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Abstract

In this project we work with the F-Transform and its application to image com-
pression. With images that contain a single object with a constant background as
a target, the main idea is to try to make a better approximation of the inverse
F-Transform finding a better partition for each image applying a prior key point
detection so that the F-Transform can be focused on the objects in the image. We
make an optimization of the code for both the F-Transform and the approximation
of its inverse, propose a method to find a better fuzzy partition and optimize it based
on the magnitude of the first derivative of the image and lastly propose different
methods that separate the object from the image to try to improve the results.

Keywords: Fuzzy Transform; Image compression; Fuzzy partition; F-Transform;
Compression ratio
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Introduction

Image compression is a very important technique in our daily life. The amount
of data we need to store is growing every day and, even if the devices we use are
evolving and have gone from a couple of kilobytes to hundreds of gigabytes and
even terabytes, if we stored the original files without changing anything on them,
the space we would need would be immense. Taking a picture with our phone and
storing thousands of them in it, services using video stream e.g. video-on-demand
services such as Netflix, HBO, Amazon Prime Video, etc. are some examples where
image compression is needed. The use of streaming services would be impossible
to carry by the providers with millions of simultaneous users. In fact, this kind of
services were only possible thanks to image compression.

In order to reduce the amount of space needed for an image, there are two
main techniques. These are image reduction, also called image scaling, and image
compression.

The pursuit of image reduction is to reduce the spacial resolution in order to
obtain the same image with a smaller amount of pixels. For example, turning a
1024×1024 image into a 512×512 image, and thus, making the file 4 times smaller,
by means of different methods that take a neighbourhood of pixels and turn it into
a single pixel that represents all of them such as the arithmetic mean, the geometric
mean, min, max, etc. These can then be reconstructed with the use of image scaling
algorithms e.g. interpolation. Image compression, though, reduces the amount of
space used to store the data by completely modifying the data of the file.

There is a big variety of image compression algorithms and they can be classified
in two different categories, lossy compression and lossless compression algorithms.
As the name suggests, the former, also called irreversible compression algorithms,
lose some of the data of the original file in the process. Therefore, the used com-
pression ratio 1 determines the quality of the resulting image. Higher compression
ratios lead to a lower quality in the resulting image and lower compression ratios to
a higher quality image. Contrarily, lossless compression algorithms can retrieve the
original file on its completeness. In exchange for this, the compression ratio we can
obtain with them is much lower. For some tasks, it is important to use algorithms
that are capable to recover all the information. If we want to compress a text file,
it is not possible to use lossy compression, since the data would not make sense at
all. The same happens when we compress several files into a single zip, rar, tar, 7z,
etc. file, as we then want to get back the same files we had before. For images, lossy

1The data compression ratio defined as: CR = Uncompressed size
Compressed size

. For a file compressed from size
45 to 5, both 9:1 and 9 are equivalent.
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compression is preferred instead because the lost details are not very remarkable for
the human eye, yet the achieved compression ratio is much higher in comparison
with the lost data. A very well known lossy method for image compression is jpeg
or jpg, based on the discrete cosine transform (DCT).

However, we do not always use lossy compression for images, for instance, if we
are working with an image and cannot afford the loss of data because we need to
work with it later. In this case, a well known algorithm that does not lose any detail
of the image is png.

In this case, we are going to work with images and we are going to apply the
Fuzzy Transform (shortened F-Transform) method to them, which is a lossy algo-
rithm in between both image reduction and image compression concepts since, it
does apply an image reduction but it can also change the structure of the original
data in some way.

Originally, the F-Transform is computed by first fixing a number of nodes that
will be the dimensions of our new image. This nodes are evenly distributed all along
the image creating a grid over the image Fig. 1. This means that, when the new
pixels are computed, all parts of the image are compressed uniformly with an even
loss of data. Nevertheless, we know there are some kind of images where there is
a specific part containing most of the important information. In Fig. 2, the bird
contains the important information whereas, the background is almost constant and
it is not as important. Therefore, if we compress the image using a lossy algorithm,
it would be preferable that the lost data were part of the background keeping the
maximum possible quality in the object of interest, the bird in this case.

Fig. 1 Uniform grid over original image for a reduction from 512× 512 to 16× 16.
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Fig. 2 Image with constant background and object of interest.

This Final Degree Project consists in developing an image compression algo-
rithm trying to reduce the size of these while preserving the main properties of the
previously described type of images. The algorithm is based on the method of the
fuzzy transform but it performs a prior key point detection finding the object of
interest to focus the attention of the fuzzy partition on it. The objective of our
proposal is to keep as much information as possible from the original image, thus
minimizing the error when applying the inverse transformation.

The project has been carried out in three different parts. First, working on the
fuzzy transform and optimizing the algorithm. Second part is about optimizing the
used nodes adapting them to the image with the first derivative of it. Lastly, part
three to find the key points in the images to focus the transform in the objects.
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Chapter 1

Fuzzy Transform

In this first chapter, we are going to introduce the concept of the Fuzzy Trans-
form, give the definition and see an example of the application of the method. Then
we are going to work on the optimization of the complexity of the code in order to
speed up the calculations.

1.1 Definition of the Fuzzy Transform

Let us start by defining the concept of the Fuzzy Transform, a method for
constructing approximations of functions based on the fuzzy logic introduced by L.
Zadeh [1].

1.1.1 Fuzzy Partition

In order to define the Fuzzy Transform, we first need to introduce an important
concept with which we are going to work throughout the whole project. The concept
is a fuzzy partition of an interval [a, b] we will consider as a universe.

Definition 1. Let x1 < · · · < xn be nodes within [a, b], such that x1 = a, xn = b
and n ≥ 2. We say that fuzzy sets A1, . . . , An : [a, b]→ [0, 1] form a fuzzy partition
of [a, b] if they fulfill the following conditions for k = 1, . . . , n: [2]

(1) Ak(xk) = 1;

(2) Ak(x) = 0 if x 6∈ (xk−1, xk+1) where for the uniformity of denotation, we put
x0 = a and xn+1 = b;

(3) Ak(x) is continuous;

(4) Ak(x), k = 2, . . . , n, strictly increases on [xk−1, xk] and Ak(x), k = 1, . . . , n−1
strictly increases on [xk, xk+1];

(5) ∀x ∈ [a, b],
∑n

i=1Ak(x) = 1;

The membership functions A1, . . . , An are called basic functions.
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Let us remark that basic functions are specified by a set of nodes x1 < · · · < xn
and the properties 1-5. The shape of basic functions is not predetermined and there-
fore, it can be chosen additionally according to further requirements (e.g. smooth-
ness).

Basic functions are defined by the previous properties and some fixed nodes but
that does not define the shape of the functions. For this project the used basic
functions are defined by:

A1(x) =


1− (x−x1)

h1
, x ∈ [x1, x2],

0 otherwise

Ak(x) =



(x−xk−1)
hk−1

, x ∈ [xk−1, xk],

1− (x−xk)
hk

, x ∈ [xk, xk+1],

0 otherwise

An(x) =


(x−xn−1)

hn−1
, x ∈ [xn−1, xn],

0 otherwise

(1.1)

where k = 2, . . . , n− 1, and hk = xk+1 − xk

Applying (1.1) to the image represented in Fig. 1 scaling it from 512 × 512 to
16×16, the resulting fuzzy partition used to compute the F-Transform of the image
would be the following:

Fig. 1.1 Uniform fuzzy partition of the universe [1, 512].

1.1.2 F-Transform

The F-Transform was introduced in [2] as a correspondence between a set of
continuous functions on an interval [a, b] and the set of n-dimensional vectors.

Let C([a, b]) be the set of continuous functions on the interval [a, b].

Definition 2 Let A1, . . . , An be basic functions which form a fuzzy partition
of [a, b] and f be any function from C([a, b]). We can say that the n-tuple of real
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numbers [F1, . . . , Fn] given by

Fk =

∫ b
a f(x)Ak(x) dx∫ b

a Ak(x) dx
(1.2)

is the F-Transform of f with respect to A1, . . . , An.

The inversion formula or inverse F-Transform, converts an n-dimensional vector
into another continuous function approximating the original one.

Definition 3 Let A1, . . . , An be basic functions which form a fuzzy partition of
[a, b] and f be a function from C([a, b]). Let Fn = [F1, . . . , Fn] be the F-Transform
of f with respect to A1, . . . , An. Then the function given by

fF,n(x) =
n∑

k=1

FkAk(x) (1.3)

∀x ∈ [a, b] is called the inverse F-Transform.

It is obvious that the quality of the approximation of the F-Transform will de-
pend on the number of nodes we use for the fuzzy partition. As we can see in Fig.
1.2, the more nodes we use, the better the approximation. In Fig. 1.2(d), with
n = 30, we see that the approximation almost exactly coincides with the original
function.

(a) n = 5 (b) n = 10

(c) n = 20 (d) n = 30

Fig. 1.2 Different approximations of the function f(x) = (x − 5)(x − 2)(x − 1) on
the interval [0, 5] given by the F-Transform with a different number of nodes n.

Considering a function f only defined on a set of points P and assuming P is

7



dense enough with respect to the used partition, then we can also define a discretized
version of the F-Transform and its inverse F-Transform.

Definition 4 Let f : [a, b]→ R be a function given at points p1, . . . , pN ∈ [a, b]
and let A1, . . . , An, n < N , be basic functions which form a fuzzy partition of
[a, b]. We say that the n-tuple of real numbers Fn = [F1, . . . , Fn] is the discrete
F-Transform of f with respect to A1, . . . , An if

Fk =

∑n
i=1 f(pi)Ak(pi)∑n

i=1Ak(pi)
(1.4)

We can now define the inverse function for the discrete case.

Definition 5 Let f : [a, b] → R be a function given at points p1, . . . , pN ∈
[a, b] and let Fn[f ] = [F1, . . . , Fn] be the discrete F-Transform of f with respect to
A1, . . . , An. Then the function

fF,n(x) =
n∑

k=1

FkAk(x) (1.5)

defined at p1, . . . , pN is called the discrete inverse F-Transform.

F-Transform of two or more variables

We can generalize the case of the one variable F-Transform and inverse F-
Transform to two or more variables. Suppose the universe [a, b] × [c, d] and let
C([a, b] × [c, d]) be the set of continuous functions of two variables f(x, y) on the
interval [a, b]× [c, d]

Definition 6 Let A1, . . . , An be basic functions which form a fuzzy partition of
[a, b] and B1, . . . , Bm be basic functions which form a fuzzy partition of [c, d]. Let
f(x, y) be any function from C([a, b]× [c, d]). We say that the n×m-matrix of real
numbers Fnm[f ] = Fkl is the integral F-Transform of f with respect to A1, . . . , An

and B1, . . . , Bm if for each k = 1, . . . , n , l = 1, . . . ,m,

Fkl =

∫ d
c

∫ b
a f(x, y)Ak(x)Bl(y) dx dy∫ d
c

∫ b
a Ak(x)Bl(y) dx dy

(1.6)

Discrete F-Transform. Application to image compression

Analogously to the one variable discrete case, for a function f only defined at
some nodes (pi, qj) ∈ [a, b] × [c, d], we can define a discrete F-Transform for two or
more variables. One of the applications of the F-Transform, and the one we are
going to work with in this project, is the use of it for image compression. If we see
an image as a discrete function of two variables fI defined in [1, N ]× [1,M ], we can
directly define the discrete F-Transform for image compression.

Definition 7 Let a function f be given at nodes (pi, qj) ∈ [a, b] × [c, d] , i =
1, . . . , N , j = 1, . . . ,M , and A1, . . . , An, B1, . . . , Bm where n < N and m < M , be
basic functions which form fuzzy partitions of [a, b] and [c, d], respectively. Suppose
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that sets P and Q of nodes are sufficiently dense with respect to the chosen parti-
tions. We say that the n×m-matrix of real numbers Fnm[fI ] = Fkl is the discrete
F-Transform of f with respect to A1, . . . , An and B1, . . . , Bm if

Fkl =

∑M
j=1

∑N
i=1 fI(pi, qj)Ak(pi)Bl(qj)∑M

j=1

∑N
i=1Ak(pi)Bl(qj)

(1.7)

holds for all k = 1, . . . , n , l = 1, . . . ,m.

This way, in order to recover an approximation of the original image, we can
define the discrete inverse F-Transform.

Definition 8 Let A1, . . . , An and B1, . . . , Bm be basic functions which form
fuzzy partitions of [a, b] and [c, d] respectively. Let fI be a discrete function defined
in [1, N ]× [1,M ] and Fnm[fI ] be the F-Transform of fI with respect to A1, . . . , An

and B1, . . . , Bm. Then the function

fFnm(pi, qj) =
n∑

k=1

m∑
l=1

FklAk(pi)Bl(qj) (1.8)

is called the inverse F-Transform.

(a) (b) (c)

Fig. 1.3 The original image (a) is compressed with a 16 : 1 compression ratio (b).
The result of applying the inverse F-Transform is shown in (c).

The example in Fig. 1.3 is the result of applying the F-Transform to an image
with a 16 : 1 compression ratio with a triangular fuzzy partition (eq. (1.1)). This
means that the original 512× 512 is reduced to a 128× 128 image by means of eq.
(1.7). The image in Fig. 1.3(c), reconstructed with eq. (1.8), clearly shows that the
F-Transform is a lossy compression algorithm since the loss of details and sharpness
is obvious.

1.2 Code optimization

The previously described F-Transform in eq. (1.7) computes a single value of
F. For each value, two for-loops are needed that go through the image being
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compressed and this must be done for every (K,L) ∈ [1, n] × [1,m] in matrix F.
This means the method needs 4 nested for-loops. This algorithm’s complexity is
therefore O(n4) and we need to reduce it since such complexity is too high even
when working with smaller images. We are now going to describe some methods
that optimize the code of the F-Transform. Besides, there is also some optimization
we can make to the algorithm in terms of computing the fuzzy partitions faster.

1.2.1 Redundancy in the calculations

As we have seen, to compute FKL with eq. (1.7), the value of the fuzzy partition
AK(pi) is computed M times, once for each BL and respectively, BL(qj) N times
for a given AK . The same happens when we compute the inverse F-Transform eq.
(1.8). We are going to try to find a way to avoid to do the same once and again.

F-Transform

To reduce the number of iterations, for a fixed FKL, we are going to create
an N ×M -matrix called AKBL where AKBL(i, j) = AK(pi) · BL(qj). This way,
once it is constructed, we can compute FKL directly as the sum of the element-wise
product1 of the image and AKBL divided by the sum of AKBL (see eq. (1.9)) and
thus, get rid of the two inner for-loops of the algorithm.

FKL =

∑∑
im�AKBL∑∑
AKBL

(1.9)

Before constructing the matrix AKBL, we first need to define an n×N -matrix
A where A[K, i] = AK(pi) and an m×M -matrix B where B[L, j] = BL(qj)

A =


A1(p1) A1(p2) · · · A1(pN )
A2(p1) A2(p2) · · · A2(pN )

...
...

. . .
...

An(p1) An(p2) · · · An(pN )

B =


B1(q1) B1(q2) · · · B1(qM )
B2(q1) B2(q2) · · · B2(qM )

...
...

. . .
...

Bm(q1) Bm(q2) · · · Bm(qM )


With these two matrices, for a given FKL we construct AKBL as AKBL =

A(K)T ·B(L)

AKBL = A(K)T ·B(L) =


AK(p1)
AK(p2)

...
AK(pN )

 · (BL(q1) BL(q2) · · · BL(qM )
)

=

=


AK(p1) ·BL(q1) AK(p1) ·BL(q2) · · · AK(p1) ·BL(qM )
AK(p2) ·BL(q1) AK(p2) ·BL(q2) · · · AK(p2) ·BL(qM )

...
...

. . .
...

AK(pN ) ·BL(q1) AK(pN ) ·BL(q2) · · · AK(pN ) ·BL(qM )


1The element-wise or Hadamard product �
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We can now apply eq. (1.9) to obtain the value of FKL. By doing this we now
do not need to use the for-loops that go through the image and only need to apply
this for every (K,L) in order to obtain Fnm.

Inverse F-Transform

The same way as with the F-Transform, to retrieve the original image with the
inverse F-Transform with eq. (1.8), four for-loops are needed and we are going to
get rid of the ones that, in this case, go through the matrix Fnm, therefore removing
the reiterative calculation of the fuzzy partitions.

We are again going to use the same A and B matrices but this time their
transposed AT and BT matrices. The procedure is quite the same as with the
F-Transform.

With these two matrices, for a given fFnm(i, j) we construct an n × m-matrix
AiBj as AiBj = AT (i)T ·BT (j)

AiBj = AT (i)T ·BT (j) =


A1(pi)
A2(pi)

...
An(pi)

 · (B1(qj) B2(qj) · · · Bm(qj)
)

=

=


A1(pi) ·B1(qj) A1(pi) ·B2(qj) · · · A1(pi) ·Bm(qj)
A2(pi) ·B1(qj) A2(pi) ·B2(qj) · · · A2(pi) ·Bm(qj)

...
...

. . .
...

An(pi) ·B1(qj) An(pi) ·B2(qj) · · · An(pi) ·Bm(qj)


Now to compute fFnm(i, j) we do the sum of the elements given by the result of

the element-wise product of F and AiBj

fFnm(i, j) =
∑∑

F �AiBj (1.10)

Results

We are going to compare the results of this new method with those of the original
one. As we can see in Fig. 1.4, the Mean Squared Error (or MSE) of Fig. 1.4(b)
and Fig. 1.4(c) are the same. Considering the original method as a reference, if we
calculate the MSE of Fig. 1.4(c) with respect to Fig. 1.4(b) to see how similar they
are, we see the MSE is 1.655 · 10−26. This error is so small, we can consider them
to be the same.
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(a) Original image. (b) Inverse with original
method. MSE = 208.833

(c) Optimized inverse.
MSE = 208.833

Fig. 1.4 Result of applying the two different introduced methods reducing (a) from
320× 300 to 32× 30 (100:1) and the Mean Squared Error.

1.2.2 Direct calculation

Based on section 1.2.1 we can find a quicker method that doesn’t go through
every FKL but computes Fnm straightaway improving the algorithm and its com-
plexity. This time, we are going to create a method that computes the F-Transform
directly without using any for-loop.

F-Transform

In order to get rid of the for-loops, we are going to use matrices and their
product. This time we are going to divide the task into two parts, first of all,
calculate the n×m-matrix F where F (k, l) =

∑M
j=1

∑N
i=1 f(i, j) ·Ak(pi) ·Bl(qj)

Using the two same matrices A and B defined in section 1.2.1 we are going to
calculate F as F = A · f ·BT and we will get each value on it’s position.

F = A · f ·BT =

=

A1(p1) · · · A1(pN )
...

. . .
...

An(p1) · · · An(pN )

 ·
 f(1, 1) · · · f(1,M)

...
. . .

...
f(N, 1) · · · f(N,M)

 ·BT =

=


∑N

i=1A1(pi) · f(i, 1) · · ·
∑N

i=1Ai(pi) · f(i,M)
...

. . .
...∑N

i=1A1(pi) · f(i, 1) · · ·
∑N

i=1Ai(pi) · f(i,M)

 ·
B1(q1) · · · Bm(q1)

...
. . .

...
B1(qM ) · · · Bm(qM )

 =

=


∑M

j=1

(∑N
i=1A1(pi) · f(i, j)

)
·B1(qj) · · ·

∑M
j=1

(∑N
i=1A1(pi) · f(i, j)

)
·Bm(qj)

...
. . .

...∑M
j=1

(∑N
i=1An(pi) · f(i, j)

)
·B1(qj) · · ·

∑M
j=1

(∑N
i=1An(pi) · f(i, j)

)
·Bm(qj)


Once the numerator part of eq. (1.7) is done, we still need to calculate the de-

nominator
∑M

j=1

∑N
i=1Ak(pi)Bl(qj). We can think of it from the method explained

in section 1.2.1.
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We have that for a fixed FKL

FKL =
∑∑

AT
K ·BL = aK1 · bL1 + aK2 · bL2 + · · ·+ aKM · bLN =

= (aK1 + ak2 + · · ·+ aKM ) · (bL1 + bL2 + · · ·+ bLM ) =

=
∑

AK ·
∑

BL

(1.11)

Once we have that
∑∑

AT
K · BL =

∑
AK ·

∑
BL, we can generalize this to

compute the whole matrix at once. We define the n × 1-matrix sA = A · 1N and
m× 1-matrix sB = B · 1M which contain the row sum of each A and B.

sA = A · 1N =

A1(p1) · · · A1(pN )
...

. . .
...

An(p1) · · · An(pN )

 ·
1

...
1

 =


∑N

i=1A1(pi)
...∑N

i=1An(pi)



sB = B · 1M =

B1(q1) · · · B1(qM )
...

. . .
...

Bm(q1) · · · Bm(qM )

 ·
1

...
1

 =


∑M

j=1B1(qj)
...∑M

j=1Bm(qj)


If we now compute sA · sBT we get

sA · sBT =


∑N

i=1A1(pi)
...∑N

i=1An(pi)

 · (∑M
j=1B1(qj) · · ·

∑M
j=1Bm(qj)

)
=

=


∑N

i=1A1(pi) ·
∑M

j=1B1(qj) · · ·
∑N

i=1A1(pi) ·
∑M

j=1Bm(qj)
...

. . .
...∑N

i=1An(pi) ·
∑M

j=1B1(qj) · · ·
∑N

i=1An(pi) ·
∑M

j=1Bm(qj)


Once we have both parts of eq. (1.7), we now only need to do the element-wise

division2 of the matrices to obtain the resulting F-Transform

Fnm = (A · f ·BT )� (sA · sBT ) (1.12)

Inverse F-Transform

To compute the inverse F-Transform straightaway we are going to apply a similar
method as for the F-Transform. This time the equation to be applied (eq. (1.8))
is much simpler since we do not have a division, so we only need to do a couple of

2The element-wise or Hadamard division �
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matrix multiplications and calculate fFnm as fFnm = AT · F ·B.

fFnm = AT · F ·B =

=

A1(p1) · · · An(p1)
...

. . .
...

A1(pN ) · · · An(pN )

 ·
F (1, 1) · · · F (1,M)

...
. . .

...
F (N, 1) · · · F (N,M)

 ·B =

=


∑n

i=1Ai(p1) · F (i, 1) · · ·
∑n

i=1Ai(p1) · F (i,m)
...

. . .
...∑n

i=1Ai(pN ) · F (i,N) · · ·
∑n

i=1Ai(pN ) · F (i,m)

 ·
B1(q1) · · · B1(qM )

...
. . .

...
Bm(q1) · · · Bm(qM )

 =

=


∑m

j=1

(∑n
i=1Ai(p1) · F (i, j)

)
·Bj(q1) · · ·

∑m
j=1

(∑n
i=1Ai(p1) · F (i, j)

)
·Bj(qM )

...
. . .

...∑m
j=1

(∑n
i=1Ai(pN ) · F (i, j)

)
·Bj(q1) · · ·

∑m
j=1

(∑n
i=1Ai(pN ) · F (i, j)

)
·Bj(qM )


Results

Let us compare the results obtained with this new method, the original and the
previous one from subsection 1.2.1.

(a) Inverse with original
method. MSE = 208.833

(b) Optimized inverse.
MSE = 208.833

(c) Direct inverse.
MSE = 280.833

Fig. 1.5 Result of applying the two different introduced methods reducing (a) from
320× 300 to 32× 30 (100:1) and the Mean Squared Error.

As we saw in Fig. 1.4, once again the MSE is the same for the three cases, so
we will compare them with respect to the original inverse. The MSE in this case is
1.746 · 10−26, which is slightly bigger than the previous one, but the difference is so
small (about 10−27), it is negligible.

1.2.3 Optimization on the computation of the fuzzy partition

To this point, the matrices A and B with the fuzzy partitions were computed
applying eq. (1.1) to each element AK(pi) and BL(qj) of the matrix with two nested
for-loops. The function receives as argument a K or L index, the point pi or qj
for which the value is going to be computed and the nodes used for the partition.
There is, though, a seamless faster way to compute the partitions taking advantage
of the Python-supported Boolean indexing.
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We are going to construct a new function that receives the K or L index, the
nodes for the partition and a whole array of points x = (x1, . . . , xn) where xi = i
and it computes the whole partition for the given K or L at once. This way, we
only need to go through the rows of the matrices A and B going from complexity
O(n2) to O(n).

The only thing changing in this algorithm is the way in which we compute the
matrices A and B in regard to the Python code and not to the theoretical part,
which will provoke no change in the result. Therefore, comparing the results of
the transform would not make sense. Instead, we are now going to compare the
approximate execution time for each of the four methods to see if we did improve
the complexity of the algorithm in the following table.

Time
F-Transform + Inverse

Total (ms)

Original Method 12min 24s + 6min 26s 1,130,000

Method 1.2.1 503ms + 908ms 1,311

Method 1.2.2 45.8ms + 34ms 79.8

Method 1.2.3 4.62ms + 5.18ms 9.8

Table 1.1 Execution time of each method.

As we see, the original method with O(n4) is so much slower in comparison with
the other three optimized methods. In fact, 861.94 times slower than method 1.2.1
and 1.15 · 105 times slower than the method presented in this subsection.

This way, Algorithm 1 shows the pseudocode of our optimized F-Transform.

Algorithm 1 Optimized Fuzzy Transform

Input: I: image of N ×M pixels; n < N , m < M : Number of nodes in the fuzzy
partition.

Output: F : image of n×m pixels containing the F-Transform of I.
1: nodesX := array of n equally distributed real numbers from 1 to N.
2: nodesY := array of m equally distributed real numbers from 1 to M.
3: A:= n×N -matrix
4: B:= m×M -matrix
5: rangeN := {1, . . . , N}
6: rangeM := {1, . . . ,M}
7: for each k of {1, . . . ,m} do
8: A := Apply the optimized function for the fuzzy partition (section 1.2.3)

with k, rangeN and nodesX
9: end for

10: for each l of {1, . . . , n} do
11: B := Apply the optimized function for the fuzzy partition (section 1.2.3)

with l, rangeM and nodesY
12: end for
13: F := A · I ·B.T
14: sA := column array with the row sum of A
15: sB := column array with the row sum of B
16: F := F � (sA · sB.T )

15



Chapter 2

Optimization of the Fuzzy
Partition

As seen in 1.1.1, the nodes to create a fuzzy partition of an interval [a, b] are
created uniformly dividing the interval in n disjoint subintervals. This has some
obvious advantages. First, there is almost no cost on computing the partition com-
pared with an optimized method that takes into account the information in each
image. On the other hand, if we know the partitions are done uniformly, when
we calculate the inverse F-Transform, we don’t need to know how the partitions
were distributed to do the F-Transform and it is possible to do it directly divid-
ing it again uniformly. Therefore, we do not need to store the information of the
partitions, which makes it even more efficient in terms of compression.

It is obvious though, that choosing an appropriate partition for each case will
give a better transform since we are able to take into account the characteristics of
each function or image. Let us define f(x) = 5e−2(x−2)

2
, a non-negative function on

[0,10], which is constant except in the subinterval [0,4] as seen on Fig. 2.1.

By applying eq. (1.2) we are going to compute the integral inverse F-Transform
with a triangular fuzzy partition (eq. (1.1)) with n = 5. As we can see in Fig.
2.2, the F-Transform we get does not fit at all to the original function f(x) because
most of the information is in the subinterval [0, 4] but the uniform distribution of
the nodes is giving the same weight to the subinterval (4, 10] where the function is
constant.
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Fig. 2.1 Function f(x) = 5e−2(x−2)
2

on the interval [0, 10].

Fig. 2.2 Inverse F-Transform of f(x) calculated with a uniform triangular fuzzy
partition with n = 5.

If we think of f(x) as a probability density function1, we can then compute
its cumulative density function F (x).2 Then, with x1 = a and xn = b we evenly
distribute the rest of the nodes in the codomain of F [0, 1] and, by approximating
the inverse of F, we obtain the values for the nodes in the domain of f(x).

1For a non-negative function f , we consider the probability density function as g(x) = f(x)∫∞
−∞ f(x)dx

2F (x) =
∫ x

−∞ f(t)dt
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Fig. 2.3 Partition of the domain [0, 10] based on the cumulative density function of
f(x), F .

As seen in Fig. 2.3 the resulting nodes are x1 = 0, x2 = 1.66, x3 = 2, x4 =
2.34, x5 = 10. With these nodes we can compute the partition and the inverse F-
Transform as shown in Fig. 2.4, which gives a better approximation of the function
f(x) than Fig. 2.2 even with the same number of nodes.

Fig. 2.4 Inverse F-Transform of f(x) with a triangular fuzzy partition of adjusted
nodes with n = 5.

This method, however, only works when the subinterval where most of the in-
formation is, is the same as where the function reaches its highest values. If we
define a new function f2(x) = 5(1−e−2(x−8)2), as seen in Fig. 2.5 we want the fuzzy
partition to have most of its nodes around the interval [6, 10], where the function
changes the most.
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Fig. 2.5 f2(x) = 5(1− e−2(x−8)2) defined on the interval [0, 10].

Nonetheless, we can see in Fig. 2.6 that, when computing the cumulative density
function, in this case, the partition does not coincide with the values we expected
to have and, actually, the nodes x2 = 2.19, x3 = 4.37 and x4 = 6.56 are exactly in
the opposite interval we want them to be as we expected to have them in [6, 10].
And thus, the inverse F-Transform of f2(x) (Fig. 2.7) is not as good as for f(x)
with this same method.

Fig. 2.6 Fuzzy partition of the interval [0, 10] based on the cumulative density func-
tion of f2(x) = 5(1− e−2(x−8)2).
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Fig. 2.7 Inverse F-Transform of f2(x) with a uniform triangular fuzzy partition of
adjusted nodes with n = 5.

2.1 Optimized partition using the first derivative

To solve the arisen problem, we propose to use the absolute value of the first
derivative of the function f(x) rather than the function itself, since the absolute
value of the derivative is higher where the original function changes.

Given a non-negative differentiable function f : [a, b] → R+, the methodology
follows these steps:

1. Compute the density function given by the absolute value of the first derivative

of the function, i.e., d : [a, b]→ R+ given by d(x) = |f ′(x)|∫ b
a |f ′(x)|dx

, ∀x ∈ [a, b].

2. Compute the cumulative distribution function of d, D : [a, b] → R+ given by
D(x) =

∫ x
a d(t)dt, ∀x ∈ [a, b].

3. Divide the codomain of D [0, 1] into n equally distributed nodes: x′1, . . . , x
′
n,

where x′i = i−1
n−1

AsD might not be an invertible function, we will approximate the inverseD−1(x)
in the points x′2, . . . , x

′
n−1 as:

D−1(x′i) = inf{x | D(x) ≥ x′i} (2.1)

In order to have the fuzzy partition well defined, we determine that x1 = a and
xn = b and thus we get the fuzzy partition as:

x1 = a, x2 = D−1(x′2), . . . , xn−1 = D−1(x′n−1), xn = b

If we retrieve the previously defined functions f(x) and f2(x), we can now apply
this algorithm to compute the inverse F-Transform given by the optimized partitions.
In figures 2.8 and 2.9 we can see the result of applying the method to both of the
functions. As it can be seen in Fig. 2.8(a), the nodes obtained for f(x) are more or
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less the same as with the previous method and the inverse F-Transform is the same
as in Fig. 2.4. However, in Fig. 2.9 we see that, in this case, the cumulative density
function of the absolute value of the first derivative of f2(x), showed in Fig. 2.9a,
gives a more appropriated partition of the interval [0, 10] for the function f2(x), and
the inverse F-Transform in Fig. 2.9(b) is a better approximation of the function
f2(x) than the one in Fig. 2.7.

(a) Partition of the interval [0, 10] computed
with F (x) given by eq. (2.1).

(b) Inverse F-Transform of f(x) using an op-
timized partition.

Fig. 2.8 Optimized inverse F-Transform applied to f(x) = 5e−2(x−2)
2)

(a) Partition of the interval [0, 10] computed
with F2(x) given by eq. (2.1).

(b) Inverse F-Transform of f2(x) using an
optimized partition.

Fig. 2.9 Optimized inverse F-Transform applied to f2(x) = 5(1− e−2(x−8)2))

2.2 Optimized partition for image compression

An N × M grayscale image can also be seen as a bivariate discrete function
I : {0, . . . , N − 1} × {0, . . . ,M − 1} → {0, . . . , 255}. As seen in subsection 1.1.2,
the F-Transform can be applied to discrete bivariate functions, therefore, we can
adapt the algorithm described in section 2.1 to optimize the partitions for images.
Given an image I of N × M pixels, the objective is to find a fuzzy partition of
[0, N − 1]× [0,M − 1] based on the first derivative of the image.

While adapting the algorithm we find two obstacles. First, approximating the
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derivative of a discrete function. Second, performing this optimization on two-
dimensional functions.

The idea of the first derivative consists in calculating the maximum difference of
intensities between the pixels around each pixel. Let I(x, y) with (x, y) ∈ {0, . . . , N−
1} × {0, . . . ,M − 1} be the intensity of the pixel on the x-th row and y-th column
and let Nt(x, y) = {(i, j)

∣∣ |i − x| ≤ t and |j − y| ≤ t} be the set of indices of
the neighbouring pixels of I(x, y) with distance less than or equal to t. Then, the
approximation of the magnitude of the first derivative in a given pixel I(x, y) is
calculated as:

d(x, y) = max
(i,j)∈Nt(x,y)

I(i, j)− min
(i,j)∈Nt(x,y)

I(i, j) (2.2)

Evidently the approximation of the magnitude directly depends on t, the bigger t,
the greater the magnitude of the derivative. We usually consider t = 1 or t = 2,
which respectively form a 3× 3 or 5× 5 window around the pixel.

By applying eq. (2.2), we obtain a new image d with an approximation of
the magnitude of the first derivative in each pixel. d is obviously a discrete two-
dimensional function and the second problem still remains unsolved. We are going
to transform d into two one-dimensional functions d0 and d1 respectively defined on
[0, N − 1] and [0,M − 1]. These will be the result of accumulating the values of d
along the corresponding axis:

d0(x) =

∑M−1
j=0 d(x, j)∑N−1

i=0

∑M−1
j=0 d(i, j)

, x ∈ [0, N − 1] (2.3)

d1(y) =

∑N−1
i=0 d(i, y)∑N−1

i=0

∑M−1
j=0 d(i, j)

, y ∈ [0,M − 1] (2.4)

Now that we have d0 and d1 one-dimensional functions that represent the amount
of changes in rows and columns, we can calculate the cumulative functions to apply
the transform to them. The cumulative functions D0 and D1 are defined as:

D0(x) =

x∑
i=0

d0(i), x ∈ [0, N − 1] (2.5)

D1(y) =

y∑
j=0

d1(j), y ∈ [0,M − 1] (2.6)

Following the steps described in section 2.1, we divide the interval [0, 1] into n
and m equally distributed nodes and by approximating the inverse of D0 and D1

with eq. (2.1), we obtain the nodes of the partitions x1, . . . , xn and y1, . . . , ym in
the intervals [0, N − 1] and [0,M − 1]. Algorithm 2 represents the pseudocode for
this algorithm.
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Algorithm 2 Optimized fuzzy partition

Input: I: image of N ×M pixels; n < N , m < M : Number of nodes in the fuzzy
partition; t: size of the neighbourhood.

Output: Optimized fuzzy partition x1, . . . , xn and y1, . . . , ym of [0, N − 1] and
[0,M − 1], respectively.

1: for each pixel (x, y) of I do
2: Apply eq. (2.2) to calculate d(x,y)
3: end for
4: Apply eq. (2.3) and eq. (2.4) to calculate d0 and d1 respectively.
5: Apply eq. (2.5) and eq. (2.6) to calculate D0 and D1 respectively.
6: for each i ∈ {1, . . . , n− 2} do
7: x′i := i−1

n−1
8: xi := inf{x | D0(x) ≥ x′i}
9: end for

10: for each j ∈ {1, . . . ,m− 2} do
11: y′j := j−1

m−1
12: yj := inf{y | D1(y) ≥ y′j}
13: end for

Here is an example with the step-by-step results of applying this algorithm to
an image. First, we apply eq. (2.2) to obtain the image with the magnitude of the
first derivative (Fig. 2.9(b)). By applying eq. (2.3) and eq. (2.4) we respectively
obtain d0 an d1 shown in Fig. 2.11(a) and Fig. 2.11(b) the approximations of the
derivatives on each axis. With eq. (2.5) and eq. (2.6), we obtain the cumulatives
of the derivatives D0 and D1 respectively. We divide the interval [0, 1] into n and
m equally distributed nodes and, by applying 2.1, we obtain the partitions shown
in Fig. 2.11(c) and Fig. 2.11(d). Fig. 2.12 shows the grid created by the uniform
partition and our optimized version over the image. In Fig. 2.13 we see the result of
applying the F-Transform and its inverse with the created partitions. Fig. 2.13(a)
has a MSE of 24.595, whereas Fig. 2.13(b) a MSE of 9.362. This difference is
obvious just by looking at the bird in the picture and the difference in the sharpness
of both images.

(a) Grayscale version of Fig. 2. (b) Magnitude of the first derivative.

Fig. 2.10 A 1200× 1920 image and the magnitude of its first derivative given by eq.
(2.2) with t = 2.
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(a) d0 approximation of the derivative (eq.
(2.3)).

(b) d1 approximation of the derivative (eq.
(2.4)).

(c) D0 cumulative of the derivative (eq.
(2.5)) and distribution of the nodes in the
x axis.

(d) D1 cumulative of the derivative (eq.
(2.6)) and distribution of the nodes in the
y axis.

Fig. 2.11 First derivatives and its cumulatives with the distribution of the nodes.

(a) Uniform distribution of the nodes. (b) Distribution of the nodes based on the
first derivative.

Fig. 2.12 Grids created by the uniform and the optimized partitions.
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(a) Inverse uniform F-Transform with a uni-
form triangular partition. MSE = 24.595

(b) Optimized F-Transform with partition
created with Algorithm 2. MSE = 9.362

Fig. 2.13 Comparison between the uniform and the optimized version of the F-
Transform after reducing Fig. 2.9(a) with a 144 : 1 compression ratio from dimen-
sion 1200× 1920 to 100× 160.
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Chapter 3

Key point detection

Now that we have seen a method that improves the fuzzy partition, we can try
to improve the way in which we perform the F-Transform to the image. We want
to focus the F-Transform in the object of the image, thus, we are going to perform
two different F-Transforms and see if the results are better. The first one will be
the F-Transform of the object itself and the second one will have the information of
the background.

To do this, there are some things we need to take into account. First, we obvi-
ously need to find a way to separate the object and the background. Second, once
we get the background we need to have a whole image with the empty background.
And last, if we have an N ×M image we want to reduce to n ×m with n and m
the number of nodes used for each of the dimension, we need to define how many of
the nodes will be used to do the F-Transform of the object and how many for the
background.

3.1 Separating the object and the background

In this section we are first going to define some methods to find where the
object is so we can then perform both of the transforms. Before we apply each of
the algorithms to obtain the key points, in order to avoid cases were there is some
noise in the background that can then give us false key points, we are going to apply
a Gaussian filter to the image. Once we have these points, we can then get the area
that contains all of them and separate the object from the background.

3.1.1 Based on the magnitude of the first derivative

For this method, we are going to take advantage of the image d we computed
by applying eq. (2.2). We know the object will be located where the first derivative
reaches the highest magnitudes, therefore, we can fix a percentage that, based on the
highest value of the first derivative, will give us the pixels where the image changes
the most.

Since the background of the images we are using is more or less constant, all this
points will be the ones of the object, as seen in Fig. 2.10(b).
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3.1.2 OneClassSVM

The sklearn library [3] in python has the class OneClassSVM which is an unsu-
pervised outlier detector. This class receives a set of points to be classified. The
SVM tries to find a frontier that fits to the given points and then the points that do
not fit inside the created frontier are classified as outliers. We can use this outlier
detector by passing to it the points of the magnitude and then it will give us back
the points that it considers that are not outliers so we can then use them to find
the object.

3.1.3 Feature detection with OpenCV

The OpenCV library [4] has some methods that are used to find the key points
of an image and, for this purpose, we are going to use two of them, Features from
Accelerated Segment Test, and Speeded-Up Robust Features.

Features from Accelerated Segment Test

The Features from Accelerated Segment Test or FAST method implemented in
the OpenCV library [5] performs a key-point detection based on corner detection
based on the algorithm proposed by E. Rosten [6]. With a fixed threshold t, this
method goes through the image and, for each pixel with intensity Ip. Considering a
circle of 16 pixels around it (Fig. 3.1), the pixel contains a corner if there exists a
set of n = 12 pixels around it that are brighter than Ip + t or darker than Ip − t.

Fig. 3.1 FAST algorithm taken from [6].

To make the algorithm faster, a high-speed test is performed by first analyzing
pixels 1 and 9 to check if any of them fulfills the criterion. If any of them does, it
checks 5 and 13. Since n = 12, at least 3 of these must be darker or brighter in
order to consider the pixel a corner. If the pixel passes the test, then the full circle
will be examined.

27



(a) (b)

Fig. 3.2 Example of applying the FAST method to two images.

Speeded-Up Robust Features

When detecting corners, the algorithm must obviously be rotation-invariant,
which means that even if the image is rotated, the detected corners will be the
same. There is, though, another possibility of not detecting a corner, this is when
the image is scaled and the algorithm does not detect the corner because it is too
big when analyzing pixel-to-pixel. An algorithm that detects the corners even when
it the image is scaled is called scale-invariant.

D. G. Lowe proposed the Scale-Invariant Feature Transform or SIFT algorithm
[7] to solve this. The method is based on the Laplacian of Gaussian or LoG where
the Laplacian is found for different values of σ. Since the LoG has a higher com-
putational cost, an approximation is calculated with the Difference of Gaussians or
DoG. The DoG is computed as the difference of the result of applying a Gaussian
filter with different σ.

This algorithm is quite slow and for this problem, H. Bay, T. Tuytelaars, and L.
Van Gool proposed the Speeded-Up Robust Features or SURF method [8]. Based
on D. G. Lowe’s proposal, SURF is, as its name suggests, the speeded-up version of
the SIFT method.

The SURF goes a little further with the approximation of the LoG and instead
of using the DoG, it makes an approximation by means of a the discretized hessian
matrix of the Gaussian filter and applies different size of box filters to the image. We
can see in Fig. 3.3 the 9× 9 box filters for the y2 and xy second order derivatives.
As the image shows, the filters only need to sum the white areas and subtract the
black ones. This way, the filter can be easily applied in a fast way with O(1) by use
of integral images making SURF much faster than SIFT with only having to access
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to 4 values of the integral image for each region to be added or subtracted.

We can also find the SURF implemented in the OpenCV library [9].

Fig. 3.3 Approximation of the discretized Gaussian second order derivatives in y-
direction and xy-direction used for box filters. Taken from [8].

(a) (b)

Fig. 3.4 Result of applying the SURF method to two images.

3.2 Inpainting

Once we have found the area where the object is located with any of the previous
methods, there is still one problem for the compression of the background, and that
is, that, even if we can select the object from the image, the background still contains
the object on it.

Inpainting is a field of image processing that helps reconstruct images that have
been damaged and have some parts where the image is incomplete. This method
can also be used to remove parts of the image we do not want to have on it. This is
exactly what we want and, therefore, we are going to apply an inpainting algorithm
to our image in order to remove the object from it and get an approximation of
what the background would look like without the object.
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In order to apply an inpainting algorithm, a mask containing the parts were the
image is damaged or of the pixels we want to remove is needed. In our case, this is
quite simple since we already have the location of the object so we only need to use
the object itself as a mask.

The inpainting method we will be using is the one implemented in the OpenCV
library [4] for python with the cv.INPAINTING TELEA flag. The algorithm follows
the method proposed by A. Telea [10] based on the Fast Marching Method, which
is a faster method of inpainting that gives almost the same results as more complex
algorithms.

This method starts from the boundary of the area to be inpainted and gradualy
goes inside by filling the boundary first. A pixel to be inpainted is taken and it is
replaced by a normalized weighted sum of the known pixels in a small neighbourhood
around it. The nearer the pixel to the point, the greater weight it has.

Fig. 3.5 Inpainted image with the mask of the object found based on subsection
3.1.1.

3.3 Divide the number of nodes

For an N ×M image to be reduced to n×m, we will be using n nodes for one
dimension and m nodes for the second one. Now that we have located the object
and separated it from the background, we need to think of a way to divide n and m
between both the object and the background.

We propose two different methods for this purpose.

3.3.1 First method

An easy and fast way to divide the nodes is to determine what percentage of the
changes happen in the area of the object and outside of it.

The method is simple, we only need to use the matrix with the magnitudes of
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the first derivative d computed with eq. (2.2). We first normalize the matrix and
calculate the sum of the magnitudes inside the area of the object. This gives us the
percentage to use for the object and by subtracting it to 1, we will get the percentage
for the background.

3.3.2 Second method

It could be that the image had some noise in the background and if the back-
ground is much bigger than the object, the sum of the magnitudes were similar to
the sum of the magnitudes of the object. To avoid this, we are going to first sum
the magnitudes and then divide it with the area in number of pixels. Once we have
the indexes for both of the areas, we need to normalize them in order to get the
percentages.
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Chapter 4

Results

In this chapter we are going to see the results of the developed algorithm and
the proposed methods for different compression ratios. Taking into account all the
explained methods, the optimized F-Transform and the uniform F-Transform, there
are 10 different transformations we can do to an image. Inasmuch as 10 results for
every image and every compression ratio we want to use is too much, first of all,
we are going to apply all the previous methods over a single image with different
compression ratios and compare the results. Then, we will find out which method
is the best one and we will compare the results given by that one method, the
Optimized and the Uniform F-Transform over a set of images and the behaviour
with a larger number of higher compression ratios. To conclude, we are going to try
the algorithm with a different kind of images to see how good the results are.

4.1 Best method

We are going to use the image from Fig. 2 and apply to it all the methods for
the compression ratios (4:1, 8:1 and 64:1). Figures 4.12 - 4.20 at the end of this
chapter suggest that the best configuration might be method 3.1.1 for finding the
object based on the magnitude of the first derivative with the first method to divide
the number of nodes. If we see Table 4.1, where the same calculations have been
done for a larger set of images (shown in Fig. 4.5), we can confirm that the best
configuration is the one just mentioned.

Let us compare the different algorithms to see if we have improved the use of
the F-Transform for image compressing.

Fig. 4.1 shows the Mean Squared Error of the three algorithms for compression
ratios x2 with x ∈ {2, . . . , 16} for Fig. 2. As we can see, the results we can obtain
by applying the developed algorithms are so much better than the original method
with a uniform partition. For instance, we can achieve 2

3 less of error with our new
methods even with a compression ratio of 256:1.

Let us see what happens if we use a bigger set of images and take a look at the
mean MSE.
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Fig. 4.1 Mean MSE over the set of images for the 3 main methods and different
compression ratios.

Fig. 4.2 Mean MSE over the object of interest of the set of images for the 3 main
methods and different compression ratios.
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4.2 General results

Let us see what happens to the set of images with higher compression ratios.
Table 4.2 shows that for a 256:1 compression ratio, the algorithms do not behave
as expected. In Fig. 4.3 we see that for compression ratios higher than 100:1, the
optimized version gets worse results than the uniform one, while method 3.1.1 still
gets better results.

Nevertheless, if we take a look at Fig. 4.4 we can observe that, even if the global
error of the inverse transform is worse with the optimized method and the difference
between the uniform and method 3.1.1 is not that big, the MSE over the object is
about 1

3 less and, as expected, we . Since we are studying images where the object
is the thing we are interested in, we can conclude that, if we want to preserve the
maximum information as possible of it, both algorithms are better even if we lose
more information from the background.

Fig. 4.3 Mean MSE over the set of images for the 3 main methods and different
compression ratios.
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Fig. 4.4 Mean MSE over the object of interest of the set of images for the 3 main
methods and different compression ratios.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 4.5 Used set of images.
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4.3 Other types of images

It is obvious that applying any of the algorithms explained in Chapter 3 to any
other kind of images would not make sense. These methods try to look for an object
in the image and extract it to compress the background and the object separately.
However, we have seen in Fig. 2.12 that Algorithm 2 can find a good partition that
makes the F-Transform focus on the areas with more information and achieves a
better reconstruction than the uniform one. We are going to apply this algorithm
to images that do not fulfil the criteria of having a single object and a constant
background to see if the results are better.

For instance, we are going to try with two sets of three images. The first set is
of images that have more than one object and the second one of images that do not
contain any defined object.

4.3.1 More than one object

If we apply the optimized F-Transform to images that have more than one object,
we can see in Fig. 4.6 that the result is much better than with the uniform transform.
As we see in figures 4.7-4.9, since the cumulative distribution of the first derivative
will have the information of both of the objects, the nodes are distributed over the
objects therefore making the f-transform focus on both of the objects.

There is however a disadvantage. As we see in Fig. 4.9(b), because of how
the objects are located, the nodes create two extra interest areas where there is no
object.

Fig. 4.6 Mean MSE over the set of images with two objects for the two methods
and different compression ratios.
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(a) Image with 2 objects (b) Distribution of the nodes

(c) Optimized F-Transform with uni-
form F-Transform. MSE = 66.95

(d) Optimized F-Transform with opti-
mized F-Transform. MSE = 29.17

Fig. 4.7 Comparison between the uniform and optimized F-Transform for image
with two objects with a compression ratio of 8 : 1

(a) Image with 2 objects (b) Distribution of the nodes

(c) Optimized F-Transform with uni-
form F-Transform. MSE = 32.46

(d) Optimized F-Transform with opti-
mized F-Transform. MSE = 18.78

Fig. 4.8 Comparison between the uniform and optimized F-Transform for image
with two objects with a compression ratio of 64 : 1
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(a) Image with 2 objects (b) Distribution of the nodes

(c) Optimized F-Transform with uni-
form F-Transform. MSE = 59.77

(d) Optimized F-Transform with opti-
mized F-Transform. MSE = 31.45

Fig. 4.9 Comparison between the uniform and optimized F-Transform for image
with two objects with a compression ratio of 8 : 1

4.3.2 No defined object

Let us test the algorithms with a set of images (Fig. 4.11) that do not have
any defined object. As we see (Fig. 4.10), for smaller compression ratios, there is
some difference on the MSE. Since the cumulative of the derivative does not find
any object, the nodes are distributed almost uniformly creating a F-Transform very
close to the uniform version. Therefore, we can say that for this type of images, the
use of the optimized method is not that worth it because the difference in error with
respect to the uniform F-Transform is not that big and there is no object where
more information is preserved as it happened in section 4.2.
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Fig. 4.10 Mean MSE over the set of images without objects for the two methods
and different compression ratios.

(a) (b) (c)

Fig. 4.11 Set of images without a defined object.
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4:1 reduction

(a) Uniform F-Transform with com-
pression ratio of 4 : 1. MSE = 1.51

(b) Optimized F-Transform with com-
pression ratio of 4 : 1. MSE = 0.33

Fig. 4.12

(a) Optimized F-Transform with
method 2.1. MSE = 0.41

(b) Optimized F-Transform with
OneClassSVM. MSE = 0.51

(c) Optimized F-Transform with FAST
feature detection. MSE = 0.46

(d) Optimized F-Transform with SURF
feature detection. MSE = 0.43

Fig. 4.13 Different methods of finding an object on the image with method 3.3.1
and a compression ratio of 4 : 1
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(a) Optimized F-Transform with
method 2.1. MSE = 0.62

(b) Optimized F-Transform with
OneClassSVM. MSE = 2.8

(c) Optimized F-Transform with FAST
feature detection. MSE = 2.53

(d) Optimized F-Transform with SURF
feature detection. MSE = 2.44

Fig. 4.14 Different methods of finding an object on the image with method 3.3.2
and a compression ratio of 4 : 1

8:1 reduction

(a) Uniform F-Transform with com-
pression ratio of 8 : 1. MSE = 5.5

(b) Optimized F-Transform with com-
pression ratio of 8 : 1. MSE = 1.32

Fig. 4.15
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(a) Optimized F-Transform with
method 2.1. MSE = 1.08

(b) Optimized F-Transform with
OneClassSVM. MSE = 1.47

(c) Optimized F-Transform with FAST
feature detection. MSE = 1.28

(d) Optimized F-Transform with SURF
feature detection. MSE = 1.21

Fig. 4.16 Different methods of finding an object on the image with method 3.3.1
and a compression ratio of 4 : 1

(a) Optimized F-Transform with
method 2.1. MSE = 2.5

(b) Optimized F-Transform with
OneClassSVM. MSE = 5.24

(c) Optimized F-Transform with FAST
feature detection. MSE = 5.13

(d) Optimized F-Transform with SURF
feature detection. MSE = 4.19

Fig. 4.17 Different methods of finding an object on the image with method 3.3.2
and a compression ratio of 4 : 1
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64:1 reduction

(a) Uniform F-Transform with com-
pression ratio of 64 : 1. MSE = 15.52

(b) Optimized F-Transform with com-
pression ratio of 64 : 1. MSE = 4.73

Fig. 4.18

(a) Optimized F-Transform with
method 2.1. MSE = 3.79

(b) Optimized F-Transform with
OneClassSVM. MSE = 4.48

(c) Optimized F-Transform with FAST
feature detection. MSE = 4.36

(d) Optimized F-Transform with SURF
feature detection. MSE = 4.36

Fig. 4.19 Different methods of finding an object on the image with method 3.3.1
and a compression ratio of 64 : 1
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(a) Optimized F-Transform with
method 2.1. MSE = 17.68

(b) Optimized F-Transform with
OneClassSVM. MSE = 21.92

(c) Optimized F-Transform with FAST
feature detection. MSE = 21.3

(d) Optimized F-Transform with SURF
feature detection. MSE = 19.8

Fig. 4.20 Different methods of finding an object on the image with method 3.3.2
and a compression ratio of 64 : 1
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Chapter 5

Conclusions and future lines

5.1 Conclusions

Throughout the project, we have developed several methods to improve the F-
Transform that lead to some different conclusions we are now going to discuss.

First of all, in chapter 1 we have proposed different methods of accelerating the
computation of both the F-Transform and its inverse. As a result, we have seen
that the complexity has been reduced to the extent that the computational time
has been scaled down several orders of magnitude.

In addition to this, the use of the approximation of the magnitude of the first
derivative of the image to improve the distribution of the nodes also leads to better
results compared to the uniform fuzzy partition.

The proposal in chapter number 3 of separating the object and the background
can as well give better results than both the optimized and the uniform F-Transforms
and specially if we want to get better results on the object and do not need to have
good results on the background. From this section we can also conclude that out
of the proposed methods, the one using the derivative as a reference to find the
object and the first method to divide the number of nodes for the object and the
background are the best ones.

To conclude, from the results of applying the F-Transform to other types of
images, we can say that, as long as the background is constant and there are some
clearly defined objects in the image, we can still use the optimized version of the
fuzzy partition and get better results compared to the uniform partition. However,
we can not say that this can be applied to any kind of image where no defined object
can be found since the difference with respect to the uniform one is not that big and
the computational cost of finding a better partition is much higher.

5.2 Future lines

After this project, there are many possibilities to improve the algorithm that
go beyond the scope of this thesis. New methods to find the object in an image or
different ways to approach the proposed ones can be studied to find a more efficient
or better resulting way of separating it from the background. A further step to
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follow is applying methods of detecting multiple objects over the image and then
dividing the number of nodes so that the transform can be applied to images with
several objects without creating false interest areas.
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