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Abstract: Assessing associations between a response of interest and a set of covariates in spatial areal
models is the leitmotiv of ecological regression. However, the presence of spatially correlated random
effects can mask or even bias estimates of such associations due to confounding effects if they are
not carefully handled. Though potentially harmful, confounding issues have often been ignored in
practice leading to wrong conclusions about the underlying associations between the response and the
covariates. In spatio-temporal areal models, the temporal dimension may emerge as a new source of
confounding, and the problem may be even worse. In this work, we propose two approaches to deal
with confounding of fixed effects by spatial and temporal random effects, while obtaining good model
predictions. In particular, restricted regression and an apparently—though in fact not—equivalent
procedure using constraints are proposed within both fully Bayes and empirical Bayes approaches. The
methods are compared in terms of fixed-effect estimates and model selection criteria. The techniques
are used to assess the association between dowry deaths and certain socio-demographic covariates in
the districts of Uttar Pradesh, India.
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1 Introduction

Spatial and spatio-temporal disease mapping techniques have been widely used in
epidemiology and public health. Though these analyses are somewhat descriptive,
they have undoubted value as they provide information about the geographical
pattern of the disease, how this pattern evolves in time, and where regions with
extreme risk (high or low) are located. An overall spatio-temporal view of the
phenomenon under study is extremely useful for generating hypotheses about factors
that may be associated with the disease. Throughout this article and to avoid any
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misleading conclusion, a risk factor is simply a predictor of one outcome (i.e., cancer,
or crimes against women in this article), which can be useful for identifying those
areas with high risk requiring special actions or intervention programmes.

When covariates related to the study question are unknown, spatio-temporal
areal models are a first step in developing an understanding of the disease or crime
under study. Incorporating potential risk factors in a model is usually known as
ecological regression, and it confers an inferential perspective on spatio-temporal
areal models as it quantifies the relationship between a response and covariates (see,
e.g., Martı́nez-Beneito and Botella-Rocamora, 2019, chapter 5).

Spatio-temporal areal models are practical and valuable tools, but they are not
free from inconveniences. Goicoa et al. (2018) highlight some identifiability problems
involving the intercept and the spatial and temporal main effects, and involving the
main effects and the interaction. To overcome these problems, these authors propose
to reparameterize the models or to use constraints, though other approaches exist
(see, e.g., Fahrmeir and Lang, 2000; Kneib et al., 2019, for identifiability issues in a
class of generalized additive models). Another key issue in spatial and spatio-temporal
areal models is potential confounding between the fixed effects and random effects.
Spatial confounding occurs when the covariates have a spatial pattern and are
collinear with the spatial random effects. Although some authors warn about its
effects (see, e.g., Clayton et al., 1993; Zadnik and Reich, 2006), it has been and
still is often ignored in practice. Though we restrict our attention to models for areal
data, the effects of spatial confounding have been studied in other areas such as causal
inference (see for example Papadogeorgou et al., 2019), or interpolation/prediction
(Page et al., 2017). Reich et al. (2006) show that adding a conditional autoregressive
spatial random effect (CAR) to a fixed effects model can lead to a great change
in the posterior mean or a great increase in the posterior variance of the fixed
effects, compared to the non-spatial regression model. More precisely, these authors
reconsider the Slovenia stomach cancer data, and observe that when the CAR random
effect is included in the model, the relationship between stomach cancer and the
covariate is diluted. To overcome this problem, they proposed to specify the random
effects as orthogonal to the fixed effects. Later, Hodges and Reich (2010) explain why
such spatial confounding occurs, and show that adding spatially correlated random
effects does not adjust fixed effects for spatially structured missing covariates, as has
been generally understood, though they do smooth fitted values.

Following the approach of reparameterizing random effects, Schnell and Bose
(2019) also examine the mechanisms of confounding of fixed effects by random
effects but they focus on diagnostics to evaluate the effects of confounding rather
than on methods to overcome it. Additional work includes Hughes and Haran (2013),
Hanks et al. (2015) and Prates et al. (2019). Recently, Khan and Calder (2020)
observe that restricted regression offers inference similar to models without random
effects. Khan and Calder, however, did not discuss model fit or prediction.

The present article deals with spatio-temporal models with covariates and spatial,
temporal, and spatio-temporal random effects, pursuing two main goals, namely,
correct estimation of linear association between socio-demographic covariates and
dowry death (a crime against women very specific to India), and good model
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predictions. Because we have data and covariates in space and time, confounding
may be spatial, temporal or both, and it may mask the association of the outcome
with the covariates.

This article proposes different methods to deal with confounding but also with
identifiability, as identifying spatial, temporal and spatio-temporal random effects is
important for interpretation. On one hand we consider restricted spatial regression
(Reich et al., 2006) and study its application to a spatio-temporal setting. On the
other hand, we examine use of constraints to deal with both identifiability and
confounding issues. While both methods seem to solve the confounding issue, they
lead to notably different results in terms of model fit. Here, we try to disentangle
why this happens.

The rest of the article is organized as follows. Section 2 poses the spatial
and the spatio-temporal models and briefly revisits identifiability and confounding
issues. Section 3 proposes two procedures to alleviate confounding and identify the
model: a model reparameterization followed by restricted regression, and the use
of orthogonality constraints. In Section 4, both techniques are used to assess the
association between dowry death and socio-demographic covariates, and to predict
spatio-temporal patterns of risk in Uttar Pradesh, the most populated state in India.

2 Pitfalls in spatial and spatio-temporal areal models

Spatial and spatio-temporal models for areal data have been and still are valuable
tools to give a complete picture of the status of a disease, crime or other variable of
interest measured using areal counts. Although the benefit and soundness of these
models are beyond any doubt, they are not free from inconveniences that should
be conveniently addressed. In this article, we revisit spatial and spatio-temporal
models with intrinsic conditional autoregressive (ICAR) priors for space and random
walks priors for time, and focus on two issues: model identifiability and confounding
of fixed effects by random effects. The first usually arises because the spatial and
temporal random effects implicitly include an intercept, and the interaction term
and the main effects overlap. The second arises from collinearity between fixed and
random effects, which may lead to bias and variance inflation of the fixed effects and
hence erroneous inference.

2.1 Identifiability and confounding in spatial models

This section focuses on a spatial model for areal count data that includes an intrinsic
conditional autoregressive (ICAR) prior for space and highlights the identifiability
and confounding issues.

Suppose the area under study (a country, a state) is divided into small areas
(counties, districts) denoted by i = 1, . . . S, and that Oi stands for the number of
observed cases (death or incident cases, number of crimes) in the ith small area.
Conditional on the relative risk ri, a Poisson distribution with mean µi = eiri is
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assumed for Oi, where ei is the number of expected cases computed using, for
example, internal standardization. That is

Oi|ri ∼ Pois(µi = eiri), logµi = log ei + log ri,

where log(ei) is an offset and log ri is modelled as

log ri = β0 + x′iβ + ξi. (2.1)

Here β0 is the intercept, x′i = (xi1, . . . ,xip) is a p-vector of standardized covariates
in the ith area, β = (β1, . . . , βp)′ is the p-vector of fixed effects coefficients, and ξi

is the spatial random effect with an ICAR prior (Besag, 1974). Then, the vector
of spatial effects ξ = (ξ1, . . . , ξS)′ follows the improper distribution with Gaussian
kernel, p(ξ) ∝ exp

(
−

1
2σ2

ξ

ξ
′

Qξξ
)
, where Qξ is the S× S spatial neighbourhood matrix

with (i, j) element Qξ(ij) = −1 if areas i and j are neighbours and 0 otherwise, and
the ith diagonal element Qξ(ii) is the number of neighbours of the ith area. In disease
mapping studies, typically two regions are neighbours if they share a common border.
Because Qξ’s rows sum to zero, Qξ1S = 0 where 1S is a vector of ones of length S,
so an intercept is implicit in the ICAR specification, leading to an identifiability
problem with the model intercept. We will assume the spatial map is connected, so
Qξ’s 0 eigenvalue has multiplicity 1; more general cases are easily accommodated
and omitted for simplicity. Goicoa et al. (2018) use this spectral decomposition of
the precision matrix of the random effects to reveal the identifiability issue:

Qξ = Uξ6ξU
′

ξ =
[
Uξn : Uξr

] (0 0
0 6̃ξ

)[
U
′

ξn

U
′

ξr

]
,

where 6̃ξ is a diagonal matrix with the non-null eigenvalues of Qξ in the main
diagonal, and Uξ = [Uξn : Uξr] is an orthogonal matrix with columns the eigenvectors
of Qξ. The matrix Uξ is split into the matrix of eigenvectors having null eigenvalues,
Uξn, and the matrix of eigenvectors having non-null eigenvalues, Uξr. Here the
identifiability issue is clearly revealed as Uξn equals the vector of ones 1S divided
by a normalizing constant. Consequently, the spatial Model (2.1) can be expressed
in matrix form as

log r = 1Sβ0 + Xβ + ξ = 1Sβ0 + Xβ + 1Sβξ + Uξrαξ, (2.2)

where r = (r1, . . . , rS)′, X = (X1, . . . ,Xp) is the S× p fixed effects design matrix
(excluding the intercept) with Xj = (X1j, . . . ,XSj)′, j = 1, . . . ,p, βξ = 1′Sξ, and αξ =

U′ξrξ, αξ ∼ N
(
0, σ2

ξ 6̃
−1
ξ

)
. Unlike αξ, which has a proper prior, βξ has prior precision

zero, leading to the identifiability issue: two intercepts are present, the model’s and
the one implicit in the ICAR. Removing one redundant intercept from the linear
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predictor, Model (2.2) can be written as

log r = 1Sβ0 + Xβ + Uξrαξ,

resolving the identifiability issue. Alternatively, a sum-to-zero constraint
∑S

i=1 ξi = 0
can be considered.

This reparameterization does not preclude the other potential pitfall of spatial
models: spatial confounding. Spatial confounding can be briefly defined as the
impossibility of dissociating covariate effects from spatial random effects. As far
as we know, Reich et al. (2006) is the first article describing how a CAR random
effect can produce changes in the estimates of the fixed effects and inflate the variance
compared to a non-spatial model. Later, Hodges and Reich (2010) study the effect
of spatial confounding more deeply and show that the usual belief that random
effects adjust fixed-effects estimates for missing confounders cannot be sustained.
They show that the variance inflation is large if the correlation is large between the
covariate Xj and the eigenvector of the spatial matrix Qξ having the smallest non-null
eigenvalue, that is, there is a collinearity problem.

To identify situations where confounding may be a serious issue, these authors
hypothesize that the random effects will mask the association between the response
and the covariate if the latter exhibits a trend in the long axis of the map. To overcome
this confounding, they propose to retain in the model only the part of the random
effects lying in the space orthogonal to the fixed effects; for a CAR model with normal
response Y, this is the model

Y = 1Sβ0 + Xβ + LL′ξ,

or its reparameterized version

Y = 1Sβ0 + Xβ + LL′Uξrαξ,

where the columns of L are eigenvectors having non-null eigenvalues (which in fact
are all 1) of the projection matrix IS −X∗(X′∗X∗)

−1X′
∗

onto the orthogonal space
of the fixed effects, IS is the S× S identity matrix, and X∗ = [1S : X]. According to
Hodges and Reich (2010), this restricted spatial regression takes account of the
spatial correlation without changing the estimates of the fixed effects. However,
with non-normal responses, for example, a Poisson model, this method requires
adjustments. In particular, to deal with collinearity between the fixed and random
effects we would use the linear predictor

log r = 1Sβ0 + Xβ + Ŵ−1/2LL′Ŵ1/2ξ,

where W is a diagonal matrix of weights with diagonal elements Wii =
Var(Oi|β0,β, ξ) = µi. W is the weight matrix in the iteratively reweighted least squares
algorithm, and to remove collinearity between the fixed and random effects we
should delete the combinations of Ŵ1/2ξ in the span of Ŵ1/2X (Reich et al., 2006).
Accordingly, L is now the matrix whose columns are the eigenvectors with non-zero
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eigenvalues of the orthogonal projection matrix Is − Ŵ1/2X∗(X′∗ŴX∗)−1X′
∗
Ŵ1/2 onto

the orthogonal space of Ŵ1/2X∗. It is also possible to reparameterize the model to
remove identifiability issues and specify the random effects as orthogonal to the fixed
effects:

log r = 1Sβ0 + Xβ + Ŵ−1/2LL′Ŵ1/2Uξrαξ,

Note that in practice, Ŵ is obtained by fitting the spatial Model (2.1).

2.2 Identifiability and confounding in spatio-temporal models

Now suppose that for each small area or district i, we have data for time
periods denoted by t = 1, . . . ,T. Similar to the spatial case, and conditional on the
spatio-temporal relative risk rit, assume the number of observed cases Oit in area i
and time t follows a Poisson distribution with mean µit = eitrit where eit is the number
of expected cases, that is,

Oit|rit ∼ Pois(µit = eitrit), logµit = log eit + log rit,

where the log relative risk is now modelled as

log rit = β0 + x′itβ + ξi + γt + δit. (2.3)

Here, x′it = (xit1, . . . ,xitp) is a p-vector of standardized spatio-temporal covariates in
area i and time t, β = (β1, . . . , βp)′ is the p-vector of fixed effect coefficients, γt is the
temporal main effect and δit is the spatio-temporal interaction term. In matrix form,
Model (2.3) is

log r = 1TSβ0 + Xβ + (1T ⊗ IS)ξ + (IT ⊗ 1S)γ + ITSδ, (2.4)

where r = (r11, . . . , rS1, . . . , r1T, . . . , rST)′, 1TS and 1T are columns of ones of length
TS and T respectively, X = (X1, . . . ,Xp) is the TS× p matrix of standardized
spatio-temporal covariates with Xj = (X11j, . . . ,XS1j, . . . ,X1Tj, . . . ,XSTj)′,
j = 1, . . . ,p, and IT and ITS are T × T and TS× TS identity matrices respectively.
As before, we consider an ICAR prior for the spatial random effect. For the
vector of temporal random effects γ = (γ1, . . . , γT)′, we use a first-order random
walk (RW1), that is p(γ) ∝ exp

(
−

1
2σ2

γ

γ
′

Qγγ
)
, where Qγ is the RW1’s structure

matrix (Rue and Held, 2005, p. 95). The vector of interaction random effects
δ = (δ11, . . . , δS1, . . . , δ1T, . . . , δST)′ is assumed to follow a distribution with the
Gaussian kernel p(δ) ∝ exp

(
−

1
2σ2

δ

δ
′

Qδδ
)
, and Qδ = (Qγ ⊗Qξ). This interaction term

corresponds to the Type IV interaction of Knorr-Held (2000). We consider this type
of interaction as it includes spatial and temporal dependence and consequently can
produce spatial or temporal confounding. Now consider the spectral decomposition
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of Qγ:

Qγ = Uγ6γU
′

γ =
[
Uγn : Uγr

] (0 0
0 6̃γ

)[
U
′

γn

U
′

γr

]
,

where Uγ =
[
Uγn : Uγr

]
is the T × T matrix of eigenvectors, Uγn = 1T (up to a

constant) is the eigenvector with null eigenvalue, Uγr is the T × (T − 1) matrix of
eigenvectors with non-null eigenvalues, and 6̃γ is a diagonal matrix with the non-null
eigenvalues in the main diagonal. The spectral decomposition of Qδ = Qγ ⊗Qξ can

be expressed as Qδ = Qγ ⊗Qξ = Uδ6δU
′

δ = [Uδn : Uδr]
(

0 0
0 6̃δ

)[
U
′

δn

U
′

δr

]
, where, as in

the previous cases, Uδn is the matrix of eigenvectors having null eigenvalues, Uδr

is the matrix of eigenvectors having non-null eigenvalues, and 6̃δ = 6̃γ ⊗ 6̃ξ is a
diagonal matrix with the non-null eigenvalues in the main diagonal. It can be shown
easily that Uδn = [Uγn ⊗Uξn : Uγn ⊗Uξr : Uγr ⊗Uξn], Uδr = [Uγr ⊗Uξr].

Similar to the spatial case, the spatio-temporal Model (2.4) can be expressed in
matrix form as

log r = 1TSβ0 + Xβ + 1TSβξ + (1T ⊗Uξr)αξ + 1TSβγ + (Uγr ⊗ 1S)αγ
+ [1TS : 1T ⊗Uξr : Uγr ⊗ 1S]βδ + (Uγr ⊗Uξr)αδ, (2.5)

where βγ = U
′

γnγ = 1
′

Tγ, αγ = U
′

γrγ ∼ N
(
0, σ2

γ6̃
−1
γ

)
, βδ = U

′

δnδ, and αδ = U
′

δrδ ∼

N
(
0, σ2

δ 6̃
−1
δ

)
. The reparameterized form of Model (2.5) sheds light on the

identifiability issues in spatio-temporal models as it lays bare repeated terms.
Removing those superfluous terms gives the following model:

log r = 1TSβ0 + Xβ + (1T ⊗Uξr)αξ + (Uγr ⊗ 1S)αγ + (Uγr ⊗Uξr)αδ, (2.6)

which overcomes identifiability issues. For more details about this
reparameterization, a generalization to RW2 priors for time, and the other
interaction types described by Knorr-Held (2000), the reader is referred to Goicoa
et al. (2018), where sum-to-zero constraints are alternatively derived to achieve
model identifiability.

Confounding issues are more challenging in spatio-temporal settings than in
spatial settings. In a spatio-temporal model, the covariates can exhibit spatial patterns
each year, or temporal patterns in each area. As the model includes both spatial and
temporal random effects along with interaction terms, the source of confounding
can be spatial, temporal, or both. Note that the reparameterized Model (2.6) may
present confounding problems as the covariates may be collinear with the design
matrix of the spatial, temporal, or spatio-temporal random effects. The following
section proposes two methods to alleviate confounding in spatio-temporal models,

Statistical Modelling xxxx; xx(x): 1–22



8 A. Adin et al.

restricted spatial regression and constraints that make the estimated random effects
orthogonal to the fixed effects.

3 Alleviating confounding in spatio-temporal models

Constraints can be used to make the random effects orthogonal to the fixed
effects and, thus, alleviate confounding. The idea of inducing orthogonality between
the fixed and random effects is similar to restricted regression, but they have
some differences that can lead to notably distinct results. This section shows that
constraining the random effects to be orthogonal to the fixed effects is not equivalent
to removing from the linear predictor the component of the random effects in the
span of the fixed effects, as might reasonably be assumed. In some cases, these
differences are hardly noticeable in the spatial case but they become important in
spatio-temporal settings.

3.1 Model reparameterization and restricted regression

Consider Model (2.6). This reparameterized spatio-temporal model is convenient
as it solves the identifiability problems by removing repeated terms in the spatial
and temporal main effects and the interaction random effects. The confounding
issues are more challenging now because covariates are spatio-temporal, so we can
have collinearity between the covariates and the spatial term, the covariates and
the temporal term, or the covariates and the spatio-temporal interaction. Another
concern is how to assess these correlations as the covariates have T × S entries while
the spatial and temporal random effects have S and T elements. This section considers
the matrix L with columns that are the eigenvectors having non-null eigenvalues (all
equal 1) of the projection matrix Pc = ITS − Ŵ1/2X∗(X′∗ŴX∗)−1X′

∗
Ŵ1/2, where now

X∗ = [1TS : X], and X is the design matrix of covariates. The matrix Pc projects onto
the space orthogonal to the (scaled) fixed effects Ŵ1/2X∗. Consider also the matrix K,
with columns that are the eigenvectors having eigenvalue 1 of the projection matrix
P = Ŵ1/2X∗(X′∗ŴX∗)−1X′

∗
Ŵ1/2. Note that K = Ŵ1/2X∗ and that (KK

′

+ LL
′

) = ITS; we
therefore propose the following spatio-temporal model:

log r = 1TSβ0 + Xβ + Ŵ−1/2(KK
′

+ LL
′

)Ŵ1/2(1T ⊗Uξr)αξ
+Ŵ−1/2(KK

′

+ LL
′

)Ŵ1/2(Uγr ⊗ 1S)αγ

+Ŵ−1/2(KK
′

+ LL
′

)Ŵ1/2(Uγr ⊗Uξr)αδ.

As the terms involving the matrix K are in the span of the fixed effects X∗, they are
removed and the model becomes
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log r = 1TSβ0 + Xβ + Ŵ−1/2LL
′

Ŵ1/2(1T ⊗Uξr)αξ + Ŵ−1/2LL
′

Ŵ1/2(Uγr ⊗ 1S)αγ

+Ŵ−1/2LL
′

Ŵ1/2(Uγr ⊗Uξr)αδ. (3.1)

Model (3.1) deserves comment. First, by using the matrix L, all random effects
have been restricted to be orthogonal to the fixed effects (L is orthogonal to Ŵ1/2X∗
by construction, that is X

′

∗
Ŵ1/2L = 0), but we could also restrict only some of the

random effects. Restricting all the random effects may not be necessary if only some
of the random effects confound a fixed effect. Thus, it is possible to orthogonalize
only the spatial, or temporal, or interaction random effects. The other important
issue is the final estimation of the spatial and temporal random effects. Compared
to Model (2.6), the spatial and temporal random effects in Model (3.1) undergo
a substantial change. In Model (2.6), the spatial and temporal main effects are
(1T ⊗Uξr)αξ and (Uγr ⊗ 1S)αγ respectively; clearly S spatial effects are repeated in
time, while T temporal effects are repeated for the S small areas. In the orthogonalized
Model (3.1), however, the spatial and temporal main effects are Ŵ−1/2LL

′

Ŵ1/2(1T ⊗

Uξr)αξ and Ŵ−1/2LL
′

Ŵ1/2(Uγr ⊗ 1S)αγ respectively. Because these terms include the
matrix L, which has T × S rows (the covariates are spatio-temporal, in general), the
spatial effect associated with the ith area is different in each time period as it depends
on the value of the covariates in that period. Similarly, the effect of time period t is
also different for each area as it depends on the covariates in that area. Consequently,
Model (3.1) has time-varying spatial effects and space-varying temporal effects.

3.2 Constraints to alleviate confounding
Placing constraints is a way to achieve identifiability in spatio-temporal disease
mapping models (Goicoa et al., 2018). Constraints can be used not just to identify
models but also to alleviate spatial confounding, by constraining the random effects to
be orthogonal to the fixed effects. This section considers such constraints. Specifically,
consider Model (2.4) and consider the linear predictor

Ŵ1/21TSβ0 + Ŵ1/2Xβ + Ŵ1/2(1T ⊗ IS)ξ + Ŵ1/2(IT ⊗ 1S)γ + Ŵ1/2ITSδ.

To make the random effects orthogonal to the fixed effects, these constraints are
required:

[1TS : X]
′

Ŵ(1T ⊗ IS)ξ = 0⇐⇒
S∑

i=1

ξiŵi· = 0,
S∑

i=1

ξi(ŵxj)i· = 0, ∀j = 1, . . . ,p,

[1TS : X]
′

Ŵ(IT ⊗ 1S)γ = 0⇐⇒
T∑

t=1

γtŵ·t = 0,
T∑

t=1

γt(ŵxj)·t = 0, ∀j = 1, . . . ,p,
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10 A. Adin et al.

[1TS : X]
′

Ŵδ = 0⇐⇒
S∑

i=1

T∑
t=1

ŵitδit = 0,
S∑

i=1

T∑
t=1

ŵitxitδit = 0, ∀j = 1, . . . ,p,

(3.2)

where ŵi· =
∑T

t=1 ŵit, ŵ·t =
∑S

i=1 ŵit, (ŵxj)i· =
T∑

t=1
ŵitxjit, and (ŵxj)·t =

∑S
i=1 ŵitxjit.

That is, the spatial random effect is constrained to be orthogonal to the time-averaged
covariates at each location, the temporal random effect is constrained to be
orthogonal to the space-averaged covariates at each time, and the interaction random
effect is constrained to be orthogonal to the full fixed-effects design matrix. However,
the interaction term δ is confounded with the spatial and temporal main (random)
effects and these additional constraints are required:

[(1T ⊗ IS) : (IT ⊗ 1S)]
′

Ŵδ = 0⇐⇒

S∑
i=1

ŵitδit = 0 ∀t = 1, . . . ,T.

T∑
t=1

ŵitδit = 0 ∀i = 1, . . . , S.
(3.3)

making the constraint
∑S

i=1

∑T
t=1 ŵitδit = 0 redundant. Avoiding confounding between

the interaction and the spatial and temporal main effect terms is crucial for model
interpretation. The spatial main effects capture spatial variation that is not accounted
for by the covariates so they may help identify spatial risk factors that have not been
included in the model. Similarly, the temporal main effects may help identify risk
factors associated with time. The interaction random effects usually explain a small
portion of variability and capture deviations from the main effects. Given that the
interaction term’s null space equals the design matrix of the spatial and temporal main
effects (see Model (2.5)), confounding between main effect and interaction random
effects may make it impossible to achieve one of the goals of disease mapping:
smoothing in space and time to uncover spatial and temporal patterns.

Though the restricted regression and the constraints approaches would seem to
be equivalent, they are in fact different. The restricted regression approach focuses
on the reduced Model (3.1), where the part of the random effects in the span of the
fixed effects has been removed, and orthogonality is achieved through the matrix L.
The constraints approach, by contrast, starts with the full Model (2.4) and Equation
(3.2)’s constraints force the random effects to be orthogonal to the fixed effects,
which is a way to remove collinearities between them. A key distinction between the
restricted regression and constraints approaches is that in the former, the spatial and
temporal effects change in time and space respectively due to the spatio-temporal
nature of the matrix L, while in the constraints approach, the spatial effects remain
constant in time and the temporal effects do not change in space.

One may think the methods are equivalent because removing the part of
the random effects in the span of the fixed effects means K

′

Ŵ1/2(1T ⊗ IS)ξ = 0,

Statistical Modelling xxxx; xx(x): 1–22



Alleviating confounding in spatio-temporal areal models 11

K
′

Ŵ1/2(IT ⊗ 1S)γ = 0, and K
′

Ŵ1/2ITSδ = 0, which match the constraints in Equation
(3.2), taking into account that K = Ŵ1/2[1 : X]. However, placing constraints is in
fact equivalent to oblique projections of the random effects. That is, the constraints
in Equations (3.2) and (3.3) correspond to this model:

log r = 1TSβ0 + Xβ + (1T ⊗ IS)Pξξ + (IT ⊗ 1S)Pγγ + Pδδ
= 1TSβ0 + Xβ + (1T ⊗ Pξ)ξ + (Pγ ⊗ 1S)γ + Pδδ,

where

Pξ = Lξ[L
′

ξQξLξ]−1L
′

ξQξ, Pγ = Lγ[L
′

γQγLγ]−1L
′

γQγ, Pδ = Lδ[L
′

δQδLδ]−1L
′

δQδ

(3.4)
are made to be, respectively, oblique projections onto the orthogonal complements
of the row spaces of the matrices

Bξ = X
′

∗
Ŵ(1T ⊗ IS), Bγ = X

′

∗
Ŵ(IT ⊗ 1S), Bδ = [(1T ⊗ IS) : (IT ⊗ 1S) : X]

′

Ŵ
(3.5)

by setting Lξ to be the matrix whose columns are the eigenvectors with non-zero
eigenvalues of the projection matrix IS − B

′

ξ(BξB
′

ξ)
−1Bξ, and similarly for Lγ and Lδ.

See Supplementary Material A for the equivalence of the oblique projections and the
constraints and detailed expressions of matrices Bξ, Bγ, and Bδ.

3.3 Model fitting and inference

Two main methods have been used to fit spatial and spatio-temporal disease mapping
models: a fully Bayesian approach and an empirical Bayes approach. The latter
provides point estimates of quantities of interest, traditionally using penalized
quasi-likelihood (PQL; Breslow and Clayton, 1993). It has proven to be interesting
because it is relatively simple and has few convergence problems, and it has been used
to fit different models such as the ICAR or P-splines (Dean et al., 2001, 2004; Ugarte
et al., 2010, 2012). However, PQL automatically places sum-to-zero constraints
due to the rank deficiency of the random effects covariance matrices, and placing
additional constraints is not so straightforward (see the Appendix for full details).

The fully Bayesian approach is probably the most-used technique for model
fitting and inference because it provides a full posterior distribution for quantities of
interest. Though it has traditionally relied on Markov chain Monte Carlo (MCMC),
the computational burden of MCMC prompted development of other attractive
procedures, including INLA (integrated nested Laplace approximations; Rue et al.,
2009). INLA’s main advantage is that it provides approximate Bayesian inference
without using MCMC, leading to substantial reduction in computational cost.
INLA is ready to use in the free software R using the package R-INLA, which has
implemented general models that can be adapted to disease mapping. Also, imposing
constraints in INLA is relatively simple.

Statistical Modelling xxxx; xx(x): 1–22



12 A. Adin et al.

4 Data analysis: The association between dowry deaths and
socio-demographic covariates in Uttar Pradesh, India

In this section, the two approaches to alleviate confounding are used to assess the
potential association between dowry deaths and some socio-demographic covariates
in Uttar Pradesh, the most populated state in India. Dowry deaths is a cruel form of
violence against women deep-rooted in India. It is strongly related to dowry, which
can be defined as the amount of money, property, or goods that the bride’s family
gives to the groom or his relatives for the marriage. Although dowry was originally
designed to protect women from unfair traditions, such as the impossibility of women
owning immovable property (see Banerjee, 2014), it has become a means by which
the husband or husband’s relatives extort higher dowries under the threat of physical
violence against the wife. This form of violence can be extended over time, ending
in what is known as a dowry death. If a woman commits suicide because she has
experienced mental or physical violence related to the dowry, this is also considered
a dowry death.

We have data on dowry deaths in 70 districts of Uttar Pradesh, the Indian state
with the highest rate of dowry deaths, during the period 2001–2014. In 2014, the
last year of the study period, 8 455 dowry deaths were registered representing 29.2%
of all dowry deaths in India. One of the difficulties of combatting this crime against
women is the lack of knowledge about potential risk factors that might be associated
with dowry deaths, and thus help to predict this crime. One hypothesized risk factor
is the sex ratio, that is, the number of females per 1 000 males. The literature has
contradictory results about the sex ratio: some authors find a negative association
between dowry deaths and sex ratio (Mukherjee et al., 2001), while others find a
positive association (Dang et al., 2018). In a more in-depth study of dowry deaths
in Uttar Pradesh, Vicente et al. (2020) consider spatio-temporal models and include
some potential risk factors as covariates to assess their association with dowry deaths.
However, these authors do not address confounding issues. We now focus on some
of those covariates, namely sex ratio (x1), population density (x2), female literacy
rate (x3), per capita income (x4), murder rate (x5), and burglary rate (x6), estimating
their association with dowry deaths accounting for confounding. The goal is to see
the effect of confounding on the estimates and standard errors of the fixed effects.
We also compare restricted regression and constraints in terms of model fit and
complexity using DIC (Deviance Information Criterion, Spiegelhalter et al., 2002)
and AIC (Akaike Information Criterion, Akaike, 1974) in a Bayesian and frequentist
approach respectively.

4.1 Data analysis

For purely spatial models, Reich et al. (2006) and Hodges and Reich (2010) argued
that spatial confounding is created by a high correlation between a covariate and the
eigenvector of the spatial precision matrix having the smallest non-null eigenvalue.
In the spatio-temporal setting, this suggests examining analogous correlations for the
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spatial, temporal, and spatio-temporal random effects. Therefore, before fitting any
models, we examine the data and compute some correlations. Specifically, we split the
covariates into spatial vectors for each year of the period, and computed Pearson’s
correlation between those spatial vectors and Uξ69 , the eigenvector of the spatial
precision matrix with the smallest non-null eigenvalue, so for each covariate, we
compute fourteen spatial correlations. Similarly, we split the covariates into temporal
vectors for each district, and evaluate the correlations between those temporal vectors
and Uγ13 , the eigenvector of the temporal precision matrix with the smallest non-null
eigenvalue, seventy temporal correlations for each covariate. Boxplots of correlations
between the covariates and the spatial eigenvector Uξ69 for each year (left) and
correlations between the covariates and the temporal eigenvector Uγ13 for each area
(right) are displayed in Figure B.1 in Supplementary Material B, together with some
explanation.

Now we consider four spatio-temporal models.

• Model ST1: Simple spatio-temporal Poisson model (Equation (2.4) without
random effects)

• Model ST2: Spatio-temporal model without accounting for confounding
(Equations (2.4) and (2.6) for INLA and PQL respectively).

• Model ST3: Spatio-temporal model with restricted regression (Equation (3.1)).
• Model ST4: Spatio-temporal model with orthogonality constraints (Equations

(3.2) and (3.3))

Within the full Bayesian approach, we have used Normal prior distributions
with mean 0 and variance equal to 1 000 for fixed effects. Regarding random
effects, we have used uniform prior distributions on the positive real line for the
standard deviations. We have also considered logGamma(1,0.00005) priors for the
log-precisions and PC priors for the standard deviations (see, e.g., Simpson et al.,
2017), but these gave similar results and hence they are not shown here to save space.

Table 1 shows the posterior mean and standard deviation of the fixed effects with
a 95% credible interval, computed using INLA (simplified Laplace strategy). Point
estimates obtained with PQL are also displayed with their standard error and 95%
confidence interval. For sex ratio, the estimate with Model ST2 and INLA is about
40% (in absolute value) of the estimates obtained with Models ST1, ST3, and ST4,
and the posterior SD is 5.5 times higher. For Model ST2, the 95% credible interval
includes 0, while the intervals from the other models are far from zero. The results
with PQL are similar although Model ST2’s confidence interval for sex ratio barely
excludes 0. For population density, the estimate from Model ST2 is less than 10%
of the estimates obtained with Models ST1, ST3, and ST4, with INLA or PQL,
and again the posterior SD with Model ST2 is about 5 times higher than with the
other models. The consequence is that using Model ST2, the association between
population density and dowry deaths is not significant. Per capita income has similar
results. The effect of confounding on the estimated association with female literacy
rate is also noteworthy: with Model ST2, the estimated effect is negative (though
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Table 1 Posterior mean, posterior standard deviation, and 95% credible intervals of the fixed effects for
models fitted with INLA (left), and point estimates, standard errors and 95% confidence intervals obtained
with PQL (right). The results for Model ST2 are in bold when the covariate is not significantly associated
with dowry death

INLA (Simplified Laplace) PQL (tol=1e-5)

Sex ratio

Model Mean SD q0.025 q0.975 Estimate SE q0.025 q0.975
β1 ST1 −0.2366 0.0085 −0.2532 −0.2200 −0.2366 0.0085 −0.2532 −0.2200

ST2 −0.0920 0.0470 −0.1836 0.0015 −0.0924 0.0459 −0.1825 −0.0024
ST3 −0.2303 0.0085 −0.2470 −0.2135 −0.2299 0.0082 −0.2459 −0.2139
ST4 −0.2284 0.0082 −0.2445 −0.2125 −0.2281 0.0081 −0.2441 −0.2121

Population Density

β2 ST1 −0.0917 0.0065 −0.1044 −0.0791 −0.0917 0.0065 −0.1044 −0.0792
ST2 −0.0069 0.0318 −0.0682 0.0568 −0.0081 0.0304 −0.0677 0.0515
ST3 −0.0901 0.0066 −0.1031 −0.0773 −0.0904 0.0061 −0.1024 −0.0785
ST4 −0.0946 0.0063 −0.1071 −0.0824 −0.0949 0.0063 −0.1073 −0.0826

Female literacy rate

β3 ST1 0.0992 0.0076 0.0843 0.1141 0.0992 0.0076 0.0843 0.1141
ST2 −0.0478 0.0501 −0.1482 0.0487 −0.0469 0.0474 −0.1398 0.0460
ST3 0.0946 0.0080 0.0789 0.1104 0.0946 0.0077 0.0796 0.1096
ST4 0.0975 0.0077 0.0823 0.1126 0.0975 0.0077 0.0823 0.1126

Per capita income

β4 ST1 −0.0661 0.0084 −0.0827 −0.0498 −0.0661 0.0084 −0.0827 −0.0499
ST2 −0.0196 0.0296 −0.0776 0.0385 −0.0198 0.0288 −0.0763 0.0368
ST3 −0.0651 0.0085 −0.0819 −0.0486 −0.0650 0.0081 −0.0809 −0.0491
ST4 −0.0680 0.0080 −0.0837 −0.0525 −0.0678 0.0079 −0.0833 −0.0522

Murder rate

β5 ST1 0.0833 0.0076 0.0682 0.0982 0.0833 0.0076 0.0682 0.0982
ST2 0.0846 0.0203 0.0446 0.1244 0.0845 0.0202 0.0449 0.1241
ST3 0.0906 0.0081 0.0748 0.1064 0.0907 0.0077 0.0756 0.1057
ST4 0.0881 0.0079 0.0726 0.1034 0.0881 0.0079 0.0727 0.1035

Burglary rate

β6 ST1 0.0419 0.0062 0.0297 0.0541 0.0419 0.0062 0.0297 0.0540
ST2 0.0535 0.0161 0.0220 0.0850 0.0535 0.0158 0.0226 0.0844
ST3 0.0424 0.0068 0.0291 0.0557 0.0423 0.0063 0.0300 0.0547
ST4 0.0431 0.0063 0.0307 0.0554 0.0429 0.0063 0.0306 0.0552

not significant) whereas with the rest of models is positive and significant. The
estimated associations with murder rate and burglary rate are similar for the four
models, though the posterior SD is clearly larger for Model ST2. These results are
revealing and illustrate the potential harmful consequences of ignoring the effects
of confounding: the estimated association between the response and the covariate
may be diluted or dramatically changed. Posterior estimates of the hyperparameters
(standard deviations) are displayed in Table B.1 in Supplementary Material B.
Similar estimates for the standard deviations are obtained with Models ST2, ST3,
and ST4.
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Table 2 Model selection criteria and computing time (seconds) for spatio-temporal models fit with INLA
and PQL. Computations were made on a twin superserver with four processors, Intel Xeon 6C and 96GB
RAM, using the R-INLA (stable) version 19.09.03.

INLA (simplified Laplace) PQL (tol=1e-5)

D̄ pD DIC Time Deviance Df AIC Time

Model ST1 8471.72 7.18 8478.90 3 8466.20 7.00 8480.20 1
Model ST2 5962.60 239.26 6201.86 18 5727.89 236.48 6200.85 74
Model ST3 5962.59 239.27 6201.86 192 5727.85 236.46 6200.77 86
Model ST4 6492.87 232.01 6724.88 22 6269.53 227.64 6724.81 180

Spatio-temporal models accounting for confounding (Models ST3 and ST4) lead
to similar estimates of the fixed effects and their posterior standard deviations but they
differ in terms of model selection criteria. Table 2 displays the mean deviance (D̄), the
effective number of parameters pD, DIC and computing time for the INLA fits. For
the PQL fit, the deviance, the number of parameters (Df ) and AIC are provided. As
expected, the model without random effects has the worst fit; the six covariates are not
enough to explain the data’s variation. For Models ST3 and ST4, the difference in fit
is remarkable. Clearly, Model ST3 provides a much better fit: the differences in D̄ and
DIC are about 500 points. The INLA fit with a simplified Laplace strategy and using
constraints (Model ST4) is much faster than restricted regression (22 and 192 seconds
respectively). Computing time for Model ST3 in INLA has been reduced (about one
half at least) by plugging in the posterior modes of the hyperparameters obtained from
Model ST2 as initial values. Note that the total time required to fit Model ST3 should
include the computing time of Model ST2 (18 seconds in our data analysis). Similarly,
computing times for Models ST3 and ST4 in PQL have been reduced about 23%
using the variance components estimates obtained in Model ST2 as initial values
in the estimation algorithm. In this case, the computing times shown in Table 2
correspond to the total time needed to fit the corresponding models. Additionally,
Supplementary Material B provides scatter plots of the estimated relative risks
from Models ST2, ST3, and ST4 fitted with INLA and PQL (Figure B.2); posterior
spatial patterns (top row), posterior temporal patterns (middle row) obtained from
Models ST2, ST3, and ST4 fitted with INLA, and posterior spatio-temporal patterns
(see Adin et al., 2017) for three districts, Agra, Balrampur, and Gautam Buddha
Nagar (bottom row) in Figure B.3. Finally, INLA relative risk estimates (posterior
means) obtained with models ST3 and ST4 are shown in Figure B.4 for the same
three districts.

Why do Models ST3 and ST4 fit so differently? First, the spatial and temporal
terms in Models ST4 are (1T ⊗ IS)ξ and (IT ⊗ 1S)γ respectively. Consequently the
spatial effects are repeated in every year and the temporal effects are repeated
in each area. In Model ST3, however, the spatial and temporal terms (1T ⊗Uξr)ξ
and (Uγr ⊗ 1S)γ are premultiplied by Ŵ−1/2LL

′

Ŵ1/2. Because the matrix L contains
spatio-temporal information — it depends on the spatio-temporal covariate X —
the spatial effect for the ith area is different in each time period and the temporal
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effect in year t is also different for each area. Second, no substantial change in
relation to Model ST2 is made in Model ST3. Basically, the random effects in this
latter model are split into two pieces, one in the span of the covariates and one
orthogonal to the covariates. When Model ST3 removes the part in the span of the
covariates, it is simply discarding redundant information. By contrast, Model ST4
changes the model by forcing the random effects to be orthogonal to the fixed
effects. Moreover, the spatial random effects lie in the space orthogonal to the
time-weighted-added covariates, and the temporal random effects are orthogonal
to the spatial-weighted-added covariates. This is equivalent to an oblique projection
onto the orthogonal subspace of the fixed effects, unlike Model ST3, where the
projection is orthogonal. Because the orthogonal projection minimizes the distance
between the original random effects and the projection, this could explain the
improvements in fit over the oblique projection (constraints).

Finally, note that we also fit Model ST3 without premultiplying the temporal
and spatio-temporal effects by Ŵ−1/2LL

′

Ŵ1/2 and the results are nearly identical,
indicating that all confounding arises from the spatial term. We also fit Model
ST3 premultiplying by Ŵ−1/2LL

′

Ŵ1/2 only to the temporal and the spatio-temporal
effects, and the confounding effects are not avoided.

5 Discussion

Including spatially correlated random effects in a model can seriously affect inference
about fixed effects due to confounding. This is particularly dramatic in ecological
spatial regression where the main objective is to estimate associations between the
response variable and certain covariates. These relationships can be masked due
to bias and variance inflation of the fixed effects caused by confounding. Though
documented in the literature, spatial confounding has generally been ignored in
applications and this practice has carried over to spatio-temporal settings. Here
we study confounding in spatio-temporal ecological models in which including
temporally correlated random effects and space-time interaction random effects
(spatially and temporally correlated) can exacerbate confounding problems. We have
considered two procedures to remedy the potentially harmful effects of confounding,
restricted regression and constraints.

In light of this article’s results, we would like to emphasize some points and
provide some guidelines to practitioners. First, the relative risk estimates are not
affected by confounding, so if the relative risks are of primary interest, ignoring
confounding is not a problem. Second, both restricted regression and orthogonal
constraints alleviate confounding and provide rather similar estimates of the fixed
effects and their standard errors. However, the two approaches differ importantly
in terms of model selection criteria and computing time. Although the constraints
approach is computationally more efficient than restricted regression (in INLA),
the latter gives clearly better fits. Consequently, if the target of the analysis is
to establish associations between risk factors and the phenomenon under study,
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along with studying spatio-temporal patterns of risk, we recommend using restricted
regression. We have also observed that differences between the approaches become
more evident as the number of covariates increases. The difference in fits may arise
because the deviance, and hence DIC (and AIC), are directly related to the orthogonal
projection, the projection used in restricted regression. Because the orthogonal
projection minimizes least squares, and D̄ (mean deviance) is a transform of least
squares, any deviation from the orthogonal projection gives worse mean deviance
and worse DIC as long as the effective number of parameters pD does not change
much. Consequently, the more the oblique projection (constrained approach) deviates
from the orthogonal projection, the worse the mean deviance and thus DIC. In the
data analysis considered here, the constrained approach has the smallest value of
pD because some degrees of freedom are removed due to the constraints, but DIC
is worse because the reduction in pD does not compensate for the increase in mean
deviance.

A desirable property of the constrained approach is that it keeps the (random)
spatial and temporal main effects constant in time and space respectively while
restricting all random effects to be orthogonal to the fixed effects. However, at
least in the dataset analysed here, this behaviour comes at an important price
in terms of model fit, unlike other proposals such as, for example, Hughes and
Haran (2013). It is not easy to guess when the constrained and restricted regression
approaches will lead to similar fits. We suspect that if the covariates do not have
a substantial spatio-temporal interaction the constrained approached could work
well. This is consistent with the observation that in a spatial analysis of our data for
the year 2011 (not shown), both procedures are nearly equivalent. Moreover, fitting
spatio-temporal models including only female literacy rate (a covariate with scarcely
any spatio-temporal interaction), the difference in fit between both approaches is
reduced considerably.

Both procedures have been fitted using a fully Bayesian and a classical approach.
Though INLA provides the posterior distributions of all quantities and hence the
maximum information, PQL is still a valuable tool that allows model fitting in
a reasonable time providing essential information to understand the phenomenon
under study. Computing times for restricted regression can be reduced in INLA by
plugging in as initial values the posterior modes of the hyperparameters obtained
from the spatio-temporal model with confounding. Similarly, restricted regression
can be sped up in PQL by using as initial values the variance parameter estimates
obtained from the spatio-temporal model with confounding.

To sum up, models with spatial, temporal, and spatio-temporal random effects
lead to a good fit of the spatio-temporal patterns of risk, but they fail to account
for the correct linear association between the response and the covariates. Models
including only covariates provide unbiased estimates of the fixed effects coefficients
but they give a poor fit as they do not capture the variability unexplained by the
covariates. The restricted regression considered in this article offers in one single
model the best of the two approaches: similar to the model without random effects,
it provides correct estimates of the fixed effects but substantially improves model
fit and prediction of spatio-temporal patterns of risk in line with the model with
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random effects. This is an advantage of the restricted regression approach over the
models without random effects and classical spatio-temporal models. Recent research
(Khan and Calder, 2020) concludes that for Gaussian models credible intervals for
fixed effects obtained with restricted regression are nested within credible intervals
obtained with models without spatial random effects. These authors acknowledge
that restricted regression inference on the coefficients is very similar to the one
from non-spatial models. In the Poisson spatio-temporal case study analysed here,
credible intervals for some of the coefficients in the restricted regression approach
are not nested within those of the model without random effects, but differences
are small. Further research is needed to investigate this issue more in depth. The
use of constraints also provides correct estimates of the fixed effects and improves
model fit, but to a lesser extent than the restricted regression approach, at least in
the dataset analysed here. We would like to highlight that in this work, associations
between the covariates and the response should be understood as correlations, with
the final objective of identifying good predictors of the response, and not as causal
relationships within a causal-inference framework. This latter approach is beyond
the scope of this article.

Finally, we want to emphasize the consequences of ignoring confounding for the
data analysed here. Dowry death in India, particularly in Uttar Pradesh, is a complex
problem for which risk factors (socio-demographic, economic, cultural or religious)
are not yet clearly identified. Ignoring confounding may lead researchers to discard
some potential risk factors and wrongly estimate their associations with dowry death.
In this article, sex ratio, population density, female literacy rate, per capita income,
murder rate, and burglary rate were found to be associated with dowry deaths when
confounding was taken into account. Ignoring such effects masks the association
between dowry deaths and some of those risk factors, which obscures understanding
of this atrocious practice that takes the lives of thousands of women in India.
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APPENDIX

This subsection is about adding orthogonality constraints in the PQL approach, in
particular about modifying the algorithm to replace the sum-to-zero identifiability
constraints with new constraints that identify the model and also achieve the desired
orthogonality. Here we use ‘conditioning by kriging’ (Rue and Held, 2005, pp. 37,
93) where the covariance matrix of the random effects conditional on the constraints
is used. Consider the covariance matrices

Cov(ξ|Bξξ = 0) = Q−ξ −Q−ξ B
′

ξ(BξQ
−

ξ B
′

ξ)
−1BξQ−ξ

Cov(γ|Bγγ = 0) = Q−γ −Q−γ B
′

γ(BγQ
−

γ B
′

γ)
−1BγQ−γ

Cov(δ|Bδδ = 0) = Q−δ −Q−δ B
′

δ(BδQ
−

δ B
′

δ)
−1BδQ−δ

where ‘−’ denotes the Moore-Penrose generalized inverse, and the matrices Bξ,
Bγ, and Bδ capture the orthogonality constraints of the previous section and are
defined in Equation (3.5). Using these covariance matrices, the PQL algorithm would
automatically place the desired orthogonality constraints. However, due to the rank
deficiency of the matrices Qξ, Qγ, and Qδ, the usual sum-to-zero constraints are
also imposed in addition to the weighted sum-to-zero constraints. To overcome that
problem, consider instead these covariance matrices (see Theorem 1 in Supplementary
Material A for details):

Cov(ξ|Bξξ = 0) = Vξ = Lξ[L
′

ξQξLξ]−1L
′

ξ,

Cov(γ|Bγγ = 0) = Vγ = Lγ[L
′

γQγLγ]−1L
′

γ,

Cov(δ|Bδδ = 0) = Vδ = Lδ[L
′

δQδLδ]−1L
′

δ,

Statistical Modelling xxxx; xx(x): 1–22

https://github.com/spatialstatisticsupna/Confounding_article
https://github.com/spatialstatisticsupna/Confounding_article


20 A. Adin et al.

where Lξ, Lγ, and Lδ are as in Equation (3.4). Doing this, the null spaces of the
covariance matrices are now spanned by the vectors of constraints, that is the rows
of the matrices Bξ, Bγ, and Bδ, and the PQL algorithm automatically circumvents
identifiability issues and provides estimates satisfying the orthogonality requirements.
To see this briefly, the PQL algorithm requires a working vector

O∗ = X∗β + Zξξ + Zγγ + Zδδ + (O− µ)g′(µ),

where Zξ = 1T ⊗ IS, Zγ = IT ⊗ 1S, and Zδ = ITS are the design matrices of the spatial
and temporal main effects and the interaction effect respectively; g′(µ) = 1/µ is the
derivative of the link function g, which here is the logarithmic function, ε = (O−
µ)g′(µ) ∼ N(0, Ŵ−1), and Ŵ = diag(µit). Then the fixed effect estimator (including
the intercept) is β̂ = (X

′

∗
V̂−1X∗)−1X

′

∗
V̂−1O∗, where V = W−1 + ZξVξZ

′

ξ + ZγVγZ
′

γ +
ZδVδZ

′

δ and the random effects are estimated as

ξ̂ = V̂ξZ
′

ξV̂
−1(O∗ −X∗β̂), γ̂ = V̂γZ

′

γV̂
−1(O∗ −X∗β̂), δ̂ = V̂δZ

′

δV̂
−1(O∗ −X∗β̂).

Clearly, Bξξ̂ = 0, Bγ γ̂ = 0, and Bδδ̂ = 0, as the rows of Bξ, Bγ, and Bδ, span the null
spaces of Vξ, Vγ, and Vδ respectively.
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