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Abstract: Remote eye tracking technology has suffered an increasing growth in recent years due
to its applicability in many research areas. In this paper, a video-oculography method based on
convolutional neural networks (CNNs) for pupil center detection over webcam images is proposed.
As the first contribution of this work and in order to train the model, a pupil center manual labeling
procedure of a facial landmark dataset has been performed. The model has been tested over both real
and synthetic databases and outperforms state-of-the-art methods, achieving pupil center estimation
errors below the size of a constricted pupil in more than 95% of the images, while reducing computing
time by a 8 factor. Results show the importance of use high quality training data and well-known
architectures to achieve an outstanding performance.

Keywords: eye tracking; pupil center detection; convolutional neural networks

1. Introduction

Eye tracking technology appeared on the 20th century with the purpose to detect eye
position and to follow eye movements. Recently, eye tracking technology has suffered an
increasing growth due to its use on virtual reality (VR) and augmented reality (AR) devices,
as well as its multiple applications for many research areas as gaze estimation [1,2], human
computer interaction (HCI) [3], assistive technologies [4], driving assistance systems [5],
biometrics [6], or psychology and marketing analysis [7–9] among others.

As in many other areas, one of the goals of eye tracking techniques is to be less
invasive. Early eye tracking methods as the scleral coil or electro-oculography (EOG)
involved to use contact lenses with coils of wire attached to them or to arrange several
electrodes around the users’ eyes [10]. Afterward, less invasive systems such as infrared
oculography (IRO) or video-oculography (VOG) appeared. IRO methods are based on
an infrared emitter that radiates certain amount of light which is reflected in the eye and
detected by an infrared detector. VOG methods are based on the use of cameras and image
processing. Eye position detection and eye movements tracking are performed by detecting
specific features related to the shape or appearance of the eye, being the pupil center one of
the most important features [11].

The use of IRO and VOG methods in controlled environments where the user is using
head mounted devices or in which the movement of the user is limited has allowed to
develop highly accurate systems [12]. Feature and model-based eye tracking systems
have demonstrated to be simpler and more accurate approaches and have become the
consensus solution [1,13]. Works applying machine learning techniques for semantic
segmentation [14–16] or pupil center detection [17,18] in these controlled environments
can be found. The use of convolutional neural networks (CNN) has proven to be a robust
solution for pupil center detection methods in challenging images with artifacts due to
poor illumination, reflections or pupil occlusion [17,18].

In recent years, even less invasive systems have been developed. In those systems
users do not have to carry any device and their movement is not limited. However,
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several new problems appeared and the well-known theories and models about head
mounted VOG and infrared eye tracking cannot be directly applied. More precisely, IRO-
based methods cannot be used due to the fact that the light emitter cannot be kept oriented
towards the eye. Regarding VOG-based methods, eye tracking must be done using cameras
with a lower focal length (e.g., webcams) and without using infrared light. In addition, the
fact of using shorter focal lengths reduces the resolution of the ocular zone. Figure 1 shows
the differences between images captured by systems using infrared light and high focal
lengths (left) and images obtained by using a commercial webcam (right). It can be noted
that in the left image, the user’s movement is restricted due to the high focal length of the
camera and the infrared lights, while, in the right one, the user can move more freely.

Figure 1. Left: image captured by a system with high focal length cameras and using infrared
light [19] . Right: image captured by using a webcam [20].

For this non-invasive webcam scenario, the relevance of learning and training method-
ologies begins to be more important and shows up as a promising tool [21–23]. These
training-based techniques require a large amount of images representing the variability of
the problem in order to get adapted to the solution and be able to generalize. Thus, avail-
ability of properly annotated databases is one of the cornerstones of the success of any deep
or machine learning technique. In the case of pupil center estimation, databases containing
eye landmarks are essential. Although several datasets in which key face landmarks are
provided as labels can be found in the literature for face detection purposes, there are no
many datasets containing accurate pupil center annotations.

In this work, a pupil center manual labeling procedure of a well-known face landmark
dataset has been made, resulting on a novel database named Pupil-PIE (PUPPIE) containing
a total of 1791 annotated images and representing the first contribution of this work. The
second contribution is a method based on convolutional neural networks (CNNs) for pupil
center detection over webcam images. The main idea is not to create a method based
on a new and complicated architecture but to see if, with a well-known architecture and
sufficiently good training data, it is possible to obtain results that outperform the state-of-
the-art. For that purpose, a model based on a ResNet-50 [24] architecture has been trained
to compute the x and y coordinates of the pupil center in the image using PUPPIE dataset.
The model has been tested using both real and synthetic state-of-the-art databases.

The paper is organized as follows. In next section, a brief review of the state-of-the art
is made. In Section 3, the databases used in this work, as well as the algorithm employed
for pupil center detection are presented. The explanation of the metrics used and the
experiments carried out along with the evaluation of the results obtained from the method
are done in Section 4. Finally, in Section 5, the conclusions of the work are summarized.

2. Related Works

As it has already been said, in high resolution scenarios feature and model-based eye
tracking systems have demonstrated to be simpler and more accurate approaches becoming
the consensus solution. However, when moving to lower resolution systems, the freedom
of movement of the user, as well as the large number of possible illuminations, focal
lengths, or viewing angles, because that the well-known methods used in high resolution
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do not produce sufficiently accurate results, so new methods have to be developed for this
scenario.

One of the first works regarding pupil center detection in low resolution images is the
one presented by Valenti et al. [25] in which isophote curves, i.e., curves of equal intensity
are used. In the work by Zhang et al. [26] isophotes are also used, and gradient features are
employed to estimate pupil center locations. The isophote curves are calculated assuming
that the large contrast in the pupil or iris area permits a rough estimation of the center by
using a voting procedure. Additional stages as selective oriented gradient filter, energy
maps post processing and iris radius constraints are required in order to achieve more
accurate detection. Gradient information is also employed in the work by Timm and
Barth [27]. They propose a mathematical function that reaches its maximum at the center
of a circular pattern, which is the location where most of the image gradients intersect.
Image topography and curve extraction is also employed by Villanueva et al. [28]. Skodras
et al. [29] propose a method based on the use of color and radial symmetry. George and
Routray [30] propose a two-stage algorithm which uses geometrical characteristics of the
eye for iris center localization. First, a coarse location of the pupil center is obtained using
a convolution-based approach derived from a circular Hough transform. Then, the pupil
center location is refined using boundary tracing and ellipse fitting. Xiao et al. [31] propose
a multi-stage method for real-time pupil center detection based on the combination of
snakuscule [32], circle fitting, and binary connected component.

Pursuing in the area of machine learning techniques, cascaded regressors methods
have demonstrated to be highly accurate and robust in facial landmark tracking [33,34].
In this manner, works applying cascaded regressors for pupil center detection and eye
tracking can be found in recent publications. Larumbe et al. [35] propose a cascaded
regressor based on supervised descent method [33] and random cascaded-regression
copse [34] to detect the pupil centers. They use the histogram of oriented gradients (HOG)
to perform the feature extraction. Gou et al. [36] propose a similar cascaded regression
strategy but using Scale-invariant feature transform (SIFT) for feature extraction and trying
to use eye synthetic images in order to augment the training data.

Another learning method which has demonstrated a great performance is regression
trees (RT) technique [37]. In the work by Markuš et al. [38] a pupil localization method
based on an ensemble of randomized regression trees is proposed. Kacete et al. [39] also
use RT-based models to estimate head pose and 2D pupil center. In [40], Levin et al.
propose a two-stage method for eye center detection based on cascaded regression trees
and employing gradient histogram features. A circle fitting post-processing step is used in
order to refine the regressor estimation.

Over the last decade, deep neural networks have proven to be a powerful tool in
many areas of computer vision, such as image classification [24,41], object detection [42,43]
or object segmentation [44,45], among many others. Therefore, in recent years, methods
based on this technology have appeared to solve the problem of pupil detection. In the
work made by Xia et al. [22], fully convolutional networks (FCN) are used to segment the
pupil region. FCN is an end-to-end and pixels-to-pixels network used for segmentation
tasks. The idea is to consider the pupil center localization as a semantic segmentation
task and to design an FCN with a shallow structure and a large kernel convolutional
block to locate the eye center. In the work made by Choi et al. [21], a FCN is also used
to perform a pupil region segmentation. Additionally, a CNN is used to determine if the
user is wearing glasses. If glasses are present, they are removed through CycleGAN [46].
Once the image is segmented, the pixel with the maximum intensity is determined as the
pupil center. Another method robust against glasses wearing is the one proposed by Lee
et al. [23]. That consists of an appearance-based pupil center detection, inspired by [21] but
employing perceptual loss to mitigate the blur phenomenon produced by the glass removal
network, and mutual information maximization to enhance the representation quality of
the segmentation network. An additional objective is to reduce the computational time of
the face detector and the glasses removal network by using non-local and self-attention
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blocks. Another work that employs a generative adversarial framework is the one proposed
by Poulopoulos et al. [47]. They reformulate the eye localization problem into an image-to-
heatmap regression problem and try to solve it in an unsupervised way. The architecture
that they propose is composed by an encoder-decoder translator which transform the
input images to heatmaps trained jointly with a discriminator that tries to distinguish the
translated heatmaps from real ones. In [48], Kitazumi and Nakazawa propose a CNN-based
pupil segmentation method which also consists of an encoder-decoder architecture for
pupil segmentation and pupil center detection. They first perform an eye region detection
using dlib [49] and use a five-layer U-Net [50] architecture for the pupil segmentation.
Recently, Zdarsky et al. [51] proposed a method for gaze estimation with outstanding
results. In the first stage of this method a facial landmark estimation is performed using
DeepLabCut [52], an open-source toolbox for pose estimation of body parts based on
deep-learning. DeepLabCut employs the feature detectors subset of DeeperCut [53] which
consists of a pre-trained ResNet-50 [24] followed by deconvolution layers used to up-
sample the visual information and produce spatial probability densities. The deconvolution
layers are specific to each body part and its probability density represents the ’evidence’
that this specific body part is in a particular region [52]. However, the work of Zdarsky
et al. does not include the accuracy of the estimated landmarks.

Some other works try to allow real-time pupil center detection without the need of
using a GPU. In [54], Kim et al. use a cascade deep regression forest instead of a deep
neural network. The objective is to design a more transparent and adoptable lightweight
pupil tracking model reducing the number of parameters and operations. This method
allows precise real-time pupil center detection using only a CPU. Cai et al. [55] propose
a low computational cost method based on hierarchical adaptive convolution to localize
the pupil center. They design different hierarchical kernels with which convolute the eye
images. The kernel used for each image is selected using the 3D head pose of the user
obtained by a previous localization stage.

3. Materials and Methods
3.1. Datasets

As already mentioned, in order to train a CNN-based model, a manual labeling
procedure of the pupil centers in some facial landmark databases has been made. For
testing the model, GI4E [28] dataset, I2Head [20] dataset, a subset of the MPIIGaze [56]
dataset, and the U2Eyes [57] synthetic dataset have been used.

Table 1 summarizes the number of images on the original datasets, as well as the
number of re-labeled images used in this work.

3.1.1. PUPPIE

In 2013, the intelligent behavior understanding group at the Imperial College London
re-labeled many stat-of-the-art facial landmark databases with images that are captured
under unconstrained conditions (in-the-wild) using the multi-PIE [58] 68 points mark-up.
Among these databases are LFPW [59], AFW [60], HELEN [61], 300-W [62], and IBUG [63]
databases which together compose a large dataset with 4,437 real-world facial images with
accurate labelings. In Figure 2a, a sample from HELEN dataset can be seen. However,
the multi-PIE 68 points mark-up does not include pupil center so, for the purpose of this
work, a manual labeling procedure has been done by a single annotator with the aim to
annotate the pupil centers in these databases. The resulting dataset, named Pupil-PIE
(PUPPIE), contains 1791 images with the 2 pupil centers and can be downloaded from
https://www.unavarra.es/gi4e/databases/elar (accessed on 4 October 2021). The images
have been selected based on whether the pupil annotation can be done accurately, i.e.,
images in which glasses are worn or in which one eye is hidden by hair have been excluded.

https://www.unavarra.es/gi4e/databases/elar
https://www.unavarra.es/gi4e/databases/elar
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(a) (b)

(c) (d)

(e)

Figure 2. Images from the datasets used in this work. (a) HELEN sample [61]. (b) GI4E sample [28].
(c) I2HEAD sample [20]. (d) MPIIGaze subset sample [56]. (e) U2Eyes sample [57].

3.1.2. GI4E

GI4E [28] is a database containing images of 103 users gazing at 12 different points
on the screen in a standard desktop lab conditions scenario. One of the outstanding
characteristics of this database is the accuracy of the labeling procedure. The images
contain labels for pupil center and eye corners. Each image has been marked by three
independent individuals, and the final label has been calculated as the mean value among
the three, assuring highly accurate labels. In Figure 2b, a sample from this database is
shown.

3.1.3. I2Head

I2Head [20] is a database combining ground-truth data for head pose, gaze and a
simplified user’s head model for 12 individuals. In Figure 2c, a sample from I2Head dataset
can be observed. The system is used to register the user’s pose and face images with respect
to the camera while gazing different grids of points. For each user, 8 sessions are recorded
in static and free head movements scenarios. Among those 8 sessions, 4 recordings were
made in a centered location, while in the other 4 the user was asked to translate to extreme
positions with respect to the camera. The database provides images, 3D poses, and fixation
points but 2D data, i.e., image labels, are not included in the dataset. However, in [64]
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a manual re-labeled procedure was done. Three individuals participated in the labeling
procedure and mean landmarks were obtained for eye corners and pupil centers.

3.1.4. MPIIGaze Subset

MPIIGaze [56] contains 213,659 images collected from 15 participants during natural
everyday laptop use over more than three months. This is one of the largest and most
varied and challenging datasets in the field. However, some images include the whole face
while others do only contain a cropped version of the eye area. Labels for the eyelids are
provided in the image together with some 3D information, such as estimated head pose
and gaze direction with respect to the camera. The authors claim that a subset containing
10,848 images has been manually annotated including eye corners, pupil centers, and
specific facial landmarks. These manually annotated images present acceptable accuracies
regarding pupil center and eye corners for several applications, but they cannot be consid-
ered suitable for the eye landmark detection task. In order to compensate for this fact and
be able to work in more accurate conditions, in [64] a manual re-labeled procedure was
done following the same guidelines as the I2Head database. In total, 39 images per user
were selected among the 15 subjects included in the original annotation set, resulting in a
total of 585 manually annotated images. In Figure 2d, a sample from MPIIGaze database is
shown.

3.1.5. U2Eyes

U2Eyes [57] is a binocular database of synthesized images reproducing real gaze
tracking scenarios. It was created by duplicating the mesh provided by UnityEyes [65],
adding essential eyeball physiology elements and modeling binocular vision dynamics.
U2Eyes database includes 1000 users but only 20 users are publicly available. Each user
looks at two grids of 15 and 32 points, respectively, with 125 different head poses, resulting
in a total of 5875 images per user. Head pose, gaze direction information and 2D/3D
landmarks are provided as part of the annotated data. In Figure 2e, a sample from U2Eyes
is shown.

Table 1. Datasets used in this work. The number of users and images on the original datasets, as well
as the number of re-labeled images are summarized.

Database # of Total Images # of Selected Images

PUPPIE 4437 1791
GI4E 1236 1236

I2Head 2784 2784
MPIIGaze 10,848 585

U2Eyes 117,500 117,500

3.2. Preprocessing

In order to normalize the images, a preprocessing step has been made. First, the
eye region is detected. For that purpose, the multi-task cascaded framework based on
CNN (MTCNN) proposed by Zhang et al. [66] is used. The facial landmarks estimated
by MTCNN are used to create an eye region bounding box. Then, the image is cropped
using the eye bounding box. Once the image is cropped, it is resized to a resolution of
128 × 256 pixels and the pixel values of the image are normalized between −1 and 1.

3.3. Pupil Center Detection

The method proposed in this work follows a fine-tuning process, i.e., taking a model
trained on a database for some task (backbone), adding some layers and tweaking all or
some of its weights for another database and task.

The architecture of our network is similar to the one used in DeepLabCut [52]. It
consists of the ResNet-50 [24] pretrained with ImageNet dataset [67] as backbone, but
instead of being followed by specific deconvolutional layers to produce spatial probability
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densities to each landmark, our network is followed by a global average pooling layer and
four fully connected layers with ELU activation function to compute the x and y coordinates
of the six eye landmarks (four eye corners and two pupil centers). The architecture proposed
can be shown in Figure 3.

Input image

Cropped image

256

1
2

8Eye region
detection

Preprocessing

ResNet-50

512

128
12

x1
y1

1024

FC

FC

FC

x2
y2

y6
Cropped image

256

1
2

8

Output landmarks

Landmark estimation

256

FC

Global Average
Pooling

Figure 3. Method proposed. Top: preprocessing step in which the eye region is detected and the
image [20] is cropped and resized to a resolution of 128 × 256. Bottom: eye landmark estimation
method proposed. The backbone consists of a Resnet-50 followed by a fully connected regression
network to obtain the eye landmarks detection.

The training is divided into two steps, first the backbone weights are frozen and a
training of 500 epochs is performed in order to initialize the weights of the fully connected
layers. Then, a longer training of 5000 epochs is done with all the weights unfrozen. The
optimizer used is Adam with β1 = 0.9, β2 = 0.999, ε = 1× 10−7 and a learning rate of
6× 10−4 for the first 500 epochs and 4× 10−5 for the next 5000 epochs. In both steps, a
batch size of 64 has been used.

In order to enlarge the data and help the model to generalize better, a data augmenta-
tion technique has been performed. In training, preprocessed images can be flipped with a
probability of 0.5, rotated between −25 and 25 degrees, and scaled with a factor between
0.75 and 1.25.

The problem is approached as a regression task and the loss function is defined as

Loss =
1

NL

N

∑
i=1

∑L
l=1
∣∣xi,l − x̂i,l

∣∣+ ∣∣yi,l − ŷi,l
∣∣

IPDi
, (1)

which corresponds to a `1 norm minimization. Variables (xi,l , yi,l) and (x̂i,l , ŷi,l) correspond
to the (x, y) coordinates of the ground-truth and estimated landmark l on image i, N is
the total number of images and L is the number of landmarks. Each landmark error is
normalized by the inter-pupillary distance IPD, calculated as

IPDi =

√(
xi,ple f t − xi,pright

)2
+
(

yi,ple f t − yi,pright

)2
, (2)

where subscripts ple f t and pright refer to landmark indexes corresponding to left and right
pupil centers.
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4. Evaluation

To evaluate the accuracy of the proposed algorithms and to compare it with state-of-
the-art, the relative error measure proposed by Jesorsky et al. [68] has been used. This is
formulated by:

emax =
max(dle f t, dright)

IPD
, (3)

where dle f t and dright are the euclidean distances between ground-truth and estimated
left and right pupil centers, and IPD is the inter-pupillary distance in Equation (2). The
maximum of dle f t and dright after normalization is defined as maximum normalized error emax.
The accuracy is calculated as the percentage of images for which this error is below specific
thresholds. State-of-the-art methods are usually compared using emax < 0.025(2.5%),
emax < 0.05(5%) and emax < 0.1(10%) although some of them do not provide results
for accuracy below 5%. Another interesting way to do a performance analysis of the
proposed methods that is usually shown in papers, is the cumulative error histogram,
which represents the accuracy continuously, i.e., it shows the proportion of images with an
error less than each percentage value of IPD. In Figure 4 different distances from ground-
truth labels can be shown as percentages values of the inter-pupillary distance, green circle
represents a distance equivalent to 1% of IPD, while magenta, yellow and cyan represent
the 2.5%, 5%, and 10% of the IPD, respectively. It can be observed that a 10% of the IPD is
equivalent to the iris size and a value between 2% and 5% is comparable with the pupil
size (depending on the constriction of the pupil).

Figure 4. Distances from ground-truth landmark as percentages of inter-pupillary distance. Ground-
truth landmarks obtained by the manual labeling procedure explained in Section 3.1.1 are represented
by the red points. Green circle represents a distance equivalent to 1% of IPD, magenta a 2.5%, yellow
5%, and cyan 10%.

Regarding the experiments, a model has been trained on PUPPIE dataset and tested
on the rest of databases. In order to tune the hyper-parameters presented in Section 3,
80% of PUPPIE database has been used for training, and 20% for validation. The specific
details about the tests carried out, i.e., the databases and number of images used in train
and test stages and the figures and tables in which results are shown, are summarized
in Table 2. It should be noted that, although our method is training-based, our model is
trained and tested with completely different databases, which allows us to obtain results
over all images of the databases. However, as MTCNN is used to detect the region of the
eye, there could be images in which the detection fails. The percentage of images in which
MTCNN algorithm has detected the face are 100% for GI4E and I2HEAD datasets, 74.53%
for MPIIGaze subset and 68.07% in U2Eyes. This difference in the ratio is due to the fact
that, as it could be seen in Figure 2, many images of MPIIGaze dataset and the images of
U2Eyes dataset show only the eye region of the face. Therefore, results of our method have
also been obtained by generating the eye bounding box from the ground-truth landmarks
instead of using the MTCNN face detector. This method in which the generation and
cropping of the eye bounding box step has been done using the ground-truth landmarks
instead of using the MTCNN detector has been named Ours ground-truth cropped images
(Ours GT-CI).
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Table 2. In this table, the databases and the number of images used for train and test are summarized.

Training Dataset Testing Dataset Results

PUPPIE 1433 images

GI4E 1236 images Tables 3 and 4 & Figure 5

I2Head 2784 images Table 4 & Figure 5

MPIIGaze 585 images Table 4 & Figure 5

U2Eyes 117,500 images Table 4 & Figure 5

In Table 3, an accuracy comparison on GI4E dataset with state-of-the-art methods is
provided. As already said, results are presented as the percentage of images for which
the error is below specific thresholds. Some of the state-of-the-art methods do not provide
results for accuracy below 5% of IPD. However, an estimate can be made using the cumula-
tive error histogram provided in the papers. These estimations from the graphs are written
in italics. Our method achieves an accuracy of 96.68% in the most challenging threshold
value, i.e., emax ≤ 0.025, when MTCNN face detector is used to create the eye bounding
box and an accuracy of 98.46% when the eye bounding box is created using ground-truth
landmarks. Looking at Figure 4, it can be seen that this means that more than 95% of the
images have an error below the size of a constricted pupil. The accuracy for emax ≤ 0.05
and emax ≤ 0.1 thresholds is 100%, meaning that every image has a pupil estimation error
below the size of a dilated pupil.

Table 3. Accuracy comparison for pupil center location on the GI4E database. Estimations from
original papers’ graphs are written in italics

Method emax ≤ 0.025 emax ≤ 0.05 emax ≤ 0.1

Timm11 [27] 40.00 92.40 96.00
Baek13 [69] 59.00 79.50 88.00

Villanueva13 [28] 42.00 93.90 97.30
Zhang16 [26] - 97.90 99.60
George16 [30] 72.00 89.28 92.30

Gou16 [36] 72.00 98.20 99.80
Gou17 [70] - 94.20 99.10

Levin18 [40] 88.34 99.27 99.92
Larumbe18 [35] 87.67 99.14 99.99

Cai18 [55] 85.7 99.50 -
Xiao18 [31] 70.00 97.90 100

Kitazumi18 [48] 96.28 98.62 98.95
Choi19 [21] 90.40 99.60 -
Xia19 [22] 61.10 99.10 100
Kim20 [54] 79.50 99.30 99.90
Lee20 [23] 79.50 99.84 99.84

Ours 96.68 100 100
Ours GT-CI 98.46 100 100

The state-of-the-art methods with the most similar results for emax ≤ 0.025 are Ki-
tazumi18 [48] (96.28%), Choi19 [21] (90.40%), and Levin18 [40] (88.34%), which are already
mentioned in the related works section. However, none of them achieve a 100% with
emax ≤ 0.05 and emax ≤ 0.1.

Regarding the computing time, the preprocessing step using MTCNN takes about
120ms using an Intel Xeon E5-1650 v4 CPU and a Nvidia Titan X (Pascal) GPU and takes
about 125ms using an Intel i7-6700k CPU and Nvidia GTX 960 GPU. However, it should be
noted that the eye region detection is not the main contribution of this paper, so it is not
optimized. It would be possible to use faster detection methods.

Respecting the landmark estimation step, i.e., the main contribution of this paper, our
method only takes about 2 ms to estimate pupil center landmarks using an Intel Xeon
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E5-1650 v4 CPU and a Nvidia Titan X (Pascal) GPU and takes about 5 ms using an Intel
i7-6700k CPU and Nvidia GTX 960 GPU. For the same procedure, the method proposed by
Choi et al. [21] takes 17 ms using an Intel i7-7700k CPU and Nvidia GTX 1070 GPU. This
means that our method achieves an improvement in compute time performance of up to
8 times for the landmark estimation step.

Due to the novelty of the I2HEAD, U2Eyes and the manual re-labeling of the MPIIGaze
subset, there are no methods in the literature that report results on these databases. Thus, a
comparison between the results obtained for GI4E database and the results obtained for
these databases has been made in Table 4. However, as in MPIIGaze subset and U2Eyes
database the percentage of images in which MTCNN algorithm has detected the face is less
than 100%, results are calculated over the number of detected images instead of the number
of total images and the results are marked with an asterisk. As in Table 3, results when the
eye bounding box is created using ground-truth landmarks are also shown (Ours GT-CI).

Table 4. Accuracy comparison for pupil center location on GI4E, I2HEAD, MPIIGaze and U2Eyes
databases. Results over MPIIGaze and U2Eyes databases using Ours GT-CI are calculated over the
number of detected images and are marked with an asterisk.

Database emax ≤ 0.025 emax ≤ 0.05 emax ≤ 0.1

Ours

GI4E 96.68 100 100
I2Head 97.92 99.96 100

MPIIGaze 95.18 * 99.54 * 99.77 *
U2Eyes 91.92 * 98.99 * 99.80 *

Ours GT-CI

GI4E 98.46 100 100
I2Head 96.88 100 100

MPIIGaze 97.09 99.83 100
U2Eyes 93.44 99.93 100

These databases are more challenging than GI4E due to more extreme user head poses,
lighting conditions or environment. However, it can be seen that the results achieved
on these more challenging databases are better than the ones obtained by state-of-the-art
methods on GI4E database.

For the databases in which faces are easily distinguishable and, therefore, face de-
tection works perfectly, i.e., GI4E and I2Head, there are not big differences between the
accuracy achieved by generating the eye bounding box using MTCNN face detector and
from the ground-truth landmarks. Regarding the databases in which faces are not easily
distinguishable because only the eye region of the face is shown, i.e., MPIIGaze subset
and U2Eyes, the results achieved using the ground-truth landmarks to generate the eye
bounding box over well-detected images are similar than the results achieved on GI4E and
I2Head databases.

In the case of U2Eyes synthetic database, results are are worse than the ones obtained
on real databases. However, despite the fact that the performance is worse on synthetic
databases than on real ones, it still achieves better results than state-of-the-art methods on
GI4E database.

To show the results in a more visual way and to enable future works to obtain accu-
racies for different thresholds, Figure 5 shows the cumulative error histogram using our
method in the aforementioned databases. Comparing the results of initializing the pupil
center detection using the MTCNN face detector (left) and the ground-truth landmarks
(right), it can be seen the robustness of our method against initializations.
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Results using ground-truth landmarks for eye region detection

Figure 5. Cumulative error histograms on GI4E, I2Head, MPIIGaze, and U2Eyes datasets using
MTCNN (left) and ground-truth landmarks (right) for eye region detection.

5. Conclusions

In this paper, a method for pupil center detection based on convolutional neural
networks has been proposed. In order to train the model, a pupil center manual labeling
procedure of 1,791 images from an existing facial landmark dataset has been performed
and the resulting landmarks annotation is the first contribution of this work. The model has
been tested using the well-known GI4E database, outperforming state-of-the-art methods
and reducing the computational task time of the landmark estimation step by 3 to 8 times.
Furthermore, the model has also been tested using more challenging databases getting
outstanding results and enabling a benchmark for future works. The results of our method
show how using high quality training data, as well as leading CNN architectures allows to
achieve outstanding results with a lower computational time.
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