
ORIGINAL PAPER

Locally adaptive change-point detection (LACPD) with applications
to environmental changes

Mehdi Moradi1,2 • Manuel Montesino-SanMartin1,2 • M. Dolores Ugarte1,2,3 • Ana F. Militino1,2,3

Accepted: 28 August 2021
� The Author(s) 2021

Abstract
We propose an adaptive-sliding-window approach (LACPD) for the problem of change-point detection in a set of time-

ordered observations. The proposed method is combined with sub-sampling techniques to compensate for the lack of

enough data near the time series’ tails. Through a simulation study, we analyse its behaviour in the presence of an early/

middle/late change-point in the mean, and compare its performance with some of the frequently used and recently

developed change-point detection methods in terms of power, type I error probability, area under the ROC curves (AUC),

absolute bias, variance, and root-mean-square error (RMSE). We conclude that LACPD outperforms other methods by

maintaining a low type I error probability. Unlike some other methods, the performance of LACPD does not depend on the

time index of change-points, and it generally has lower bias than other alternative methods. Moreover, in terms of variance

and RMSE, it outperforms other methods when change-points are close to the time series’ tails, whereas it shows a similar

(sometimes slightly poorer) performance as other methods when change-points are close to the middle of time series.

Finally, we apply our proposal to two sets of real data: the well-known example of annual flow of the Nile river in Awsan,

Egypt, from 1871 to 1970, and a novel remote sensing data application consisting of a 34-year time-series of satellite

images of the Normalised Difference Vegetation Index in Wadi As-Sirham valley, Saudi Arabia, from 1986 to 2019. We

conclude that LACPD shows a good performance in detecting the presence of a change as well as the time and magnitude

of change in real conditions.
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1 Introduction

Detecting distributional changes in time-ordered observa-

tions is an important initial step before turning to identi-

fying the effect of change-points in model fitting and

studying the change mechanism. Generally speaking,

changes in characteristics such as the mean and/or variance

might either happen smoothly (e.g. slow growing deviation

from the past average) or in an abrupt/sudden manner (e.g.

up/down-ward shift in the average of data). In order to put

this in a statistical context, let Xi; 1� i� n\1; be a

sequence of random variables, which in a general setting

can be considered independent or not, from a known dis-

tribution Fð�Þ. Then the existence of a change-point at time

index 1� t� n means that Xi; 1� i� t; have a common

distribution F1ð�Þ whereas Xi; t þ 1� i� n; have a common

distribution F2ð�Þ in which F1ð�Þ 6¼ F2ð�Þ based on at least

one specific characteristic.
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The study of change-points dates back to the 1950s

when Page (1954, 1955) proposed some procedures to test

the existence of a change in mean, and also to identify

homogeneous subsets in a set of random samples. Since

then various non-parametric and parametric methods have

been developed; hence the corresponding literature is quite

extensive, and such problems have been further raised in

different contexts such as agronomy (Brault et al. 2018),

hydrology (Serinaldi et al. 2018), environmental applica-

tions (Moura e Silva et al. 2020), and finance (Bandt

2020). The methods are generally grouped in two main

categories: online techniques which study the data as they

become available and detect changes as soon as they

happen in real time, and offline methods that assume all

samples are already received. A non-parametric test which

has been frequently used in different contexts is the Pet-

titt’s test (Pettitt 1979; Xie et al. 2014; Serinaldi and

Kilsby 2016) which indicates the growth/decrease in the

mean of time series. Other earlier change-point detection

methods may include Buishand Range and Buishand U

approaches which assume data come from a normal dis-

tribution (Buishand 1982, 1984). Generally, the problem of

detecting change-points has been addressed from different

points of view. Zeileis et al. (2003) developed an approach

to detect structural changes by fitting linear models to the

observations between any two consecutive change-points.

Verbesselt et al. (2010) suggested to decompose time ser-

ies into trend, seasonal, and reminder components, and then

iteratively search for changes in each component based on

the ordinary least squares (OLS) residuals-based MOving

SUM (MOSUM) test. Matteson and James (2014) proposed

non-parametric hierarchical clustering algorithms based on

distances between observations. Fryzlewicz (2014) pro-

posed the wild binary segmentation (WBS) approach which

combines the original binary segmentation (BS) idea with

sub-sampling techniques. A Bayesian approach for the

detection of change-points for the marked Poisson pro-

cesses is also proposed by Shaochuan (2019). Liu et al.

(2020) focused on high dimensional data and proposed an

adaptive framework for change-point detection based on a

generalised version of the classical cumulative sum statis-

tic. Ma et al. (2020) considered dependent data and

developed a three-step approach based on the likelihood

ratio scan statistics over sliding windows, spectral dis-

crimination, and p-value adjustment. Since results from

different algorithms do not always match, Bullock et al.

(2020) proposed a sequential ensemble algorithm to com-

bine different techniques, detecting change-points and then

removing false positives. In addition, some methods can be

further considered in multivariate settings (Matteson and

James 2014; Liu et al. 2020). General overviews of various

(non)parametric change-point detection methods can be

found in e.g. Eckley et al. (2011), Chen and Gupta (2011),

Brodsky and Darkhovsky (2013), Aminikhanghahi and

Cook (2017), Truong et al. (2020).

Amongst all, the sliding-window-based approach, which

is based on measuring the discrepancy between two adja-

cent windows sliding over the entire time series, has been a

simple and fast search method to detect change-points

(Truong et al. 2020). In other words, for each time index

the discrepancy between the downstream and upstream

windows with fixed width is measured. Hence, a discrep-

ancy curve could be obtained in which its peaks may alert

about the existence of change-points. However, the per-

formance of such sliding-window-based approaches

depends on the width of sliding windows. Wide windows

mostly take the global behaviour of observations into

account, whereas narrow windows only consider the local

information. Yau and Zhao (2016) proposed a rule-of-

thumb for width selection which depends on the number of

observations and at least demands the width 25. However,

such choice may not always be practical especially when

time series are short or changes occur near the time series’

tails (Ma et al. 2020). It has often been hard, for most

methods, to detect a change near the tails of a time series

due to the lack of enough samples before/after such change

(Hoga 2018; Militino et al. 2020).

Looking for remedies for the above-mentioned con-

cerns, in this paper we propose a locally-adaptive sliding-

window-based approach (LACPD) which combines the

results of various windows with different widths. Such

combination of windows brings the benefit of taking

advantage of both wide and narrow windows. In order to

avoid the practical limitations in the time series’ tails we

suggest to employ sub-sampling techniques. Furthermore,

we make use of two-sample tests to measure the discrep-

ancies between adjacent windows which in turn leads to a

p-value (discrepancy) curve as well. Since such procedure

consists of multiple comparisons, we adjust the p-values to

control the so-called Family-Wise Error-Rate and/or False

Discovery Rate (Benjamini and Yekutieli 2001). We study

the performance of LACPD under different settings, and

based on type I error probability, power, ROC curves,

absolute bias, variance, and Root-Mean-Square Error

(RMSE). We also compare its performance with various

alternative methods. The proposed methodology is further

applied to two real datasets concerning environmental

abrupt changes.

The rest of the paper is organised as follows. In Sect. 2,

we present our locally adaptive change-point detection

(LACPD) procedure. Section 3 is devoted to evaluate the

performance of our procedure under different settings, and

compare its practicality with other alternative methods. In

Sect. 4, we apply LACPD to two real datasets: annual flow

of the Nile river in Awsan, Egypt, from 1871 to 1970, and a

novel remote sensing data application consisting of a

Stochastic Environmental Research and Risk Assessment

123



34-year time-series of satellite images of the Normalised

Difference Vegetation Index (NDVI) in Wadi As-Sirham

Valley, Saudi Arabia, from 1986 to 2019. Finally, the paper

ends with a discussion in Sect. 5.

2 Methodology

The distributional behaviour of time-ordered observations

may generally experience short/long-term changes, e.g.

abrupt changes in the mean and/or variance. Throughout

the paper, let x ¼ fx1; x2; . . .; xng be a finite set of time-

ordered observations. In this section, we propose an

adaptive procedure based on an iteration of sliding win-

dows and sub-sampling for the purpose of detecting a

single abrupt change.

Change-point detection based on sliding windows has

been a quick technique to get an insight into the existence

of change-points in time-ordered observations (Truong

et al. 2020). The idea is to measure the discrepancy

between two adjacent sliding windows, with fixed width,

that slide along the time series. Once these two such

windows contain parts of the time series with different

behaviours/parameters, the discrepancy measure alerts. In

other terms, for each time index t; 1\t\n, the discrepancy

between the immediate left and right side, within a fixed

period, is measured. Doing so, a discrepancy curve would

be obtained in which its peaks point to probable change-

points. In practice such discrepancy is measured by

employing a two-sample statistical test such as t-test,

Mann-Whitney. For additional details see Truong et al.

(2020) and references therein. Generally, for each time

index t; 1\t\n, the null hypothesis H0 : Ft
L ¼ Ft

R is tested

against the alternative hypothesis H1 : Ft
L 6¼ Ft

R in which

Ft
L and Ft

R refer to the distribution functions of data within

the left and right windows of t respectively. This technique

is quite simple and quick, however its performance

depends on the width of sliding windows, and moreover the

fixed width of the sliding windows may face/bring limita-

tion in the time series’ tails. Note that considering a fixed-

width window shows two restrictions: 1) we need to only

search for change-point for indexes t that are far enough

from the tails, or 2) for some indexes t near the tails, one of

the windows may include less observations than the other

one when considering different width for left/right win-

dows. Below, we propose to employ sub-sampling tech-

niques to overcome the lack of data in the tails, and further

combine the output from several sliding windows of dif-

ferent sizes to benefit from both narrow and wide windows.

Definition 1 Let x ¼ fx1; x2; . . .; xt; . . .; xng be a finite set

of independent time-ordered observations, and assume

there only exists a single change-point t; 1\t\n. A new

set of observations, having xt in the centre, can be con-

structed by sub-sampling (with replacement) from data

before t, i.e. fx1; x2; . . .; xt�1g, and after t, i.e.,

fxtþ1; xtþ2; . . .; xng. Denote the two random samples

obtained from the left and right-side of xt by xLt ¼
fxL1 ; xL2 ; . . .; xLn�tþ1g and xRt ¼ fxR1 ; xR2 ; . . .; xRt g, respectively.

Then, xt is placed in the middle of

yt ¼ fxLt ; x; xRt g
¼ fxL1 ; xL2 ; . . .; xLn�tþ1; x1; . . .; xt; . . .; xn; x

R
1 ; x

R
2 ; . . .; x

R
t g

¼ fyt1; yt2; . . .; yt2nþ1g:
ð1Þ

We shall call yt a xt-centred version of x.

Note that the length of yt in (1) is 2nþ 1, wherein xLt
and xRt are taken such that xt is the ðnþ 1Þ-th observation

of yt, i.e. ytnþ1 ¼ xt. For each time index t, one may con-

struct the xt-centred version of x, and employ a two-sample

statistical test to measure the discrepancy between the

immediate left and right of ytnþ1ðxtÞ based on a previously

selected width for sliding windows. Although this might

seem rational, however, due to the effect of sub-sampling,

there might be an intense similarity in the tails of yt when t

is an early or late time index. In other terms, it is more

likely to find a change-point when one of the legs of the

sliding window misrepresents the variability due to sub-

sampling in the tails. Therefore, if we were to look for a

single early/late change-point, that would be probably

found in the first or last time-periods of x. Moreover, it

might be the case that, in a long time series, there appear

several small/big changes dominating each other. Thus, it

is important to further consider local information when

looking for change-points. Taking local information into

account basically means considering a small/narrow win-

dow around each xt within yt. In order to avoid such

concerns and reduce the randomness effect of sub-sam-

pling, we next present a procedure showing how the sub-

sampling technique introduced in Definition 1 can

get along with a two-sample statistical test, e.g. Mann-

Whitney, for proposing an adaptive change-point detection

procedure based on sliding windows. We highlight that we

here only consider two-sided hypothesis tests.

Procedure 1 (LACPD) Let x ¼ fx1; x2; . . .; xng be a finite

set of independent time-ordered observations which con-

tains a single change-point in a characteristic such as mean

or variance. For any t; 1\t\n, some m� 1, and k given

widths fh1; h2; . . .; hkg for sliding windows, the test

statistic and an approximate p-value of the locally adaptive

change-point detection (LACPD) procedure are given by
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Zm;k
t ¼ 1

k

Xk

j¼1

1

m

Xm

i¼1

jZi;j
t j; pm;kt ¼ 1

k

Xk

j¼1

1

m

Xm

i¼1

pi;jt ; ð2Þ

where Zi;j
t and pi;jt are the test statistic and its corresponding

p-value of a given two-sample statistical test, upon the i-th xt-

centred sample based on j-th width for sliding window (hj),

applied to the immediate left and right of xt. The most probable

change-point is the t which owns the smallest significant p-

value. This coincides with the t that owns the minimum/max-

imum (depending on the considered statistical test) of Zm;k
t .

Note that the exact p-value of LACPD clearly depends

on the distribution of implemented test. For instance, if one

considers the Mann-Whitney test, Zm;k
t reduces to

Zm;k
t ¼ 1

k

Xk

j¼1

1

m

Xm

i¼1

Zi;j
t ;

with the average

E Zm;k
t

� �
¼ 1

k

Xk

j¼1

1

m

Xm

i¼1

E Zi;j
t

� �
¼ 1

k

Xk

j¼1

h2
j =2;

and the variance

Var Zm;k
t

� �
¼ 1

k2
Var

Xk

j¼1

1

m

Xm

i¼1

Zi;j
t

" #

¼ 1

k2m2

Xk

j¼1

Var
Xm

i¼1

Zi;j
t

" #
þ
X

j6¼l

Cov
Xm

i¼1

Zi;j
t ;

Xm

i¼1

Zi;l
t

" #" #
;

where

Var
Xm

i¼1

Zi;j
t

" #
¼

Xm

i¼1

Var Zi;j
t

� �
þ
X

i 6¼l

Cov Zi;j
t ; Z

l;j
t

� �

� mþ m

2

� �� � h2
j ð2hj þ 1Þ

12
;

and

Cov
Xm

i¼1

Zi;j
t ;

Xm

i¼1

Zi;l
t

" #
�Var

Xm

i¼1

Zi;j
t

" #
:

In the above paragraph, we have used the mean and vari-

ance of the test statistics of the Mann-Whitney test ( Mann

and Whitney (1947) and Wackerly et al. (2014, Sec. 15.6)).

If we could have obtained the exact variance of Zm;k
t , under

certain conditions for the central limit theorem for (weakly)

dependent variables (Hoeffding et al. 1948; Chen et al.

2020), another approximate p-value, for the given large

enough widths hj; j ¼ 1; . . .; k; may be obtained as

2 min pðZ\
Zm;k
t � 1

k

Pk
j¼1 h

2
j =2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Zm;k

t

h ir Þ; pðZ[
Zm;k
t � 1

k

Pk
j¼1 h

2
j =2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Zm;k

t

h ir Þ

8
>><

>>:

9
>>=

>>;
; Z �Nð0; 1Þ:

However, due to the aforementioned limitations, we pro-

pose to approximate the p-value of LACPD by (2) which

for each target point averages its corresponding obtained p-

values from different windows, and in fact shows a good

performance in practice (see Sects. 3 and 4). Moreover, one

may also think of a weighted average approximation to

obtain p-values. We recommend to use non-parametric

tests within the machinery of LACPD due to the fact that

the distribution of the test statistics of LACPD may not

coincide with that of the used test.

Finally, the outcomes of the LACPD procedure are the

curves of Zm;k
t and pm;kt , 1\t\n, that monitor the small/big

changes in the characteristic in question, e.g. mean. Note

that, assigning p-values to each time index t provides us

with the possibility of detecting significant change-points

without the need to apply peak search methods to the

discrepancy curve Zm;k
t . This further allows to obtain

interval estimation for change-points at an arbitrary sig-

nificance level. We add that the magnitude of change can

also be captured in the same way as Zm;k
t and pm;kt . For

instance, if the characteristic in question is the mean, for

each sliding windows that we apply the two-sided statis-

tical test, we also measure the absolute difference between

the mean of the immediate right and left of time index t,

and then we average over different iterations and windows.

Therefore, LACPD delivers three discrepancy curves Zm;k
t ,

pm;kt , and magnitude versus time.

2.1 p-value adjustment

Since the LACPD procedure consists of a family of tests

(one test per time index 1\t\n for each iteration and each

width of window), an increase in the type I error proba-

bility might erroneously arise. Thus, the obtained p-values

pi;jt in (2) need to be adjusted to keep under control the so-

called Family-Wise Error-Rate and/or False Discovery

Rate. The Family-Wise Error-Rate (FWE) concerns about

the probability to erroneously reject at least one true

hypothesis, whereas the False Discovery Rate (FDR) is the

expected proportion of erroneous rejections among all

rejections. The literature proposes several adjustments’

techniques for such an issue (Holm 1979; Hommel 1988;

Hochberg 1988; Wright 1992; Shaffer 1995; Benjamini and

Hochberg 1995; Sarkar and Chang 1997; Sarkar 1998;

Benjamini and Yekutieli 2001). When all tested hypotheses

are true, then controlling FDR turns to controlling FWE

(Benjamini and Hochberg 1995; Benjamini and Yekutieli

2001). Throughout the paper, we make use of an adjust-

ment technique proposed by Benjamini and Yekutieli

(2001) which is known as BY, since it takes into account

the dependency between test statistics when making
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multiple comparisons which is the case of the LACPD

procedure. Note that the intersection of the sliding win-

dows around nearby time indexes is non-empty. We now

give a brief run-through of the p-value adjustment tech-

nique BY. Let Hi
0, i ¼ 1; . . .; n, correspond to n null

hypotheses, and denote their p-values by pi, i ¼ 1; . . .; n.

Further, denote the sorted p-values by pðiÞ, and let pðrÞ be

the largest value for which

pðrÞ �
rq

n
Pn

i¼1

1=i

;

where q is a desirable significance level. If there exists such

r, then we reject the hypotheses corresponding to

pð1Þ; . . .; pðrÞ. Otherwise, no hypothesis would be rejected.

In other terms, BY-adjusted p-values may be defined as

pBYðiÞ ¼ min min
j� i

npðjÞ
Pn

l¼1

1=l

j

0

BB@

1

CCA; 1

0

BB@

1

CCA; i ¼ 1; . . .; n:

Finally, the adjusted p-values pBYðiÞ are used to make a

decision concerning the null hypothesis. The use of such

adjusted p-values enhances the performance of LACPD in

terms of type I error probability, even though this may

come with a slight reduction in power. See Benjamini and

Yekutieli (2001) and Benjamini et al. (2009) for more

details.

2.2 Parameter selection

The question that remains relates to the choices of width

for sliding windows, and the number of iterations m per

each sliding window. Among the two, the number of iter-

ations m might be of less importance since we have seen

that results are robust when considering a large enough

value of m. The width of sliding windows, however, may

have significant effect on the performance of LACPD. The

rule-of-thumb maxf50; 2 logðnÞ2g (or maxf25; logðnÞ2g for

time series with sample size less than 800) is suggested by

Yau and Zhao (2016) as the width (radius in their lan-

guage) of the sliding window. However, as pointed out by

Ma et al. (2020), such fixed width may not always be

practical, especially when a change-point occurs in an early

or late time, or the length of time series is short. Ma et al.

(2020) implemented a sensitivity analysis to find an opti-

mal width in their simulation studies, however, they relied

on such rule-of-thumb in their real data analysis. We note

that wide windows may result in high power of the test

since they include more observations compared to narrow

ones, whereas narrow windows may lead to a low type I

error probability. Hence, we propose to combine the

outcomes of wide and narrow windows to benefit from

both. Our proposal is to use a large enough m, start by wide

windows and then in a step-wise manner incorporate nar-

rower windows until a stop condition is satisfied. There-

with, we propose the following steps:

1. Fix the iteration parameter m, an adjustment method

for p-values, a significance level, and a sequence of

width for sliding windows as

ki ¼ fn=2; . . .; n=ð2 þ iÞg, i ¼ 1; 2; . . .; n� 2, where

n is the number of observations.

2. Calculate the test statistic and its p-value in (2) for time

indexes t; 1\t\n based on ki, i ¼ 1; 2; . . .; n� 2.

3. Once the detected change-point based on three differ-

ent consecutive sets of widths coincide or the mint p
m;k
t

is larger than the significance level, stop considering

more sequences of width, and use the results of the one

before the last considered sequence of width as final

results. For instance, if the detected change-points

based on k1; k2; and k3 coincide or mint p
m;k3
t is larger

than the considered significance level, then the selected

sequence of width is k2, otherwise return to step 2 and

incorporate ki; 3\i� n� 2, until the stop rule is

satisfied.

Note that, rather than considering the coincidence of

detected change-points based on three different consecu-

tive sets of widths, one may decide to stop when the dif-

ference between such consecutive sets of widths is less

than a fixed value.

3 Numerical evaluation

This section is devoted to study the performance of

LACPD when data have experienced a single up-ward shift

in mean. We consider the Mann-Whitney statistical test in

the LACPD procedure with m ¼ 100, significant level 0.05,

and BY p-value adjustment technique. We have seen that

m ¼ 100 is adequate, since conclusions are robust after

repeating the analysis m ¼ 100 times. Thereafter, we

simulate 500 time series, each one of length 200, from the

standard normal distribution. These time series do not

contain any change, thus we first apply the LACPD pro-

cedure (and other alternative methods) to each of them in

order to measure the type I error probability. Next, for each

of these simulated time series, we produce (single) artificial

abrupt changes (up-ward shift) of magnitude 1 (0.5, 0.75)

unit from time indexes 40, 80, 100, 120 and 160 onward.

The corresponding results for magnitudes 0.5 and 0.75 are

presented in the ‘‘Appendix’’. To evaluate the performance

of LACPD, we consider different criteria such as (1) Type I

error probability , (2) Power , (3) ROC curves, (4) Absolute
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Bias (AB), (5) Variance ( Var ), and (6) Root-Mean-Square

Error (RMSE):

AB ¼ bE bt
� �

� t
���

��� ¼ 1

n�

Xn�

i¼1

bt i � t

�����

�����;

Var ¼dVar ðbtÞ ¼ bE bt � bE bt
� �h i2

¼ 1

n�

Xn�

i¼1

bt i �
1

n�

Xn�

j¼1

btj

" #2

;

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n�

Xn�

i¼1

ðbt i � tÞ2

vuut ;

where t stands for the true change-point, and n� � n ¼ 500

denotes the number of significantly detected change-points.

We also compare the performance of LACPD with the

Pettitt‘s test (Pettitt 1979; Xie et al. 2014), Buishand

Range and Buishand U tests (Buishand 1982, 1984),

Strucchange (Zeileis et al. 2003), bfast (Verbesselt et al.

2010), e.divisive (Matteson and James 2014), wild binary

segmentation (wbs) (Fryzlewicz 2014), and the adaptive

method (AdaptiveCpt) of Liu et al. (2020). These methods

are accessible through their corresponding R packages (R

Core Team 2020). We highlight that such methods have

proven quite useful in the literature and are generally used

within different fields. In addition, we emphasise that in the

calculation of each of these methods, we have followed

their corresponding recommendations which lead to their

best performance. For instance the minimum number of

observation between change-points are considered 30 for

Strucchange, bfast, and e.divisive which is their default,

and also suits our length of data and time of change-points.

In the calculation of wbs method, we have used the stan-

dard Bayesian Information Criterion bis.penalty which

actually leads to similar results as other choices. In the

calculation of AdaptiveCpt, we follow the recommenda-

tions of Zhou et al. (2018) and Liu et al. (2020) to consider

p ¼ 1000 which corresponds to L1 norm in which case the

choices of other parameters are of least importance.

Table 1 represents the mean type I error probability

together with the mean power, at significance level 0.05,

when a single change-point is placed at different times

indexes. LACPD generally seems more conservative than

other methods (except bfast) which might be partly caused

by its averaging machinery, adjusting p-values, our strict

stop condition, and/or our implemented test, i.e. Mann-

Whitney. The performance of bfast is also quite poor in

terms of power.

Apart from Strucchange and bfast which look for

change-points based on regression relationships, and wbs

that reveals change-points based on segmentation and

penalties, other methods provide p-values. Hence, we next

compare the performance of other methods based on ROC

curves that indicates the relationship between the rate of

false and true positives. For this purpose we compute the

true (TPR) and false (FPR) positive rates at different sig-

nificance levels, considering in fact a sequence of values

starting from 0. Figure 1 shows the ROC curves for cases

where FPR is less than 0.05 since all considered methods

show a similar performance for FPR larger than 0.05. We

only represent the ROC curve of Buishand U due to its

similar performance as Buishand Range. From Fig. 1 we

can see that in the cases where FPR is less than 0.01,

LACPD generally outperforms other alternative methods

by having a quite higher TPR, and in other cases methods

perform similarly. In other words, in cases that other

methods have a quite low rate of false positives they suffer

from a quite low rate of true positives, whereas LACPD

does not face such an issue. For change-points 80, 100, and

120 the curve of Buishand U is covered by that of e.divi-

sive, being quite similar. Moreover, the closer the area

under such curves to 0.05, the better the performance.

Table 2 shows the area under the displayed curves in Fig. 1,

and we see that LACPD is superior to other methods

regardless of the time of change-point. Therefore, taking

the presented results in Tables 1 and 2 into account toge-

ther with Fig. 1, we can say that LACPD outperforms other

alternative methods based on a combination of true and

false positive rates.

We next turn to compare the performance of considered

methods based on other criteria. Table 3 shows the absolute

bias, variance, and RMSE for LACPD and the other

methods. It can be seen that LACPD clearly outperform

other methods based on absolute bias, having quite lower

Table 1 The mean power and mean type I error probability (FP) at

significance level 0.05

Method Power FP

40 80 100 120 160

LACPD 0.904 0.954 0.946 0.954 0.912 0.006

Pettitt 0.994 1.000 1.000 1.000 0.998 0.032

Buishand Range 0.982 1.000 1.000 1.000 0.980 0.044

Buishand U 0.988 1.000 1.000 1.000 0.990 0.052

Strucchange 0.996 1.000 1.000 1.000 0.998 0.024

e.divisive 0.994 1.000 1.000 0.998 0.996 0.032

bfast 0.472 0.368 0.342 0.376 0.496 0.002

wbs 0.990 1.000 1.000 1.000 0.996 0.064

AdaptiveCpt 0.996 1.000 1.000 1.000 0.998 0.054

In the calculation of LACPD, we consider the Mann-Whitney test,

m ¼ 100, and the adjustment technique BY. Artificial abrupt changes

of magnitude 1 unit are placed at time indexes 40, 80, 100, 120, and

160 onward for 500 time series, each of length 200, from the standard

normal distribution. Type I error probability is calculated prior to

make artificial changes using the original simulated data
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bias than others especially when change-points are placed

near the tails of the time series, i.e. time indexes 40 and

160. The only methods which seem to be competitive with

LACPD, in terms of bias, are Strucchange and wbs.

Strucchange performs slightly better than LACPD for

change-points 80 and 120, while performing poorer for

change-points 40, 100, and 160. The absolute bias of wbs is

also slightly less than LACPD for change-points 80 and

120, while in other cases LACPD is superior. We can

further see that the performance of Pettitt, Buishand U,

Buishand Range, bfast, and AdaptiveCpt is clearly affected

by the time of change-points. These methods have a better

performance when change-points are close to the middle of

time series. In other words, when change-points are closer

to the tails, these methods have a quite larger bias than

when change-points are near the middle of data. These

methods also face the same issue with variance and RMSE

(which is generally dominated by variance). When change-

points are placed at time indexes 40 and 160, LACPD has a

quite lower variance than other methods. For change-points

at time indexes 80, 100, and 120, the methods Pettitt,

Buishand Range, Buishand U, and AdaptiveCpt generally

have lower variance than others. In terms of RMSE, for

change-points 40 and 160, the performance of LACPD is

similar to Strucchange, e.divisive, and wbs, outperforming

other methods. For change-points 80 and 120, all methods

show a similar performance having RMSE around 5-6,

apart from bfast which has quite higher value depending on

the time index of change. For change-point 100, Pettitt,

Buishand Range, Buishand U, and AdaptiveCpt have a

lower RMSE than others. We conclude that, among the

considered methods, the performance of LACPD, Struc-

change, e.divisive, and wbs is not affected by the time of

change-point, whereas this is not the case of other methods.

In addition, LACPD generally outperforms other methods

especially in terms of absolute bias, and with respect to

variance and RMSE, it is either better (mainly for change-

points 40 and 160) than others or similar to them. More-

over, combining the results of Tables 1 and 3, we can see

that the slightly higher power of the other methods com-

pared to LACPD might have actually been caused by either

false positives or detecting a true change-point at an ear-

lier/later time. Tables 4 and 5 (presented in the ‘‘Ap-

pendix’’) generally confirm similar conclusions when the

magnitude of change is of 0.75 and 0.50 respectively, while

a reduction in the performance of all methods is obvious

including a drastic reduction in the power of LACPD.

Figure 2 shows the average of all discrepancy curves of

Z, p-values, and magnitude of change versus time for all

500 time series. We can observe that all the curves of Z and

p-values correctly point to the inserted change-points by

having their minima at such times. Furthermore, interval

estimates are displayed for each change-point based on

obtained p-values and significance level 0.05. These esti-

mates are [37–45], [74–87], [95–106], [115–126], and

Fig. 1 ROC curves for different change-point methods according to times of change 40, 80, 100, 120, and 160. TPR stands for true positive rate

and FPR for false positive rate, in which the latter is limited to 0.05 since after that differences are negligible

Table 2 Area under the displayed curves (AUC) in Fig. 1

Method AUC

40 80 100 120 160

LACPD 0.045 0.046 0.046 0.046 0.045

Pettitt 0.042 0.043 0.043 0.043 0.042

Buishand Range 0.038 0.040 0.040 0.040 0.038

Buishand U 0.042 0.044 0.044 0.044 0.042

e.divisive 0.042 0.042 0.042 0.042 0.042

AdaptiveCpt 0.028 0.029 0.029 0.029 0.029
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[157–164] for change-points 40, 80, 100, 120, and 160

respectively. The discrepancy curves of magnitude also

correctly show that the magnitude of change in all sce-

narios is 1 unit. Furthermore, among all considered meth-

ods, only LACPD and bfast reports the magnitude of

change according to which LACPD is quite superior to

bfast in terms of both bias and variance of the estimated

magnitude of change. In particular, the average of absolute

bias and variance of the magnitude’s estimate for LACPD

are 0.06 and 0.02, whereas such benchmarks take values of

0.18 and 0.45 on average for bfast, respectively.

4 Real data analyses

This section is devoted to two applications of the LACPD

procedure: (1) Annual flow of the Nile river in Awsan,

Egypt, (2) remotely sensed vegetation index from the Wadi

As-Sirham valley, Saudi Arabia. Throughout this section

we consider the iteration parameter m ¼ 100, the BY

(Benjamini and Yekutieli 2001) p-value adjustment, sig-

nificance level 0.05, and the Mann-Whitney statistical test.

4.1 Annual flow of the Nile river in Awsan, Egypt

Figure 3 represents the annual flow (in 108 m3) of the Nile

river, in Aswan, Egypt, from 1871 to 1970 (Durbin and

Koopman 2012). This dataset is publicly available in R,

and has been previously analysed in various papers (see

e.g. Zeileis et al. 2003). We are interested in checking

whether the average flow of the Nile river has experienced

any change over time. The LACPD procedure detects a

change-point (downward shift) with magnitude 260 (in 108

m3) in the year 1898 which is, in fact, the year that the

Awsan dam was built. Figure 4 shows the Z, p-value, and

Table 3 Absolute Bias (AB),

variance (Var), and Root-Mean-

Square Error (RMSE) at

significance level 0.05

Criteria Method Change-point

40 80 100 120 160

AB LACPD 0.206 0.088 0.093 0.176 0.035

Pettitt 8.994 2.252 0.356 1.250 8.505

Buishand Range 8.037 1.494 0.184 1.498 8.694

Buishand U 8.073 1.494 0.184 1.498 8.725

Strucchange 0.683 0.014 0.426 0.122 0.944

e.divisive 2.504 1.844 0.778 1.404 0.378

bfast 10.826 1.620 0.760 1.596 10.157

wbs 0.406 0.054 0.388 0.106 0.958

AdaptiveCpt 7.982 1.494 0.184 1.498 8.651

Var LACPD 38.863 37.376 29.222 57.751 40.367

Pettitt 176.780 31.929 17.397 24.661 228.869

Buishand Range 168.925 27.686 18.058 25.866 195.392

Buishand U 168.932 27.686 18.058 25.866 195.396

Strucchange 41.695 28.470 31.745 29.943 48.626

e.divisive 63.386 42.512 31.793 34.233 41.939

bfast 530.720 117.268 52.393 137.986 567.431

wbs 57.446 30.551 39.533 31.403 65.199

AdaptiveCpt 169.403 27.686 18.058 25.866 195.630

RMSE LACPD 6.237 6.114 5.407 7.601 6.354

Pettitt 16.052 6.083 4.186 5.121 17.355

Buishand Range 15.281 5.470 4.253 5.302 16.461

Buishand U 15.301 5.470 4.253 5.302 16.478

Strucchange 6.493 5.336 5.650 5.473 7.037

e.divisive 8.346 6.776 5.692 6.017 6.487

bfast 25.454 10.950 7.278 11.855 25.896

wbs 7.590 5.528 6.299 5.605 8.131

AdaptiveCpt 15.268 5.470 4.253 5.302 16.446

In the calculation of LACPD, we consider the Mann-Whitney test, m ¼ 100, and the adjustment technique

BY (Benjamini and Yekutieli 2001). Artificial abrupt changes of magnitude 1 unit are placed from times

40, 80, 100, 120, and 160 onward for 500 time series, of length 200, from the standard normal distribution
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magnitude curves obtained from LACPD wherein the

minimum p-value (maximum Z/magnitude) belongs to the

year 1898. Moreover, the p-value curve stays under the

significance level 0.05 from 1893 to 1911.

4.2 Normalised difference vegetation index
in Wadi As-Sirham Valley, Saudi Arabia

Figure 5 shows the the Wadi As-Sirham Valley, a desert

area in the north-west of the Al-Jouf region, in Saudi

Arabia. The agricultural activity over the last 3 decades has

dramatically changed the landscape of the valley.

According to Youssef et al. (2019), irrigated croplands

have expanded over an area of 2698km2 of desert, poten-

tially causing a severe depletion of groundwater from

nearby aquifers.

Fig. 2 The averaged Z, p-value, and magnitude of change obtained by

LACPD for all 500 simulated time series from the standard normal

distribution. The red and gold vertical lines show the actual change-

point and the interval estimation respectively, and the horizontal

brown line shows the significance level of 0.05

Fig. 3 Annual flow (in 108 m3) of the Nile river in Awsan, Egypt,

from 1871 to 1970. The red vertical line shows the detected change-

point by LACPD
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The analysis is conducted using satellites images cap-

tured by Landsat 4-8 missions during 1986-2019. The

scenes have a spatial resolution of 30m and a temporal

frequency of 16 days. The NDVI is a remote sensing index

that depicts the vegetation greenness on the surface of the

ground, so that its values oscillate between -1 and 1, where

values closer to 1 indicate greener vegetation. The Landsat

time series was additionally processed following common

practices (Zhu 2017), such as removing clouds and shad-

ows from the scenes based on the quality bands from each

mission and applying the maximum value compositing

technique (MVC) (Holben 1986) on a yearly basis. The

result is a time series of 34 images with the maximum

value of NDVI reached every year between 1986 and 2019.

The satellite data handling, from acquisition to processing,

was carried out in R using the RGISTools package, ver-

sion 1.0.2 (Pérez-Goya et al. 2020).

We then take a closer look at three crop fields (red

squares in Fig. 5) which began with their agricultural

activity in 1992, 2006, and 2014, and hereafter are referred

as fields 1, 2, and 3, respectively. We add that the agri-

cultural activity, after initiated, is permanent, and the crop

fields are surrounded by non-cultivated areas, which pre-

sumably enables a comparison between pixels with and

without change in the same image. We crop the agricultural

fields and reduce the image resolution to 60m to spatially

smooth the data. The resulting NDVI images of the crop

fields contain 750 pixels on average.

The LACPD procedure is applied to each pixel inde-

pendently in order to evaluate its practicality and automatic

window-selection process when facing data with different

changes or without change. Note that in each field there

might be changes of different magnitudes at different time

indexes, and consequently each pixel may demand a dif-

ferent choice of sliding window. Figure 6 shows the spatial

distribution of the change-point detection results for the

three agricultural fields. The rows represent the p-values

(top), time of change (centre), and magnitude of change

(bottom) correspond to each pixel in the NDVI Landsat

scenes, and the columns stand for the fields 1, 2, and 3. In

general, the p-value graphs show that the transformation

from bare into cultivated land is detected as significant (p-

value\0:05) by LACPD in all situations. The significant

pixels, coloured in blue, clearly delimit the extension of the

circular crop fields. Conversely, surrounding pixels in red

tones remain non-significant (p-value[ 0:05). Hence,

LACPD suitably detects the land use change.

The graphs of p-values (top row of Fig. 6) further show

that there are some significant pixels outside the circular

fields. A closer look into these areas reveals that the

majority of these pixels correspond to farms placed nearby

the crop fields (see Figs. 8 and 9). The middle row in Fig. 6

displays the detected time of change using a blue-to-yellow

Fig. 4 The p-value, Z, and

magnitude of change obtained

by the LACPD procedure for

annual flow of the Nile river in

Awsan, Egypt. The red and gold

vertical lines show the detected

change-point and the interval

estimation respectively, and the

horizontal brown line shows the

significance level of 0.05

Fig. 5 Region of the real data analysis. Maximum value yearly

composite for 2019 of the Normalised Difference Vegetation Index

(NDVI) at the Wadi As-Sirham Valley (Saudi Arabia). Red squares

delineate the crop fields used for further inspection: Field 1, 2, and 3

are located at the north, south-east, and west of the region. The

smaller graph on the top-right corner shows the location of the valley

within Saudi Arabia, and the Landsat tiles intersecting with the region

(path-rows: 171-39, 171-40, 172-39)
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continuous colour palette to denote years between 1986

and 2019. The first and second crop fields began their

activity in 1992 and 2006 respectively in contrast with the

farm pixels whose changes are generally detected around

2005 and 2008. This pattern indicates that the farms were

likely built during or after initiating the agricultural

activity. The last row in Fig. 6 shows the shift in NDVI

before and after the detected change, with greener pixels

for larger changes. The presence of farms is coherent with

a lower change in magnitude (close to 0.1, shown in brown

colour) compared to the crop fields (around � 0:6, in green

colour).

Also, there are significant pixels south-west and north-

west the second and third fields (Fig. 6, middle and right

columns). These pixels belong to sparsely vegetated areas

(see Figs. 9 and 10). These sparsely vegetated areas appear

in (dark) green and yellow for the second and third field

respectively, so apparently these areas started their activi-

ties at a later or similar time period than the circular crop

fields, considering that the crop fields began in 2006 and

2014 (middle row of Fig. 6). Their low plant density may

explain the slight change detected in NDVI (0 � 0:1)

(bottom row of Fig. 6), which is represented as white-

brown pixels. Some other significant pixels, especially

those nearby field 1, are difficult to explain. Field 1 is

separated from other crop fields by narrow strips of bare

land. Due to the small gap between the fields, these strips

might be affected by water runoff or the aerial water

Fig. 6 Spatial representation of the results from the LACPD

procedure using m ¼ 100 and the p-value adjustment technique BY,

in the valley of Wadi As-Sirham (Saudi Arabia). From top to bottom,

the rows display the p-values, time, and magnitude of change

respectively. Time is measured in years, and the magnitude refers to

the average discrepancy between the observations before and after the

detected change. The columns, from left to right, refer to the crop

fields 1, 2, and 3 established in 1992, 2006, and 2014. These map

were generated using the R package tmap (Tennekes 2018)
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transport from the irrigation system, maybe favouring the

growth of natural vegetation.

Figure 7 displays the evolution of the test statistic Z

(top), p-value (centre), and changing magnitude (bottom)

versus time for the three fields, and based on the pixels

within the crop fields. These pixels were segregated from

the rest using a twofold filter based on the significance

level (p-value \0:05) and magnitude of change (Delta

NDVI [ 0.6). The p-value curves decrease as they

approach to the year when agricultural activities started,

that are 1992, 2006 and 2014 for the first, second, and third

field respectively. The p-values stay below the significance

level during the periods 1991 � 1995, 2003 � 2011, and

2011 � 2016, and reach to their minimum values in 1992,

2006, and 2014. Lastly, the curves of the magnitude show

the average NDVI difference between the posterior and

prior legs of a moving sliding window. Magnitudes

increase as they approach to the actual time of change

(NDVI=0:6 � 0:7) and decrease thereafter.

As an additional step, within each field, we select some

arbitrary pixels corresponding to the highest delta NDVI,

infrastructures and/or secondary cultivated, and a zone with

no change. All considered methods in Sect. 3 are applied to

the time series of such pixels (see Fig. 11 and Table 6 in the

‘‘Appendix’’) according to which they correctly detect the

change-points within pixels with the highest delta NDVI.

However, for the pixels corresponding to non-cultivated

and/or secondary cultivated, LACPD seems to provide

more reliable results.

4.2.1 Detailed imagery

In this section, we inspect the high-resolution (\1m) RGB

satellite images of the agricultural fields from the Wadi As-

Sirham Valley, Saudi Arabia. These images are intended to

check and support the changes detected by LACPD out of

the circular croplands. These figures represent the border of

the area under analysis in light-blue, and adjacent farms or

sparsely vegetated areas in red. In every figure, the first

image (left panel) provides an overview of the study area,

followed by pictures of infrastructures and secondary cul-

tivated areas. The images below are part of the publicly

available ESRI World Imagery Collection (ESRI 2020).

Figure 8 shows the crop field number 1. The image on

the right-hand side displays the farm located north-east the

study area, which is detected as significant by LACPD.

Additionally, the image reveals two distinctive areas within

the crop field; an inner circle and an outer ring, which may

represent two crops with different planting densities. These

differences are visible in the results shown in Fig. 6 when

representing the time and magnitude of change in field 1

(first column).

Similarly, the middle image in Fig. 9 shows a closer

view of some building (probably a farm) that was built

north-east the agricultural land (field 2) and detected as

significant by the LACPD. This field also has an inner

circle which was also detected by LACPD. The image on

the right-hand side highlights what seems to be another

cultivated area south-west the cropland. This area shows

sparse and regularly spaced vegetation next to a building.

Finally, Fig. 10 displays the RGB images for the field

number 3. The area enclosed by the red rectangle located

north-west the study area shows a similar vegetation pat-

tern as the cultivated area adjacent to field 2. Some pixels

in this part of the images were detected as significant.

Moreover, the magnitude of change in the inner circle is

detected as quite lower than the rest of crop field.

Fig. 7 Temporal representation of the results from the LACPD

procedure using m ¼ 100 and the p-value adjustment technique BY,

in the valley of Wadi As-Sirham (Saudi Arabia). The left, centre, and

right columns correspond to the first, second, and third crop field

respectively. The rows, from top to bottom, show the average curves

for the test statistic Z, p-value, and magnitude of change for all the

significant pixels (p-value \0:05) within the crop fields (Delta NDVI

[ 0:6). The red and gold vertical lines show the established year of

fields and the interval estimation respectively, and the horizontal

brown line shows the significance level of 0.05
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5 Discussion and conclusions

The detection of change-points in time-ordered observa-

tions has been an important task in many fields such as

environmental applications due to the effect of change-

points on model fitting and prediction. In this paper, we

have proposed a locally adaptive search method based on

sliding windows to benefit from both local and global

distributional properties of observations since it might not

be the best to look at all data at once, especially when

dealing with long time series. However, the strength of

sliding-window-based approaches is generally affected by

the width of windows; wide windows mainly take global

information into account and as a result some changes may

dominate each other, whereas narrow windows only con-

sider local information. Note that very narrow windows

contain quite similar data since neighbours usually behave

similarly. Another general limitation with sliding-window-

based approaches is that depending on the width of win-

dows they may not be practical to look for changes near the

time series’ tails. Our proposed approach, LACPD, is based

on sub-sampling in the tails of time series and an iteration

of sliding windows of different widths to tackle the

aforementioned concerns. Since LACPD is based on

averaging over the results obtained from several sliding

windows, it could easily benefit from both wide and narrow

windows. Moreover, the use of sub-sampling in the time

series’ tails compensates for the lack of enough data

before/after a change-point near the tails. By doing so we

obtain discrepancy curves in terms of test statistics,

adjusted approximate p-values, and magnitudes, which are

then used to reveal change-points through both point and

interval estimation. Since the approximate p-values are

obtained through averaging, it is recommended to use non-

Fig. 8 Detailed high-resolution (\1m) colour images of the crop

field established in 1991. On the left, the image provides a general

overview of the region under analysis. The blue square delimits the

area under analysis. The red square highlights a farm located north-

east the crop field, which is seen in detail on the right-hand side

image. Satellite imagery belongs to the Esri World Imagery

Collection (ESRI 2020) and was displayed with the leaflet package

(Cheng et al. 2019)

Fig. 9 Detailed high-resolution (\1m) colour images of the crop

field established in 2006. The left hand-side image provides a general

overview of the region under analysis. The blue square delimits the

area under analysis. The red squares located north-east and south-west

the crop field highlight the location of a farm and a sparsely cultivated

area, respectively. Images on the centre and right-hand side shown

scenes zooming into the farm and adjacent cultivated areas. Satellite

imagery belongs to the Esri World Imagery Collection (ESRI 2020)

and was displayed with the leaflet package (Cheng et al. 2019)
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parametric tests within the machinery of LACPD due to the

fact that the the distribution of the test statistics of LACPD

may not coincide with that of the used test.

We have evaluated the performance of LACPD through

a simulation study, in which we have compared its per-

formance with various classical and recently developed

methods for detecting change-points. The simulation study

has confirmed the beneficial effects of combining the out-

come of several sliding windows and sub-sampling through

several criteria. In particular, we have seen that LACPD

generally has quite lower bias and type I error probability

than other alternative methods. In terms of power, LACPD

is slightly poor which might be partly caused by adjusting

p-values and/or our strict stop condition which is in favour

of low type I error probability, bias, and variance, rather

than high power. It dramatically gets even poorer with

respect to changes of small magnitudes that might be due to

the power of the implemented test (i.e. Mann–Whitney) as

well. Nevertheless, the sub-sampling and averaging

machinery of LACPD generally lead to outperforming

other methods in terms of bias, variance, and RMSE when

changes occur near the tails, whereas it shows a similar

performance (sometimes slightly poorer) as other methods

when changes happen near the middle of time series. In

addition, it has shown a good performance in measuring the

magnitude of change, based on the same adaptive sliding-

window and iteration used for change-point detection,

which is an information that could be quite relevant in real

applications. Besides, the performance of LACPD does not

depend on the time of change and/or the length of time

series as, in our simulation study and real data analyses, it

is already applied to time series of different length with

change-points at different time indexes.

Since LACPD has shown that a combination of sliding

windows of different size turns to a technique with a

reliable/acceptable performance with low bias and vari-

ance, it would be interesting to see if such an idea can

enhance the performance of other (fixed) sliding-window-

based methods (Yau and Zhao 2016; Ma et al. 2020), or

can be adapted for change-point prediction. Moreover,

implementing a more powerful test than Mann–Whitney or

tweaking the stop condition may improve its performance

in terms of power to reach a better trade-off between type I

error probability and power. Another relevant idea could

involve theoretical developments regarding p-values.

Although in this paper we focused on the detection of an

abrupt change in the average/mean of time series, it would

be also interesting and relevant to study the performance of

LACPD when looking for changes in variance, by using

alternative two-samples statistical tests such as the Bar-

tlett’s test (Bartlett 1937), the Levene’s test (Fox 2015) or

the F-test. Another idea would be adapting the LACPD

procedure for multiple/multivariate settings. Concerning

other possible applications, it could be also used to detect

outbreaks and/or change-points in time series of intensity

images of spatio-temporal point processes (cf. Chaudhuri

et al. (2021)), and/or trajectory data (cf. Moradi (2018)).

Finally we would like to highlight that the LACPD

procedure is accommodated in the R package LACPD

which together with our R codes to reproduce our results

(simulation study and real data analyses) will be available

at https://github.com/spatialstatisticsupna/LACPD.

Appendix: Simulation study

Magnitude 0.75 unit

See Table 4.

Fig. 10 Detailed high-resolution (\1m) colour images of the crop

field established in 2014. On the left, the scene provides a general

overview of the region under analysis. The blue and red squares

delimit the analysed zone and a sparsely cultivated area located north-

west the crop field. On the right, the low-density agricultural area is

seen in detail. Satellite imagery belongs to the Esri World Imagery

Collection (ESRI 2020) and was displayed with the leaflet package

(Cheng et al. 2019)
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Magnitude 0.5 unit

See Table 5.

Table 4 Mean power, Absolute

Bias (AB), variance (Var), and

Root-Mean-Square Error

(RMSE) at significance level

0.05

Criteria Method Change-point

40 80 100 120 160

Power LACPD 0.592 0.664 0.660 0.626 0.594

Pettitt 0.876 0.990 0.994 0.992 0.864

Buishand Range 0.808 0.996 0.990 0.982 0.798

Buishand U 0.872 0.994 0.994 0.996 0.882

Strucchange 0.908 0.982 0.990 0.984 0.902

e.divisive 0.890 0.978 0.986 0.972 0.874

bfast 0.208 0.138 0.122 0.144 0.178

wbs 0.896 0.968 0.982 0.980 0.874

AdaptiveCpt 0.908 0.992 1.000 0.994 0.920

AB LACPD 0.257 0.985 0.433 0.105 1.983

Pettitt 13.952 3.006 0.211 2.228 13.303

Buishand Range 12.545 2.627 0.251 2.725 12.664

Buishand U 13.248 2.696 0.330 2.649 13.930

Strucchange 2.634 0.206 0.073 0.608 2.820

e.divisive 7.046 2.990 1.824 1.744 3.826

bfast 16.125 4.087 1.869 4.194 17.685

wbs 2.094 0.498 0.316 0.482 1.943

AdaptiveCpt 12.676 2.488 0.314 2.650 13.007

Var LACPD 64.941 83.021 67.609 105.820 239.862

Pettitt 419.164 81.703 58.346 69.139 429.368

Buishand Range 385.967 84.829 58.463 64.676 394.013

Buishand U 386.251 84.824 58.460 64.671 394.795

Strucchange 121.655 114.893 101.510 111.328 164.010

e.divisive 315.080 129.026 128.597 113.110 326.612

bfast 693.956 218.369 141.721 315.601 845.564

wbs 205.357 157.622 158.236 158.307 203.541

AdaptiveCpt 357.351 74.218 58.459 64.936 352.076

RMSE LACPD 8.063 9.165 8.234 10.287 15.614

Pettitt 24.775 9.526 7.641 8.608 24.624

Buishand Range 23.310 9.578 7.650 8.491 23.545

Buishand U 23.701 9.596 7.653 8.467 24.266

Strucchange 11.340 10.721 10.075 10.569 13.113

e.divisive 19.098 11.746 11.486 10.777 18.473

bfast 30.886 15.332 12.050 18.254 34.034

wbs 14.482 12.565 12.583 12.591 14.398

AdaptiveCpt 22.760 8.967 7.652 8.483 22.831

In the calculation of LACPD, we consider the Mann-Whitney test, m ¼ 100, and the adjustment technique

BY (Benjamini and Yekutieli 2001). Artificial abrupt changes of magnitude 0.75 unit are placed from times

40, 80, 100, 120, and 160 onward for 500 time series, of length 200, from the standard normal distribution
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Normalised difference vegetation index in Wadi
As-Sirham Valley, Saudi Arabia

For each field, Fig. 11 shows the NDVI times series for

arbitrary pixels corresponding to the highest delta NDVI

(solid curves), infrastructures and/or secondary cultivated

(dotted curves), and a zone with no change (dashed

curves). Table 6 presents the detected change-points within

the displayed time series in Fig. 11. All methods correctly

detect the change-points with the highest delta NDVI. For

the change-points corresponding to the infrastructures and/

or secondary cultivated, generally there is no agreement

between methods. Bfast did not detect any change in such

pixels. Concerning the pixels with no change, only LACPD

and bfast successfully did not detect any change. The

performance of other alternative methods varies from one

Table 5 Mean power, Absolute

Bias (AB), variance (Var), and

Root-Mean-Square Error

(RMSE) at significance level

0.05

Criteria Method Change-point

40 80 100 120 160

Power LACPD 0.190 0.180 0.184 0.206 0.168

Pettitt 0.484 0.842 0.866 0.828 0.470

Buishand Range 0.424 0.768 0.792 0.740 0.406

Buishand U 0.514 0.868 0.890 0.872 0.500

Strucchange 0.526 0.744 0.746 0.698 0.468

e.divisive 0.544 0.720 0.734 0.674 0.430

bfast 0.052 0.038 0.040 0.030 0.054

wbs 0.524 0.708 0.726 0.686 0.468

AdaptiveCpt 0.564 0.878 0.902 0.892 0.536

AB LACPD 1.168 0.644 5.152 3.476 2.476

Pettitt 23.996 4.689 0.208 4.353 22.723

Buishand Range 19.769 4.201 0.465 3.911 21.856

Buishand U 25.113 4.482 0.004 4.525 26.512

Strucchange 7.373 1.691 0.614 1.060 7.389

e.divisive 18.560 7.334 4.312 1.154 17.696

bfast 21.692 3.579 5.200 6.867 24.074

wbs 8.531 0.935 0.350 1.044 5.675

AdaptiveCpt 21.156 4.134 0.055 4.316 22.701

Var LACPD 89.172 138.607 282.586 437.162 663.535

Pettitt 900.603 240.498 205.207 265.583 1041.163

Buishand Range 869.909 248.221 194.885 253.044 1053.024

Buishand U 879.045 248.063 194.575 251.768 1048.687

Strucchange 499.922 406.079 329.626 310.463 469.819

e.divisive 930.286 548.274 450.587 520.474 1261.804

bfast 735.828 558.139 341.260 668.782 1235.995

wbs 848.402 478.304 476.338 456.398 548.963

AdaptiveCpt 681.408 198.945 150.545 166.718 647.314

RMSE LACPD 9.515 11.791 17.582 21.195 25.878

Pettitt 38.424 16.201 14.327 16.868 39.465

Buishand Range 35.507 16.306 13.968 16.381 39.124

Buishand U 38.855 16.375 13.949 16.500 41.852

Strucchange 23.543 20.222 18.166 17.652 22.900

e.divisive 35.704 24.537 21.661 22.843 39.686

bfast 34.733 23.895 19.191 26.757 42.609

wbs 130.351 21.890 21.828 21.389 24.107

AdaptiveCpt 33.600 14.698 12.270 13.614 34.098

In the calculation of LACPD, we consider the Mann-Whitney test, m ¼ 100, and the adjustment technique

BY (Benjamini and Yekutieli 2001). Artificial abrupt changes of magnitude 0.5 unit are placed from times

40, 80, 100, 120, and 160 onward for 500 time series, of length 200, from the standard normal distribution
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field to another, showing a better performance for fields 2

and 3. Overall, apparently LACPD shows a more reliable

performance than other methods within pixels corre-

sponding to infrastructures and/or secondary cultivated and

non-cultivated zones.
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