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Abstract: Subject calibration has been demonstrated to improve the accuracy in high-performance
eye trackers. However, the true weight of calibration in off-the-shelf eye tracking solutions is still not
addressed. In this work, a theoretical framework to measure the effects of calibration in deep learning-
based gaze estimation is proposed for low-resolution systems. To this end, features extracted from the
synthetic U2Eyes dataset are used in a fully connected network in order to isolate the effect of specific
user’s features, such as kappa angles. Then, the impact of system calibration in a real setup employing
I2Head dataset images is studied. The obtained results show accuracy improvements over 50%,
probing that calibration is a key process also in low-resolution gaze estimation scenarios. Furthermore,
we show that after calibration accuracy values close to those obtained by high-resolution systems,
in the range of 0.7◦, could be theoretically obtained if a careful selection of image features was
performed, demonstrating significant room for improvement for off-the-shelf eye tracking systems.

Keywords: gaze-estimation; calibration; low-resolution; theoretical analysis

1. Introduction

In recent years, several areas within the world of computer vision have undergone a
revolution with the irruption of deep neural networks, systems that have allowed to change
the problem-solving approach by shifting the focus towards the quality of the training data
used rather than towards the solving method itself. With neural networks, outstanding
results have been obtained in domains such as object classification, image generation and
pose estimation [1–3]. The field of gaze tracking has not been an exception and has been
favored by the emergence of this research stream, with an increasing number of articles
proposing the use of deep neural networks.

However, one of the main problems with the use of neural networks is their black
box characteristic, which prevents researchers from clearly understanding what the funda-
mental part of the data is that is used to feed the network, i.e., how it is addressing and
solving the problem. This, from a research point of view, can be negative as it hinders
the establishment of a theoretical framework, which defines what elements should appear
as input data to make the problem solvable. Of course, this degree of uncertainty is not
the same for all types of neural networks: in the case of Convolutional Neural Networks
(CNNs) where the input to the network consists of images, the uncertainty stands on the
key features of the image that allow the problem to be solved. On the other hand, in the case
of Fully Connected Networks (FCNs), the uncertainty is less significant since researchers
decide which inputs should be introduced to the network. In this situation, a thorough
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prior knowledge of the problem to be solved is required to effectively select the features
and the network to be used.

Providing degrees of freedom to neural networks to assess which features play crucial
roles is one of the virtues of neural networks since it does not require prior knowledge and it
prevents errors due to false assumptions from an incomplete knowledge about the problem
model. However, from a researchers’ point of view, it becomes more difficult to understand
the learning process of the networks. In the end, the best solution lies somewhere in
between, combining both knowledge-based models and more blind approaches, such as
neural networks.

Understanding how neural networks learn to solve a problem is a field in continuous
development, with methodological proposals that help us assess and evaluate how neural
networks learn. As mentioned above, as there are different flavors of neural networks,
different strategies are used for each type: to give some examples, in the case of FCNs, we
would find the method of individual randomization of each of the features to measure their
impact on the final performance [4] or the use of saliency maps for Convolutional Neural
Networks, with the aim of learning which region of the image has a higher activation when
inferring a result [5].

Furthermore, by the very nature of the real databases used to train the models, it
cannot be guaranteed that all the features relevant to the resolution of a problem appear in
all the images or inputs. If the database is sufficiently representative of the environment
of the problem, this should not be an issue and may even provide the network with
greater generalization capacity, although the lack of certainty about the ground-truth
values also hinders the work of developing a theoretical framework. It is here where
synthetic databases, which provide absolute control of the ground-truth, can be an essential
support point for the development of research in this field. In the last few years, works
from different areas have benefited from training over synthetic environments [6–9].

Within the field of gaze-estimation, we can distinguish between two approaches:
high-resolution and low-resolution scenarios. High-resolution comprises those systems
that, using specialized hardware and special conditions such as infrared (IR) lighting or
limited head movements, perform the gaze-estimation process on images in which the eye
region occupies a high number of pixels, hence the name high-resolution. These specialized
conditions together with the need of IR lighting needed to correct the performance of these
systems make plug-and-play implementation difficult. On the other hand, low-resolution
systems are those in which the aim is to make use of more general images, such as those
that could be obtained from mobile devices or webcams, to perform gaze-estimation. This
is attractive because it would allow gaze-estimation applications to be expanded to a
broader audience. In the case of high-resolution systems, it can be considered that the
problem of gaze-estimation has been solved since high-performance commercial devices
are available. However, these models cannot be applied straightforwardly in low-resolution
environments due to changes in image quality and illumination among others, which has
led to the use of models based on neural networks for low-resolution [10–12].

Gaze-estimation presents the same problems as in other fields when facing deep neural
networks approaches: it is difficult to determine whether the features that these systems
extract from the images agree with the previous knowledge about high-resolution systems
and, if so, to what extent. Moreover, we can neither determine whether the differences
between high and low-resolution gaze-estimation systems are due to physical limitations,
i.e., the same results cannot be achieved in high and low-resolution; to limitations during
training, i.e., we have reached the training limits of neural network for this problem; nor
due to a problem in the extracted features.

The need for calibration for eye-tracking, to adapt the model to the characteristics of
the user, is well known due to the previous work regarding high-resolution systems. The
user calibration stage allows for better accuracies. In high-resolution, this calibration is
based on adjusting the coefficients of a polynomial, or on the calculation of some parameters
of a model, with the kappa angles being one of the fundamental ones. As an introduction,
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and although it will be further developed in later sections, kappa angles represent the
angular offsets between the optical axis, the symmetry axis of the eyeball, and the visual
axis, that is approximated by the line between the fixation point and the projection of the
image on the fovea (Line of Sight, LoS). These kappa angles are not visible in the image, so
end-to-end CNN-based models are not enough to determine it alone.

Calibration therefore plays an important role in obtaining an accurate gaze-estimation.
Traditionally, the calibration process consisted of presenting a series of points on a screen
for the user to fixate on. From these known points and the capture of the user’s gaze, the
individual’s own characteristics can be inferred. The main drawback with this procedure is
that it has been reported as inorganic, difficult for some users and tedious [13]. Ultimately,
the quality and reliability of the data obtained may be compromised, thus losing the
advantage of calibration. To alleviate this drawback, in recent years, solutions have been
proposed that seek to facilitate the calibration process, so that it becomes a simpler, more
reliable and faster procedure to perform. Within this line of solutions, we find proposals
such as [14–16] based on pursuit eye movement, which constitutes a more organic process.
This is critical for the usability of future products, as pointed out by [17], and should be an
aspect of concern in the development of new solutions.

The high-resolution paradigm has led to the use of calibration steps in low-resolution
gaze-estimation models to improve the results obtained. The need for user calibration
is more clearly and frequently spoken of in some of the most recent works, as in [18,19]
or [20]. Most of the works use blind calibration methods. This tendency, in addition
to providing simplicity, is partly derived from the paradigm used in high-performance
eye tracking systems in which methods, for example, based on regressions on generic
polynomial models, gave good results. Few exceptions, such as [21] or [12,22], propose a
more geometry-based approach to the calibration/personalization problem. However, due
to the existing differences between high and low-resolution gaze-estimation systems, it
is necessary to try to substantiate a theoretical framework to evaluate the true weight of
calibration in a low-resolution gaze-estimation approach. To the best of our knowledge,
this is the first paper to make a detailed study of this topic.

The main motivation of this paper is to build a theoretical framework on the influence
of calibration specific to low-resolution that allows us to advance in a differentiated way on
high-resolution, alleviating dependence among the two. To build this framework, we will
use a synthetic environment for its elaboration, which allows us to have absolute control
over the features used, and a real scenario to test the findings.

In this paper, we will try to establish a theoretical framework oriented to the low-
resolution gaze-estimation scenario, starting from a level with a lower range of freedom
within neural networks (FCNs) to study the weight of certain features (e.g., kappa) when
trying to solve the low-resolution gaze-estimation problem. To this end, and with the objec-
tive of isolating the contribution of specific features, we will make use of the U2Eyes [23]
synthetic database for the extraction of the ground-truth features in an FCN. Although
we will not seek to get to the point of understanding how neural networks learn to solve
the gaze-estimation problem, we will demonstrate the importance of user calibration in
low-resolution systems. In the second part of this work, once the need for calibration has
been delimited in a theoretical way, we will study its impact on a system trained with real
images. This work is presented as an extension of the work proposed in [24], although
deepening the aspects concerning the difference between calibration and non-calibration
scenarios. In [24], we studied the effect that pretraining a model using a synthetic dataset
has before addressing the gaze estimation calibration in a real dataset, showing that pre-
training the model in a similar synthetic domain improves the accuracy when having few
images for calibration. However, in [24], we did not include the results without calibration,
so we could not study the gain achieved when calibrating.
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The main contributions of this work are:

• A theoretical analysis of the importance of calibration in low-resolution, as well as the
necessary features to obtain accurate gaze-estimations in low-resolution.

• Validation of the role of the calibration in a real environment according to the theoreti-
cal framework, extending the work proposed in [24] and analyzing the importance of
calibration over other methods that enhance gaze-estimation algorithms.

As the paper presents two differentiated parts, in each of the sections, there will be
subsections establishing this distinction. In general, the paper is organized as follows:
in Section 2, we will establish the working space, including the databases, networks
architecture, data preprocessing and other methodological specifications; in Section 3, we
define the experiments conducted for the theoretical framework and the real environment;
then, in Section 4, the obtained results will be presented, and then discussed in Section 5.
Finally, in Section 6, the conclusions of the work are shown.

2. Working Framework

In this section, we will detail both the databases and the methodological specifications
adopted during the development of this work. As indicated in the introduction, since this
paper deals with two different proposals, each of the subsections will specify the work
carried out for each one of the approaches.

2.1. Databases
2.1.1. Theoretical Framework

When establishing the theoretical framework to support the need for calibration, we
need a controlled environment to isolate the impact of unwanted features. In this work,
we have chosen to use an improved version of the U2Eyes synthetic environment [23]
that provides a realistic representation of the human eye model. Each synthetic user
is characterized by a different face shape (determined by the PCA parameters of the
model), a skin texture among 20 different ones and an eye texture, among five options,
offered by UnityEyes [25]. In U2Eyes, two new fields were introduced to increase the
individuality of each user and incorporate binocular vision dynamics: the horizontal and
vertical components of the kappa angles.

The importance of the kappa angles lies in the geometrical description of the human
eye. In this description, the optical axis (also called the pupillary axis in the literature) is
defined as an imaginary line perpendicular to the cornea that intersects the center of the
entrance pupil. In theory, it represents the path followed by a ray of light that enters and
leaves the optical system of the eye along the same line. This axis meets the retina missing
the fovea, which is the most sensitive zone composed of closely packed cones. For a sharp
central vision of any object, the line of sight (that closely approximates to the visual axis or
foveal-fixation axis) has to impact the retina just on the fovea so, when gazing at any object,
the eyeball rotates to enable this visual axis passing through the entrance pupil center.

Optical and visual axes meet at the nodal point, forming an angle called kappa. A dia-
gram of the kappa angle is depicted in Figure 1. As angle kappa values are relatively small,
it is common to neglect the vertical component and even to identify both axes, but such an
approach cannot be kept in a gaze-estimation procedure that pursues accuracy features
(in degrees) with errors below kappa values. Several studies have been conducted to de-
termine the population’s mean value of the kappa angle. Through different measurement
methods, it has been demonstrated that fellow right and left eyes exhibit different kappa
values (usually right eyes tend to rotate more than left eyes) and that there is great vari-
ability of results arising from different individuals and even among different population
groups [26].
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Figure 1. Axial diagram with an approximation of the human eyeball model. The image corresponds
with a top-view of a left eye. Considering a fixation target, we could distinguish between the visual
axis and the pupillary axis. The kappa angle establishes the relation between the two axes. Original
image from [27].

In the original version of the U2Eyes environment, a horizontal component value
(randomly chosen in the range (3–7) degrees) and a vertical component value (randomly
chosen in the range (2–3) degrees) were shared by both eyes, in a symmetrical fashion
unable to account for some recent findings: human right and left eyes differ in their axes
geometry and vision field; they also differ in dynamic performance in the fixation process;
about two-thirds of the population seem to be right-eye dominant; human brain processes
information arriving from each eye differently, etc. [28].

For this work, an improved implementation of the kappa parameters belonging to
fellow eyes, increasing from two to four fields handled in a non-symmetrical but still in a
correlated way for the sake of avoiding infrequent strabismic images, is added. For both
eyes, positive values of kappa vertical components mean the visual axis tilts upwards,
whereas positive values of kappa horizontal components represent a LoS (Line of Sight)
that deviates towards the nasal direction.

A set of four positive values matches the temporal-inferior location of the human
fovea regarding the posterior pole of the globe and the fact that both eyes need to rotate in
the opposite direction for a clear vision.

It was decided to implement mean and standard kappa values reported in [26] for
the Italian population, as is shown in Table 1. This cohort was selected among the three
ones included in that work because of its size (343 participants) and similarity between the
Italian phenotype and the skin/eyes textures. Full data from these 343 participants, kindly
provided by the first author, were statistically processed to derive the covariance matrix
and generate a 4-variate normal distribution from where to extract the four kappa angles
to each user.

Table 1. Visual axis vertical and horizontal tilts (in degrees).

Kappa Angle Horizontal Right Vertical Right Horizontal Left Vertical Left

Mean 5.4237 2.512 2.1375 4.4458
Std 2.4978 2.6782 1.9672 2.7185

The advantage of using the U2Eyes environment is that it provides labels and land-
marks of 2D and 3D features with the certainty that they are correctly and consistently
labeled. Relying on previous knowledge about high-resolution, it is known that the LoS
depends on the position of the head and orientation of the eyes with respect to it. Based on
this knowledge and assuming that, regardless of high or low-resolution, the 3D problem
to be solved is the same, i.e., gaze-estimation, the following features provided with the
database are proposed as input to the network:

• Headpose, with position and rotation components.
• Tags referred to the location of Points of Interest (PoIs). An example is shown in

Figure 2a.
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• Landmarks referring to the segmentation of Regions of Interest (RoIs). The RoIs
representing the different eye areas are presented in Figure 2b. Both the selected
PoIs and RoIs could be extracted from real images, by segmentation tasks (RoIs) or
regression (PoIs).

• Kappa angles, with vertical and horizontal components for both eyes. Together with
the PCA coefficients (affecting the head shape) and textures (affecting skin and eyes
appearance), these are the labels that capture the individuality of each user, i.e., their
unique characteristics. Among these 4 components (PCA, kappa angles and skin/eye
textures), we understand that it will be mainly the kappa angles and PCA coefficients
that will affect the gaze-estimation for each specific user the most. In other words,
these would be the features learned during the calibration stage as they represent an
individual’s unique characteristics.

Figure 2. Example showing the correspondence of the features used to establish the methodological
framework over an image from the U2Eyes. (a) Projection of 3D center of pupil and iris. Points of
Interest (PoIs) of the image. (b) Segmentation of the pupil, iris, interior margin and caruncle for both
eyes. Regions of Interest (RoIs) of the image. Images from U2Eyes database [23].

An advantage of using a synthetic environment for image generation is that it allows
to generate different subsets controlling the variation of certain features while fixing others.
To evaluate the importance of user calibration, specifically by isolating the influence of
one of the parameters learned through calibration (kappa angles), the following datasets
are created:

• U2Eyes-Base-20. This is a subdatabase with 20 users, each with its own PCA and skin
texture, and sharing eye texture in groups of 4. Each of the users has its own kappa
angle values, drawn randomly from the distributions characterized by the means and
standard deviations from Table 1. Each user presents 125 head positions, and in each
head position looks at 32 + 15 grid points. The gaze angle range is ∼±24º, and the
range of the user distances from the grid goes from 35 to 55 cm. This is the range of
distances between the eyes and the grid. For more information about the grid points
and head pose ranges, see the paper [23].

• U2Eyes-Kappa-20. It is also a subdatabase with 20 users, twins in terms of PCA
conditions, skin texture and eyes with the U2Eyes-Base-20 subdatabase, but in this
case all users share the same kappa angle values, these being the mean values in
Table 1. Head positions and grid points coincide with the ones in the U2Eyes-Base-20
users too.

• U2Eyes-Base-300. Similar to the U2Eyes-Base-20 case, this is a database of 300 users,
each of them being a unique user (unique combination of PCA, skin and eye textures).
Furthermore, the users present their own kappa angles. In this case, the number of
head positions is limited to 27 in the same range of distances, although the gaze angle
range is the same as in the previous case, using a grid of 15 points.

• U2Eyes-Kappa-300. As the U2Eyes-Kappa-20 is identical to U2Eyes-Base-20 except
for the kappa values of the users, U2Eyes-Kappa-300 is identical to U2Eyes-Base-300
except that all users share the kappa values also used in U2Eyes-Kappa-20.

As we can see, each subdatabase is different in some aspects from the others but allows
us to keep certain key aspects common to all of them for better control of the experiments.
The reason for using these 4 subsets is the flexibility it provides to train our model using
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the 300-user variants while keeping the 20-user variants to test the performance of the
trained model without the need to establish test and training groups.

2.1.2. Real Environment

The objective of the real environment study is to test the validity of the theoretical
framework developed in the synthetic environment in a real scenario.

Ideally, we would have a database of real images in which the kappa values of
each user are perfectly known. However, to our knowledge, there is currently no low-
resolution database with these characteristics, emphasizing how expensive it would be
to create a similar database. The lack of databases for gaze-estimation is a well-known
problem, although more and more efforts are being made to create better quality large scale
databases [29–32].

Therefore, this paper aims to extend the experiments proposed in [24], where the
I2Head database [32] was used because of the similarity of the images in relation to the
images of the U2Eyes environment. The I2Head dataset is a public database of 12 users.
This dataset uses two grids, one of 17 points and the other of 65 points that the user
has to lookat while being recorded. In total, for each user, 6 sessions for the 17-grid and
2 sessions for the 65-grid were recorded, with 10 images per point, which gives an amount
of 28,840 images for the complete dataset. In [24], head centered sessions were used, i.e.,
2 sessions of 17 and the 2 sessions of 65 points (164 images). For more information about
the dataset, please refer to [32].

The calibration stage we proposed [24] resembles the paradigm used for high-resolution
systems in which a pre-established model is adapted to the subject while a grid of points
is shown in the screen. In the previous work, we performed this process, but did not
indicate which results were prior to calibration. By adding these pre-calibration results, it
is possible to measure the impact of the calibration by comparing the obtained results with
the theoretical framework.

2.2. Data Processing
2.2.1. Theoretical Framework

For the training of the models, it was decided to use the subdatabases of 300 users for
training and the subdatabases of 20 users for testing. After selecting the features of interest
to be used, these were scaled to fall in the range −1 to 1, so that all the features would be in
the same range, centered around zero and preserving their original distribution. It should
be noted that this is a scaling and not a normalization procedure, so this process does not
ensure that the mean has a value of zero. The scaling is therefore calculated as follows:

XScaled =
X− XMin

XMax − XMin
∗ (MaxRange−MinRange) + MinRange (1)

where X is the feature to be scaled, XMin and XMax are the minimum and maximum values
of that feature in the training dataset, and MinRange and MaxRange delimit the final range,
in this case, −1 to 1.

For the calculation of this scaling, only the values of the characteristics present in each
of the training subdatabases are considered. In this way, we ensure that the subdatabases
used for testing the models are effectively isolated.

An aspect to be taken into account falls on the components related to the kappa angles
and the calculation of the scaler based on the U2Eyes-Kappa-300 subbase. According to the
definition given in Section 2.1.1, the Kappa subbases are characterized because the kappa
angles values are the same for all the users in the dataset. If we were to apply Equation (1)
in this case, we would be facing an indeterminate form, 0/0. To avoid this case, different
solutions were examined:

• Altering the input to the network to use 4 fewer parameters;
• Applying a uniform random value, in the range −1 to 1, to the values of these features

for all users;
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Since we seek to compare in the most transparent way the training cases between
the use of the U2Eyes-Base-300 and U2Eyes-Kappa-300 subbase, it would be desirable to
keep exactly the same network shape for the two cases. Therefore, it was decided to assign
uniform random values in the range −1 to 1 to the users in Kappa-subbases. Assigning
random values externally to the rest of the parameters would break any kind of dependence
that may be existing between these parameters and the look-at-point that the network
has to estimate. Nevertheless, as the training progresses, the network learns to ignore
these features.

2.2.2. Real Environment

Following the steps described in [24], the same preprocessing was performed on the
I2Head images. The process is detailed in Figure 3 and consists of rotating and cropping the
images in such a way that the roll component is eliminated, and all images are guaranteed
to have the same size by adding padding.

Figure 3. Image preprocessing used in the real environment experiments. The images (a) are rotated
(b) so that the eyes are in the same line and cropped to the bounding box (c), which contains as
meaningful information as possible. Then, a padding process (d) assures that all images have the
same size before feeding them to the network. Images from the I2Head database [32].

2.3. Networks Architecture
2.3.1. Theoretical Framework

The network architecture is based on FCNs and consists of the following topology:

• An input layer of 366 inputs, equivalent to the number of features employed;
• Six layers with 512 neurons per layer, ELU activations, using the He uniform variance

scaling initializer [33], and kernel regularization l2 with value 0.01 per layer;
• A final layer of 2 neurons, with linear activation, which returns the x and y components

of the estimated gaze;

A visual description of the network is shown in Figure 4.

Figure 4. Architecture proposed for the methodological framework. The network consists of an
input for 366 features, followed by 6 fully connected layers with 512 neurons each, and a final fully
connected layer that outputs the gaze components (x and y).

2.3.2. Real Environment

The network design is the same as in the original paper [24]. The input to the network
consists of three-channel (RGB) images with a size of 388 × 84. A Resnet-18 is used as



Sensors 2021, 21, 5109 9 of 21

the backbone, followed by a Global Average Pooling layer and three Fully Connected
layers with 645, 32 and 16 neurons and ReLU activation. Finally, as for the theoretical
framework, the network output consists of a last fully connected layer with linear activation
and 2 neurons to return the gaze-estimation (x and y). Similarly to the previous work [24],
the training dynamics between the weights of the Resnet-18 trained on ImageNet used for
the backbone [34] and the network trained on the U2Eyes database were kept. The results
obtained over ImageNet ensure that the network is able to extract meaningful features
from images. In this way, we can also analyze whether pretraining on a similar domain has
an impact on the results obtained by the calibration. The topology of the network is shown
in Figure 5.

ResNet-18

64

32

16

x
y

2

512

Global Avg
Pooling

FC

FC

FC
FC

Figure 5. Architecture proposed. The backbone consists of a Resnet-18 to extract meaningful
characteristics from the image. Then, these characteristics are fed into a fully connected regressor
network to obtain the final gaze components. Image used as input to the network from the I2Head
database [32].

2.4. Implementation Details

This subsection will explain the details that allow the reproducibility of the work
presented. In any case, the code used for the experiments will be published openly on the
Github platform.

2.4.1. Common Characteristics

Regardless of the architecture, database used, preprocessing and other characteristics
that differentiate the part of the theoretical framework from the real implementation, the
essence of both parts is that they try to predict the direction of gaze or look-at-point,
understanding it as a regression task. In both cases, the neural networks will return two
continuous values, x and y coordinates, from the inputs. Therefore, for the training of
both systems we find some common elements. One of these elements is the minimization
of the loss function. In both cases, the loss function is the Euclidean distance between
the look-at-point estimated by the network and the real look-at-point. The loss function
follows the next equation:

Loss :=
1
N

N

∑
i=1
‖p− p̂‖2, (2)

where p is the real look-at-point, (x, y), p̂ is the estimated look-at-point (x̂, ŷ) and N is the
number of images per batch.

Another common element in both setups is the presentation of the results. By the very
nature of the problem, analyzing only the difference in distances between the estimated
look-at-point and the real look-at-point would be useless if the distance at which the subject
is located is not taken into account. That is, the same error distance is not equivalent
for two subjects placed at different distances. Therefore, it is common to analyze the
results in terms of the angular error made during the estimation. Since in our case both
databases collect the distance of the user to the grid of points they have to look-at, the
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transformation between the estimation error and the angular error can be performed using
the following formula:

AngularError := arctan(
‖p− p̂‖2

d
) (3)

where p is the real look-at-point, (x, y), p̂ is the estimated look-at-point (x̂, ŷ) and d is the
distance from the grid. It is assumed that the distance between user and grid corresponds
to the major leg of a right triangle, while the minor leg corresponds to the estimation error.
Thus, the error angle corresponds to the angle formed by the hypotenuse and the major leg.
A more graphic explanation can be found in Figure 6.

Figure 6. Angular error resulting from gaze-estimation. The angular error corresponds with the angle
between the vectors Eyes Position—Real look-at-point and Eyes Position—Estimated look-at-point.

2.4.2. Theoretical Framework

For the different experiments in the theoretical framework, an identical training
configuration was used, although the ideal case would be to adapt some of the training
conditions, such as the value of the initial learning rate or its decay, to the different
training cases, depending on whether we use the U2Eyes-Base-300 or U2Eyes-Kappa-300
database. However, although we accept that the values that we will present below are not
necessarily the optimal values for training in both databases, they allow us to state that
the only conditions that change between the two training cases are the databases. This
is a compromise solution, as in the case of keeping the number of features constant by
randomizing the values of U2Eyes-Kappa-300 to preserve two similar configurations as
much as possible.

For training, the Adam optimizer is used, with a learning rate of 1× 10−4 for the first
1600 epochs, 1× 10−5 for the next 1200 epochs and 1× 10−6 for the final 200 epochs.

The more relevant hyper-parameters while training this network are the learning rate
and the number of epochs. The Adam optimizer is a popular choice for training neural
networks. The initial learning rate value is chosen following the method proposed by [35].
For this method, the learning rate is progressively increased while checking the obtained
loss value. When the network stops learning, which is determined by the moment the
loss value remains the same for some iterations and then slowly starts increasing, we stop
the process and select the initial learning rate as a tenth of the learning rate value at that
moment. The number of epochs was chosen empirically after some test trainings. Each
number of epochs corresponds with the moment the network stopped learning for a given
learning rate. At that point, the learning rate was reduced to a tenth of the value, and then
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the training was resumed until the next plateau in the training. We repeated this method
twice. To avoid overfitting as a result of this process, we utilized L2 regularizers in the
layers of the network.

2.4.3. Real Environment

Following the characteristics of the original paper [24], the Adam optimizer was
used to train the experiments, with a cyclic triangular learning rate schedule based on the
work of [35], with a maximum value of 2× 10−3 and a minimum value of 2× 10−4 . The
networks are trained for 240 epochs, of which the first 200 use the learning rate policy
detailed above, and in the final 40 epochs, the learning rate is progressively reduced until
the minimum value of 2× 10−5 is reached in epoch 240. In this case, we do not set a specific
batch size, since due to the nature of the original experiments, the volume of input data
was changing as more or less users were added to the training, but we ensure that each
epoch consists of 128 training steps.

As an extension of the original paper, the hyper-parameters have remained the same.
In the original paper, the learning rate was chosen with the same method described in
Section 2.4.2, although in this case the learning rate schedule was a cyclic learning rate,
as described in [35]. The learning rate schedules comprehend a series of techniques that
prevent the networks from getting stuck during training.

3. Experiments

As in the previous sections, for the definition of the experiments, we will focus on
each of the two blocks separately to facilitate the interpretation of the study.

3.1. Theoretical Framework

The experiments carried out to test the theoretical framework consist of training two
neural networks, which were detailed in Section 2.3.1. The first of the trained networks
uses the U2Eyes-Base-300 database, while the other network employs the U2Eyes-Kappa-
300 database. Since the images generated in the former, and hence the look-at-points,
are calculated using different values of kappa angles, a properly trained network will
have to learn to interpret these values to return a correct estimation. In the case of using
the U2Eyes-Kappa-300 database, since all images have the same kappa angle values, the
network learns to prescind from them when estimating the gaze.

After training the networks, each of them is tested on the two complementary
databases, U2Eyes-Base-20 and U2Eyes-Kappa-20. Both networks are tested on both
databases. In the case that the network would be trained correctly, the expected results of
these experiments would be:

• The network trained on the U2Eyes-Base-300 database should return similar results
when tested on either database, since it should learn to interpret the kappa angle
values to solve the gaze-estimation.

• The network trained on the U2Eyes-Kappa-300 database should return correct results
when tested on the U2Eyes-Kappa-20 database, since both use the same kappa values
and the network has learned to solve the gaze-estimation problem for these values,
and significantly worse results for the U2Eyes-Base-20 database, since it does not
understand the influence that other kappa values have on gaze-estimation.

3.2. Real Environment

As for the real part, starting from the work presented in [24], we extend the presented
experiments by including the cases where no calibration was used.

In [24], we studied the impact that the number of training images have in a gaze-
estimation model depending on if the model was pretrained over synthetic eye images or
using the weights from ImageNet [34], a general purpose computer vision database. While
training, the model was always fed with at least 34 images from a test user, simulating
a calibration process. However, during the original experiment it was not checked what
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results were obtained when no calibration images were fed, i.e., if no calibration was
performed. Therefore, it was not possible to isolate the impact of the calibration over the
importance of pretraining the model with a similar or different domain. With this extension,
we will experiment without calibration so we can analyze its importance by comparing
with the original results.

In [24], experiments were presented to observe the impact of pretraining a network using
a synthetic dataset whose domain is closer to gaze-estimation before facing a real dataset.
For this, a model that uses a Resnet-18 as a backbone directly with weights from ImageNet
was compared against the same model but previously pretrained over the U2Eyes dataset.
Furthermore, the experiments were configured so that the importance of the number of
images while calibrating a model for gaze estimation could be measured. To do this, we used
34 images of the user to be calibrated (the two centered sessions of 17 points of the I2Head
dataset) that were included in the training set together with a varying number of additional
users from the I2Head dataset, ranging from 0 users (only calibration) to 11 users. Each one
of the users in training added 130 additional images to the training dataset. The model was
then tested using the remaining two centered sessions of 65 points of the calibrated subject. A
summary of the experiments configuration is shown in Table 2.

Table 2. Original configurations of the different experiments according to the training mode, U2Eyes
or ImageNet, and the number of users and images in the training and testing phase. The K parameter
varies from 0 to 11, i.e., 0 indicates that none of the subjects of the I2Head dataset has been included
to train the model, except for the subject to be calibrated, and 11 indicates that all the additional
subjects are present in the training phase. For the calibration, 34 images of the subject are employed
while the test is conducted over 130 subject images unseen by the model.

Model Train
# Users/Images

Calibration
# Users/Images

Total Train
# Images

Test
# Users/Images

ImageNet K/K × 130 1/34 K × 130 + 34 1/130
U2Eyes K/K × 130 1/34 K × 130 + 34 1/130

To extend our work ([24]), we propose to emulate the past experiments with a similar
configuration that is detailed in Table 3 but without using any calibration. This way,
we could measure the difference in the gaze-estimation performance with and without
calibration. The fact of training by differentiating between using the pretrained network
in U2Eyes or the ImageNet weights is maintained too, in order to obtain complementary
information about the impact of using a pretrained network in the target domain and to
evaluate the effects of calibration in both scenarios.

Table 3. New configurations of the different experiments according to the training mode, U2Eyes or
ImageNet, and the number of users and images in the training and testing phase. In this new case,
the K parameter varies from 1 to 11, as zero was reserved when training only with the calibration
user. Additionally, there is no “Calibration #Users/Images” column as calibration is not conducted.
The only images in the training dataset comes from users different from the test user.

Model Train
# Users/Images

Total Train
# Images

Test
# Users/Images

ImageNet K/K × 130 K × 130 1/130
U2Eyes K/K × 130 K × 130 1/130

3.3. Limitations of the Experiments

Due to the nature of the proposed experiments, they are subject to some limitations:

• The theoretical framework experiments, as it uses a synthetic framework, have per-
fectly annotated and controlled features. However, in a real environment, these
characteristics present noise due to the labeling process, wherever it is automatic
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or manual. This added noise will have an effect on the final gaze estimation. To
overcome this limitation, it would be necessary to perform an analysis to characterize
the noise, so it could be added to the synthetic features.

• In the real environment, we work with a specific dataset where the head motion and
boundary conditions (illumination, distance to the grid, static background, etc.) are
controlled, as opposed to a “in-the-wild” scenario.

4. Results

After defining the training process and the configuration, we present the obtained
results. As in the other sections, this section is divided into the theoretical framework and
the real environment.

4.1. Theoretical Framework

For the analysis of the results of the experiments regarding the theoretical framework,
we present in Figure 7 the boxplot distributions of the angular error for the different users
and experiments configuration. Each of the panels of the figure represents one of the two
training configurations (training on the U2Eyes-Base-300 and U2Eyes-Kappa-300 database)
tested on one of the test databases (U2Eyes-Base-20 and U2Eyes-Kappa-20). The x-axis
shows the user’s number to which the boxplot corresponds out of the 20 possible ones.
On the vertical axis, as explained in Section 2.4.1, the gaze-estimation error of the model
measured in degrees is represented. To facilitate the comparison between the figures, the
range of the vertical axis is the same for all representations.

In addition, Table 4 shows a breakdown of some statistical components of interest
(mean, standard deviation, median, 25% and 75% quantiles and maximum and minimum
values) of the error obtained on the 11,500 samples that make up the test databases. Figure 8
represents the means errors for each test in a visual comparison.
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Figure 7. Boxplot representations of the results obtained for the theoretical framework experiments. The figures share the
same X and Y axes. The X axis corresponds to the user Id from which each boxplot is computed. The Y axis is the angular
error in degrees. (a) Results obtained when training over U2Eyes-Base-300 and testing over U2Eyes-Kappa-20. (b) Results
obtained when training over U2Eyes-Base-300 and testing over U2Eyes-Base-20. (c) Results obtained when training over
U2Eyes-Kappa-300 and testing over U2Eyes-Kappa-20. (d) Results obtained when training over U2Eyes-Kappa-300 and
testing over U2Eyes-Base-20.
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Table 4. Angular error (in degrees) of the gaze-estimation for the theoretical framework. The first row determines the
dataset for which the model was trained (U2Eyes-Base-300 and U2Eyes-Kappa-300) and the second row the dataset used to
test the trained model (U2Eyes-Base-20 and U2Eyes-Kappa-20).

Training Database U2Eyes-Base-300 U2Eyes-Kappa-300
Testing Database U2Eyes-Kappa-20 U2Eyes-Base-20 U2Eyes-Kappa-20 U2Eyes-Base-20

N◦ Samples 117,500 117,500 117,500 117,500
Mean 0.639 0.709 0.566 2.749
Std 0.393 0.419 0.342 1.462
Min 0.001 0.001 0.001 0.008
25% 0.342 0.390 0.311 1.399
50% 0.556 0.628 0.501 2.753
75% 0.866 0.963 0.753 3.927
Max 3.716 3.885 3.014 8.788

Figure 8. Visual comparison of the mean results presented in Table 4. The black circle is the
equivalent representation of an error of 2.749◦ (model trained over Kappa-300 and tested over
Base-20); the brown circle, an error of 0.709◦ (Base-300/Base-20); the green circle, an error of 0.639◦

(Base-300/Kappa-20); and the blue circle, an error of 0.566◦ (Kappa-300/Kappa-20). As a base
reference, the dotted white lane represents an error of 1◦.

4.2. Real Environment

As in the previous case, we have used both a numerical representation in the form of
a table (Table 5) and two graphical solutions in the form of boxplots (Figures 9 and 10) to
present the results of the experiments.

As this is an extension of the work done in [24], to facilitate the interpretation of the
results, Figure 9a shows results for the two training models while increasing the number of
users in model training. It corresponds to the original experiment, with calibration. The X
axis shows the number of users used while training that were not the calibration user, so in
Figure 9a, the real number of users present while training for each case is the value of the
X axis plus one, i.e., the calibration user. Figure 9b presents the same distribution but for
the experiment without calibration. In this case, as there is no calibration process, the real
number of users used while training corresponds with the X axis.

Figure 9c,d shows a direct comparison between the results obtained with and without
calibration for the U2Eyes training and for the ImageNet training. As in the previous figures,
the Y-axis represents the estimation error measured in degrees, and the X-axis shows the num-
ber of users present in the training, without considering the calibration user. The estimation
error is the average error obtained when training with different users for testing.

Likewise, Table 5 shows the mean and median values obtained for each of the training
configurations. As in Figure 9, the number of users in training goes from 0 (only calibration
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user, for the experiments of the original paper) to 11 (all additional users are used in
training). In the table, for ease of reading, the maximum and minimum values obtained in
each column are marked in bold.

In Figure 10, the results from the four experiments, the two experiments from the
original paper and the two extensions without calibration from this work are shown
without differentiating by the number of users/images used while training.

Table 5. Results from the different experiment configurations. Mean and median angular errors in degrees are shown for
each case. The number of users in training represent the number of subjects that participate during the training that are not
test users. The maximum and minimum values for each one of the columns are emphasized.

Mean Median
Model ImageNet ImageNet U2Eyes U2Eyes ImageNet ImageNet U2Eyes U2Eyes

Calibration Yes No Yes No Yes No Yes No

Users in training
0 13,615 None 3891 None 13,401 None 3243 None
1 14,812 16,133 2967 12,656 14,880 15,446 2522 11,935
2 14,069 15,456 2861 9982 14,255 14,807 2404 9169
3 2710 9160 2376 7387 2426 8126 2061 6626
4 1918 5278 2106 6158 1598 4561 1814 5572
5 1934 3998 191 5893 1586 3389 1599 5326
6 1883 4940 1963 4945 1541 4001 1672 4394
7 1770 3853 1887 4726 1544 3310 1648 4090
8 1660 3773 1784 4367 1397 3098 1535 3736
9 1621 3797 1748 4120 1384 3182 1510 3582

10 1541 3261 1723 4260 1267 2656 1446 3681
11 1559 3302 1714 3791 1344 2770 1486 2866
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Figure 9. Results of the experiments from the real environment. (a) Original experiments from the paper [24]. Training with
calibration. We can observe how the model pretrained over U2Eyes outperforms the ImageNet model when the number
of users in training is small. (b) Results obtained when training the networks (U2Eyes and Imagenet) without calibration.
Same configuration as in the original paper but without calibration. In this case, the advantage of pretraining over U2Eyes
when the number of users in training is small is not as significant as in the previous case. (c) Comparison of the results
obtained from the original experiment (calibration) and the new experiment (no calibration) when training over the model
with the ImageNet weights. (d) Comparison of the results obtained from the original experiment (calibration) and the new
experiment (no calibration) when training using the model pretrained over U2Eyes.
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Figure 10. Another view of the results from the real environment. The angular error results for each training configuration
are shown in a boxplot. The first two boxplots correspond with the experiments carried in this paper, while the third and
fourth boxplot corresponds with the original experiments [24]. In the figure, when no calibration process is performed,
there is almost no difference between pretraining over ImageNet or U2Eyes; however, when using calibration, the difference
between the two training strategies is relevant.

5. Discussion
5.1. Theoretical Framework

For the analysis of the results, we will first check whether the hypotheses we put
forward in Section 3.1 were correct:

The network trained on the U2Eyes-Base-300 database should return similar results
when tested on either database, since it should learn to interpret the kappa angle values
to solve the gaze-estimation

Observing the values presented in Table 4 and Figure 7a,b, we can affirm that when
effectively training on the U2Eyes-Base-300 database, the results obtained are similar re-
gardless of the database on which they are tested (U2Eyes-Base-20 and U2Eyes-Kappa-20).

The network trained on the U2Eyes-Kappa-300 database should return correct results
when tested on the U2Eyes-Kappa-20 database, since both use the same kappa values
and the network has learned to solve the gaze-estimation problem for these values, and
significantly worse results for the U2Eyes-Base-20 database, since it does not understand
the influence that other kappa values have on gaze-estimation

We can also affirm that this premise is fulfilled. The results obtained when testing on
U2Eyes-Kappa-20 (Figure 7c) are the best among the four tests, although with values close
to those obtained when training the model with the U2Eyes-Base-300 database (Figure 7a,b).
However, the values obtained when testing on U2Eyes-Base-20 (Figure 7d) present a high
disparity when compared to the rest of the results. This fits with the expected behavior,
since the trained network is not able to take into account the influence of the kappa angles
in the gaze value.

If we compare results obtained when calibration data is added (0.7◦ in mean when
training over U2Eyes-Base-300 and testing over U2Eyes-Base-20) versus results obtained
when the network does not use any calibration (2.7◦ in mean when training over U2Eyes-
Kappa-300 and testing over U2Eyes-Base-20), the improvement is 75%, even if the cal-
ibration would be limited to learn only the kappa angles. To quickly understand the
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implications of this enhancement, we can refer to Figure 8. If we adjusted the size of
the black circle (angular error of 2.7◦) to a diameter of 2.2 centimeters, the circles would
correspond with the mean error for a gaze-estimation at a distance of 45 centimeters,
which could be the distance from a user to a computer screen while working. Depending
on our target application, a correct calibration may involve the usability or not of the
gaze-estimation solution.

Another interesting aspect to highlight in Figure 7d is that the inter-user angular error
is highly variable, but the variance of the error for each user is small, i.e., for each user
there is a tendency to make a certain estimation error. This opens the door to try to find a
relationship between the kappa values of these users and the variance of the obtained error.

In addition to the confirmation of the initial hypothesis, the results reveal an interesting
outcome. In the closest case of a “real” situation, which would correspond to training
using the U2Eyes-Base-300 database and testing on U2Eyes-Base-20, we observe a value of
0.7◦ of error on average, close to the ∼0.5◦ of error present in high-resolution commercial
solutions. Moreover, given that the training conditions, such as the effective choice of
hyperparameters, were not the most critical aspect of this work, we are optimistic that this
error could still be further reduced.

The presence of other unique characteristics of each individual may affect the results,
although to a lesser extent compared with the kappa angles, which would explain why the
results obtained in Figure 7a–c are not equal for all users, and that for certain specific users
(e.g., users 4, 9 and 18) the errors are bigger than for the remaining ones.

These results emphasize that calibration processes are important and enhance the re-
sults obtained in gaze-estimation. This was already known from high-resolution scenarios.
The main novelty from these results is that we have established a theoretical framework
for low-resolution calibration that, although it learns from high-resolution previous knowl-
edge, it is a different entity by itself. This theoretical framework has even set a reference
accuracy, 0.7º of error on average, that only depends on images from a low-resolution sce-
nario, probing that we can further improve the results from low-resolution gaze estimation.
Furthermore, in view of the nature of the features used, it would be necessary a paradigm
shift in the design of the models, especially for the models based on end-to-end CNNs.

When we talk about the paradigm shift, we propose that it seems reasonable to use
specialized architectures and error functions to achieve end-to-end CNN models able to
learn how to extract relevant information from the eye/face images for the gaze-estimation
computer vision task under study. The importance of full-face images is discussed in other
works [36] that concluded that by providing the network with additional information
other than the eye region improves the performance of the gaze-estimation. In [29], it
was concluded that by carefully selecting the right features, not only the eye region, their
method could generalize better to other databases in addition to the one used for training.
The need for more complex architectures to perform different tasks simultaneously can be
grasped from [37], where two neural networks were used, one to model the head pose and
the other to analyze the eyeball movement. The results from our experiments corroborate
and extends this key idea: gaze-estimation is a complex process where multiple parts
interact with each other: region of interest segmentation, pose estimation, points of interest
regression, etc., and each of them is the result from different computer vision tasks, so
an effective gaze-estimation model has to tackle and solve all of them simultaneously.
This work has tried to identify some features that could be extracted to obtain accurate
results. Our work opens the possibility of studying which minimum theoretical features in
low-resolution could obtain results close to the ones obtained by high-resolution systems,
which would allow to reduce the number of necessary features and, therefore, to simplify
the design of gaze estimation models.

5.2. Real Environment

In view of the results obtained from the experiments, the first thing to note at a
general level from the values in Table 5 is that, regardless of whether we use a training
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strategy based on approaching the domain (U2Eyes) or using a pretrained general purpose
backbone (ImageNet), the influence of calibration on the final results is significant, with
improvements of around 50% in the most favorable cases (training with as many additional
users as possible). The need for calibration to reduce the error below 2.5◦ for either of the
two training configurations is clear from the table.

Moving on to more particular cases, in the original paper [24] we concluded that,
to compensate for the lack of useful images during the training process, the models
benefit from pretraining over a dataset whose domain was close to the final training
scenario (eye images). However, from our results, we have noticed that this behavior is
affected by whether calibration is used or not. Although the U2Eyes pretrained model still
outperforms the ImageNet model when training on few images (Figure 9b n◦ of I2Head
users in training from 1 to 3 users), the difference is not as large as when calibration was
performed (Figure 9a n◦ of users in training from 1 to 3 users). This can be better observed
in Figure 10. While the boxplots from the experiments with no calibration are similar,
the boxplots of the original experiments, calibrated to the test user, show a difference
when pretraining over U2Eyes or when using the weights from ImageNet, knowing from
Figure 9 that the main impact of this pretraining step affects the scenarios with lack of
training images.

The trend observed in the original experiment where, as the number of users increased,
the model with the Resnet-18 training weights on ImageNet tended to obtain better results
than the model pretrained on U2Eyes, is confirmed. The main difference is that the
obtained results using calibration exceed the ones in the no calibration scenario. It can be
observed in Table 5 that the ImageNet model slightly outperforms the U2Eyes model, as
the obtained results for both the mean and the median are better in the case of ImageNet
when the training users go from 4 to 11 in a no calibration scenario compared with the
U2Eyes strategy.

6. Conclusions

The experiments carried out in this paper follow two finalities, as it has been main-
tained throughout the document:

• To try to establish a theoretical framework that shows the influence and impact of
calibration in the cases of gaze-estimation for low-resolution, understanding the
calibration for fitting the gaze-estimation model to individual and intrinsic condi-
tions of the user. In our case, determined by the kappa parameters of the synthetic
environment U2Eyes;

• To check the impact of this calibration on a real database.

To achieve these objectives, two experimental setups have been employed. For the
theoretical framework, a fully connected neural network was trained using selected features
from a synthetic environment based on our previous knowledge about high-resolution
systems. From the synthetic environment, four datasets with controlled characteristics
were defined and used. For the real environment, we extended the work proposed in [24]
to compare the results obtained with and without calibration.

From these experiments, we extract three main conclusions.
The first conclusion of this work is that user calibration is shown to play a key role in

reducing gaze-estimation error. Improvements of 75% in the theoretical framework and
50% in the real environment demonstrate that, as was the case in the high-resolution envi-
ronments, calibration is also confirmed as a key process in low-resolution gaze-estimation.

The second conclusion shown is that, theoretically, values close to the ones obtained by
high-resolution (0.7◦) can be obtained for gaze-estimation with a careful choice of features
and by employing calibration processes. Although this is a conclusion drawn on a synthetic
database, we believe that there is room for improvement in the accuracies obtained by
low-resolution systems.

This second conclusion leads to a third conclusion, which states that when building
end-to-end models for gaze-estimation, we must think of them as the sum of several



Sensors 2021, 21, 5109 19 of 21

computer vision tasks, which can increase their complexity, and processes in which it will
be necessary to add user calibration stages.

Finally, after the experiments extending the work in [24], we can conclude that the
choice about the use of a calibration process can outshine other promising approaches.
For example, without the use of calibration, the benefits of pretraining a model in a closer
domain to compensate the lack of useful gaze data images instead of in a more general
computer vision dataset would not be as relevant. Although in this paper there has
been only one enhancement technique analyzed (pretraining in a similar domain), it is
possible that this conclusion could be extended to other procedures, i.e., the lack of a
calibration process could overshadow other methods that could be used to improve the
gaze-estimation results.
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