RACSAM (2021) 115:159
https://doi.org/10.1007/513398-021-01102-7

ORIGINAL PAPER

®

Check for
updates

On the norm-preservation of squares in real algebra
representation

F. Albiac'® - O. Blasco? - E. Briem?

Received: 27 April 2021 / Accepted: 10 July 2021
© The Author(s) 2021, corrected publication 2021

Abstract

One of the main results of the article Gelfand theory for real Banach algebras, recently
published in [Rev R Acad Cienc Exactas Fis Nat Ser A Mat RACSAM 114(4):163, 2020] is
Proposition 4.1, which establishes that the norm inequality ||a?|| < |la®>+b%| fora, b € Ais
sufficient for a commutative real Banach algebra .A with a unit to be isomorphic to the space
Cr(K) of continuous real-valued functions on a compact Hausdorff space K. Moreover, in
this proposition is also shown that if the above condition (which involves all the operations
of the algebra) holds, then the real-algebra isomorphism given by the Gelfand transform
preserves the norm of squares. A very natural question springing from the above-mentioned
result is whether an isomorphism of .4 onto Cr(K) is always norm-preserving of squares.
This note is devoted to providing a negative answer to this problem. To that end, we construct
algebra norms on spaces Cr (/) which are (1 + €)-equivalent to the sup-norm and with the
norm of the identity function equal to 1, where the norm of every nonconstant function is
different from the standard sup-norm. We also provide examples of two-dimensional normed
real algebras A where ||a?|| < k|la*>+b?%| foralla, b € A, for some k > 1, but the inequality
fails for k = 1.
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1 Introduction

The papers [2,3] show how certain very simple inequalities involving either the algebra norm
or the spectral radius imply that a real commutative unital Banach algebra is homomorphic,
via the Gelfand transform, to Cr(K), the algebra of all continuous real-valued functions on
a compact Hausdorff space C equipped with the usual norm,

I/ lloe.kc = max | (o).

In [3, Theorem 1.1] it is shown that if .4 is a commutative real Banach algebra with unit,
then the spectral radius r satisfies the inequality

r(a*) <r(a*+0b?), foralla,b e A, (1.1)
if and only if the Gelfand transform
A: A — Co(K), a<—a

maps into Cgr (K).
What happens if we just know that the spectral radius satisfies instead the (a priori weaker)
inequality
r(a®) < kr(@® + b, foralla, b € A, (1.2)

for some k > 1?7 The answer is that nothing new happens. Indeed, the fulfilment of condition
(1.2) for some k > 1 implies that the spectrum of any a € A is a subset of the real line
(see [2, Proposition 3.5]) and hence using [3, Theorem 1.2], we see that inequality (1.2) is
satisfied with k = 1.

In regards to isomorphisms we have the following.

Proposition 1.1 Let A be a commutative real algebra with unit. Suppose A is isomorphic to
Cr(K) for some compact Hausdorff space K. Then the spectral radius seminorm r on A is
equivalent to the algebra norm (hence in particular r defines a norm on A). Moreover, A
equipped with r is isometric to Cr(KC).

Proof Let | - || denote the norm on A. Suppose A : A — Cr(K) is an isomorphism and let
k and ki be constants so that

1
Ellall <A@ oo, < kllall, a € A.
For a in A we have
la" || < killA(@") oo c = k1l A(@)]I5g -

Taking the nth-root and letting » tend to infinity yields r(a) < ||A(a)| oo, k-
Conversely,

IA@5% c = 1A@) oo, < klla”I.

Taking the nth root and letting n tend to infinity yields |[A(a)lloo,xc < 7(a), so that
|A(@)|lo.xc = r(a) as claimed. 0

In this paper we shall be concerned with normed real algebras satisfying the corresponding
inequality (1.2), where the spectral radius is replaced by the algebra norm. Let us assign a
tag to such a class of real algebras.
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Definition 1.2 Suppose .4 is a commutative real Banach algebra with unit and let k > 1. We
will say that A satisfies property (A)g, to be denoted A € (A)y, if the following inequality
holds

lal® < klla> + b2||, a,b e A. (1.3)

In turn, we will say that A satisfies property (B)x, to be denoted A € (B)y, if

la®|l < klla* +b*|, a,be A. (1.4)

Of course, A € (A)y implies A € (B)k.

It was shown in [1, Proposition 3.3] that A € | J;~;(A) if and only if A € [ ;- (B)k.In
[1, Theorem 3.6] the authors also proved that if A e_Uk>1 (B)y then A is isomorﬁhic to the
algebra Cg () for some compact Hausdorff space K. The next example shows that .4 can be
isomorphic to Cr(K) and yet A ¢ | J;~ [ (B)x.

Example 1.3 Consider the algebra of matrices

A:[a:(g;):x,yek}

endowed with the norm on each a € A regarded as an operator on (R2, || - [l2). Since A is

two-dimensional, it is isomorphic to (R?, || - [leo). The matrix a = verifies a? = 0;

01
00
however, there is no k > 0 such that ||a||?> < k||a?||. This shows that A ¢ Ukzl(A)k =
Ukzl(B)k'

A natural question arises: Do we have a similar situation as with the spectral radius? i.e.,
does it hold that | ;- (A)x = (A)1 or ;=1 (B)x = (B)1? The answer to this question for
property (A)y is clearly negative. Recall that if A € (A)1, i.e.,

lal? < lla®> +b%l, a,be A, (1.5)

then A is isometrically isomorphic to the algebra Cr (K) for some compact Hausdorff space
K (see [4,5]). Hence it suffices to equip Cr(K) with some equivalent algebra norm.
On the other hand, the condition that A € (B)y, i.e.,

la®|l < lla® +b%l, a,be A, (1.6)

only guarantees that .4 is isomorphic to the algebra Cr (K) for some compact Hausdorff space
IC, although in general it needs not be isometric. In the example where A = Cr (K) equipped
with the algebra norm || f|| = | f T llco.xc + |~ loo.c the condition (1.6) is satisfied but .A
is not isometric to any Cr(K). However, we have the following extra information.

Proposition 1.4 (cf. [3, Proposition 4.1]) Let A be a commutative real Banach algebra with
unit. Then A € (B)1 ifand only if there exists a compact Hausdor{f space K and an R-algebra
isomorphism

A: A— Cr(K), a<a,
which preserves the norm of squares, i.e.,

1@ lloo,c = lla®ll, a € A
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The question arises whether an R-algebra isomorphism of A onto Cgr (K) is always norm-
preserving on squares.

As the alert reader might have guessed, if a commutative real Banach algebra with unit
A is isomorphic to a space Cr(K) for some compact Hausdorff space C then K must agree
with the set <I>]§ of all real homomorphisms of the algebra, and the isomorphism must be the
Gelfand transform (see [2, Remark 2.8]). So the above question will be answered negatively,
by constructing in Theorem 2.1 some algebra norm in Cr (K) equivalent to || - o0, x Which
does not preserve the norm of squares.

Of course the above result also exhibits an example of a real normed algebra A €
k=1 Bk \ (B)1. Now, Theorem 2.5 will allow us to produce a number of such exam-
ples simply by considering two-dimensional normed algebras .4 such that there exists v € A
with v2 = v and |lv|| > 1. We will prove this in the following section.

For notation and background we refer the reader to the recent article [3], which this note
aims to complement.

2 Main theorems

Theorem 2.1 Let K be a compact Hausdorff space with more than two points. For each € > 0
we can construct a norm || - ||¢ on Cr(K) with the following properties:

(i) Forall f inCr(K),
1 flloo,c = N flle < (1 +26)flloo,xc- 2.1
(ii) Forall f and g in Cr(K),
12 < A+l + &2 le. (2.2)
(iii) || f2lle > ||f2||oo,;cfor all functions f € Cr(K) such that f? is nonconstant.
Moreover, the constants 1 + 2¢ in (2.1) and 1 + € in (2.2) are sharp.

Proof For f € Cr(K) we define

1 flle = Il fllooc + € sup |f(ki) — f(ka)|.
k1#ka

It is clear that || - ||¢ is @ norm on Cgr (K) that satisfies
[ Fllooc = M flle =X +26) flloo, i, f € CrIK. (2.3)
Let us observe also that if f, g € Cr(K), and k1, ko € K with k1 # k»,

[f(k1)gk) — fka)g(ka)| < | f(k1) — fk)IIgk)] + | f (k2)llg (k1) — g(k2)]
<|fk) — fkDglloo,xc + lgk1) — gkl f oo, ic-

Hence,

I fglle = 1 fglloc,ic + € sup |f(ki)gkt) — f(k2)g(k2)l

k1#ky
<1 flloo,cliglloo,ic + € sup | fki) — fkDIlgloo,kc
k1#ka
+e€ sup |gk1) — gkl flloo.c < I fllellglle-

k17#ka
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The constant 1 + 2¢ in (i) is sharp since we can pick points k| # k; in K and a function
f € Cr(K) with || flleo,xc = 1 such that f(k;) = 1 and f (k) = —1. Therefore, || flle =
1+ 2e.

Now observe that if f € Cr(K) with 0 < f(k)
| flloo.c = 1 and g € Cr(K),

12 <A+ <A+ f* + &l < L+ F*+ g2 lle.

IA

1 then || flle < 1 + €. Thus, if

To see that the constant 1 4 € in the last inequality is sharp, choose f € Cr(K) with
0 < f < 1 taking the values 0 and 1, and g € Cr(K) such that f2 + g% = 1.

Finally, note that if f € Cr(K) is such that f' (k1) # f(k2) for some k1 # k» in K, then
1£2le > 11 loo.kc- O

We now give some results concerning the class (B)y for k > 1.
Proposition 2.2 Suppose A € (B)y for some k > 1. Then the formula
llall = Vila*ll, a €A,
defines a quasi-norm on A such that
llall < llall < k(1 +/llel)*llall. a € A.

Proof Of course, [|a|| < |la|| and clearly [|Aa|| = |A]lllall| for all A € R and a € A. The
triangle law of the quasi-norm follows easily as well:

lla + &lI* = ll(a + b)*|| < kli(a +b)* + (a — b)*|
= 2k|la® + b
< 2k([la®|| + [167]))
< 2k({llalll + 511D,

so that [la + bl < v2k(llall + ll611).
Let us now show that

lall < k(lllall +/llel)*, a € A. (2.4)
Indeed,
l4all = ll(a + ¢)* — (a — e)?||
<@+l +lla—e?|
= [la + ell’* + llla — ell?
< 4k(llalll + /lelD*.

If we plug ta in inequality (2.4) we obtain
tlall < k@lllall + /lel)*.

Therefore |||al|| = O implies ||a| < %||e|| for all + > 0 and so a = 0. This shows that |||-||| is
a quasi-norm. Finally, using homogeneity we also obtain from (2.4) that

lall <k +/lel)?llall, a € A

[m}
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Remark 2.3 Notice that if A € Ukzl (B)y then there does not exista € A\ {0} with % = 0.

Lemma 2.4 Let A be a commutative normed real algebra with unit e. The following are
equivalent:

(i) There exists u € A\ {0, e} such that u? =e.
(ii) There exists v € A\ {0, e} such that v* = v.

2

=eiff v2 =vforv=

Proof This follows readily since u et |

Theorem 2.5 Let A be a two-dimensional commutative real algebra with unit e of norm
llell = 1. Assume that there exists u € A\ {xe} such u?> = e. Then A € (B)|ju|- Moreover,

lull = 1 if and only if A is isometrically isomorphic to RZ, |- lloo)-
Proof Write v = ngT“andw_ E”.Hencev—w =u,v+w=ce, v2 =v, w?=wand

vw = 0. For each a € A we can write a = av + Bw. Therefore av = av and aw = Bw,
which gives
max{|a|, [B]} < llal.

a+ﬁ

On the other hand, since a = e+ < ﬂ u and ||u|| > 1 we obtain

lall = IIMII(@ + la ; ﬂ') < [lul| max{|el, [B]}.

Therefore
max{|al, |B]} < lla|l < |lull max{|a], |B]}. (2.5

To show that A € (B)”uH just notice that if « = av + Bw then a> = a>v + B%w. Hence, if
b =a'v+ p'wthen a? + b% = (& + (@)P)v + (8% + (B)?)w and we can write
la?|l < llull max{e?, g%}
< |lull max{e® + ()%, B> + (B))*}
< lulllla® + b7|.

Using also (2.5) we obtain that ||u|| = 1 if and only if ||a|| = max{|«|, |B]}. m]
Corollary 2.6 Let A be a two-dimensional commutative real algebra with unit e of norm
lel = 1. Assume that there exists v € A such that v¢ = v and ||v| > 1. Then A €
Uk=1(B \ (B)1.

Proof Takingu = 2v—einTheorem 2.5 we have that A € (B)|2y—|. Toshow that A ¢ (B)1,
if suffices to pluga = vand b = ¢ — v in (1.4), since [|a2|| = |[v|| > 1 = la> +b%|. O

Example 2.7 Let A be the algebra of all real-valued functions on a set X of two elements.
Let e denote the constant function 1 and u denote a function which takes the value 1 at one
of the points of K and —1 at the other. These two functions form a basis for A. Let A > 0
and for f = x1e + xpu define

£l = x4+ (4 + A)lx2].

If f takesthe values o and B thenx; = # andx, = #.Hence |x1]4]x2] = max{|«|, |B]}-
Thus the above expression is just the norm in Theorem 2.1 (with K having only two points)
fore = A/2.

Using Theorem 2.5 and Corollary 2.6 with v = ”ere we infer that (A, || - [x,1) € (B)144 \
(B)1 since |lullx,1 =1+ Aandso ||vx,1 =1 + 2 5> 1
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Let us now present some examples of norms on two-dimensional commutative real algebras
with a unit satisfying the properties in Corollary 2.6. The construction is inspired by examples
of two-dimensional Hilbert space operator algebras from [6].

Example 2.8 Let A be the set of matrices

X1 X
{a:( ! 2>:x1,xzeR}
X2 X1

with the usual matrix multiplication. For each A > 0 define

2 2 X1 X2
all, =+/x7 + x5+ Ax2|, a= cA
lallx =y} +x3 + Al .

It is easy to check that || - ||, is a norm.

Theorem 2.9 Let A, = (A, || - |I). Then Ay, is a normed algebra (i.e., || - ||, is submulti-
plicative) if and only if & > /2. Moreover, A; € (B)115 \ (B)1 forall » > /2.

Proof Assume first that A > +/2. Set

a=<X1 X2>’ b=<y1 yz)_
X2 X1 Y2 )1

We need to show that ||ab||, < |la|lx||]l,.- The case x2y, = 0 follows trivially since either

10
—\01
xp # 0 and y> # 0, so that it suffices to check the above inequality for

_(x1 (1
(1) 2= (),

where x, y € R\ {0}. Thus we need to show that

a = xje or b = yje where e and |la|| = |x1] or ||b]| = |y1]. We may assume that

\/(xy+1)2+(x+y)2+klx+y|§(v1+x2+k)( L+ y2 +2),

or, equivalently,

\/(1+x2)(1 + %) +4xy—\/(1 +x) A+ y) AW+ x24T+ y2 =[x + y[+2).

Since

VI4x2+/1+y2—|x+y[>0

it suffices to see that
4xy _ 2
VA + 21 +y2) +4xy + /A +xD)A+y?)

We may assume that xy > 0. Observe that

(2.6)

4xy 2xy
< <2
VA+) A+ D) +dxy + /A +2D)0 +32) ~ A +xD)A+y?)
which gives (2.6) for all A > /2.
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. . 1
Assume now that A is a normed algebra. In particular for a; = ( i ; ) we have ||a,2 Ix <
2 241 2t
T\ 2t 241

VA+22 442 < (V2414202 =200 <2+ 142242/ 1+12—0).

lla;||? for all # > 0. Since

we infer that

Therefore,

412 2),
VA+2)2 +4r2 — (1417 = <Vt
VI +12)2 +412 + (1 +12) N

Taking limits as t — oo gives 22> 2.

. (01 . 2 _ _(1/21)2
Finally, use that u = (1 0) satisfies u” = e and |lu||;, = 1+, and thatv = (1/2 172
satisfies v2 = v and ||v|| = 4 + % > /2 and invoke Theorem 2.5 and Corollary 2.6 to see
that Ay € (B)142 \ (B)1. D

We can set the above examples in a general scale.

Example2.10 Let A = R2andsete = (1,1) and u = (1, —1). Given a = xje + xou and
b = yie + y,u we have

ab = (x1y1 + x2y2)e + (x1y2 + x2y1)u.
LetA > 0and 1 < p < o00. Fora = xje + xou we define
llalln,p = (1, x2) | p + Alx2l, (2.7)

where, as usual, ||(x1, x2)[l, = (Ix1]7 + |x2/")/P for 1 < p < oo, and ||(x1, x2)[|le0 =
max{|x1], [x2]}.

Using Examples 2.7 and 2.8 we can enunciate the following result about the normed
algebra A = (R2, || - 5. p)-

Proposition 2.11 Let A be R? equipped with the norm || - ln,p defined in (2.7).

(i) If p=1then A € (B)14+1 \ (B)1 forall » > 0.
(ii) If p = 2 then || - ||, 2 is submultiplicative for all A > 2. Moreover, A € (B)142 \ (B)1
forall A > V2.

Proposition 2.12 Let A > 0. Then || - ||x 00 is a submultiplicative norm on R? if and only if
A > 1. Moreover, if A is R? equipped with the norm || - Ix,00, then A € (B)145 \ (B)1 for
A > L

Proof Assume that || - ||, oo is submultiplicative. If a = e¢ + u we have

2 2
lla=lln.00 = 2llallr.co = lall} o0

Hence 1 + A = |lallx,co > 2 andso A > 1.
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Assume now that A > 1. We only need to analyze the cases a = xe +u and b = ye + u.
We have

lallico =max{[x], 1} + A,
613,00 = max{|y|, 1} + 4, and
lablly,co = max{lxy + 1|, |x + y|} + Alx + y].
We want ||ably,co < llallx,c0llbllx, 005 1-€.s
max{|xy + 1], |x + y|} + Alx + y| < (max{|x|, 1} + 1) (max{|y[, 1} + 1)
Let us show that
max{|x||y] + 1, |x] + [y[} + A(lx] + [y]) < (max{|x]|, 1} + A) (max{]y|, 1} +2).

When |x| < 1 and |y| < 1 the right hand-side is equal to (1 + 1)? and the left hand-side is
at most 2 4 22, so the inequality holds.
Assuming |x| > 1 and |y| > 1 the inequality becomes

(Ixllyl + D 4+ A(x[ +1yD = (x| +2) (yl +2),

which also holds for A > 1.
In the case when |x| < 1 < |y| the inequality becomes

A+Dx+yD =A+1 Ay +2),

which follows again under the assumption of A > 1.
. . . _ +
To finish the proof we just need to apply Theorem 2.5 and Corollary 2.6 with v = 5*. 0
Proposition 2.13 Let A > O and 1 < p < 2. Then the norm || - ||;.,p is not submultiplicative.

Proof Assume that || - ||, , is submultiplicative. Then ||a2||;h1, < ||a||§ » fora = te +u and
t > 0. Therefore,

(P + 17 +@0P) " =@ + )P < 2P+ DP =242, (28)

Observe now that ¢, (1) = (17 + DYP —tis decreasing and 0 < ¢, (t) < 1. Hence the right
hand-side of (2.8) is bounded by A2 4 2. On the other hand,

lim ((2+ 1P + @0P)7 = @P + 1P
11— 00

(624 D7 + @) — (57 + D27

- 311}) 52

o (6207 @00 A s 4207 — (1 sy
s—0 s2=p

= OoQ.

This gives a contradiction, and so there is no A > 0 for which || - |5, , is submultiplicative. O

To analyze the case || - ||, for p > 2 we shall use the following lemma.

Lemma 2.14 Suppose p > 2. For (x, y) € R? put

®,(x,y) = (@y + DP + x +0P")" = P + D22 4+ 1)1/,
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Thenifx,y > 0,

p—1
®d,(x,y) < (1 + %) min{1, xy} + 27~ (min{x, y})>~". (2.9)

In particular
®,(x,y) <2F, x,y>0. (2.10)

Proof We will use the following elementary inequalities, where p’ denotes the conjugate
exponent of p, determined by the relation 1/p + 1/p’ = 1:

al/P — plip < Zbl/l’” a>b>0; (2.11)
uP —vP < puPYu—v), u>v>0; (2.12)
and
a4+ B — @+ p"P < minfa, B}, «, B> 0. (2.13)
Note that
xy+1>@Py? +1)l/r;
and
x4y =@ +yn)e,
so that

(xy + DP + (x + )P > (1 +xP)(1 + yP).
Hence, applying consecutively (2.11), (2.12), and (2.13) gives

©, (. y) < DTV ZCPYTH D+ G+ P =~ &P 437
= (Lt yP) VP (14 xP) 17

(xy + D7 xy + 1= (xPy? + 1)V/P))

1
<
ay)p/r

1
p—1 — (xP rl/p
+ Gyl (x+ P x+y— &P +y")'P))

1\ 1 1\"!
< <1 + —) min{l, xy} + (f + 7> min{x, y}
Xy x oy

1\?~! 2 p=1
<1+ — min{l, xy} + | —— min{x, y}.
Xy min{x, y}

Assume now that x, y > 1. Then, (2.9) and the condition p > 2 give ®,(x, y) < o2p—ly
2P=1 =27 forall x, y > 1. But since ®,(x,y) =D,(y,x)and D, (x, y) = deP(%, y) for
all x, y > 0, we obtain that ®,(x, y) <27 forall x, y > 0. ]

Proposition 2.15 For2 < p < oo set
Ap = sup P,(x,y).
x>0,y>0

Ap

J1+A+1

(1) If |l - NI, p is submultiplicative then ). >
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(ii) Ifr = 2P/2 then || - I, p is a submultiplicative norm on R? . In particular, if we consider
A = R? equipped with this norm then A € (B)14; \ (B)1 for all . > 2P/2,

Proof (i) Assume that [[ab|; , < llalls plblls,p fora = xe + u and b = ye + u with
x,y > 0. Then,
(Cy+ P + (e + )PP =P + DY P 4 DIP <
MEP+ DY —x + (P + DYP —y) 22,
In particular, using that (x? + DHYP — x < 1, we obtain
®p(x,y) <A +2x, x,y>0.

This gives that A> + 24 — A, > Oso that A > \/A, + 1 — 1.

(ii) Assume that A> > 27. Let @ = xje + yju and b = xze + you. If y;y» = 0 then
llabll.,p = llallx,plDllx, p- Hence we only need to check that |labll;, , < llallx,pllbll.,p for
a=xe+uand b = ye+ u withx,y > 0. Since ab = (xy + 1)e + (x + y)u, we must
equivalently show that

D,p(x,y) < MEP+DYP —x 4 (P + DV —y 4+ 0), (2.14)

which follows from (2.10).

We conclude the proof by applying again Theorem 2.5 with ||ul|;,, = 1 + A and Corol-

lary 2.6 with v = #, since

2P 4y 2Vp 4 opr/2
>
2 - 2

”U”)\,p: > 1.

[m}

Remark 2.16 We now define algebra norms on Cr(K) where K has more than two points.
Let p >2and A > 2p/2,
For an element f of Cr(K) put

I fllx.p =sup I flFls.ps (2.15)
F

where the supremum is taken over all two-point subsets F of ICand || f| ||, p is defined using
the construction of Example 2.7 and the definition in Example 2.10. In this definition there
are two possibilities for the function u, but both possibilities give the same norm because one
is minus the other.

Let us see that the supremum is actually obtained. Consider the function

P - P\ /P _
Fp,x(s,t):(‘f(S);f(t) +’f(s)2f(t) ) +‘M

which is continuous on IC x K.
If f € Cr(K) is nonconstant and A > 1, there exists (s, t) € K x IC with s # ¢ such that

f&O+ 10 +’f(S);f(t)’k

Ay

Fp.)»(sv t) Z

2 > max{| f (), | f ()]}

Hence || Flloo > [ f lloo-

The function F), ;, attains its largest value at a point (so, o) with so # fy. Set Fo = {so, to}.
Then the supremum in (2.15) is attained at || f| g, ||x, p-

The results shown previously extend to these infinite dimensional Banach algebras.
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