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Abstract

The ordered weighted averaging (OWA) operator and its associated weight vectors

have been both theoretically and practically verified to be powerful and effective

in modeling the optimism/pessimism preference of decision makers. When several

different OWA weight vectors are offered, it is necessary to develop certain tech-

niques to aggregate them into one OWA weight vector. This study firstly details

several motivating examples to show the necessity and usefulness of merging those

OWA weight vectors. Then, by applying the general method for aggregating OWA

operators proposed in a recent literature, we specifically elaborate the use of OWA

aggregation to merge OWA weight vectors themselves. Furthermore, we general-

ize the normal preference degree in the unit interval into a preference sequence,

and introduce subsequently the preference aggregation for OWA weight vectors

with given preference sequences. Detailed steps in related aggregation procedures

and corresponding numerical examples are also provided in the current study.
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1. Introduction

Aggregation functions (Grabisch et al., 2009, Klement et al., 2000)(also known 
as aggregation operators) are very powerful and important in a great variety of 
decision making and evaluation theories and applications (Jin et al., 2019b, Liu 
& Da, 2005, Ouyang, 2015, Paternain et al., 2012, Yager et al., 2011). Their 
theories have also been deeply studied during the last decades (Amarante, 2017, 
Chen et al., 2019, Choquet, 1954, Jin et al., 2018a, 2019a, Lizasoain & Moreno, 
2013, Mesiar et al., 2018, 2015, Paternain et al., 2019, Torra, 1997, Yager, 2004). 
In general, in numerous evaluation problems, the information for aggregation is
represented by a real finite vector (or a sequence) x = (xi)in=1 , and the aim of 

aggregation is to return a final result that is still a real number through the imple-

mentation of strictly defined aggregation functions. An aggregation function can 
be classified into three different categories, (i) disjunctive functions, (ii) averag-

ing functions, (iii) conjunctive functions, according to the output value compared 
against the input vector (Grabisch et al., 2009).

Averaging functions always return an output that is definitely located between 
the largest and the smallest of values in input vector. Due to this property, aver-

aging functions are very suitable to be used in multi-criteria decision making and 
evaluation. Some famous averaging functions can be found in a wide range from 
mean, median, max and min, to ordering statistic (OS) and weighted averaging 
(WA) (Grabisch et al., 2009). In contrast, a conjunctive function always outputs 
a value not larger than the smallest value in input vector. Moreover, a disjunctive 
function can be actually understood as the dual cases of a conjunctive function, 
thereby leaving with a value as aggregation result that is not smaller than the 
largest value in input vector.

Within averaging functions, a practical type of significant importance is the 
preference-involved functions, which consider the optimism/pessimism preference 
of decision makers or managers involved in the evaluation problem and embody 
that preference in both of its aggregation process and result. A renowned and well-

established category of preference-involved functions was introduced by Yager, 
called Ordered Weighted Averaging (OWA) operators (Yager, 1988). Instead of 
having fixed weights for each input value according to its position in the input 
vector as used in WA operators, an OWA operator always assigns different weights 
to those input values according to their magnitudes. The weight vectors used in 
OWA operators have been assigned a measurement called orness/andess (Yager,
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1988), indicating the degree to which the optimism/pessimism attitudes are ex-

pressed and communicated from certain decision makers.

The most important and immediate extension of OWA operators is the In-

duced Ordered Weighted Averaging (IOWA) operators (Yager, 2003, Yager & 
Filev, 1999). This extension features on an additional type of index information

called inductive vector c = (ci)i
n
=1 from which the weights allocation process is 

directed, rather than from the input value vector itself as in OWA operators. An 
inductive vector can take on some common and concrete variables such as time 
and importance variables, and thus the weights are correspondingly allocated to 
all the input values according to their chronological orders and relative importance 
to one another.

In both OWA and IOWA operators, some weight vectors are always involved 
to channel the preferences of decision makers into the aggregation process and 
to express explicitly the degrees of those preferences, not being related to magni-

tudes of input vector or the inductive vector. Hence, the determination of such 
weight vectors (also known as OWA weight vector or preference vector in some 
researches (Jin, 2016, Jin et al., 2018b, Yager et al., 2011)) plays a very crucial and 
deciding role in related aggregation processes. In the past decades, researchers 
proposed and developed a large variety of weights determination methods, with 
some derived and adapted from known mathematical results and others derived 
by theoretical or practical optimization objectives (Ouyang, 2015, Yager et al., 
2011). No matter which method is applied, different decision makers may have 
different opinions and preferred weights generated from their own or others. In 
consequence, when different weight vectors are provided as candidates for OWA 
aggregation, the problem remains in which one is the appropriate or how to rea-

sonably merge them together into one final accepted weight vector. With these 
elaborated backgrounds, this study will regard weight vectors as the objects for 
implementing a brand-new process of OWA aggregation, and therefore, it analyzes 
and proposes some reasonable and effective aggregation methods to address the 
raised problem in the foregoing.

The remainder of this work is organized as follows. In Section 2, we review and 
rephrase some basic concepts about OWA operators and some related extensions. 
In Section 3, we firstly introduce a practical example to show the applicability of 
OWA weight vectors in evaluation problem, and then we apply the general 
aggregation method for OWA operators to specifically use preference aggregation
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to merge OWA weight vectors. In Section 4, we generalize the normal preference

provided within the unit interval to become a preference sequence using special

techniques, which provides much more diversity to model bipolar preferences of

decision makers. Then, by some other special techniques, we elaborately intro-

duce the Preference aggregation for OWA weight vectors with given preference

sequence. Section 5 summarizes and concludes this study.

2. Some reviews and discussions for OWA operators and related exten-

sions

Throughout this study, without loss of generality, any real inputs (with dimen-

sion n) for aggregation is expressed either by a real sequence x = (xi)
n
i=1 or by a

real vector x = (x1, · · · , xn), equivalently. The space of all such sequences/vectors

is conventionally denoted by [0, 1]n. An n-dimensional normalized weight vector

used for aggregation is presented by w = (w1, · · · , wn) or with a sequence form

w = (wi)
n
i=1. In addition, the space of all such weight vectors with dimension

n is denoted by W<n>. Furthermore, a vector formed by m weight vectors of

dimension n is consistently expressed by W = (w1, · · · ,wm) or by a sequence

form W = (wj)
m
j=1, and the space of all such vectors is correspondingly denoted

by (W<n>)m.

In the sequel, we recap some basic concepts of aggregation functions in a strict

and consistent way.

Definition 1 (aggregation function) (Grabisch et al., 2009) An aggregation func-

tion (of dimension n) F : [0, 1]n → [0, 1] is a mapping satisfying the following two

conditions:

(i) (boundary conditions) F (0) = 0 and F (1) = 1 (where 0 = (0, · · · , 0) and

1 = (1, · · · , 1));

(ii) (monotonicity) For any x,y ∈ [0, 1]n, if x < y (meaning xi ≤ yi for all

i ∈ {1, · · · , n} and there exist some k ∈ {1, · · · , n} such that xk < yk), then

F (x) ≤ F (y)

In what follows, we briefly review OWA operators and the RIM quantifier

expressions.

Definition 2 (OWA operator) (Yager, 1988) An OWA operator (of dimension n)

with weight vector w ∈ W<n>, OWAw : [0, 1]n → [0, 1], is defined as follows

OWAw(x) =
∑n

i=1
wi · xσ(i), (1)

4

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



where σ : {1, · · · , n} → {1, · · · , n} is any suitable permutation on {1, · · · , n} such

that xσ(i) ≥ xσ(j) whenever i < j.

With the introduction of OWA operators, Yager also defined the orness/andness

degree of any weight vector used in the OWA aggregation. Orness/andness can

effectively measure the optimism/pessimism degree embodied in the whole OWA

aggregation procedures. In general, the larger orness, the more extent of opti-

mism, and vice versa.

Definition 3 (orness/andness) (Yager, 1988) The orness of any weight vector

w ∈ W<n> used in OWA aggregation is defined as a mapping orness :W<n> →
[0, 1] such that

orness(w) =
∑n

i=1

n− i
n− 1

· wi. (2)

In duality, the andness of any weight vector w ∈ W<n> is defined as a function

andness :W<n> → [0, 1] such that

andness(w) = 1− orness(w). (3)

Soon afterwards, Yager introduced an ingenious and convenient way to gener-

ate weight vector used in OWA operator. The method is based on a well defined

non-decreasing function on unit interval to efficiently model bipolar preference

(e.g., optimism/pessimism preference) of decision makers.

Definition 4 (Yager, 1996) A function Q : [0, 1] → [0, 1] is called a Regular

Increasing Monotone (RIM) quantifier if Q satisfies Q(0) = 0, Q(1) = 1 and

Q(a) ≥ Q(b) whenever a > b. We also denote by Q the space of all RIM quanti-

fiers.

Based on given RIM quantifiers, a large diversity of weight vectors can be

easily generated by the following method.

Definition 5 (Yager, 1996) Given a RIM quantifier Q ∈ Q, a weight vector

w<Q> = (w<Q>i )ni=1 ∈ W<n> is called the Q-generated OWA weight vector (of

dimension n) if it satisfies for all i ∈ {1, · · · , n},

w<Q>i = Q (i/n)−Q ((i− 1)/n) . (4)

Similar to orness/andness of weight vectors, the orness/andness degree can ef-

fectively measure the extent to which a bipolar preference (e.g., optimism/pessimism

preference) is communicated by relevant decision makers. Moreover, the weights
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allocation methods derived from Definitions 5 and 6 together with some special 
proposals in Pu et al. (2019) are extremely useful in generating a required con-

tinuous system of OWA weight vectors for later use in this study. In addition, recall 
that any RIM quantifier Q is monotonic and defined on a closed interval, and thus 
from basic real analysis they guarantees that Q is necessarily Riemann integrable.

Definition 6 (Yager, 1996) The orness of any RIM quantifier Q is defined by 
orness : Q → [0, 1] such that

orness(Q) =

∫ 1

0

Q(y)dy. (5)

Dually, the andness of any RIM quantifier Q can be defined by andness : Q →
[0, 1] such that

andness(Q) = 1− orness(Q) = 1−
∫ 1

0

Q(y)dy. (6)

Above definitions of orness/andness for RIM quantifiers are strictly based on

this deduction: orness(Q) = lim
n→∞

n∑
i=1

n−i
n−1

[
Q( i

n
)−Q( i−1

n
)
]

= lim
n→∞

1
n−1

n−1∑
i=1

Q( i
n
) =∫ 1

0
Q(y)dy. Moreover, if Q is absolutely continuous, then there necessarily exists

a normalized density function q : [0, 1] → [0,+∞) such that Q(y) =
∫ y

0
q(t)dt

and
∫ 1

0
q(t)dt = 1. Hence, in the foregoing situation, Equation (4) can be also

equivalently expressed by

w<Q>i = Q (i/n)−Q ((i− 1)/n) =

∫ i/n

(i−1)/n

q(t)dt. (7)

3. Merging methods for OWA weight vectors using bipolar preference

aggregation

In Section 1, we have stressed that effectively merging some methods for a

sequence of OWA weight vectors W = (wj)
m
j=1 ∈ (W<n>)m is important. Note

that such methods can be directly transferred to the merging methods for other

types of bipolar preferences. For example, the linearly ordered evaluation scale

{very important, important, less important, not important} also serves as a base

on which an OWA weight vector of dimension 4 can be defined. To evaluate

the importance of a certain object, some experts are invited and divided into

three group based on their expertise such as economics for group 1, technology

6
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for group 2 and politics for group 3. When the three different groups of experts

hand in three opinions based on their respective statistic in group, they may be,

say, with w1 = (0.1, 0.4, 0.3, 0.2) from group 1, w2 = (0.3, 0.3, 0.1, 0.3) from group

2 and w3 = (0.5, 0.2, 0.2, 0.1) from group 3. These bipolar preference information

indicate that in group 1 there are 10% of experts submitted their opinion with

“very important”, 40% with “important”, 30% with “less important”, and 20%

with “not important”; and so forth for group 2 and 3. How to devise some

reasonable methods to merge these three pieces of OWA weight vectors into a

final representative one in management practices to evaluate objects and make

decisions is helpful.

In this section, we discuss some feasible techniques to handle the above-

mentioned type of aggregation using OWA aggregation involving preferences.

As we know in OWA aggregation, the successful weights allocation cannot be

carried out without a linear ordering of magnitudes of each input values. However,

when those input real values are replaced with OWA weight vectors, we also need

to try to find a suitable linear ordering (or with the environment of poset) for

them before weights being further allocated to them. For any two OWA weight

vectors, the following rule allows to decide whether they can be compared or not.

Definition 7 (Jin & Mesiar, 2017) For any OWA weight vector w = (wi)
n
i=1 ∈

W<n>, we define w̃ = (~wi)
n
i=1 ∈ [0, 1]n to be the accumulation of w such that

~wi =
∑i

k=1wk.

Proposition 1 (Jin & Mesiar, 2017) The orness of OWA weight vector w,

orness(w) , can be equivalently expressed by

orness(w) =
1

n− 1

∑n−1

i=1
~wi. (8)

Based on accumulations of OWA weight vectors, W<n> can be extended to

become a complete lattice (W<n>,�), which is defined such that for any two OWA

weight vectors w1 = (w1i)
n
i=1 ∈ W<n> and w2 = (w2i)

n
i=1 ∈ W<n>, w1 � w2 if

and only if ~w1i ≤ ~w2i holds for all i ∈ {1, · · · , n} (Jin & Mesiar, 2017). This

fact together with Equation (8) tells from a clearer way that larger entries in

the accumulation of w lead to larger orness of its original OWA weight vector w

and vice versa, and thereby indicating a more optimist preference from decision

makers.
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If any two OWA weight vectors can be comparable, then we can easily allo-

cate weights for all sequences of such vectors, just as it is done in the weights

allocation in OWA operators. Consider aforementioned three OWA weight vec-

tors w1 = (0.1, 0.4, 0.3, 0.2), w2 = (0.3, 0.3, 0.1, 0.3) and w3 = (0.5, 0.2, 0.2, 0.1).

Their accumulations are w̃1 = (0.1, 0.5, 0.8, 1), w̃2 = (0.3, 0.6, 0.7, 1) and w̃3 =

(0.5, 0.7, 0.9, 1), respectively. We find that w̃1 � w̃3 and w̃2 � w̃3, but w̃1 and w̃2

are not comparable. Since there are infinitely many pairs of OWA weight vectors

that cannot be compared, we need to use some other aggregation techniques to

perform preference aggregation for OWA weight vectors.

Before introducing the detail aggregation procedures, in what follows we ob-

serve some facts about the relations between OWA weight vectors and their ac-

cumulations. A vector a = (ai)
n
i=1 ∈ [0, 1]n is called non-decreasing if an = 1 and

for any i ∈ {1, · · · , n − 1}, ai ≤ ai+1. Denote by ~W<n> the space of all such

non-decreasing vectors of dimension n. Observe that for any w ∈ W<n>, there

is a bijective transformation T : W<n> → ~W<n> such that T (w) = w̃, and its

inverse transformation T−1 : W̄<n> →W<n> is such that for any i ∈ {1, · · · , n},
wi = ~wi − ~wi−1 (~w0

∆
= 0). Hence, sometimes we can circumvent a difficulty of ag-

gregating weight vectors by trying to aggregate their accumulations into a single

resulting accumulation and then transform it back into a final weight vector by

T−1. This method based on transformation as a general aggregation method for

OWA operators has been discussed in Pu et al. (2019). One method discussed in

what follows borrowing accumulations of those vectors is a special application of

the general aggregation technique for OWA operators.

The preference aggregation for OWA weight vectors based on accumulations

contains the following steps.

Step 1 : collect a sequence of m OWA weight vectorsW = (wj)
m
j=1 = ((wji)

n
i=1)mj=1

for further aggregation.

Step 2 : use T to transform those m OWA weight vectors into a sequence of m

accumulations of themselves ~W = (w̃j)
m
j=1 = ((~wji)

n
i=1)mj=1.

Step 3 : using an orness degree α to indicate a given fixed extent of prefer-

ence, and determine an OWA weight vector of dimension m v ∈ W<m> with

orness(v) = α, representing the optimism/pessimism preference of certain deci-

sion making for the aggregation of (wj)
m
j=1.

Step 4 : for each i ∈ {1, · · · , n}, using OWA operator OWAv : [0, 1]m → [0, 1]

8
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to aggregate sequence (~wji)
m
j=1 and obtain result OWAv((~wji)

m
j=1).

Step 5 : form a non-decreasing vector q̃ = (~qi)
n
i=1 with ~qi = OWAv((~wji)

m
j=1).

Note that OWAv is non-decreasing and for each j ∈ {1, · · · ,m} w̃j is non-

decreasing, then q̃ is non-decreasing. Thus, it allows for q̃ to be capable of being

transformed back into an OWA weight vector q as the final desired aggregation

result such that q = T−1(q̃).

Below, we present a simple numerical example using the three OWA weight

vectors aforementioned for the preference aggregation for OWA weight vectors

based on accumulations.

Step 1 : collect a sequence of 3 OWA weight vectorsW = (wj)
3
j=1 = ((wji)

4
i=1)3

j=1

for further aggregation with w1 = (0.1, 0.4, 0.3, 0.2), w2 = (0.3, 0.3, 0.1, 0.3) and

w3 = (0.5, 0.2, 0.2, 0.1).

Step 2 : use T to transform those 3 OWA weight vectors into a sequence of 3 ac-

cumulations of themselves ~W = (w̃j)
3
j=1 = ((~wji)

4
i=1)3

j=1 with w̃1 = (0.1, 0.5, 0.8, 1),

w̃2 = (0.3, 0.6, 0.7, 1) and w̃3 = (0.5, 0.7, 0.9, 1).

Step 3 : determine an orness degree α = 1/3 to indicate a given fixed extent

of preference, and determine an OWA weight vector of dimension 3, v ∈ W<3>,

v = (1/6, 1/3, 1/2) with orness(v) = α = 1/3, representing a moderate pessimism

preference for the aggregation of (wj)
3
j=1.

Step 4 : for each i ∈ {1, 2, 3, 4}, using OWA operator OWAv : [0, 1]3 → [0, 1] to

aggregate sequence (~wji)
3
j=1 and obtain result OWAv((~wji)

3
j=1). With computing

we have,

OWAv((~wj1)3
j=1) = OWAv(0.1, 0.3, 0.5) = (1/6)(0.1)+(1/3)(0.3)+(1/2)(0.5) =

0.3,

OWAv((~wj2)3
j=1) = OWAv(0.5, 0.6, 0.7) = (1/6)(0.5)+(1/3)(0.6)+(1/2)(0.7) =

0.633,

OWAv((~wj3)3
j=1) = OWAv(0.8, 0.7, 0.9) = (1/6)(0.7)+(1/3)(0.8)+(1/2)(0.9) =

0.833,

OWAv((~wj4)3
j=1) = (1, 1, 1) = 1.

Step 5 : form a non-decreasing vector q̃ = (~qi)
4
i=1 with ~qi = OWAv((~wji)

3
j=1).

Then, by q = T−1(q̃), obtain the final aggregation result q = (0.3, 0.333, 0.2, 0.167).
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4. Preference aggregation for OWA weight vectors with given prefer-

ence sequence

Note that the OWA weight vector v ∈ W<m> in the forgoing Step 3 just

discussed in Section 3 is constant for all the n times of OWA aggregation OWAv

with (~wji)
m
j=1 (i ∈ {1, · · · , n}), somewhat eluding the achieving of larger diver-

sity of aggregation methods. In this section, we present a diversified preference

aggregation for OWA weight vectors still with given fixed extent of preferences.

Recall from the forgoing Step 3, a given fixed extent of preference given by deci-

sion maker is expressed using orness degree. Rather than still using such a single

fixed orness value α within unit interval [0,1] to represent the given preference, we

next express such given preference as a non-decreasing sequence of n − 1 values

α = (αi)
n−1
i=1 ∈ [0, 1]n−1, called preference sequence (with degree n) (n ≥ 3), such

that (i) 1
n−1

∑n−1
i=1 αi = α, and (ii) αi ≤ αj whenever 1 ≤ i < j ≤ n− 1.

Another necessary part for the intended aggregation method is to introduce

a (continuous) system of OWA weight vectors (Pu et al., 2019) of dimension m

(vt)t∈[0,1] = ((vtj)
m
j=1)t∈[0,1] such that (i) orness(vt) = t, and (ii) for each j ∈

{1, · · · ,m}, ~vt1j ≤ ~vt2j whenever 0 ≤ t1 < t2 ≤ 1. Note that with above two

conditions, for each j ∈ {1, · · · ,m} , both vtj and ~vtj are surely continuous with

respect to variable t ∈ [0, 1] (Pu et al., 2019). In addition, given any system of

OWA weight vectors (vt)t∈[0,1], if 0 ≤ t1 < t2 ≤ 1, then OWAvt1
≤ OWAvt2

(i.e.,

OWAvt1
(x) ≤ OWAvt2

(x) holds for all x ∈ [0, 1]n) (Pu et al., 2019).

With above mentioned two important tools, preference sequence and system

of OWA weight vectors, and their related properties, when a fixed extent of opti-

mism α ∈ [0, 1] is communicated by a decision maker, we can create a preference

sequence α to model the preference of that decision maker in more diversified

ways. Then, we can use a system of OWA weight vectors (vt)t∈[0,1] and single out

n − 1 OWA weight vectors of dimension m from it with vα1 , vα2 , . . ., and vαn−1

so that 1
n−1

∑n−1
i=1 αi = α . Recall that using a system of RIM quantifiers, one can

easily generate a system of OWA weight vectors by Definitions 4-6, together with

the properties of continuous system of RIM quantifiers. For more of this special

technique, one may refer to (Pu et al., 2019).

Next, using OWA operators OWAvαi
: [0, 1]m → [0, 1] to aggregate (~wji)

m
j=1 for

each i ∈ {1, · · · , n−1}. Also note that for any aggregation function F to be used,

we have F ((~wjn)mj=1) = F (1) = 1 since for any w̃ = (~wi)
n
i=1 ∈ ~W<n>, it holds ~wn =

1. At last, an accumulation q̃ = (~qi)
n
i=1 is formed with ~qi = OWAvαi

((~wji)
m
j=1) and
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thus an OWA weight vector w can be transformed from it to be as the final

aggregation result. It is also noteworthy that the resulted OWA weight vector w

satisfies that wj � w for all j ∈ {1, · · · ,m} where (wj)
m
j=1 = ((wji)

n
i=1)mj=1 is an

input sequence of m OWA weight vectors prepared for aggregation.

The corresponding preference aggregation for OWA weight vectors based on

accumulations with given preference sequence is divided into the following detailed

steps.

Step 1 : collect a sequence of m OWA weight vectorsW = (wj)
m
j=1 = ((wji)

n
i=1)mj=1

for further aggregation.

Step 2 : use T to transform those m OWA weight vectors into a sequence of

m accumulations of themselves ~W = (w̃j)
m
j=1 = ((~wji)

n
i=1)mj=1.

Step 3 : form a preference sequence α = (αi)
n−1
i=1 ∈ [0, 1]n−1 with 1

n−1

∑n−1
i=1 αi =

α to model a given fixed extent of preference with α ∈ [0, 1].

Step 4 : select a system of OWA weight vectors (vt)t∈[0,1] = ((vtj)
m
j=1)t∈[0,1] and

single out a collection of n− 1 OWA weight vectors of dimension m from it with

vα1 , vα2 , . . ., and vαn−1 .

Step 5 : for each i ∈ {1, · · · , n − 1}, using the OWA operator OWAvαi
:

[0, 1]m → [0, 1] to aggregate sequence (~wji)
m
j=1 and obtain result OWAvαi

((~wji)
m
j=1).

Step 6 : this last step forms a non-decreasing vector q̃ = (~qi)
n
i=1 with ~qi =

OWAvαi
((~wji)

m
j=1) when i ∈ {1, · · · , n − 1} and ~qn = 1. Still, for each j ∈

{1, · · · ,m}, w̃j is non-decreasing. Recall also that we have shown OWAvαi
≤

OWAvαi+1
for any i ∈ {1, · · · , n−1}. Consequently, q̃ is evidently non-decreasing.

Thus, it still allows for q̃ to be transformed back into an OWA weight vector q

as the final aggregation result such that q = T−1(q̃).

Likewise, we present a detailed numerous example to help better illustrate the

foregoing detailed procedures.

Step 1 : collect a sequence of 3 OWA weight vectorsW = (wj)
3
j=1 = ((wji)

4
i=1)3

j=1

for further aggregation with w1 = (0.1, 0.4, 0.3, 0.2), w2 = (0.3, 0.3, 0.1, 0.3) and

w3 = (0.5, 0.2, 0.2, 0.1).

Step 2 : use T to transform those 3 OWA weight vectors into a sequence of 3 ac-

cumulations of themselves ~W = (w̃j)
3
j=1 = ((~wji)

4
i=1)3

j=1 with w̃1 = (0.1, 0.5, 0.8, 1),

w̃2 = (0.3, 0.6, 0.7, 1) and w̃3 = (0.5, 0.7, 0.9, 1).
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Step 3 : using a preference sequence α = (αi)
3
i=1 = (1/6, 1/3, 1/2) ∈ [0, 1]3

with 1
3

∑3
i=1 αi = α = 1/3 to model a given fixed extent of preference with α =

1/3 ∈ [0, 1].

Step 4 : select a system of OWA weight vectors (vt)t∈[0,1] = ((vtj)
3
j=1)t∈[0,1]

and single out a collection of 3 OWA weight vectors of dimension 3 from it with

vα1 = v1/6, vα2 = v1/3, and vα3 = v1/2. The system (vt)t∈[0,1] can be decided as

follows:

(i) if t ∈ [0, 0.5], then vt = (vt1, vt2, vt3) = (t/2, t, 1− (3t/2));

(ii) if t ∈ (0.5, 1], then vt = (vt1, vt2, vt3) = ((3t− 1)/2, 1− t, (1− t)/2)). One

may easily check the continuities with t ∈ [0, 1] in each vtj, j ∈ {1, 2, 3}, and

then verify that (vt)t∈[0,1] is indeed a system of OWA weight vectors. With above

decided system, we then obtain

vα1 = v1/6 = (1/12, 1/6, 3/4), vα2 = v1/3 = (1/6, 1/3, 1/2), and vα3 = v1/2 =

(1/4, 1/2, 1/4).

Step 5 : for each i ∈ {1, 2, 3}, using OWA operator OWAvαi
: [0, 1]3 → [0, 1] to

aggregate sequence (~wji)
3
j=1 and obtain result OWAvαi

((~wji)
3
j=1). With computing,

we obtain

OWAvα1
((~wj1)3

j=1) = (1/12)(0.1) + (1/6)(0.3) + (3/4)(0.5) = 0.433,

OWAvα2
((~wj2)3

j=1) = (1/6)(0.5) + (1/3)(0.6) + (1/2)(0.7) = 0.633,

OWAvα3
((~wj3)3

j=1) = (1/4)(0.7) + (1/2)(0.8) + (1/4)(0.9) = 0.8.

Step 6 : this last step forms a non-decreasing vector q̃ = (~qi)
4
i=1 with ~qi =

OWAvαi 
((w~ ji)j

3
=1) when i ∈ {1, 2, 3} and q~4 = 1. Then, q̃ = (0.433, 0.633, 0.8, 1), 

and therefore q = T −1(q̃) = (0.433, 0.2, 0.167, 0.2).

Observe that the algorithm complexity of all the proposed methods in this 
study are very practical and only around mn level, without involving any exponent 
and factorial level computing.

In the below, we summarize some properties as desired in the preference ag-

gregation for OWA weight vectors based on accumulations with given preference 
sequence. I (i) and (ii) are evident to observe; and II (i) is due to the basic mono-

tonicity of aggregation functions, while II (ii) is obtained directly from the fact

that the system of OWA weight vectors of dimension m: (vt)t∈[0,1] = ((vtj )jm=1)t∈[0,1] 

is continuous (Pu et al., 2019).

I (Two Idempotencies)

(i) When the m OWA weight vectors are identical, i.e., wj = w for any
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j ∈ {1, · · · ,m}, then the final aggregation result q = w due to the fact that every

OWA operator is idempotent.

(ii) When the preference sequence α = (αi)
n−1
i=1 satisfies αi = α for each i ∈

{1, · · · , n − 1}, then this aggregation degenerate into the preference aggregation

for OWA weight vectors based on accumulations discussed in Section 3.

II (Two monotonicities)

(i) For any two sequences of m OWA weight vectorsW = (wj)
m
j=1 = ((wji)

n
i=1)mj=1

and U = (uj)
m
j=1 = ((uji)

n
i=1)mj=1, if wj � uj for each j ∈ {1, · · · ,m}, then

q � p, where q̃ = (~qi)
n
i=1 with ~qi = OWAvαi

((~wji)
m
j=1) and p̃ = (~pi)

n
i=1 with

~pi = OWAvαi
((~uji)

m
j=1) for any i ∈ {1, · · · , n− 1}.

(ii) For any two preference sequences α = (αi)
n−1
i=1 and β = (βi)

n−1
i=1 , if αi ≤

βi for each i ∈ {1, · · · , n − 1}, then q � p, where q̃ = (~qi)
n
i=1 with ~qi =

OWAvαi
((~wji)

m
j=1) and p̃ = (~pi)

n
i=1 with ~pi = OWAvβi

((~wji)
m
j=1) for any i ∈ {1, · · · , n−

1}.

5. Conclusions

Diversity of aggregation operators provides more possibilities and flexibilities

for decision makers to choose and aggregate given inputs in evaluation problems.

It also enriches the theories about automated data aggregation and computational

intelligence in evaluation. OWA operators have proved to be a category of powerful

and instrumental aggregation functions, and the general method for aggregation

of OWA operators was also proposed in a recent literature.

We firstly showed the importance and usefulness of OWA weight vectors in

decision making and evaluation practices. Then, this study focused on a spe-

cial case of aggregations for OWA operators, the preference-involved aggregation.

We elaborately formulated the aggregation problem and discussed the detailed

aggregation procedures.

Furthermore, we introduced a preference induced aggregation method based

on the given degree of optimism that has been further expressed as a preference se-

quence (with degree n) rather than a normal value within the unit interval, thereby

offering wider diversity of aggregation styles and results. The second method we

have proposed in this study also serves as a generalization of the first method

discussed. Some numerical examples were provided to facilitate the applying of

those proposals in practices. In addition, some mathematical properties with two

types of idempotencies and two types of monotonicities were also discussed.
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Mesiar, R., Stupňanová, A., & Yager, R. R. (2015). Generalizations of OWA

operators. IEEE Transactions on Fuzzy Systems , 23 , 2154–2162.

Ouyang, Y. (2015). Improved minimax disparity model for obtaining OWA oper-

ator weights: Issue of multiple solutions. Information Sciences , 320 , 101–106.

Paternain, D., De Miguel, L., Ochoa, G., Lizasoain, I., Mesiar, R., & Bustince, H.

(2019). The interval-valued choquet integral based on admissible permutations.

IEEE Transactions on Fuzzy Systems , 27 , 1638–1647.

15

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Paternain, D., Jurio, A., Barrenechea, E., Bustince, H., Bedregal, B., & Szmidt,

E. (2012). An alternative to fuzzy methods in decision-making problems. Expert

Systems with Applications , 39 , 7729–7735.

Pu, X., Jin, L., Mesiar, R., & Yager, R. R. (2019). Continuous parameterized fam-

ilies of RIM quantifiers and quasi-preference with some properties. Information

Sciences , 481 , 24–32.

Torra, V. (1997). The weighted OWA operator. International Journal of Intelli-

gent Systems , 12 , 153–166.

Yager, R. R. (1988). On ordered weighted averaging aggregation operators in

multicriteria decisionmaking. IEEE Transactions on systems, Man, and Cyber-

netics , 18 , 183–190.

Yager, R. R. (1996). Quantifier guided aggregation using OWA operators. Inter-

national Journal of Intelligent Systems , 11 , 49–73.

Yager, R. R. (2003). Induced aggregation operators. Fuzzy sets and systems , 137 ,

59–69.

Yager, R. R. (2004). Generalized OWA aggregation operators. Fuzzy Optimization

and Decision Making , 3 , 93–107.

Yager, R. R., & Filev, D. P. (1999). Induced ordered weighted averaging operators.

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),

29 , 141–150.

Yager, R. R., Kacprzyk, J., & Beliakov, G. (2011). Recent developments in the

ordered weighted averaging operators: theory and practice volume 265. Springer.

16

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 




