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Abstract

Starting from the notion of a multidistance, we formalize, through a suitable system of axioms, the concept of an inequality 
measure defined on a nonempty set with no additional structure implemented a priori. Among inequality measures, apart from 
multidistances we pay special attention to dispersions, and study their main features. Classical concepts will be generalized to this 
abstract setting. Multidistances are then revisited, and some new methods to generate them are implemented. A wide spectrum of 
interdisciplinary applications is outlined in the final section.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Many efforts have been focused on achieving axiomatic definitions for general concepts, avoiding a priori as-
sumptions or restrictions. In [6] it is provided an axiomatic definition of the concept of a general mean valid for 
any nonempty set, with no further assumptions or restrictions imposed a priori. The wide range of applications that 
come from the corresponding axioms for a general mean, jointly with new applications coming from a geometrical 
approach ([7]) suggested us to go further, now analyzing in the present manuscript some axiomatics to deal with 
inequality measures and related items.
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In the same line, there are some axiomatics for a particular but essential case of inequality measures, namely 
multidistances. In fact, the abstract concept of a multidistance was introduced in [17], having in mind the idea of 
generalizing the usual triangle inequality in metric spaces to a higher-dimensional setting. In several earlier works 
(see [15,22]) terms like n-distances and multimetrics were also introduced in certain contexts, but with a different 
meaning.

In a way, metric spaces are generalized so that instead of pairwise comparing elements of a nonempty set X through 
a distance d , the notion of a multidistance works, globally, with n-tuples (x1, . . . , xn) of elements that belong to set 
X, measuring how different or separated are the coordinates of that n-tuple. This is a typical situation in data analysis 
([4,5,8]).

Moving to a more general framework, it is also interesting to define on an abstract nonempty set X a suitable 
concept of inequality measure. Thus, given an n-tuple (x1, . . . , xn) ∈ Xn we wonder how its elements are scattered 
or concentrated, and how to measure it. It is an important task due to the nature of the different measurements, that 
are often disparate. Therefore, it is also crucial to distinguish and classify in a systematic way the different kinds of 
inequality measures (e.g., dispersions, multidistances) that can be considered (see e.g. [14,18,20]). Their properties 
should also be defined with rigor through a satisfactory axiomatics. Summarizing, the concept of an inequality measure 
should be as general as possible, to distinguish different features by adding suitable new axioms.

From the concept of an inequality measure it is possible to reach an axiomatics for dispersion measures by just 
adding a new axiom. Indeed, some axiomatics have already been introduced in the literature in particular contexts, but 
they use additional structures and are very restrictive (see e.g. [20]).

Thus, with the aim of providing axiomatics on an abstract nonempty set X for inequality measures, the present 
manuscript is organized accordingly, as follows: In Section 2 we give motivations about the constructions of suitable 
sets of axioms to deal with means and inequality measures on abstract sets. We introduce the corresponding axioms 
for general means and, analyzing the ones already given for multidistances, we also give axiomatics for inequality 
measures and dispersions. In Section 3 we furnish some historical background on inequality measures on the real line, 
paying attention to some axiomatics encountered in the literature. Then we analyze abstract inequality measures, and 
their main properties. In Section 4 we focus again on multidistances, introducing new procedures to generate them on 
metric spaces. Then we conclude with further comments and suggestions for future research.

2. Basic definitions

In [6] it is introduced an axiomatic definition of the concept of a general mean, valid for any nonempty set, with 
no further assumptions or restrictions imposed a priori. This definition is the following:

Definition 1. Let X be a nonempty set. A sequence of X-valued maps (Mn)
∞
n=1, where each Mn is defined on the 

Cartesian product Xn, is said to be a general mean if it satisfies the following axioms:

• GM1 (Anonymity-neutrality) Mn(x1, . . . , xn) = Mn(xσ(1), . . . , xσ(n)) for n ∈ N , (x1, . . . , xn) ∈ Xn and any per-
mutation σ of the set {1, . . . , n}.

• GM2 (Unanimity) Mn(x, . . . (n times) . . . , x) = x for any n ∈N and x ∈ X.
• GM3 (Compatibility) For any m, n ∈N and (x1, . . . , xm+n) ∈ Xm+n, it holds that

Mm+n(x1, . . . , xm+n) = Mm+n(x̄, . . . (m times) . . . , x̄, xm+1, . . . , xm+n),

where x̄ = Mm(x1, . . . , xm).

If (Mn)
∞
n=1 is a general mean of X, given k elements {x1, . . . , xk}, the element x̄ = Mk(x1, . . . , xk) ∈ X is usually 

called the mean of the elements x1, . . . , xk .

Once the concept of a general mean has been formalized, the next step to complete the panorama would be to 
extend the ideas initiated in [6], introducing a new system of axioms to deal with inequality measures, instead of 
means. In the same line, a set of axioms for multidistances has been introduced in [17] as follows:
2
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Definition 2. Let X be a nonempty set. A sequence of functions (In)
∞
n=1, with In : Xn → [0, +∞) is said to be a 

multidistance if it satisfies the following axioms:

• MD1 For any n ∈N and (x1 . . . , xn) ∈ Xn,

In(x1, . . . , xn) = 0 ⇔ x1 = . . . = xn.

In particular, I1(x) = 0 holds for every x ∈ X.
• MD2 For all n ∈N , (x1, . . . , xn) ∈ Xn and a permutation σ of {1, . . . , n} it holds that

In(x1, . . . , xn) = In(xσ(1), . . . , xσ(n)).

• MD3 For any n ∈N with n ≥ 2, and (x1, . . . , xn, y) ∈ Xn+1 it holds that

In(x1, . . . , xn) ≤
n∑

i=1

I2(xi, y).

Moreover, the sequence (In)
∞
n=1 is said to be a pseudo multidistance [17] if it satisfies the axioms MD2 and MD3 

above and a quasi multidistance if it satisfies MD1 and MD3.

3. Inequality measures

In this section different approaches to the concept and general properties of an inequality measure in different 
contexts are presented. In addition, inequality measures based on means and distances are introduced.

In an abstract level, we look for some idea of inequality or unalikeability ([13]) among the coordinates of n-tuples 
coming from an abstract set. Thus, an inequality measure is introduced in Definition 3. Notice that only the quite 
natural and unavoidable conditions are required.

Definition 3. Let X be a nonempty set. A sequence of functions (In)
∞
n=1, with In : Xn → [0, +∞) is said to be an 

inequality measure if it satisfies:

• IN1 (= MD1) (Identity of indiscernibles) For any n ∈N and (x1 . . . , xn) ∈ Xn,

In(x1, . . . , xn) = 0 ⇔ x1 = . . . = xn.

• IN2 (= MD2) (Anonymity-neutrality) For every n ∈ N , (x1, . . . , xn) ∈ Xn and any permutation σ of the set 
{1, . . . , n} it holds that

In(x1, . . . , xn) = In(xσ(1), . . . , xσ(n)).

Obviously, a multidistance is a particular case of an inequality measure. Note that classical concepts such as range, 
variance and percentiles satisfy the axioms IN1 and IN2 although they also satisfy other desirable properties. Thus, it 
makes sense to add a new axiom to formalize in an abstract setting the notion of a dispersion measure. Indeed, some 
axiomatics have already been introduced in the literature in particular contexts (see e.g. [20]), but using an additional 
structure.

On an abstract nonempty set X, with no structure given a priori, we will consider only three axioms to define a 
dispersion measure.

Definition 4. Let X be a nonempty set. A sequence of functions (In)
∞
n=1, with In : Xn → [0, +∞) is said to be a 

dispersion measure if it satisfies:

• DIS1 (= IN1 = MD1) (Identity of indiscernibles).
• DIS2 (= IN2 = MD2) (Anonymity-neutrality).
3
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• DIS3 (Replication invariance) For every n, m ∈N and (x1 . . . , xn) ∈ Xn, it holds that

In(x1, . . . , xn) =
Imn(x1, . . . (m times) . . . , x1, . . . , xn, . . . (m times) . . . , xn).

Note that it is easy to check that the axioms IN1, IN2, DIS3 and MD3 are independent and consistent.

3.1. Additional axioms to cope with special features of inequality measures

Apart from the four key axioms IN1, IN2, MD3 and DIS3, we recall a few others now that have deserved attention 
in the specialized literature, in particular when considering multidistances ([16,17,20,21]).

Definition 5. An inequality measure (In)
∞
n=1 on X is said to satisfy:

• FAI (Fairness) if for every n ∈N and every x, y ∈ X such that x 	= y, it holds that

In+2(x, . . . (n + 1 times) . . . , x, y) < In+1(x, . . . (n times) . . . , x, y).

• ACC (Accumulativeness) if for every n ∈N and every x, y ∈ X such that x 	= y, it holds that

In+2(x, . . . (n + 1 times) . . . , x, y) > In+1(x, . . . (n times) . . . , x, y).

• STR (Strength) if for every n ∈ N, n ≥ 2, any i0 = 1 < i1 < . . . < ik < ik+1 = n and (x1, . . . , xn) ∈ Xn it holds 
that

In(x1, . . . , xn) ≤
k∑

j=1

I(ij −ij−1)+(ik+1−ik)(xij−1+1, . . . , xij , xik+1, . . . , xik+1),

• REG (Regularity) if for every n ∈N, n ≥ 2, and (x1, . . . , xn, y) ∈ Xn+1 it holds that

In(x1, . . . , xn) ≤ In+1(x1, . . . , xn, y).

Remark 1. Fairness does not imply, in general, that for any n, m ∈ N and (x, y1, . . . , ym) 	= (x, . . . (m + 1
times) . . . , x) ∈ Xm+1 it holds that

In+m+1(x, . . . (n + 1 times) . . . , x, y1, . . . , ym) <

In+m(x, . . . (n times) . . . , x, y1, . . . , ym).

As an example, consider (σn)
∞
n=1, where σn(x1, . . ., xn) is the sample standard deviation of {x1, . . . , xn}. It is straight-

forward to prove that it constitutes a fair inequality measure on R. Here we may notice that

σ2(0,100) = 70.71;σ3(0,100,100) = 57.73;σ4(0,100,100,100) = 50.

But σ5(0, 0, 100, 100, 100) = 54.77.

Let us see now some examples concerning inequality measures and the properties they fulfill.

Example 1.

(i) It can be straightforwardly proved that the sequence (In)
∞
n=1, where, for any n ∈ N and (x1, . . . , xn) ∈ Rn, the 

number In(x1, . . . , xn) is the sample variance (respectively: the sample standard deviation, the mean absolute 
difference) of the set {x1, . . ., xn}, is indeed a dispersion measure on R, in the sense of Definition 4.
4
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(ii) Assume that X has at least three different elements, say a, b, c. Given (x1, . . . , xn) ∈ Xn let

In(x1, . . . , xn) =
n−1∑

i=1

n∑

j=i+1

δ(xi, xj ),

where δ(x, y) = 1 for every x 	= y ∈ X, and δ(z, z) = 0 (z ∈ X). The sequence (In)
∞
n=1 is an inequality measure 

on X. But it is not a multidistance since

I3(a, b, c) = δ(a, b) + δ(a, c) + δ(b, c) = 3,

but

I2(a, a) + I2(b, a) + I2(c, a) = 0 + 1 + 1 = 2.

(Similar examples appear in [17,21]).
(iii) Let (λn)

∞
n=1 denote a strictly decreasing sequence of positive real numbers. Define (In)

∞
n=1 by declaring that

In(x, . . . (n times) . . . , x) = 0

for every x ∈ X, n ∈ N and

In(x1, . . . , xn) = λn

if (x1, . . . , xn) 	= (x1, . . . (n times) . . ., x1).
A direct checking shows that (In)

∞
n=1 is a strong and fair multidistance that is not regular. Notice also that it fails 

to accomplish the replication invariance axiom DIS3. Thus, it is not a dispersion measure.
(iv) Consider In(x, . . . (n times) . . . , x) = 0 for any x ∈ X, n ∈ N ,

and

In(x1, . . . , xn) = 1

if (x1, . . . , xn) 	= (x1, . . . (n times) . . . , x1).
In this case the sequence (In)

∞
n=1 satisfies axioms IN1 to MD3 as well as STR and REG. However it does not 

satisfy FAI, nor ACC. (See also [17], p. 94).
(v) Let (X, d) be a metric space (i.e.: X is a nonempty set endowed with a distance d). Define a sequence (In)

∞
n=1 of 

functions In : Xn → [0, +∞), as follows:
First we declare that I1(x) = 0 for all x ∈ X;
I2(x1, x2) = d(x1, x2) for every x1, x2 ∈ X.
Given (x1, x2, x3) ∈ X3, we define

I3(x1, x2, x3) = 1

2
· [d(x2, x3) + d(x1, x3) + d(x1, x2)].

Given now (x1, x2, x3, x4) ∈ X4, define

I4(x1, x2, x3, x4) =1

3
· [I3(x2, x3, x4) + I3(x1, x3, x4) + I3(x1, x2, x4)

+ I3(x1, x2, x3)].
Recurrently, given (x1, x2, . . . , xn) ∈ Xn, define

In(x1, x2, . . . , xn) = 1

n − 1
·

n∑

i=1

In−1(x1, . . . , xi,−1, xi+1, . . . , xn).

By definition, and taking into account that d is a distance, it is straightforward to see that (In)
∞
n=1 satisfies IN1 

and IN2.
5
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Now observe that, by induction, given n ≥ 3 ∈N we get that, for any x ∈ X, it holds

In(x1, x2, . . . , xn) = 1

n − 1
·

n∑

i=1

In−1(x1, . . . , xi−1, xi+1, . . . , xn) ≤

1

n − 1
·

n∑

i=1

[
n∑

j 	=i, j=1

d(xj , x)] = 1

n − 1
·

n∑

i=1

(n − 1)d(xi, x) =
n∑

i=1

d(xi, x).

Therefore (In)
∞
n=1 also satisfies MD3, and consequently it is a multidistance on X.

3.2. Inequality measures based on means and distances

A glance at the classical examples of inequality measures on the real line shows that most of them need some 
suitable mean defined a priori. Moreover, it is also usual to have at hand some distance (e.g. the Euclidean one on R).

Thus, a distance defined a priori on a nonempty given set X could help our intuition when dealing with inequality 
measures. In fact, from a distance we can easily define an inequality measure, as the following Proposition 1 states.

Proposition 1. Let (X, d) denote a metric space. Given (x1, . . . , xn) ∈ Xn, define

In(x1, . . . , xn) =
n−1∑

i=1

n∑

j=i+1

d(xi, xj ).

The sequence (In)
∞
n=1 is an inequality measure on X. In general, neither it is a dispersion measure nor a multidis-

tance.

Proof. It is clear that (In)
∞
n=1 satisfies the axioms IN1 and IN2. Given a 	= b ∈ X, notice that

I4(a, a, b, b) = 4 · d(a, b) > d(a, b) = I2(a, b).

So (In)
∞
n=1 does not satisfy DIS3.

Moreover, if X has three different elements a, b, c, we get

I3(a, b, c) = d(a, b) + d(a, c) + d(b, c) > d(a, b) + d(a, c) =
0 + d(b, a) + d(c, a) = d(a, a) + d(b, a) + d(c, a).

Hence (In)
∞
n=1 does not satisfy MD3, either. �

Remark 2. Given an abstract nonempty set X with no structure defined a priori, we may endow X, by default, with 
the trivial metric δ defined by δ(x, y) = 1 ⇔ x 	= y, and δ(z, z) = 0, for all x, y, z ∈ X.

In addition, we could also discuss about the necessity of having some kind of a mean, previously defined on a 
nonempty given set X. To this extent, we shall consider on X general means, in the sense of Definition 1.

Proposition 2. Let (X, d) be a metric space that is endowed with a general mean (Mn)
∞
n=1. Given (x1, . . . , xn) ∈ Xn, 

define

In(x1, . . . , xn) =
n∑

i=1

d(xi,Mn(x1, . . . , xn)).

The sequence (In)
∞
n=1 is an inequality measure on X. In general, it fails to be a dispersion measure or a multidistance.

Proof. It is clear that (In)
∞
n=1 satisfies IN2.

Moreover In(x1, . . . , xn) = 0 ⇔ d(xi, Mn(x1, . . . , xn)) = 0 for all 1 ≤ i ≤ n. Since d is a distance, this is equivalent 
to say that xi = Mn(x1, . . . , xn) holds for every 1 ≤ i ≤ n. Hence, (In)

∞ satisfies IN1.
n=1

6
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By the properties of a general mean (see Theorem 3.3 in [6]), for every n, m ∈ N and (x1 . . . , xn) ∈ Xn, it holds 
that

Mn(x1, . . . , xn) = Mmn(x1, . . . (m times) . . . , x1, . . . , xn, . . . (m times) . . . , xn).

Thus, we have that

Imn(x1, . . . (m times . . . , x1, . . . , xn, . . . (m times) . . . , xn) =

m ·
n∑

i=1

d(xi,Mn(x1, . . . , xn)) = m · In(x1, . . . , xn).

Thus, if m, n > 1 and (x1, . . . , xn) 	= (x1, . . . (n times) . . . , x1), we see that

Imn(x1, . . . (m times) . . . , x1, . . . , xn, . . . (m times) . . . , xn) 	= In(x1, . . . , xn).

Therefore (In)
∞
n=1 does not accomplish the axiom DIS3.

To see that, in general, (In)
∞
n=1 may fail to be a multidistance, consider the following example: Let X = R and 

d(a, b) = |a − b| (a, b ∈R). Endow R with the mean given by Mn(x1, . . . , xn) = max{x1, . . . , xn} for any n ∈N and 
(x1, . . . , xn) ∈ Xn. Now observe that

I3(0,1,4) = |0 − 4| + |1 − 4| + |4 − 4| = 7,

whereas

I2(0,0) + I2(1,0) + I2(4,0) = 0 + |1 − 1| + |0 − 1| + |4 − 4| + |0 − 4| = 5.

Therefore (In)
∞
n=1 does not satisfy MD3. �

Paying attention to some of the classical measures, we introduce now some definitions to generalize those classical 
concepts to an abstract setting in which we deal with a metric space X endowed with a general mean.

Definition 6. Let (X, d) be a metric space endowed with a general mean (Mn)
∞
n=1. Consider a sequence (In)

∞
n=1, 

where In maps Xn into [0, +∞).

(i) (In)
∞
n=1 is said to be the variance of (x1, . . . , xn) ∈ Xn if

In(x1, . . . , xn) = 1

n
·

n∑

i=1

(d(xi,Mn(x1, . . . , xn)))
2

holds for every (x1, . . . , xn) ∈ Xn,
(ii) (In)

∞
n=1 is called the average distance of (x1, . . . , xn) ∈ Xn provided that

In(x1, . . . , xn) = 1

n2 ·
n∑

i=1

n∑

j=1

d(xi, xj )

holds for any (x1, . . . , xn) ∈ Xn.

Proposition 3. Let (X, d) be a metric space, (Mn)
∞
n=1 a general mean defined on X and (In)

∞
n=1 its associated 

variance. Then (In)
∞
n=1 is a dispersion measure on X. In general, it is not a multidistance.

Proof. By its own definition it is plain that (In)
∞
n=1 accomplishes IN2.

Furthermore, if In(x1, . . . , xn) = 0 it follows that d(xi, Mn(x1, . . . , xn)) = 0 holds for every i = 1, . . . , n. Therefore 
x1 = . . . = xn = Mn(x1, . . . , xn). Conversely, if x1 = . . . = xn holds, then Mn(x1, . . . , xn) = xi (i = 1, . . . , n) by GM2. 
Hence d(xi, Mn(x1, . . . , xn)) = 0 holds for any i = 1, . . . , n. Therefore In(x1, . . . , xn) = 0 and (In)

∞
n=1 also satisfies 

IN1.
7
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Finally, using the properties GM1 to GM3 of the general mean we obtain that

Mmn(x1, . . . (m times) . . . , x1, . . . , xn, . . . (m times) . . . , xn) =
Mmn(x1, . . . , xn, . . . (m times) . . . , x1, . . . , xn) =

Mmn(x̄, . . . (mn times) . . . , x̄) = x̄,

with x̄ = Mn(x1, . . . , xn). Hence, it follows that

Imn(x1, . . . (m times) . . . , x1, . . . , xn, . . . (m times) . . . , xn) =
1

mn

n∑

i=1

[m · d(xi, x̄)] = 1

n

n∑

i=1

d(xi, x̄) = In(x1, . . . , xn).

So, (In)
∞
n=1 also satisfies the replication invariance axiom DIS3.

Consequently, it constitutes a dispersion measure on X.
To see that (In)

∞
n=1 may fail to be a multidistance, let X =R and d(a, b) = |a −b| (a, b ∈R). As in Proposition 2, 

we consider the general mean

Mn(x1, . . . , xn) = max{x1, . . . , xn}
for any n ∈N and (x1, . . . , xn) ∈ Xn. Now notice that

I3(0,1,5) = 1

3
· (|0 − 5|2 + |1 − 5|2 + |5 − 5|2) = 41

3
,

whereas

I2(0,0) + I2(1,0) + I2(5,0) = 1

2
· (0 + |1 − 1|2 + |0 − 1|2 + |5 − 5|2 + |0 − 5|2) = 13.

But 41
3 > 13. Therefore (In)

∞
n=1 does not satisfy MD3. �

Remark 3. The dispersion measure considered in Proposition 3 may fail to be fair. Consider the following example: 
Let X = R and let δ be the trivial distance. Endow R with Mn. Notice that I2(0, 1) = 1 = I3(0, 0, 1) = I4(0, 0, 0, 1), 
and so on. Hence (In)

∞
n=1 does not satisfy the condition of fairness.

Proposition 4. Let (X, d) be a metric space. Define

In(x1, . . . , xn) = 1

n2 ·
n−1∑

i=1

n∑

j=i+1

[d(xi, xj )]2

for any (x1, . . . , xn) ∈ Xn. Then (In)
∞
n=1 is a fair dispersion measure. However, it may fail to be a multidistance.

Proof. By definition, (In)
∞
n=1 satisfies IN2.

The fact In(x1, . . . , xn) = 0 implies that d(xi, xj ) = 0 holds for every i < j with i, j ∈ {1, . . . , n}. Hence x1 = . . . =
xn. Conversely, if x1 = . . . = xn, we have that d(xi, xj ) = 0 holds for all i, j ∈ {1, . . . , n} and In(x1, . . . , xn) = 0. Thus 
(In)

∞
n=1 also accomplishes IN1.

Moreover, given m, n ∈N it is easy to see that

Imn(x1, . . . (m times) . . . , x1, . . . , xn, . . . (m times) . . . , xn) =
1

m2n2

n−1∑

i=1

n∑

j=i+1

m2 · (d(xi, xj ))
2 = 1

n2

n−1∑

i=1

n∑

j=i+1

(d(xi, xj ))
2 = In(x1, . . . , xn).

Thus, (In)
∞
n=1 satisfies DIS3 and is a dispersion measure.

Finally, given n ∈N and x 	= y ∈ X, it follows that

In+2(x, . . . (n + 1 times) . . . , x, y) = n + 1
2 · (d(x, y))2.
(n + 2)

8
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But n+1
(n+2)2 < n

(n+1)2 . Thus

n + 1

(n + 2)2 · (d(x, y))2 <
n

(n + 1)2 · (d(x, y))2 = In+1(x, . . . (n times) . . . , x, y).

So (In)
∞
n=1 is fair.

To prove that (In)
∞
n=1 may fail to be a multidistance, consider on R the usual metric. Notice then that I2(0, 10) =

100
4 = 25, whilst

I2(0,5) + I2(10,5) = 25

4
+ 25

4
= 25

2
.

So (In)
∞
n=1 does not satisfy MD3. �

4. Multidistances revisited

In this section we go further on the study of some general results related to multidistances.

4.1. Further results on multidistances

Proposition 5. Let (X, d) be a metric space and (In)
∞
n=1 denote its average distance. Then (In)

∞
n=1 is a fair dispersion 

measure and a multidistance.

Proof. To prove that (In)
∞
n=1 is a fair dispersion measure, first observe that

1

n2 ·
n−1∑

i=1

n∑

j=i+1

d(xi, xj ) = 1

2
· 1

n2 ·
n∑

i=1

n∑

j=1

d(xi, xj ) = 1

2
In(x1, . . . , xn).

Then repeat the arguments in the proof of Proposition 4, but using always d(xi, xj ) instead of (d(xi, xj ))
2. Given 

(x1, . . . , xn, y) ∈ Xn+1, we have that

In(x1, . . . , xn) ≤ 2

n2 ·
n−1∑

i=1

n∑

j=i+1

[d(xi, y) + d(xj , y)] = 2n − 2

n2 ·
n∑

i=1

d(xi, y) =

4n − 4

n2 ·
n∑

i=1

I2(xi, y).

If n > 2 we have that 4n − 4 < n2, so that

In(x1, . . . , xn) ≤
n∑

i=1

I2(xi, y).

If n = 2, by definition of I2 it is clear that I2(x1, x2) ≤ I2(x1, y) + I2(x2, y) because d is a distance. Finally, if n = 1, 
I1(x1) = 0 ≤ I2(x1, y) = d(x1,y)

2 . Thus we conclude that (In)
∞
n=1 satisfies the generalized triangle inequality MD3, 

too. So it is a multidistance on X. �
Definition 7. Let (X, d) denote a metric space. Let α = (αn)

∞
1 stand for a sequence of positive real numbers. Consider 

the sequence of functions (In)
∞
n=1, with In defined on Xn and taking values on [0, +∞), given by:

(i) I1(x) = 0 for any x ∈ X,
(ii) In(x1, . . . , xn) = αn · ∑n−1

i=1
∑n

j=i+1 d(xi, xj ), for all (x1, . . . , xn) ∈ Xn.

This sequence (In)
∞
n=1 is said to be the basic sequence associated to α and α is said to be the generator of this basis 

sequence.
9
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We will see at the next proposition that, under some conditions on the generator, we can obtain a multidistance 
from any distance d such that it coincides with d for the case n = 2 just considering the basic sequence associated to 
the generator and the distance. Notice that d will not be any given distance fixed a priori, but, instead, the property 
holds true for every distance d (all at the same time, with the same construction of the corresponding basic sequence 
of functions). This nuance is crucial.

Proposition 6. Let X be a set with at least two different points. Then, for every distance d defined on X, the basic 
sequence of functions (In)

∞
n=1 associated to a generator α and the distance d is a multidistance such that I2 agrees 

with d if, and only if, α2 = 1 and 0 < αn ≤ 1
n−1 (n ≥ 2) hold.

Proof. Suppose that (In)
∞
n=1 is a multidistance for any metric d on X, and I2(x1, x2) = d(x1, x2) for all (x1, x2) ∈ X2. 

In particular, for any given x1 	= x2 ∈ X we have that 0 < d(x1, x2) = I2(x1, x2) = α2d(x1, x2). So α2 = 1.
Let us suppose that αk > 1

k−1 holds for some k ≥ 2. From the statement of this result, we have that the property on 
these constructions must hold for every distance d , all at the same time, so it must hold also for the trivial distance δ.

Given x1 	= x2 ∈ X we get

Ik(x1, . . . (k − 1 times) . . . x1, x2) = αk · [(k − 1)δ(x1, x2)] = (k − 1)αk > 1.

However, since (In)
∞
n=1 is a multidistance,

Ik(x1, . . . (k − 1 times) . . . x1, x2) ≤
δ(x1, x1)+ . . . (k − 1 times) . . . δ(x1, x1) + δ(x1, x2) = 1.

This leads to a contradiction, so αn ≤ 1
n−1 holds for every n > 2.

Moreover, if αk ≤ 0, given x1 	= x2 ∈ X we get that

Ik(x1, . . . (k − 1 times) . . . x1, x2) = αk · [(k − 1)d(x1, x2)].
Since d(x1, x2) > 0 because d is a distance, it follows that

Ik(x1, . . . (k − 1 times) . . . x1, x2) ≤ 0.

Actually, since Ik takes values in [0, +∞) we arrive at

Ik(x1, . . . (k − 1 times) . . . x1, x2) = 0.

This contradicts the fact of (In)
∞
n=1 satisfying IN1.

For the converse observe that, given n ∈N, n ≥ 2, it holds that

n−1∑

i=1

n∑

j=i+1

d(xi, xj ) = 1

2
·

n∑

i,j=1

d(xi, xj ),

and this expression does not depend on the order in which the coordinates xi (i = 1, . . . , n) appear in the n-tuple 
(x1, . . . , xn). Thus the basic sequence of functions satisfies the unanimity-anonymity axiom IN2.

Given x1, x2 ∈ X we observe now that

I2(x1, x2) = α2 · d(x1, x2) = d(x1, x2),

because α2 = 1. Notice also that, by definition,

In(x1, . . . , xn) = 0 ⇔ x1 = . . . = xn,

since d is a distance and αn > 0 for every n ≥ 2. Thus the basic sequence accomplishes the identity of indiscernibles 
IN1.

Finally, given n ∈N and (x1, . . . , xn, y) ∈ Xn+1, we have that

In(x1, . . . , xn) = αn ·
n−1∑ n∑

d(xi, xj ).
i=1 j=i+1

10
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Given i, j ∈ {1, . . . , n} we have that d(xi, xj ) ≤ d(xi, y) + d(xj , y) since d satisfies the triangle inequality. Therefore, 
since αn ≤ 1

n−1 , we get:

In(x1, . . . , xn) ≤ αn ·
n−1∑

i=1

n∑

j=i+1

[d(xi, y) + d(xj , y)] =

αn · (n − 1) ·
n∑

i=1

d(xi, y) ≤
n∑

i=1

d(xi, y).

Hence (In)
∞
n=1 satisfies the generalized triangle inequality MD3, too. So it is a multidistance. �

Remark 4. Each point that belongs to

F(x1, . . . , xn) = {x ∈ X :
n∑

i=1

d(xi, x) ≤
∑

n
i=1d(xi, a) for every a ∈ X}

is said to be a Fermat point of the set {x1, . . . , xn} Fermat points may fail to exist: Consider on the plane R2 the points 
x1 = (0, 0), x2 = (1, 0) and x3 = ( 1

2 , 
√

3
2 ). These points are the vertices of an equilateral triangle whose barycenter 

is the point B = ( 1
2 , 

√
3

6 ). It is well-known that, in the real plane R2 endowed with the usual Euclidean distance, B
is also the Fermat point of the set {x1, x2, x3}. However, if we consider X = R2 \ {B}, endowed with the restriction 
of the usual distance (i.e.: d(a, b) = |a − b| (a, b ∈ X)), now the set {x1, x2, x3} has no Fermat point in X. As a 
consequence, the statement of Proposition 2 in [17] –whose proof is omitted in that paper– is false in general. In order 
for Fermat points to exist on a metric space (X, d) we need some additional topological conditions (e.g. compactness). 
In addition, a Fermat point, if any, is not unique in general. For instance, on X = [0, 1] ⊂ R endowed with the usual 
distance, any x such that 0 ≤ x ≤ 1 is a Fermat point of the set {x1 = 0, x2 = 1}.

Proposition 7. Let (X, d) be a compact metric space. Then any function f : X → R that is continuous with respect to 
metric topology on X and the usual on R, attains its maximum and minimum. Consequently, Fermat points exist for 
any n ∈N , (x1, . . . , xn) ∈ Xn.

Proof. For the existence of extrema, see e.g. [11], Theorem 2.3 on p. 227. Then notice that the map f : X → R given 
by f (x) = d(x1, x) + . . . + d(xn, x) is continuous (see e.g. [11], Theorem 4.3 on p. 185). �
Proposition 8. Let (X, d) be a compact metric space. Given (x1, . . . , xn) ∈ Xn, define

In(x1, . . . , xn) =
n∑

i=1

d(xi,Fn(x1, . . . , xn)),

where Fn(x1, . . . , xn) is a Fermat point of {x1, . . . , xn}. Then (In)
∞
n=1 is a multidistance on X, and I2 coincides with 

d . However, (In)
∞
n=1 is not a dispersion measure, in general.

Proof. The fact of (In)
∞
n=1 being an inequality measure can be proved as in Proposition 2.

Concerning MD3, for any given (x1, . . . , xn, y) ∈ Xn+1 notice that considering the definition of a Fermat point

n∑

i=1

d(xi,Fn(x1, . . . , xn)) ≤
n∑

i=1

d(xi, y).

Therefore (In)
∞
n=1 is actually a multidistance on X.

Moreover, given x1, x2 ∈ X we have that d(x1, x2) ≤ d(x1, z) + d(x2, z) for every z ∈ X, since d is a distance. 
This is true, in particular, for any Fermat point of the set {x1, x2}. Hence d(x1, x2) ≤ I2(x1, x2). Also, I2(x1, x2) =
minz∈X[d(x1, z) + d(x2, z)] ≤ d(x1, x2) + d(x2, x2) = d(x1, x2). Therefore I2 coincides with d .

To see that, in general, (In)
∞
n=1 is not a dispersion measure, consider the unit interval [0, 1] ⊂R endowed with the 

usual distance d . Now notice that I2(0, 1) = 1 but I4(0, 0, 1, 1) = 2. So (In)
∞ does not satisfy DIS3. �
n=1

11
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Definition 8. Let (X, d) be a compact metric space. The multidistance (In)
∞
n=1 defined in Proposition 8 is said to be 

the Fermat multidistance associated to d .

Remark 5. The concept of a Fermat multidistance was launched and analyzed in Section 3 of [17].

4.2. Generating multidistances on metric spaces

Given a multidistance (In)
∞
n=1 on a nonempty set X we immediately notice that I2 is a distance on X (see also [17]). 

Due to this fact, in this section we will start with a metric space (X, d), and directly from suitable manipulations that 
involve the metric d we will define multidistances (In)

∞
n=1 on X such that, unless otherwise stated, will satisfy that I2

agrees with d . Several studies have already been done to study how a multidistance on a metric space (X, d) can be 
expressed through functions that directly depend on the given distance d . (See [19] for a further account).

4.2.1. From classical inequalities to multidistances
Taking into account several classical inequalities (see Lemma 2 below) we may generate new multidistances on a 

metric space (X, d).

Lemma 1. (see [17]) Define, for all n ∈N and (x1, . . . , xn) ∈ Xn,

In(x1, . . . , xn) = max{d(xi, xj ) : 1 ≤ i, j ≤ n}.
Then the sequence (In)

∞
n=1 is a multidistance on X.

Lemma 2. (Classical inequalities) For any real number p ≥ 1 it holds that

max{d(xi, xj ) : 1 ≤ i, j ≤ n} ≤ [
n−1∑

i=1

n∑

j=i+1

(d(xi, xj ))
p] 1

p

≤ [n(n − 1)

2
] 1

p · max{d(xi, xj ) : 1 ≤ i, j ≤ n}.

Proposition 9. Define, for all n ∈N and (x1, . . . , xn) ∈ Xn,

In(x1, . . . , xn) = [ 2

n(n − 1)
] 1

p · [
n−1∑

i=1

n∑

j=i+1

(d(xi, xj ))
p] 1

p .

Then the sequence (In)
∞
n=1 is a multidistance on X.

Proof. It is straightforward to see that (In)
∞
n=1 accomplishes IN1 and IN2.

In addition, I2 coincides with d , and I1(x) = 0 holds for every x ∈ X.
To see that (In)

∞
n=1 also satisfies MD3, notice that for any x ∈ X and n ∈N, n ≥ 2 we have, because d is a distance, 

that

In(x1, . . . , xn) ≤ max{d(xi, xj ) : 1 ≤ i, j ≤ n} ≤

max{d(xi, x) + d(xj , x) : 1 ≤ i, j ≤ n} ≤
n∑

i=1

d(xi, x). �

4.2.2. From product distances to multidistances
A metric d defined on a set X generates new distances on the Cartesian products Xn (n ∈ N). They are called 

product distances. (See e.g. [10], or [11], pp. 189-191). To put just an example, for every p ≥ 1, given n ∈N the map 
dn,p : Xn × Xn → [0, +∞) given by

dn,p[(x1, . . . , xn), (y1, . . . , yn)] = [
n∑

(d(xi, yi))
p] 1

p ,
i=1

12
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for every (x1, . . . , xn), (y1, . . . , yn) ∈ Xn is indeed a product distance on Xn.

Definition 9. Given a metric space (X, d), a sequence (dn)
∞
n=1 of product distances, such that each dn is a distance on 

Xn (n ∈ N), and d1 = d , is said to be neat if for every n ∈N , x ∈ X and (x1, . . . , xn) ∈ Xn it holds that

dn[(x1, . . . , xn), (x, . . . (n times) . . . , x)] ≤
n∑

i=1

d(xi, x).

Example 2. Let (X, d) be a metric space.
Given n ∈N and (x1, . . . , xn), (y1, . . . , yn) ∈ Xn, define

dn[(x1, . . . , xn), (y1, . . . , yn)] =
n∑

i=1

d(xi, yi)

2i−1 .

This sequence of product distances (dn)
∞
n=1 is obviously neat.

Definition 10. Given a metric space (X, d), a sequence (dn)
∞
n=1 of product distances is said to be symmetric if for 

every n ∈N , x ∈ X and (x1, . . . , xn), (y1, . . . , yn) ∈ Xn it holds that, for any permutation σ of the set {1, . . . , n},
dn[(x1, . . . , xn), (y1, . . . , yn)] = dn[(xσ(1), . . . , xσ(n)), (yσ(1), . . . , yσ(n))].

Example 3. In general, a sequence (dn)
∞
n=1 of product distances may fail to be symmetric. For instance, given X =R, 

n ∈ N and (x1, . . . , xn), (y1, . . . , yn) ∈Rn, define

dn[(x1, . . . , xn),(y1, . . . , yn)] =
∑

{1≤i≤n, i is odd}
d(xi, yi)+

[
∑

{1≤j≤n, j is even}
[d(xj , yj )]2] 1

2 .

Notice that d4[(1, 0, 1, 0), (1, 1, 1, 1)] = √
2, but d4[(0, 1, 0, 1), (1, 1, 1, 1)] = 2.

Remark 6. Given a sequence (dn)
∞
n=1 of product distances on a metric space (X, d), define now for any n ∈ N and 

(x1, . . . , xn), (y1, . . . , yn) ∈ Xn,

d∗
n [(x1, . . . , xn), (y1, . . . , yn)] =

1

n! ·
∑

σ∈S(n)

dn[(xσ(1), . . . , xσ(n)), (yσ(1), . . . , yσ(n))],

where S(n) stands for the set of permutations of {1, . . . , n}. Observe now that (d∗
n)∞n=1 is a symmetric sequence of 

product distances on X.

Proposition 10. Let (dn)
∞
n=1 be a neat and symmetric sequence of product distances on a metric space (X, d). Let the 

sequence of functions (In)
∞
n=1, where In : Xn → [0, +∞), be defined as I1(x1) = 0, I2(x1, x2) = d(x1, x2) and

In(x1, . . . , xn) = inf{dn[(x1, . . . , xn), (x, . . . (n times) . . . , x)] : x ∈ X}
for any n ≥ 3 ∈ N and (x1, . . . , xn, x) ∈ Xn+1. Then the sequence (In)

∞
n=1 is a multidistance on X.

Proof. Since (dn)
∞
n=1 is symmetric, it is clear that (In)

∞
n=1 satisfies IN2.

Moreover, given (a, b) ∈ X2, we have that d(a, b) = 0 ⇔ a = b because d is a distance on X. If n ≥ 3 we have that 
In(x1, . . . , xn) = 0 implies that (x1, . . . , xn) belongs to the closure of the diagonal �n = {(x, . . . (n times) . . . , x) : x ∈
X} ⊂ Xn. But the diagonal �n in a Cartesian product Xn of n copies of a given metric space X is a closed set as regards 
the product distance. (See e.g. [11], p. 138 or [12], p. 65). So In(x1, . . . , xn) = 0 ⇔ (x1, . . . , xn) ∈ �n ⇔ x1 = . . . = xn

and IN1 holds.
13
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Furthermore, given n ≥ 3, for every t ∈ X we have that

In(x1, . . . , xn) = inf{dn[(x1, . . . , xn), (x, . . . (n times) . . . , x)] : x ∈ X}

≤
n∑

i=1

d(xi, t)

since (dn)
∞
n=1 is neat. Therefore, (In)

∞
n=1 also satisfies MD3. �

4.2.3. Multidistances based on rearrangements and weights
Let (X, d) denote a metric space. Given n ≥ 3 ∈ N consider a fixed set Wn = {wn,1, wn,2, . . . , wn,n} of real num-

bers, called n-weights, such that

0 ≤ wn,i (1 ≤ i ≤ n);
n∑

i=1

wn,i > 0.

Now we define a sequence (In)
∞
n=1 of maps In : Xn → [0, +∞). To do so, we declare that I1(x1) = 0 and also 

I2(x1, x2) = d(x1, x2) for every x1, x2 ∈ X. Then, recurrently, for every n ≥ 3, (x1, . . . , xn) ∈ Xn, and 1 ≤ i ≤ n, let

tn,i = In−1(x1, . . . , xi−1, xi+1, . . . , xn),

where (x1, . . . , xi−1, xi+1, . . . , xn) stands for the n − 1-tuple that remains from (x1, . . . , xn) after suppressing the i-th 
coordinate xi . Once we get the n-tuple of real numbers (tn,1, . . . , tn,n) we rearrange its coordinates in increasing order, 
so getting a new n-tuple (tn,σ (1), . . . , tn,σ (n)) in which

tn,σ (1) ≤ tn,σ (2) ≤ . . . ≤ tn,σ (n).

Now, we define

In(x1, x2, . . . , xn) =
n∑

i=1

wn,i · tn,σ (i) .

Proposition 11. With the above construction, if wn,i ≤ 1
n−1 holds for every n ≥ 3 ∈ N; 1 ≤ i ≤ n, the sequence 

(In)
∞
n=1 is a pseudo multidistance on X. If, in addition, for any n ≥ 3 there exist i, j with 1 ≤ i 	= j ≤ n such that 

0 < wn,i and also 0 < wn,j , then (In)
∞
n=1 is a multidistance.

Proof. It is straightforward to see that (In)
∞
n=1 satisfies IN2 by its own definition.

In addition, for any x1, x2, x ∈ X and n = 1, 2 we have that I1(x1) = 0 ≤ d(x1, x) and also I2(x1, x2) = d(x1, x2) ≤
d(x1, x) +d(x2, x). Assume now, by induction, that for some k ≥ 2 it holds that Ik(x1, . . . , xk) ≤ ∑k

i=1 d(xi, x) holds 
for any (x1, . . . , xk, x) ∈ Xk+1.

Let us prove that now, for any xk+1 ∈ X,

Ik+1(x1, . . . , xk, xk+1) ≤
k+1∑

i=1

d(xi, x)

also holds. Indeed,

Ik+1(x1, . . . , xk, xk+1) =
k+1∑

i=1

(wk+1,i · tk+1,σ (i)) ≤
k+1∑

i=1

(wk+1,i · [
k+1∑

j 	=i,j=1

d(xj , x)]) ≤

1

k
·
k+1∑

i=1

[
k+1∑

j 	=i,j=1

d(xj , x)] = 1

k
·
k+1∑

i=1

[k · d(xi, x)] =
k+1∑

i=1

d(xi, x).

So, (In)
∞
n=1 accomplishes MD3, and it is a pseudo multidistance.

Finally, assume now that for any n ≥ 3 there exist i, j with 1 ≤ i 	= j ≤ n such that 0 < wn,i and also 0 < wn,j . If 
n = 2 and I2(x1, x2) = 0, then d(x1, x2) = 0 so x1 = x2 because d is a metric. Let us prove, by induction, that if
14
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Ik(x1, . . . , xk) = 0 ⇔ x1 = . . . = xk

holds for some k ∈ N then

Ik+1(y1, . . . , yk, yk+1) = 0 ⇔ y1 = . . . = yk = yk+1

also holds.
To do so, assume now that k ≥ 2 and Ik+1(y1, . . . , yk+1) = 0. In that case we have that there exist i 	= j such that

Ik(y1, . . . , ŷi , . . . , xn) = In−1(x1, . . . , x̂j , . . . , xn) = 0.

By induction, all the coordinates in the tuples (x1, . . . , xi−1, xi+1, . . . , yk+1) and (y1, . . . , yj−1, yj+1, . . . , yk+1) co-
incide. Therefore y1 = y2 = . . . = yk+1. Conversely, if x1 = . . . = xn, then In(x1, . . . , xn) = 0, by definition of In. 
Hence (In)

∞
n=1 satisfies IN1, and we may conclude that it is actually a multidistance. �

5. Final remarks

The introduction of an axiomatic approach to deal with the concept of inequality on abstract sets allows us to deal 
with generalizations of classical concepts. When working with abstract sets, the lack of a structure defined a priori 
forces us to state suitable axioms to define what is an inequality measure. Among them, dispersion measures and 
multidistances play important and independent roles. In the present paper we furnish a concise axiomatics to define 
inequality measures, dispersions and multidistances. We show that the corresponding axioms are independent one-
another. Then we analyze inequality measures that come from a distance, so assuming that the given set was a metric 
space. In addition, we also pay a particular attention to general means defined on a nonempty abstract set. The use 
of distances and general means allows us to generalize in a natural way several classical dispersion measures arising 
in Statistics, as well as to define some suitable multidistances, as the sum-based ones or the Fermat multidistances. 
A revision of some previous results recently introduced has been made accordingly.

It is also important to remark that some possible applications of this setting are possible. In the context of Image 
Processing dispersion measures or multidistances can be used for comparison issues. For instance, when analyzing 
a sequence of pictures in a movie, so that they only differ a little from each one to the next frame, so giving the 
impression of motion when they are sequentially sent to the screen at the suitable speed for our eye and brain not to 
distinguish from one another and perceive the sequence as something in motion.

Multidistances constitute an important tool in real-life situations in order to build networks and systems of com-
munication (e.g.: transmitters and receptors). For example, to locate a transmitter providing signal to different points 
it is natural to choose the Fermat point, because the total energy, understood as the sum of distances or routes operated 
by the signal is kept to a minimum (see [7]). Again, this minimum value could indeed be given by means of a suitable 
multidistance. The Steiner’s problem and the traveling salesman are problems also related to the Fermat point [3,9]. 
These problems can also be analyzed in terms of a multidistance: the shortest path to be traveled by the salesman 
who should visit k towns, as well as the total length of the minimal system of roads joining n points can be possibly 
understood as a multidistance among those k towns or n points.

Economics is another field of application as concepts of poverty and social welfare are defined in terms of inequal-
ities (see e.g. [1,2]). In general, multidistances can be applied to model or solve problems involving comparison of 
sets [11].

Once the abstract definition of inequality measures, dispersions and multidistances have been given it seems in-
teresting to search for new examples that are not based on previously defined distances or general means. Indeed, in 
the particular case of multidistances (see e.g. [17,21]) most of the classes analyzed depend on the definition, a priori, 
of a distance on the given set, so assumed to be a metric space. Thus, it could be interesting to define new classes of 
inequality measures that, at least a priori, do not depend on any distance and are defined “per se”.
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