0.5 0.4 0.8 0.3 0.8 0.8
x4 0.6 0.7 0.6 0.7 0.8 0.6
x5 0.9 0.8 0.4 0.7 0.7 0.8
x6 0.8 0.3 0.7 0.7 0.6 0.7

TABLE IV
ASSESSMENT OF EXPERT e2 .

e2 a1 a2 a3 a4 a5 a6
x1 0.6 0.8 0.5 0.6 0.4 0.8
x2 0.7 0.6 0.8 0.6 0.7 0.7
x3 0.7 0.6 0.8 0.7 0.8 0.8
x4 0.6 0.7 0.5 0.6 0.8 0.7
x5 0.7 0.8 0.7 0.7 0.6 0.8
x6 0.6 0.4 0.8 0.7 0.6 0.7

• A chemical company, denoted by x1.
• A food company denoted by x2.
• A computer company denoted by x3.
• A car company denoted by x4.
• A furniture company denoted by x5.
• A pharmaceutical company denoted by x6.
The investor is helped by a group of three experts

or decision makers (namely e1, e2 and e3) with the
following weights ω = (0.3, 0.3, 0.4). This group of
experts establish that six attributes will be used to
evaluate the investments.

The benefit attributes are: a1) benefits in the short
term; a2) benefits in the middle term; a3) benefits in
the long term. And the cost attributes are: a4) risk of
the investment; a5) difficulty of the investment, and
a6) other unfavorable factors on the investment.

Tables III, IV and V describe the assesses of the
experts about how much the investment has to do
with each attribute. In other words, each of them
constitutes the decision matrix of the corresponding
expert.

In addition, Table VI, shows the ranking obtained
as output after using different fusion methods, for
this particular decision making example. Notice
here that all those rankings finally got are pairwise
different.

Applying now to these rankings the A-score

TABLE V
ASSESSMENT OF EXPERT e3 .

e3 a1 a2 a3 a4 a5 a6
x1 0.7 0.6 0.6 0.6 0.4 0.7
x2 0.7 0.6 0.7 0.6 0.6 0.7
x3 0.6 0.5 0.8 0.5 0.8 0.8
x4 0.6 0.7 0.7 0.5 0.8 0.6
x5 0.7 0.8 0.6 0.7 0.6 0.8
x6 0.4 0.5 0.9 0.7 0.6 0.6

TABLE VI
SUMMARY OF THE RANKINGS OBTAINED IN [10], [11], [17].

Methods source Ranking
~A1 Maximum [17] x2 > x4 > x5 > x1 > x3 > x6
~A2 Minimum [17] x3 ∼ x5 > x1 > x4 > x2 > x6
~A3 NHD [17] x5 > x2 > x3 > x4 > x1 > x6
~A4 WHD [17] x5 > x3 > x2 > x4 > x6 > x1
~A5 Step-IOWAD [17] x5 > x4 > x6 > x2 > x3 > x1
~A6 Hurwicz [17] x3 > x2 > x6 > x4 > x1 > x5
~A7 OWAD [17] x5 > x3 > x2 > x4 > x1 > x6
~A8 AOWAD [17] x5 > x2 > x4 > x3 > x6 > x1
~A9 IOWAD [17] x5 > x3 > x2 > x1 > x4 > x6
~A10 AIOWAD [17] x5 > x2 > x6 > x4 > x3 > x1
~A11 Median-IOWAD [17] x5 > x1 > x6 > x2 > x4 > x3
~A12 Olympic-IOWAD [17] x5 > x4 > x1 > x2 > x3 > x6

~A13 WA
O3

0.5M
ω [10] x5 > x2 > x1 > x4 > x3 > x6

~A14 WA
O3

2M
ω [10] x2 > x1 > x5 > x4 > x3 > x6

~A15 WAP
w [11] x2 ∼ x3 > x6 > x4 > x1 > x5

function M1 introduced in the Example VI.5, we
obtain:
• π1(M1( ~A1, . . . , ~A15)) = 90− (4 + 3 + 5 + 6 +

6 + 5 + 5 + 6 + 4 + 6 + 2 + 3 + 3 + 2 + 5) = 25
• π2(M1( ~A1, . . . , ~A15)) = 90− (1 + 5 + 2 + 3 +

4 + 2 + 3 + 2 + 3 + 2 + 4 + 4 + 2 + 1 + 1) = 56
• π3(M1( ~A1, . . . , ~A15)) = 90− (5 + 1 + 3 + 2 +

5 + 1 + 2 + 4 + 2 + 5 + 6 + 5 + 5 + 5 + 1) = 38
• π4(M1( ~A1, . . . , ~A15)) = 90− (2 + 4 + 4 + 4 +

2 + 4 + 4 + 3 + 5 + 4 + 5 + 2 + 4 + 4 + 4) = 35
• π5(M1( ~A1, . . . , ~A15)) = 90− (3 + 1 + 1 + 1 +

1 + 6 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 3 + 6) = 61
• π6(M1( ~A1, . . . , ~A15)) = 90− (6 + 6 + 6 + 5 +

3 + 3 + 6 + 5 + 6 + 3 + 3 + 6 + 6 + 6 + 3) = 17.

That is, M1( ~A1, . . . , ~A15) =
(25, 56, 38, 35, 61, 17). Hence R1( ~A1, . . . , ~A15) =
({x5}, {x2}, {x3}, {x4}, {x1}, {x6}). Thus, the
fusion of the rankings that appear in Table VI,
with respect to the the first method considered in
Example VI.5, is the following output ranking:
x5 > x2 > x3 > x4 > x1 > x6. Instead, if we use
now the A-score function M2 introduced through
the Example VI.5 to those rankings in Table VI,
we obtain:
• π1(M2( ~A1, . . . , ~A15)) = 0+3+5+5+3+9 = 25
• π2(M2( ~A1, . . . , ~A15))=12+0+9+12+4+13=50
• π3(M2( ~A1, . . . , ~A15))=10+5+0+7+2+12=36
• π4(M2( ~A1, . . . , ~A15))=10+3+8+0+3+11=35
• π5(M2( ~A1, . . . , ~A15))=12+11+12+12+0+13=

60
• π6(M2( ~A1, . . . , ~A15))=6+2+3+4+2+0=17.

That is, M2( ~A1, . . . , ~A15) = (25, 50,
36, 35, 60, 17) and consequently
we arrive at R2( ~A1, . . . , ~A15) =
({x5}, {x2}, {x3}, {x4}, {x1}, {x6}). Thus, the
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TABLE VII
ASSESSMENT OF THE STUDENT e1 .

e1 x1 x2 x3 x4
x1 – [0.01,0.675] [0.025,0.9] [0.04375,0.9]
x2 [0.325,0.99] – [0.015625,0.7875] [0.025,0.7875]
x3 [0.1,0.975] [0.2125,0.984375] – [0.025,0.9]
x4 [0.1,0.95625] [0.2125,0.975] [0.1,0.975] –

TABLE VIII
ASSESSMENT OF THE STUDENT e2 .

e2 x1 x2 x3 x4
x1 – [0.025,0.7875] [0.015625,0.7875] [0.025,0.9]
x2 [0.2125,0.975] – [0.01,0.675] [0.015625,0.7875]
x3 [0.2125,0.984375] [0.325,0.99] – [0.04375,0.9]
x4 [0.1,0.975] [0.2125,0.84375] [0.1,0.95625] –

fusion of the rankings that appear in Table VI,
as regards the second method in Example VI.5,
is again the same ranking that the one obtained
above by means of the first fusion function, namely
x5 > x2 > x3 > x4 > x1 > x6.

Second example (See [21]).
Four university students share a house, where

they intend to have broadband internet connection
installed. There are four available options to choose
from, which are furnished by four internet service
providers: x1: 1 Mb/s broadband; x2: 2 Mb/s broad-
band; x3: 3 Mb/s broadband; x4: 4 Mb/s broadband.

The internet service and its corresponding
monthly bill will be shared by the four students
{e1, e2, e3, e4}. They decide to perform a multi-
expert decision making problem, considering the
weight vector w = (0.3, 0.3, 0.2, 0.2). The students
determine their preference relations in an indepen-
dent and anonymous way. In [21] it was considered
the use of Atanassov’s intuitionistic multiplicative
preference relations in the range [1

9
, 9] and in [6]

those preference relations were transformed, via
the linear transformation f(x) = 80x+1

9
, in the

interval-valued fuzzy preference relations shown in
the Tables VII, VIII, IX and X.

The Table XI, shows the rankings obtained from
different methods for this decision making example.

Applying the A-score function M1 introduced by
means of the Example VI.5 to these rankings, we

TABLE IX
ASSESSMENT OF THE STUDENT e3 .

e3 x1 x2 x3 x4
x1 – [0.2125,0.975] [0.025,0.7875] [0.1,0.975]
x2 [0.025,0.7875] – [0.015625,0.675] [0.01,0.675]
x3 [0.2125,0.975] [0.325,0.984375] – [0.1,0.95625]
x4 [0.025,0.9] [0.325,0.99] [0.04375,0.9] –

TABLE X
ASSESSMENT OF THE STUDENT e4 .

e4 x1 x2 x3 x4
x1 – [0.025,0.9] [0.04375,0.9] [0.04375,0.95625]
x2 [0.1,0.975] – [0.01,0.5625] [0.015625,0.675]
x3 [0.1,0.95625] [0.4375,0.99] – [0.04375,0.9]
x4 [0.04375,0.95625] [0.325,0.984375] [0.1,0.95625] –

TABLE XI
SUMMARY OF THE RANKINGS OBTAINED IN [6], [21].

Methods source Ranking
~A1 �XY [6] x4 > x3 > x1 > x2
~A2 �Lex1 [6] x3 > x4 > x1 > x2
~A3 �Lex2 [6] x4 > x3 > x1 > x2
~A4 � 1

3
, 2
3

[6] x3 > x4 > x1 > x2

~A5 Approach I [21] x3 > x4 > x1 > x2
~A6 Approach IIa [21] x3 > x4 > x1 > x2
~A7 Approach IIb [21] x4 > x3 > x1 > x2

obtain:
• π1(M1( ~A1, . . . , ~A7)) = 28 − (3 + 3 + 3 + 3 +

3 + 3 + 3) = 7
• π2(M1( ~A1, . . . , ~A7)) = 28 − (4 + 4 + 4 + 4 +

4 + 4 + 4) = 0
• π3(M1( ~A1, . . . , ~A7)) = 28 − (2 + 1 + 2 + 1 +

1 + 1 + 2) = 18
• π4(M1( ~A1, . . . , ~A7)) = 28 − (1 + 2 + 1 + 2 +

2 + 2 + 1) = 17.

That is, M1( ~A1, . . . , ~A7) = (7, 0, 18, 17). Hence
R1( ~A1, . . . , ~A7) = ({x3}, {x4}, {x1}, {x2}). Thus,
the application of the ranking fusion function R1,
i.e. the first method in Example VI.5, to the rankings
in the Table VI is the following: x3 > x4 > x1 > x2.

Now, applying the A-score function M2 of the
Example VI.5 to this ranking, we get:
• π1(M2( ~A1, . . . , ~A7)) = 0 + 7 + 0 + 0 = 7
• π2(M2( ~A1, . . . , ~A7)) = 0 + 0 + 0 + 0 = 0
• π3(M2( ~A1, . . . , ~A7)) = 7 + 7 + 0 + 4 = 18
• π4(M2( ~A1, . . . , ~A7)) = 7 + 7 + 3 + 0 = 17.

That is, M2( ~A1, . . . , ~A7) =
({x3}, {x4}, {x1}, {x2}). Thus, the fusion of
the rankings in the Table XI, with respect to the
the second method that arises in Example VI.5,
namely the ranking fusion function R2, is exactly
the same as the one got with the previous one,
namely x3 > x4 > x1 > x2.

Observe, that only two different rankings arise
as obtained by using the methods in the Table XI:
x4 > x3 > x1 > x2 (thrice) and x3 > x4 > x1 >
x2 (four times). Thus both ranking fusion functions
finally lead to the ranking which was the mostly
determined by the methods in Table XI.
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VIII. FINAL REMARKS

The definition of suitable rankings on a set of
alternatives is crucial in many real-world decision
making problems. There is a very large number
of methods proposed in the literature, considering
several aspects of the decision problems: multi-
ple attributes or criteria (with weights or without
weights), preference relations and decision matrices
with several scales of evaluation ([0, 1], interval
numbers, hesitant numbers, fuzzy numbers, etc.),
with incomplete information, etc. (see [19], [22],
[23]).

From the point of view of Social Choice, no
method could be considered optimal, due to the
famous Arrow’s impossibility theorem (see [16]).
But in a real-life situation of Decision-Making,
the aggregations of preferences, opinions or assess-
ments should compulsorily be done. This leads us
to search for a good definition of ranking fusion
function, that could be acceptable in a broad set of
approaches, not only in Decision-Making.

Thus, we have taken into account a recent norma-
tive research made in [7] to get an axiomatic new
setting that could be understood as a new framework
to understand what an abstract media is, valid for
a wide and multidisciplinary set of disciplines that
includes Information Sciences and, in particular.,
aggregation of rankings. In the present paper we
have adopted (see Definition IV.1) a less restrictive
variation of the concept of a mean launched in [7].

Unfortunately, there is no general way to evaluate
the quality of the rankings provided by the different
methods used. That is, when different methods
of aggregation are implemented, we should also
compare them, looking for a method that could be
considered optimal in a sense. Nevertheless, the idea
of optimality can be quite subjective. For instance,
a fusion method that is computationally faster than
many others could actually be bad or unacceptable
in real-life situations. Since the decision maker usu-
ally needs to arrive at just one final (output) ranking,
the following natural question arises: which one of
the different rankings obtained by the application of
different methods must she/he use?

This paper proposes some general criteria. On
the one hand, our proposal is to consider ranking
aggregation methods which fit well to the new
abstract definition of a general mean. These are
called ranking fusion functions. Also, we introduce

here, axiomatically defined, the abstract notion of an
A-score function and establish its equivalence with
the previous concept of a ranking fusion function.

Fortunately, in this new setting different aggrega-
tion methods can actually be compared someway.
A formal setting to cope with these comparisons is
to define a suitable ordering on the rankings, and
in this line we prove that suitable ranking fusion
functions induce a partial order on the set of all
possible rankings that may be defined on a finite
set A.

Therefore, an aggregation method could be de-
clared to be better than another one, as regards the
ordering implemented on the set of all rankings, if
the final (output) rankings to which the aggregation
method leads to is maximal with respect to the
partial order induced by the ranking fusion function
considered a priori.

In future works we would like to study which
ones, from those classical ranking aggregation meth-
ods already introduced in the literature, are actually
a ranking fusion function in the sense of Definition
IV.1. Indeed, several of the aggregation methods
proposed in the literature are based on distances
functions defined on sets of rankings (e.g. [1], [13],
[14]). So we may study the obtention of suitable
ranking fusion functions based on distances. Finally,
since the present paper is mainly theoretical (in spite
of establishing a new basis to deal with rankings),
another task for next future is to use these methods
in more practical situations, so writing new pieces
of research.

IX. CONCLUSION

In order to implement suitable aggregation meth-
ods for rankings, preferences or opinions, it is
crucial to look at different approaches, trying to find
a suitable definition. In this paper we have adopted
a weakening of the concept of a mean introduced
in [7]. It suitably links Social Choice and Decision-
Making approaches. Thus we have introduced the
concepts of a ranking fusion function and a score
function in abstract, as general means. Finally, the
decision maker should also dispose at hand of some
idea of optimality, in order to chose some particular
method of fusion of rankings from a wide set of
aggregation methods. With this aim we have shown
that ranking fusion functions give rise to a partial
order on the set of all rankings defined on a finite
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set A. This constitutes a new device that can be used
in order to compare different fusion methods.

The contents of the present paper may now be
summarized as follows, pointing out the main take-
home messages:
1.– This is a theoretical paper. Because of the im-

possibility theorems arising in Social Choice,
as well as the necessity of aggregating rank-
ings encountered in Decision-Making, a new
axiomatic setting is introduced, based on the
abstract concept of a general mean.

2.– Ranking fusion functions are defined under that
setting of general means. Some examples of
ranking fusion functions are described. Then,
the concept of a score functions is defined
axiomatically and a key equivalence between
ranking fusion functions and score functions is
shown.

3.– It is shown a close relationship between partial
orders on the set of all rankings defined on
a finite set A, and the family of the ranking
fusion functions on A. By means of those
partial orders we may compare aggregation
methods, in the search for optimality.
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