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Comparison and similarity measurement have been a key topic in computer vision for a
long time. There is, indeed, an extensive list of algorithms and measures for image or
subimage comparison. The superiority or inferiority of different measures is hard to scru-
tinize, especially considering the dimensionality of their parameter space and their many
different configurations. In this work, we focus on the comparison of binary images, and
study different variations of Baddeley’s Delta Metric, a popular metric for such images.
We study the possible parameterizations of the metric, stressing the numerical and beha-
vioural impact of different settings. Specifically, we consider the parameter settings pro-
posed by the original author, as well as the substitution of distance transformations by
regularized distance transformations, as recently presented by Brunet and Sills. We take
a qualitative perspective on the effects of the settings, and also perform quantitative exper-
iments on separability of datasets for boundary evaluation.
� 2021 The Authors. Published by Elsevier Inc. This is an open access article under theCCBY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Binary images are one of the most common visual representations in modern computer vision. Although not very use-
ful for information acquisition, they are ubiquitous in the representation of intermediate or final results in image process-
ing. In fact, most of the low-level or mid-level image processing tasks represent their results as binary images, e.g. object
tracking [1], boundary detection or object detection/segmentation [2]. This led to a vast literature on binary image pro-
cessing, including very successful theories such as mathematical morphology [3] or tools such as local binary patterns
[4,5]. One of the most active subfields of binary image processing is that of image comparison. This relates to the fact that
performance evaluation, in many image processing tasks, is carried out by comparing the binary images produced by auto-
mated methods to gold standard (ground truth) images, boosting the need for strategies and measures for binary image
comparison.

The nature of the pixel information in binary images makes them eligible for a large variety of comparison measures. For
example, we find strategies inspired by the literature in classification (each pixel is an element to be classified) or based on
set theory (an image is the set of the featured, i.e., 1-valued, pixels). Also, less popular alternatives can be found based on
trigonometry [6] or even dedicated signal representation frameworks [7,8].
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A prominent class of measures consists of the classification-based measures, which ground the comparison of two images
in creating a binary confusion matrix [9]. Classification-based comparison measures have gained momentum in recent years,
partly because of the simplistic generation and interpretation of the confusion matrices, which allow for the quantification of
the convergent and divergent information in two images through pixel counting. Normally, counting coincident and diver-
gent pixels leads to the generation of a binary confusion matrix, which is further processed to produce scalar measurements
which represent the overall similarity of the images (see, e.g. [9] or [10], for a list of such measures). The underlying chal-
lenge in the generation of such confusion matrices is precisely how pixels are counted, or how images are matched prior to
the counting. Generally, binary image comparison requires complex strategies which allow pixels in two images to be cat-
egorized as coincident (true positives, in confusion matrix jargon) if they are located near one another, even if not completely
concurrent in position [11]. This led to a series of methods that allow for displacement-tolerant matching between binary
images in the generation of the confusion matrix [12,13]. Displacement-tolerant matching algorithms still face a problem
due to the potentially different number of 1-valued pixels in each image. If matching is performed on a 1-to-1 basis (as with
the Cost Scaling Assignment algorithm [14], or with variants of the Hungarian/Munkres algorithm [15]), visually similar
images might result in a large number of false positives; alternatively, 1-to-N or N-to-M matching schemes face the reverse
problem: being unable to identify false positives, especially if images are cluttered or contain a large number of noisy pixels/
regions.

In order to avoid problems in pixel counting, an alternative class of comparison measures for binary images was devel-
oped based on set theory and/or distance transformations. Distance transformations generate an alternative representation
of binary images aimed at representing the structural (binary) features of the image. This representation can be used to com-
pare images regardless of the number of featured pixels they have, or their distribution over the image. Early examples of
measures partially based on distance transformations are Pratt’s FoM (PFoM) [16] and Haralick’s measure [17]. These ideas
further evolved into full-fledged metrics on the binary image universe. Since featured (1-valued) pixels constitute a subset of
positions in the image, some geometric measures for multidimensional information objects were translated to the context of
binary image comparison. The most popular alternative is the Hausdorff Metric (HM), which has been further modified to
produce task-specific operators [18,19].

A very relevant metric for binary images, heavily inspired by HM, is Baddeley’s Delta Metric (BDM) [20,21]. In his works,
Baddeley advocates for metrics over other types of comparison measures, but at the same time aims at correcting the insta-
bility of HM against subtle changes in the images to be compared. While both goals seem to be fairly accomplished in
[20,21], BDM still suffers from some drawbacks, mostly due to the significant number of parameters in its formulation. In
this work we study, from different perspectives, the role of the parameters in BDM. Within this study, we include the param-
eters in the original proposal by Baddeley, but also further contributions in the literature, especially the use of alternatives
for distance transformations [22]. We consider the qualitative comparison of the results for each parameter setting, while
also performing large-scale quantitative evaluations on real datasets, aiming at the best-performing configuration strategies
for the metric.

The remainder of this paper is organized as follows. Section 2 recaps some notions on distance transformations for binary
images. Section 3 presents BDM, together with an analysis of its behaviour depending on the underlying distance transfor-
mation. Section 4 contains two experiments contrasting the behaviour of different configurations of BDM in the comparison
of images in the BSDS500 [23], a popular dataset for boundary detection. Finally, Section 5 includes the discussion on our
developments.

2. Distance transforms of binary images

This section recaps some common concepts used in upcoming sections, specifically those related to distance transforma-
tions and their different configurations.

Definition 1. Let q 2 ½�1;þ1� and n 2 N. The q-power mean is the mapping ðRþÞn ! Rþ defined by
GqðxÞ ¼ 1
n

Xn
i¼1

xqi

 !1=q

:

The value of q has a critical effect on the behaviour of Gq. For example, it holds that G�1 (resp. G1) coincides with the
minimum (resp. maximum) operator, while G0 coincides with the geommetric mean. Also, if q � 0, then GqðxÞ ¼ 0 if and only
if xi ¼ 0 for some i 2 f1; . . . ;ng; this means in particular that 0 is an annihilator of Gq when q � 0 [24]. This observation will
prove relevant in this work.
Definition 2. An image is a function f : X# T, with X ¼ f1; . . . ;Rg � f1; . . . ;Cg the set of positions and T the set of tones.

Assuming some fixed X, we refer with IT to the set of all images with tonal palette T. This work mostly elaborates on the
use of binary images, i.e., images in If0;1g. Binary images can be seen as mappings X# f0;1g or as subsets of X, so that p 2 I if
and only if IðpÞ ¼ 1, with p 2 X and I 2 If0;1g. This dual notation allows to combine mathematical tools from both interpre-
tations, so as to simplify the manuscript and to ease the understanding of the underlying concepts.
480



C. Lopez-Molina, S. Iglesias-Rey, H. Bustince et al. Information Sciences 569 (2021) 479–495
Definition 3. A function g : U � U # Rþ is called a pseudo-metric on a universe U if and only if it satisfies the following
properties, for any a; b; c 2 U:

(i) gða; aÞ ¼ 0 for all a 2 U;
(ii) Symmetry: gða; bÞ ¼ gðb; aÞ;
(iii) Triangle inequality: gða; cÞ 6 gða; bÞ þ gðb; cÞ.
Definition 4. A function g : U � U # Rþ is called a metric (or distance function) on a universe U if and only if it satisfies the
following properties, for any a; b; c 2 U:

(i) Identity of indiscernibles: gða; bÞ ¼ 0 iff a ¼ b;
(ii) Symmetry: gða; bÞ ¼ gðb; aÞ;
(iii) Triangle inequality: gða; cÞ 6 gða; bÞ þ gðb; cÞ.
Definition 5. The Distance Transform (DT) of a binary image I 2 If0;1g, for some metric m on X, is the image Tm½I� 2 IRþ so
that
Tm½I�ðpÞ ¼ min
p02I

mðp;p0Þ ð1Þ
for all p 2 X.
Distance transformations have a natural connection to other mathematical models with application to image processing,

e.g., Voronoi surfaces [25,26]. Also, they relate to other well-studied image processing paradigms, such as mathematical mor-
phology [3].

In [22], Brunet and Sills introduced a generalized version of the distance transformation which replaces the minimum
operator by the power mean of the distances to all pixels in the image.

Definition 6. [22] The Generalized Distance Transform of a binary image I 2 If0;1g, for some metric m on X, is the image

P
q
m½I� 2 IRþ so that
Pq
m½I�ðpÞ ¼ Gq wðmðp;p0ÞÞð Þp02I

� �
¼ 1

jIj
X
p02I

wðmðp;p0ÞÞq
 !1=q

ð2Þ
for all p 2 X, with q 2 ½�1;1� and w a concave, increasing function such that wð0Þ ¼ 0.
Brunet and Sills [22] impose q < 0 in their original definition. The reason relates to the properties of the power mean. If

q � 0, we have that Pq
m½I�ðpÞ ¼ 0 if and only if p 2 I. This ensures Pq

m to be invertible as long as q � 0, which has an impact on
the properties of subsequent operators.

It is relevant to note that the name generalized distance transformwas used prior to [22], with a purpose different from the
one in that work. Specifically, it was used as an attempt to use distance transforms for non-binary images. Early efforts in this
direction are [27,28], although it was Felzenszwalb and Huttenlocher who properly coined the term [29]. In this work, in
order to avoid any potential conflict in the naming, we refer to the transformation proposed by Brunet and Sills as Power
Distance Transformation (PDT).

The PDT is related to some other proposals in literature. For example, it is somehow similar to the k-distances by Öfver-
stedt et al. [30], which replace the minimum operation in Eq. (1) by the 2-power mean of the k lowest distances. In this
regard, the k-distances are a combination of the PDTs in [22] with OWA-like operators [31].

The original formulation of the PDT [22] keeps the use of a concave function w, wðxÞ ¼ 0 if and only if x ¼ 0, as in the
original works by Baddeley [20,21]. This function is ignored in the present manuscript because any such concave mapping
of a metric m is still a metric. Hence, removing the function w saves a parameter while losing no flexibility at all in the con-
figuration of the operator.

The formulation in Eq. (2) is the result of replacing the minimum operator in Eq. (1) by a power mean, whose behaviour is
controlled by the parameter q. For q ¼ �1, such power mean becomes the minimum operator, and hence Eq. (2) is equiv-
alent to Eq. (1) Alternatively, q ¼ 1 would render the power mean in Eq. (2) into the maximum operator. Different values of
q can turn into other well-studied means, as the arithmetic mean (q ¼ 1) or the harmonic mean (q ¼ �1). As said before, and
unlike the DT, the PDT is not always an invertible operation. While Tm½I�ðpÞ ¼ 0 iff p 2 I, making the DT trivially invertible,
this only holds for the PDT if q � 0. We refer to [24] for a detailed review on aggregation operators, including averaging oper-
ators and means.

Distance transformations can be based on any metric on the set of positions X. Let m be a metric on U, then the bounded
version of m, on a universe U, is given by
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mtða; bÞ ¼ minðt;mða; bÞÞ; ð3Þ
for any a; b 2 U, with t 2 Rþ; t > 0, an arbitrary parameter. We refer with bounded distance transformation to the distance
transformation based on a bounded metric. An unbounded metric, i.e. m1, is simply referred to as m. In the remainder of
this work, generic metrics will be referred to as m, while the Euclidean metric will be represented as d.

Fig. 1 includes the colourized versions of the distance transforms of fives sample images. The results by each transforma-
tion are normalized row-wise for the purpose of clarity; a homogeneous normalization of all transforms is impractical due to
the very different range of each DT and PDT, as is evident from the rightmost scales of Fig. 1. In this figure, as well as in the
remainder of this work, DTs and PDTs are based on the Euclidean metric (d), which is the most recurrent choice in image
processing.

There is a list of facts to be remarked from Fig. 1. The behaviour ofTd is as expected, with large values being generated far
from the featured pixels in the image I. As opposed toTd, the bounded transformationTd20 manages to create flat areas that
represent regions farther than 20 pixels away from any featured pixel. The behaviour of Pq

d is significantly more complex to
understand. PDT computes, at each pixel, a mean of the distances to all featured pixels in I. This brings two consequences.
Firstly, we have that the value of Pq

d½I� at some pixel p 2 X is not based on the specific position of a singular pixel in I, as in
Td½I� or Td20 ½I�, but on the overall distribution of featured pixels over the image. Of course, this is problematic when the fea-
tured pixels are spread across the image, as is the case of the images sketching a starfish; in these cases, the transform barely
represents the original image I. Secondly, the minimal values yielded by Pq

d might be greater than zero, depending on the
specific value of q. If q > 0, then there are no zero values in the distance transform. In fact, there is no guarantee that values
at pixels p 2 I will be lower than those at p R I. If q � 0, then the distance transform will be zero for all p 2 I. However, pixels
nearby (even adjacent to) those p 2 I might produce values that are significantly greater than zero. This is due to the sharp
decrease of GqðxÞ, for q � 0, when xi ! 0 for some xi.

The parameter q in Eq. (2) is, hence, both relevant and non-evident. While q ¼ �1 would recover the original DT, any
value q � 0 will lead to severe regularization effects (except for p 2 I when q < 0, as explained before). The regularization
effect can be effectively, yet not totally, reduced by using a bounded metric dt . The reason is that, by using a bounded metric,
pixels in p 2 X farther than t pixels from the closest p0 2 I will be t-valued in Pq

dt
½I�. This can be observed in images P1

d20
½I�,

where the shape of the original objects in I can be recognized, as opposed to the images P1
d½I�. In any case, and even if the

regularization effect is obviously reduced, the results by P1
d20

appear as regularized versions of those by Td20 . The regular-

ization effect of Pq
dt
will be dependent upon q, with q ¼ �1 inducing no regularization.
3. Baddeley’s Delta Metric for binary image comparison

This section recaps the literature and history of Baddeley’s Delta Metric (Section 3.1), prior to a description of the impact
of its parameters (Section 3.2).
3.1. Definition of Baddeley’s Delta Metric

Binary images can be analogously seen as functions or as subsets of positions (in X). Elaborating on this dual interpreta-
tion, a frequent choice for binary image comparison is the Hausdorff metric [32]. Let Tm be a distance transformation on
binary images based on some metric m. The Hausdorff distance between two images, A;B 2 If0;1g is given by
HMðA;BÞ ¼ max max
a2A

Tm½B�ðaÞ; max
b2B

Tm½A�ðbÞ
� �

: ð4Þ
The main concern with the Hausdorff metric is the fact that the value yielded for any two images is dependent upon two
pixels only, namely those producing the maximum value in one of the distance transforms. While this makes the metric ade-
quate for certain tasks, especially those in which noise is unexpected or undesired, its behaviour is rather unstable for most
applications.

The literature contains a large number of proposals tuning the Hausdorff metric, with different, specific goals. Very rel-
evant in this context is the work of Dubuisson and Jain [18], focused on the performance of different image-to-image, asym-
metric similarity measures,1 in combination with bidirectional aggregation operators. In total, they put to the test 24 different
Hausdorff-metric-inspired comparison operators in the context of delineated object recognition. In follow-up works, Takacs and
Wechsler [19,33] considered a slightly different tuning to adapt the results in [18] to face recognition through the comparison of
boundaries. Note that the robustness against outliers and noise has not been the only area of improvement in Hausdorff-metric-
based comparison measures. For example, Baudrier et al. combined the ideas in [18] with a local, sliding window-based, analysis
of subregions of the image. It is worth mentioning that all these modifications of the Hausdorff metric often render into non-
ile the authors in [18] present some operators as directed distance measures, it is well established that metrics should be positive and symmetric. Hence,
er to refer to those operators as asymmetric similarity measures, avoiding any conflict with metric axioms.
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Fig. 1. Distance transforms of different binary images. The two leftmost images are synthetic examples, while the three rightmost images are taken from
the BSDS500 [23]. The upper row displays the binary images, with 1s represented in black for better visualization. The lower rows display the results by
different distance transformations, each of them expressed following the notation in Section 2. Note that each distance transformation uses its own
numerical scale.
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metric comparison operators, since the authors focus on increasing the flexibility of the operators rather than on preserving the
metric axioms.

In [20,21], Baddeley introduced a metric for binary images that is more flexible than the Hausdorff metric but, at the same
time, preserves the metric axioms. Baddeley defends the use of metrics for a list of reasons, including the fact that metrics
generate topologies, which define notions of continuity and convergence [20]. Hence, his proposal for binary image compar-
ison is a metric, which has been thereafter referred to as Baddeley’s Delta Metric (BDM).

Baddeley’s reasoning starts by reformulating the Hausdorff metric as
HMðA;BÞ ¼ max
p2X

Tm½A�ðpÞ �Tm½B�ðpÞj j ð5Þ
which is equivalent to Eq. (4). The original intention of Baddeley is to replace the maximum operator in order for the new-
born metric not to be exclusively dependent on a pair of pixels.

Let A;B 2 If0;1g be two binary images on X, and let m be some metric on X. The distance between them, in terms of BDM is
given by
DkðA;BÞ ¼ 1
jXj
X
p2X

wðTm½A�ðpÞÞ �wðTm½B�ðpÞÞj jk
" #1

k

; ð6Þ
where w : Rþ # Rþ is a concave function with wðxÞ ¼ 0 iff x ¼ 0, Tm is a distance transformation and k 2 Rþ.
The role of the functionw is, by far, the most intriguing in Eq. (6). In his original work [20], Baddeley mentions the problem

with over-sensitivity to large error distances in the Hausdorff metric and then proposes to tune w as a solution. However, it is
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clear that any valid mapping w of the distance transform is equivalent to use a w-affected metric within that transform.
Otherwise said, any effect in the metric that could be reached by setting w, can be equivalently inferred by modifying the
metric m. The function w is, hence, redundant. In this work, we set wðxÞ ¼ x, focusing our attention on the configuration
of m, specifically by using bounded metrics. Also, we consider replacing DTs by PDTs, as proposed in [22].

It is relevant to note that, although designed to compare binary images, BDM has been used for many different purposes

other than its original goal. Since Dk can be used to compare any two subsets of a (discrete) metric space, its uses have sur-
passed the context of binary images. For example, follow-up works aimed at comparing grayscale images [27,28,34], or
hyperspectral signatures [35].
3.2. Configuration of Baddeley’s Delta Metric

Baddeley’s Delta Metric is known to have certain problems in balancing the different distortions or discrepancies that can
occur in binary images. Distortions in binary images can be typically broken down to missing information (false negatives),
spurious information (false positives) and spatially-inaccurate information (displacements). Baddeley’s Delta Metric nor-
mally incurs in overweighting the presence of spurious information over the remaining two distortions, especially when
such spurious information is far from the featured pixels in the image.

In order to test the sensitivity of BDM to different types of noise, we have induced progressive distortions to the image
leftmost image in the upper row of Fig. 1. Each distortion undergone by the image is modeled as follows:

� Missing Information: A segment is removed from the upper part of the circumference. The removed information is spec-
ified as a percentage of the total number of pixels in the circumference.

� Spurious Information: A spurious response (3� 3 block of 1-valued pixels) is added to the image. This response is placed
on the circumference (North-East side), then displaced to the east according to a distance-to-object parameter.

� Displacements: The radius of the circle is progressively increased, yet preserving the center position of the circumference
and the line width.

A visual interpretation of the experiment is displayed in Fig. 2. This figure includes different distorted versions (I0) of the orig-
inal image (I) in the leftmost column of Fig. 1. Also, Fig. 2 contains their distance transforms using the unbounded Euclidean
metric d, and the absolute pixelwise difference w.r.t. the distance transform of the original image in Fig. 1.

In Fig. 2 we observe that a relatively small number of false positive responses have a significant impact on the results by
BDM. Specifically, we see how the inclusion of a small false positive in the image has a severe impact in Td½I0� (central col-
umns of Fig. 2). The impact of placing a 3� 3 patch 80 pixels away from the circumference is, visually, very light. However,
we observe in Fig. 2 how the impact in the DT is comparable to that achieved by removing 35% of the circumference. Sub-
sequently, as seen in the lowest row of the figure, such impact produces a large divergence in terms of jTd½I� �Td½I0 �j. As a
final consequence, an almost imperceptible discrepancy between I (in Fig. 1) and I0 renders in a large difference in
jTd½I� �Td½I0�j, comparable to that suffered when removing a significant part of the circumference (leftmost column of
Fig. 2) or when dramatically increasing its size (rightmost column of Fig. 2).

Fig. 3 offers a quantitative insight into the results in Fig. 2. In Fig. 3 we display the distance, as measured by BDM, between
the image in the leftmost column of Fig. 1 and a distorted version of itself. We use the unbounded Euclidean metric d and
k 2 f1;1:5;2g. As we can observe in Fig. 3, BDM is much more sensitive to false positives than to other distortions, especially
when false positives occur far from other featured pixels. In Fig. 3, columns (a) and (c) display distortions of the original
image Imuch more visually salient than those in column (b). However, in Fig. 3 the distortion measured when adding a block
of 3� 3 pixels in the far right part of the image is equivalent to that measured when removing 35% of the circumference, or
to that measured when the radius of the circumference is increased by 15–20 pixels. The reason lies in the interpretation of
the image through its distance transform.

We propose, as Brunet and Sills [22], to replace the distance transform (Tm½I�) in BDM by the PDT (Pq
m½I�). Let A;B 2 If0;1g

be two binary images on X, and let m be some metric on X. The distance between A and B is measured as
DkðA;BÞ ¼ 1
jXj
X
p2X

wðPq
m½A�ðpÞÞ �wðPq

m½B�ðpÞÞ
�� ��k" #1

k

; ð7Þ
A relevant question relates to the preservation of the metric axioms when DTs are replaced by PDTs in Eq. (6). If q � 0, then

Dk is a metric (for a proof, see [22]). However, if q > 0, then Dk is a pseudo-metric, since the identity of indiscernibles no
longer holds. However, this is not a significant problem. The role of the identity of indiscernibles is practical from the math-
ematical point of view, especially when metrics are used for optimization. But, from the perspective of mathematical psy-
chology, it is unclear whether humans have a behaviour coherent with the identity of indiscernibles. Humans often
identify as equal or equivalent things that are, strictly speaking, non-equal. In fact, such human behaviour is partially respon-
sible for the emergence of mathematical theories such as Fuzzy Set Theory [36,37].
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Fig. 2. Visualization of the distance transforms of distorted versions of the image (I) in the leftmost column of Fig. 1. The distortions are: Leftmost column,
removal of a segment with 35% of the pixels; middle columns, addition of a 3� 3 pixel spot 40 and 80 pixels away from the circumference, respectively;
rightmost column, increase of the radius of the circumference in 35 pixels. The lowest row presents the absolute difference between the transform and the
original image.

Fig. 3. Quantification, by means of BDM, of different types of distortions of the binary image in the leftmost column of Fig. 1. Each column is dedicated to a
different type of distortion. The leftmost column represents the progressive, random elimination of featured pixels. The center column represents the
inclusion of a 3� 3 patch of 1s at a variable distance of the circumference. The rightmost column represents the increase of the radius of the circumference.
All plots are homogeneously scaled on the vertical axis for better comparison.
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In the remainder of this work, we keep the naming Baddeley’s Delta Metric for any value of q, taking into account the fact

that it renders into either a metric (for q � 0) or a pseudo-metric (otherwise). Also, we keep the notation Dk for the different
parameterizations, in an attempt not to relabel existing operators.

The value of q in Eq. (7) does not only impact the mathematical properties of Dk. It also affects how PDTs model the binary
features in the images. Since Pq

m½I�ðpÞ ¼ 0 for all p 2 I if and only if q < 0 (we assume that I has two or more 1-valued pixels,
since the opposite would be a rather aberrant situation), the distance transform can be unstable near such p 2 I. This fact can
be observed in Fig. 4. In this figure, we display, for three different images I,Pq

m½I� computed with q 2 f�1;1g andm 2 fd; d20g.
Also, the figure displays the values of the PDTs at the 190th row of the images, which is marked with a dotted line at the top
row of the figure.

The main observation to be made in Fig. 4 is the sudden change of the distance transform near the pixels p 2 I, when
q ¼ �1. While it is clear that PDTs with q < 0 will be zero at those pixels, we can also observe in Fig. 4 how nearby pixels
produce relatively high values. This happens because the power mean of the distances at each pixel can greatly change
depending on whether the vector of distances contains a zero or not. This is not a problem per se, but might have a negative

influence on the behaviour of Dk, which is heavily dependent on the pixelwise comparison of distance transforms. Slight dis-
placements of solid shapes (as the deer in Fig. 4(c)) should not be a significant problem; as long as the shapes are mostly
overlapping, the distance transforms would remain similar. However, small variations in the position of thin features (as
the deer silhouette in Image A, Fig. 4(a)) will lead to significant divergences in the resulting distance transform. If the fea-
tures are thicker (as in Images B and C, Fig. 4(b) and (c)), the problem will be lighter, since small displacements would still
incur in a significant overlapping of such features. According to these facts, positive values of q seem to be more adequate to
compare images with thin, linear structures.
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Fig. 4. Visualization of distance transform on three versions of the same image. For each image, we display the distance transform under different
combinations of q and the metric d. Also, for each of such combinations, we display on the rightmost column the detail of the 190th line of the image. In this
plot, Image A, Image B and Image C take the colors blue, orange and green, respectively.

Fig. 5. Replication of the experiment in Fig. 3 using different distance transformations. All plots at each row are homogeneously scaled on the vertical axis
for better comparison.
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The experiment in Fig. 3 has been repeated using DTs and PDTs other than Td. The results are displayed in Fig. 5. In the
upper row, we consider Td10 , while in the two lower rows we display the results using P�1

d10
and P1

d10
. Note that the scale is

different for each version of BDM, for the sake of visibility, but is kept constant for each row (i.e., for each distance
transformation). In all cases, we observe how the sensitivity to subtle false positives is significantly lower than that to
the remaining distortions. Also, we observe that the sensitivity of the image metrics to false negatives and displacements
takes a log-like evolution w.r.t. the amount of distortion in the images. For example, in the case of displacements, there is
a fast increase for small radius increments, followed by a quasi-flat evolution thereafter.2 This makes sense, since for small
radius increases the distorted image is recognized as similar to the original one; then, upon reaching a certain level of distortion,
the image is simply different, regardless of the specific amount of distortion. Otherwise said, the dissimilarity quantified with a
radius increase of 15 pixels and that of 20 pixels can be both perceived as similarly distant from the original image. The influ-

ence of the parameter k is as expected in the formulation, with Dk increasing along with k.
From the experiments in Figs. 3 and 5, we can infer that bounded distance metrics dt manage to solve some of the prob-

lems in d-based BDM, either applied to DTs or to PDTs. However, this improvement shall be quantitatively confirmed with
different images and configurations. The next section is devoted to such task.

4. Large-scale quantitative experiments

This section is focused on understanding the impact of PDTs in Baddeley’s Delta Metric, in a context as complex as bound-
ary detection comparison. Boundary images contain relatively little information (in terms of number of pixels), but represent
complex shapes and objects. This further extends the initial experiments in [22], in which the authors tested BDM (only for
q < 0) with synthetic imagery, as well as with meteorological images featuring solid binary objects/regions.

4.1. Metaquality evaluation for boundary detection

Methods for binary image comparison, either metrics, dissimilarity measures, or any other class of functions, can be used
for different tasks. For example, they have applications in object tracking [38], object recognition [7] or biometric ID [39]
identification. We focus on the context of quality evaluation, specifically restricting to boundary detection and image seg-
mentation. This process is normally carried out by comparing the results by automated methods with gold standards (often
produced by humans), making the comparison operator critical in the process [40,41]. Comparison for quality evaluation
was, in fact, one of the primary goals Baddeley in his original work [20], citing deriving optimal algorithms, the numerical
benchmark for quantifying the performance of an algorithm and the measurement of achieved quality as potential uses of error
measures.

The comparison of boundary images has been rather prolific in past years, and holds strong similarities with related tasks
(e.g. silhouette matching and/or tracking). Given the variety of alternatives to produce such comparison, it is relevant to
question, and eventually quantify, how good comparison methods perform. This study concerns the so-called metaquality:
strategies to measure or enforce the quality of the evaluation methods.

Metaquality is complex to design and interpret; we refer to [42] or [43] for more details on this subject. In our experi-
ments, we focus on a specific study within the BSDS500 [23], a popular dataset for image segmentation and boundary detec-
tion which has been used for both benchmarking and metaquality evaluation [44]. This dataset contains, per image
(481� 321 pixels), a list of 5 to 7 hand-made ground truth images. The images, produced by different humans, are normally
divergent. Despite this divergence, any human would be able to cluster all boundary images according to the image after
which they were produced. This is illustrated in Fig. 6, which lists the ground truth images associated to three different
images in the BSDS500. Within the pool of images in Fig. 6, and despite the large intra-class divergences, humans are able
to cluster images in the same class, and discriminate images in different classes. We expect binary image comparison mea-
sures to replicate this behaviour. That is, we expect binary image dissimilarity measures (and metrics) to yield larger values
when comparing inter-class pairs of images than when comparing intra-class ones. This section intends to measure how
BDM performs in this regard, under different configurations, to evaluate the impact of such configuration.

4.2. A global analysis of separability

Our first approach to intra- and inter-class separability is based on the analysis of the distributions of the values yielded in
the comparison. In this regard, we have used different versions of BDM to compare all pairs of images in the BSDS500 Test
set. This set contains 1063 images in 200 classes, accounting for more than 106 comparisons.

For this experiment we have selected q 2 f�1;1g, so as to represent both the metric and the pseudometric versions of
BDM. Also, we consider three different metrics on X. First, we take m 2 fd5; d15g, since 5 and 15 correspond to (approx.)
1% and 3% of the image diagonal. These values cover the typical range in boundary comparison, since they represent the dis-
tance beyond which a pixel is considered as far away from a boundary, hence having its value at the DT/PDT set to t. Also, we
2 In Fig. 5 some plots in the rightmost column show a slight decrease of the quantified error w.r.t. the radius increase. This fact is due to the bounded nature
of X, as the enlarged circumference approaches the image limits.
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Fig. 6. Different hand-made (ground truth) boundary images extracted from the BSDS500 Test set. Each row corresponds to a different cluster (same-class
images).
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consider m ¼ d because, in Figs. 1 and 4, the unbounded Euclidean metric seemed to produce a regularization effect on P�1
d

that is worth investigating.
In Fig. 7 we display the distribution of values yielded by different versions of BDM on inter- and intra-class pairs of

images. Together with the distributions, we also display on the right axis the resulting accuracy (Acc) in the discrimination
of both distributions with each possible threshold. Ideally, if the distributions were non-overlapping, there would be at least
one threshold value producing Acc ¼ 1. For the experiment, we have considered different configurations of BDM. In the
upper row, we display the results with the original BDM (using m 2 fd5; d15; dg). Then, the middle and lower rows contain
the analogous results when replacing Tm by P�1

m and P1
m.

We recall that distributions in Fig. 7 are displayed in percentual terms, since the number of inter-class comparisons is
orders of magnitude greater than those of intra-class ones. In this experiment, there are circa 4500 intra-class comparisons,
and over 106 inter-class ones. Also, the accuracy (Acc) is computed according to normalized distributions for each class to
avoid problems due to class imbalance.

A noticeable fact in Fig. 7 is that the distributions of inter- and intra-class comparisons are fairly separable in the upper
row. In a general manner, intra-class comparisons yield significantly lower values than inter-class ones, which indicates a
relatively good behaviour of all configurations of BDM. The situation differs when replacing Tm by Pq

m. As expected from
the visual results in Fig. 4, PDTs computed with q < 0 and bounded metrics dt are poor representations of boundary images.
Hence, the intra- and inter-class distributions are hardly separable. However, the increasing smoothing effect by P�1

d par-
tially solves this situation. Regarding the separability with P1

m, the results are rather opposite to those with P�1
m . The classes

are highly separable form 2 fd5; d15g. However, the smoothing effect in using d renders in too unspecific distance transforms,
leading to poor silhouette recognition.

According to the results in Fig. 7, we have that P�1
m is a less suitable alternative for the task than Tm and P1

m. We relate
these results directly to the need for preservation of the property P�1

m ½I�ðpÞ ¼ 0 if and only if p 2 I. While this might have a
different effect in the recognition of solid shapes, it proves unfit for boundary images. The main problem is the presence of
sharp variations in the distance transform at boundary pixels, which severely hamper a sensible comparison by BDM. For
boundary comparison, BDM based on P�1

m hardly reached the performance (Acc) by BDM based on Tm, and did not reach
that by P1

m. Note that, while the peak accuracy can be seen as a scalar evaluation of class separability, it is also important
to observe the width and the area under the curve of Acc. In this sense, P1

m still produces the best results.
The experiment has been repeated with k ¼ 2 (see Fig. 8). While the results and conclusions are analogous to those

extracted from Fig. 7, it is also evident that k ¼ 1 leads to better results, especially in the settings using PDT.

4.3. A detailed analysis of separability

A more detailed analysis can be made on the basis of the quantitative criteria for class separability in [45]. These criteria
can be applied to any dataset with multiple ground truth solutions, as is the case for the BSDS500. The four separability cri-
teria are referred to as weak, moderate, strong and total separability.
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Fig. 7. Distributions of distances for inter- and intra-class pairs of ground truth images in the BSDS500 Test set, using different configurations of BDM. The
first rows represents the results by BDM with DTs, while the second and third rows represent the results by BDM when combined with PDTs. Each column
features a different base metric for the DT or PDT (d5;d15 or d ¼ d1). In all cases, we set k ¼ 1. The distributions have been configured with 100 bins.
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A dataset for image processing can be modelled as a triplet D ¼ I;E; kð Þ such that.

� I ¼ fI1; . . . ; Ikg#G is the set of original images in the dataset;
� E ¼ fE1; . . . ; Eng#B is the set of ground truth images in the dataset;
� k : f1; . . . ;ng ! f1; . . . ; kg is a mapping such that kðiÞ ¼ j if the image Ei was created by a human from image Ij.

Let D be a dataset and q be a metric or dissimilarity measure used to compare the binary images. The four separability cri-
teria are defined as follows.

(S1) Weak separability: The pair ðD; qÞ is weakly separable if
min
kðiÞ ¼ kðjÞ

i–j

qðEi; EjÞ 6 min
kðiÞ–kðrÞ

qðEi; ErÞ;

for all i 2 f1; . . . ;ng.

(S2) Moderate separability: The pair ðD; qÞ is moderately separable if
max
kðiÞ¼kðjÞ

qðEi; EjÞ 6 min
kðiÞ–kðrÞ

qðEi; ErÞ;

for all i 2 f1; . . . ;ng.

(S3) Strong separability: The pair ðD; qÞ is strongly separable if
max
kðiÞ¼kðjÞ¼m

qðEi; EjÞ 6 min
kðrÞ ¼ m
kðsÞ–m

qðEr ; EsÞ;

for all m 2 f1; . . . ; kg.

489



Fig. 8. Distributions of distances for inter- and intra-class pairs of ground truth images in the BSDS500 Test set, using different configurations of BDM. The
first rows represents the results by BDM with DTs, while the second and third rows represent the results by BDM when combined with PDTs. Each column
features a different base metric for the DT or PDT (d5;d15 or d ¼ d1). In all cases, we set k ¼ 2. The distributions have been configured with 100 bins.
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(S4) Total separability: The pair ðD; qÞ is totally separable if
max
kðiÞ¼kðjÞ

qðEi; EjÞ 6 min
kðrÞ–kðsÞ

qðEr; EsÞ:

The criteria are presented in increasing severity. In this way, for any pair ðD; qÞ, it holds that
S4 ) S3 ) S2 ) S1:
The interpretation of the four criteria can be made from the point of view of class recognition. (S1) checks whether, for each
image in a dataset, the closest image belongs to the same class. (S2) discriminates whether, for each image, all intra-class dis-
tances are smaller than inter-class ones. (S3) checks that, for each class, all intra-class distances are smaller than the inter-
class ones. Finally, (S4) is satisfied if and only if all intra-class distances in the dataset are smaller than the inter-class ones.

While S4 is a Boolean criterion, S1–S3 can be expressed as ratios. For example, for S1 we have the ratio R1 given by:
R1ðD; qÞ ¼ 1
n

i 2 f1; . . . ;ng j min
kðiÞ ¼ kðjÞ

i–j

qðEi; EjÞ 6 min
kðiÞ–kðrÞ

qðEi; ErÞ

8>>><
>>>:

9>>>=
>>>;

���������

���������
; ð8Þ
which represents the ratio of images Ei 2 B that comply with the criterion. Obviously, RiðD; qÞ ¼ 1 if and only if SiðD; qÞ.
It is worth noting that any metric or dissimilarity measure reaching an Acc of 1 in the experiments in Section 4.2, would

comply with total separability (S4), and consequently with all other criteria (S1–S3).
We have computed the separability ratios Ri on the BSDS500 using BDM combined with the distance transformations

considered in Section 4.3. The results are displayed in Fig. 9, presented for k 2 f1;2g.
In Fig. 9, we observe that all Ri decrease as i increases, which is natural considering the increasing restrictivity of the ratios

and the criteria according to which they are computed. The behaviour of BDM, under the various configurations, is in line
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Fig. 9. Separability ratios of different configurations of BDM on the BSDS500 Test set. The configurations of BDM are the ones depicted in Fig. 7 (for k ¼ 1)
and Fig. 8 (for k ¼ 2).
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with the results in Figs. 7 and 8. For example, we observe how Tm and P1
m perform better with bounded than unbounded

metrics. Also, in terms of overall performance, we observe that P1
m reaches a greater separability than Tm and, especially

thanP�1
m . Finally, we have that k ¼ 1 generally produces a better separability than k ¼ 2, which is consistent with the results

in Section 4.2.

4.4. A detailed view into inter- and intra-class separation

According to the results in Sections 4.2 and 4.3, BDM based on P1
dt , with t 2 f5;15g offers, in general, a better separability

than the other alternatives. We shall analyze an example in which this transformation outperforms its counterparts to
understand this fact.

Let ðA1;A2;BÞ be a triplet of ground truth images in the BSDS500 Test set, so that A1 and A2 belong to the same class, and B
belongs to a different one. Ideally, all versions of BDM should yield smaller values for the comparison of A1 and A2 than for
the comparison of A1 and B. In Fig. 10, we show an example of such triplet for which, among the configurations in Fig. 9, only
BDM based on P1

dt succeeds to yield the expected values. Note that, despite the differences in the images, any human would
be able to recognize A1 and A2 being much closer than A1 and B.

Fig. 10 displays a triplet of images in the BSDS500, together with some visualizations of distance transforms and the dif-
ferences between them. As in Figs. 1 and 4, scales have been customized for each DT and PDT, in order to make the results
row-wise comparable and interpretable. Note that t ¼ 25 is used for a better display of the distance transforms.

In Fig. 10, we firstly observe the problems in the use of Td, due to the unbounded nature of d. As a consequence, this
transformation generates very high values at the upper corners of some images, which subsequently leads to large diver-
gences in columns (d) and (e). Since image B has a spatial distribution similar to image A1, Td½A1� is in fact more similar
to Td½B� than to Td½A2�. This problem is partially corrected by using Td25 instead of Td. However, the large number of fea-
tured pixels in A2 leads to large divergences in the comparison of the transforms of A1 and A2, as seen in column (d).

In the case of P�1
d25

, we have a situation similar to that in Fig. 4. Since the distance transform is 0 at the boundary pixels, it

results in a crisp interpretation of the images. As can be seen in columns (a)–(c), transforms based onP�1
d25

contain little infor-
mation other than the position of the boundaries. Under these conditions, the comparison of distance transforms is mostly
based on exact coincidences of boundaries in the images.

In Fig. 10, the only transformation able to properly model divergences between images isP1
d25

. This, however, is not due to
a proper modelling of the coincidences and divergences of the images. As we can observe in the lower row of Fig. 10, the key
lies in the smoothness of P1

d25
½A2�. Due to the large number of binary pixels all over the image, P1

d25
yields large values even

for those pixels that actually contain featured pixels (as those representing trees in the upper region of the image). This hap-
pens because, even at those featured positions, the 1-power mean of the distances to all other featured pixels is high. This
can be seen in the low values associated with the contour regions in the transforms (columns (a)–(c)). Hence, in the com-
parison of the transforms of A1 and A2 (see column (d)), the discrepancies in the upper area of the image are not as significant
as with the other distance transformations. This indicates thatP1

d25
succeeds in recognizing A1 as being closer to A2 than to B;
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Fig. 10. Example of distance transforms of three images in the BSDS500 Test set. The first row includes the original images. For four different distance
transformations, we display (a–c) the distance transforms and the absolute difference between the distance transforms of (d) A1 and A2 and (e) A1 and B. The
images have been homogeneously normalized in each row.
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also, it indicates that the mechanisms powering such recognition are based on a bare, unspecific representation of the image
in the distance transforms, and not on a good modelling of the coincidences. Hence, yet yielding the right results, these trans-
forms need to be carefully understood.

5. Discussion

In this work we have considered the possible parametrizations of Baddeley’s Delta Metric (BDM), devoting special atten-
tion to the configuration of the underlying distance transformation; in this regard, we have considered both bounded and
unbounded distance metrics, as well as the Power Distance Transformation (PDT) by Brunet and Sills [22]. We have per-
formed quantitative and qualitative experiments testing the behaviour, properties and performance of different configura-
tions of the metric.

As a conclusion, we can state that the most relevant setting for BDM is the use of bounded distance transformations. The
use of PDTs can be of great use as well, although the use of the parameter q, and the regularization it induces, need to be
carefully analyzed and studied in specific applications. In our case, i.e. the context of boundary detection, PDT (with
q > 0) actually outperforms other configurations. Notably, it outperforms PDT with q < 0. However, we can also state that
PDT (a) involves the fine setting of parameters, specifically the powers k and q, (b) yields transforms whose interpretation
is not as straightforward as those by the standard DT, and (c) might require a configuration related to the morphological
characteristics of the binary features present in the images to be compared. Although PDT is a fully competitive alternative
to DT, its use in a specific context needs to be carefully considered and, eventually, finely configured.
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Appendix A. Efficient implementation of a Power Distance Transformation

The fast implementation of distance transformations has been heavily studied [46,47], and is normally supported by stan-
dard pre-coded libraries. However, the implementation of a PDT cannot be done, efficiently, on the basis of such algorithms.
Instead, we propose the following implementation.

The PDT of an image I using a bounded metric mt is given by:
Pq
mt
½I�ðpÞ ¼ 1

jIj
X
p02I

ðmtðp;p0ÞÞq
 !1=q

:

Let an image I be understood as the set of its 1-valued positions, I#X. For every given position p 2 X, we can write
I ¼ InearðpÞ [ IfarðpÞ, with InearðpÞ representing the pixels in I at a distance strictly smaller than t (in terms of mt), and Ifar rep-
resenting the pixels at distance t.
Pq
mt
½I�ðpÞ ¼ 1

jIj
X

p02InearðpÞ
ðmtðp; p0ÞÞq þ

X
p02IfarðpÞ

ðmtðp;p0ÞÞq
 ! !1=q

¼ 1
jIj

X
p02InearðpÞ

ðmtðp; p0ÞÞq þ
X

p02IfarðpÞ
tq

 ! !1=q

¼ 1
jIj

X
p02InearðpÞ

ðmtðp; p0ÞÞq þ jIj � jInearðpÞj
� � � tq

 ! !1=q

:

In order to implement this reformulation of the PDT, we define a kernel kin, centered at the origin. Let �k k be the norm
induced by mt . At each position ðx; yÞ; kin is defined as:
kinðx; yÞ ¼ ðx; yÞk kq ; if ðx; yÞk k < t

0 ;otherwise

(
:

Also, we define a kernel kcount as
kcountðx; yÞ ¼
1 ; if ðx; yÞk k < t

0 ;otherwise

	
:

The PDT of an image I, given the bounded metric mt , at each pixel p 2 X is given by:
Pq
mt
½I�ðpÞ ¼ 1

jIj ðaþ bÞ
� �1=q
with
a ¼ ðI 	 kinÞðpÞ and b ¼ jIj � ðI 	 kcountÞðpÞð Þ � tq:

With this implementation, we discriminate the sum of the distances to the nearby pixels (a) and the sum of the distances to
the far away pixels (b). The procedure is hence completed with two kernel convolutions.

There are two parameter configurations to be analyzed separately in this strategy.

� In case q ¼ 0, the kernel kin cannot be computed. In this case, the q-power mean becomes the geometric mean,
but its computation following the above schema will prove erroneous. Two alternatives are available; firstly, since
the geometric mean is continuous and monotone w.r.t. q, the 0-power mean can be approximated as the average
of the ð��Þ-power mean and the �-power mean, with � a small enough number. In terms of PDT, we could
approximate
P0
mt
½I� ¼ 1

2
ðP�

mt
½I� þP��

mt
½I�Þ:

Note that this could generate a loss of precision due to the powers being near-zero values. Alternatively, P0
mt
½I� can be

implemented as a geometric mean:
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P0
mt
½I�ðpÞ ¼ 1

jIj
Y
p02I

mtðp;p0Þ
 !1=jIj

;

which is straightforward using a simplistic, yet inefficient, iteration-based implementation.
� In case q < 0, the center position of kin will inevitably yield 0q ¼ 1. This can be solved from two perspectives. Firstly,
according to the definition of the power mean, that value shall produce no problem: if the center position is featured
in the image (p 2 I), the power mean will be zero; if it is not featured (p R I), then the value at the center of kin will
be ignored, avoiding any further problem. This was the alternative adopted in our experiments, so as to be faithful to
the original proposal by Brunet and Sills [22]. Secondly, if opting for an approximate solution, one can proceed in three
manners. The first option is to ignore that value setting it to 0, presuming it is unimportant in the mean of jIj values. A
second option is to replace the 0-value produced by the metric mt in the origin of kin by some small enough �. This can
lead to extraordinarily large, unstable values as �! 0. A third option is to find a numerically sensible solution using sim-
ple interpolation in the kernel. For a fixed metric, the partial derivatives can be computed and implemented. In a general
manner, a first-order discrete approximation at ðx; yÞ ¼ ð0;0Þ can be computed as
kinð0;0Þ ¼ kinð0;�1Þ þ kinð0;�1Þ � kinð0;�2Þ
or

kinð0;0Þ ¼ 1
2

kinð0;�1ÞÞ þ kinð0;1Þð Þ:

Discrete interpolation and differentation, yet not mathematically sound, have been used in a myriad of works in image
processing, e.g. for gradient computation [48,49].
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[1] P. Rusnok, P. Hurtik, O. Kaláb, D. Musiolek, P. Kočárek, M. Tomis, Data analysis of multivariate time series of insect tracking, in: Joint International
Conference on Soft Computing and Intelligent Systems (SCIS) and International Symposium on Advanced Intelligent Systems (ISIS), 2018, pp. 771–776.

[2] G. Wang, G. Van Stappen, B. De Baets, Automated artemia length measurement using U-shaped fully convolutional networks and second-order
anisotropic gaussian kernels, Computers and Electronics in Agriculture 168 (2020) 105102.

[3] J. Serra, Image Analysis and Mathematical Morphology, Academic Press Inc, 1983.
[4] T. Ojala, M. Pietikäinen, D. Harwood, A comparative study of texture measures with classification based on featured distributions, Pattern Recognition

29 (1) (1996) 51–59.
[5] H. Zhou, R. Wang, C. Wang, A novel extended local-binary-pattern operator for texture analysis, Information Sciences 178 (22) (2008) 4314–4325.
[6] J. Gimenez, J. Martinez, A.G. Flesia, Unsupervised edge map scoring: A statistical complexity approach, Computer Vision and Image Understanding 122

(2014) 131–142.
[7] F. Mokhtarian, A. Mackworth, Scale-based description and recognition of planar curves and two-dimensional shapes, IEEE Transanction on Pattern

Analysis and Machine Intelligence (1) (1986) 34–43..
[8] F. Mokhtarian, A.K. Mackworth, A theory of multiscale, curvature-based shape representation for planar curves, IEEE Transactions on Pattern Analysis

and Machine Intelligence (8) (1992) 789–805..
[9] K. Bowyer, C. Kranenburg, S. Dougherty, Edge detector evaluation using empirical ROC curves, Computer Vision and Image Understanding 84 (1) (2001)

77–103.
[10] B. Hemery, H. Laurent, B. Emile, C. Rosenberger, Comparative study of localization metrics for the evaluation of image interpretation systems, Journal

of Electronic Imaging 19 (2) (2010), 023017/1–023017/21.
[11] M. Segui Prieto, A. Allen, A similarity metric for edge images, IEEE Transactions on Pattern Analysis and Machine Intelligence 25 (10) (2003) 1265–

1273.
[12] D. Martin, C. Fowlkes, J. Malik, Learning to detect natural image boundaries using local brightness, color, and texture cues, IEEE Transactions on Pattern

Analysis and Machine Intelligence 26 (5) (2004) 530–549.
[13] F.J. Estrada, A.D. Jepson, Benchmarking image segmentation algorithms, International Journal of Computer Vision 85 (2) (2009) 167–181.
[14] A.V. Goldberg, R. Kennedy, An efficient cost scaling algorithm for the assignment problem, Mathematical Programming 71 (1995) 153–177.
[15] G. Liu, R.M. Haralick, Optimal matching problem in detection and recognition performance evaluation, Pattern Recognition 35 (10) (2002) 2125–2139.
[16] I. Abdou, W. Pratt, Quantitative design and evaluation of enhancement/thresholding edge detectors, Proceedings of the IEEE 67 (5) (1979) 753–763.
[17] R.M. Haralick, Digital step edges from zero crossing of second directional derivatives, IEEE Transactions on Pattern Analysis and Machine Intelligence 6

(1) (1984) 58–68.
[18] M.-P. Dubuisson, A.K. Jain, A modified Hausdorff distance for object matching, in: Proc. of the IEEE International Conference on Pattern Recognition, vol.

1, 1994, pp. 566–568..
[19] B. Takacs, Comparing face images using the modified Hausdorff distance, Pattern Recognition 31 (12) (1998) 1873–1881.
[20] A.J. Baddeley, An error metric for binary images, in: W. Förstner, S. Ruwiedel (Eds.), Robust Computer Vision: Quality of Vision Algorithms, Wichmann

Verlag, Karlsruhe, 1992, pp. 59–78.
[21] A.J. Baddeley, Errors in binary images and an Lp version of the Hausdorff metric, Nieuw Archief voor Wiskunde 10 (1992) 157–183.
[22] D. Brunet, D. Sills, A generalized distance transform: Theory and applications to weather analysis and forecasting, IEEE Trans. on Geoscience and

Remote Sensing 55 (3) (2016) 1752–1764.
[23] P. Arbelaez, M. Maire, C. Fowlkes, J. Malik, Contour detection and hierarchical image segmentation, IEEE Transactions on Pattern Analysis and Machine

Intelligence 33 (2011) 898–916.
[24] G. Beliakov, A. Pradera, T. Calvo, Aggregation Functions: A Guide for Practitioners, Vol. 221 of Studies in Fuzziness and Soft Computing, Springer, 2007..
[25] D.P. Huttenlocher, W.J. Rucklidge, A multi-resolution technique for comparing images using the Hausdorff distance, in: Proceedings of IEEE Conference

on Computer Vision and Pattern Recognition, 1993, pp. 705–706.
[26] D.P. Huttenlocher, K. Kedem, M. Sharir, The upper envelope of Voronoi surfaces and its applications, Discrete & Computational Geometry 9 (3) (1993)

267–291.
[27] D.L. Wilson, A.J. Baddeley, R.A. Owens, A new metric for grey-scale image comparison, International Journal of Computer Vision 24 (1997) 5–17.
494

http://refhub.elsevier.com/S0020-0255(21)00492-8/h0005
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0005
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0005
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0010
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0010
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0015
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0015
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0020
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0020
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0025
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0030
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0030
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0045
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0045
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0050
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0050
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0055
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0055
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0060
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0060
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0065
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0070
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0075
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0080
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0085
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0085
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0095
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0100
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0100
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0100
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0100
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0100
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0105
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0105
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0110
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0110
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0115
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0115
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0125
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0125
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0125
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0130
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0130
http://refhub.elsevier.com/S0020-0255(21)00492-8/h0135


C. Lopez-Molina, S. Iglesias-Rey, H. Bustince et al. Information Sciences 569 (2021) 479–495
[28] D. Coquin, P. Bolon, Application of Baddeley’s distance to dissimilarity measurement between gray scale images, Pattern Recognition Letters 22 (14)
(2001) 1483–1502.

[29] P.F. Felzenszwalb, D.P. Huttenlocher, Distance transforms of sampled functions, Theory of Computing 8 (1) (2012) 415–428.
[30] J. Öfverstedt, J. Lindblad, N. Sladoje, Stochastic distance transform: Theory, algorithms and applications, Journal of Mathematical Imaging and Vision 62

(5) (2020) 751–769.
[31] R. Yager, Families of OWA Operators, Fuzzy Sets and Systems 59 (2) (1993) 125–148.
[32] D.-G. Sim, O.-K. Kwon, R.-H. Park, Object matching algorithms using robust Hausdorff distance measures, IEEE Transactions on Image Processing 8 (3)

(1999) 425–429.
[33] B. Takacs, H. Wechsler, Face recognition using binary image metrics, in: Proc. of the IEEE International Conference on Automatic Face and Gesture

Recognition, 1998, pp. 294–299.
[34] D. Coquin, P. Bolon, A. Onea, Objective metric for colour image comparison, Proc. of the European Signal Processing Conference (2000) 1–4.
[35] C. Lopez-Molina, D. Ayala-Martini, A. Lopez-Maestresalas, H. Bustince, Baddeleyś delta metric for local contrast computation in hyperspectral imagery,
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