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Abstract: The detection of building footprints and road networks has many useful applications
including the monitoring of urban development, real-time navigation, etc. Taking into account that a
great deal of human attention is required by these remote sensing tasks, a lot of effort has been made
to automate them. However, the vast majority of the approaches rely on very high-resolution satellite
imagery (<2.5 m) whose costs are not yet affordable for maintaining up-to-date maps. Working with
the limited spatial resolution provided by high-resolution satellite imagery such as Sentinel-1 and
Sentinel-2 (10 m) makes it hard to detect buildings and roads, since these labels may coexist within the
same pixel. This paper focuses on this problem and presents a novel methodology capable of detecting
building and roads with sub-pixel width by increasing the resolution of the output masks. This
methodology consists of fusing Sentinel-1 and Sentinel-2 data (at 10 m) together with OpenStreetMap
to train deep learning models for building and road detection at 2.5 m. This becomes possible
thanks to the usage of OpenStreetMap vector data, which can be rasterized to any desired resolution.
Accordingly, a few simple yet effective modifications of the U-Net architecture are proposed to not
only semantically segment the input image, but also to learn how to enhance the resolution of the
output masks. As a result, generated mappings quadruplicate the input spatial resolution, closing the
gap between satellite and aerial imagery for building and road detection. To properly evaluate the
generalization capabilities of the proposed methodology, a data-set composed of 44 cities across the
Spanish territory have been considered and divided into training and testing cities. Both quantitative
and qualitative results show that high-resolution satellite imagery can be used for sub-pixel width
building and road detection following the proper methodology.

Keywords: Sentinel-1; Sentinel-2; remote sensing; building detection; road detection; deep learning;
convolutional neural networks

1. Introduction

Nowadays the detection of building footprints and the extraction of road networks
have become one the most important remote sensing tasks, since they are of paramount
importance for countries to better understand the impacts of urban growing in different
ecosystems. To date, these tasks have been mainly performed by human experts, occasion-
ally assisted by semi-automatic tools, resulting in a very costly and time-consuming process.
Therefore, in the last few years, there have been a great deal of automation approaches that
combine satellite imagery with machine learning models [1–3]. However, the scarcity of
open high-resolution earth observation data is one of the main challenges for developing
models that automatically generate fine-grained up-to-date building and road mappings.

Currently, Earth Observation (EO) data is becoming more accessible and affordable
thanks to the Copernicus programme [4] coordinated and managed by the European
Commission in partnership with the European Space Agency (ESA). The ESA is developing
seven Sentinel missions under the Copernicus Programme focusing on providing data
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for monitoring different Earth aspects such as the atmosphere, oceans, or lands. The
Copernicus Programme is alleviating the lack of high-resolution EO data making the
information produced in the framework of Copernicus available free-of-charge to all its
users and the public. However, an accurate detection of buildings and roads remains a
challenge due to the limited spatial resolution offered.

Among the Sentinel missions, Sentinel-1 (S1) and Sentinel-2 (S2) are the most well-
suited for the extraction of building footprints and road networks. S2 is a multi-spectral
sensor mainly dedicated to the control of emerged lands and coastal profiles on a global
scale [5]. S2 provides high-resolution optical images composed of thirteen bands, princi-
pally in the visible/near infrared (VNIR) and short-wave infrared spectral range (SWIR)
with resolutions ranging from 10 m to 60 m. S1, on the other hand, provides Ground Range
Detected (GRD) data from a dual-polarization C-band Synthetic Aperture Radar (SAR)
instrument [6] at different spatial resolutions (down to 5 m). SAR instruments can acquire
meaningful data during daytime and nighttime regardless of weather conditions.

The fusion of optical and SAR data is an active area of research and it has proven
successful for different remote sensing tasks [7,8]. In this regard, S1 and S2 complement
each other perfectly due to their different characteristics, facilitating the mapping tasks [9],
although few works have considered using them together for pixel-wise labeling pur-
poses [10,11]. In fact, to the best of our knowledge, there is no prior work combining S1
and S2 for building and road detection.

Both building footprint detection and road network extraction tasks can be formulated
as pixel labeling problems. Accurate pixel-wise labeling of a large satellite image is a
complex task for a human given the vast diversity of terrestrial objects. Not only the
variations in their shapes, but also occlusions and shadows may increase the difficulty
of this task [12]. Furthermore, the spatial resolution of the imagery taken as input plays
an important role. The greater the spatial resolution is, the easier it will be not only for
experts but also for machine learning models to cope with complex scenarios, enhancing
the labeling process. For this reason, S1 and S2 images are not usually considered for
fine-grained building and road mappings.

In recent years, deep learning has received a lot of attention in both scientific research
and practical application [13,14]. Pixel labeling tasks, also known as semantic segmentation
tasks, have benefited from deep learning advancements, clearly outperforming established
approaches for applications such as medical image segmentation [15] and autonomous
driving semantic segmentation [16]. Deep learning techniques have also been successfully
applied to remote sensing tasks [2,3], including the detection of building footprints [12,17]
and road networks [18,19]. Nevertheless, the vast majority of works rely on aerial imagery
or very high-resolution satellite products for this purpose. To the best of our knowledge,
no prior works have attempted to generate building and road segmentation mappings
with a greater spatial resolution than the one given at the input.

In order to train robust deep learning models a great deal of labeled data is required.
However, the scarcity of accurately labeled data tends to be a limiting factor. Despite the
existence of open EO data-sets [20,21], a small portion of them use S1 and S2 imagery.
Moreover, their labels tend to be coarse which makes them useless to detect complex
elements such as buildings or roads. Furthermore, the spatial resolution of the imagery
taken as input is crucial to define the scope of the labeling process. That is, very high-
resolution imagery (less than 2.5 m) is usually used to detect fine-grained objects such as
building footprints [22], extract road networks [18], and so on, whereas high-resolution
imagery (2.5 m to 10 m) is usually limited to wider elements like forests [23], water
bodies [24], etc. Contrary to the previous works, we will show that with the proposed
methodology, high-resolution imagery (S1 and S2) can also be used to detect complex
elements such as buildings or roads accurately. In fact, we will show that we are able to
infer 2.5 m semantic segmentation maps from 10 m resolution images, bridging the gap
between satellite and aerial imagery for pixel-wise labeling labors.



Remote Sens. 2021, 13, 3135 3 of 21

Hence, our aim is to use S1 and S2 data to produce high-resolution building footprint
and road network segmentation maps, showing that open data from Copernicus can allow
automating mapping tasks for these classes. To do so, a methodology for generating a deep
learning data-set from scratch is presented. To obtain the ground-truth data, OpenStreetMap
(OSM) [25] has been used for labeling S1 and S2 imagery giving special attention to the errors
inherent to open data such as limited coverage or irregular registrations, which have been
tackled with a new concept named as validation masks. These masks filter the samples used
to train the models in an efficient way. It is worth noting that the proposed methodology
could be extrapolated to any OSM label that can be observed from Sentinel-2 imagery.

In summary, the main novelties of our approach are:

• S2 data (multi-spectral) is fused with S1 data (SAR) making the most of both sensors
for building and road detection at a higher resolution (2.5 m) than the input one
(10 m).

• A methodology to generate detailed remote sensing data-sets for building footprints
and road networks detection using OSM has been developed. Validation masks are
proposed for dealing with labeling errors.

• Taking advantage of the high revisit times of the Sentinel missions, a low-cost data
augmentation technique is proposed.

• The standard U-Net [15] architecture has been slightly modified given rise to fine-
grained segmentation masks. Accordingly, resulting mappings quadruple the input’s
spatial resolution.

Overall, we propose an accurate, yet simple and easily reproducible methodology for
extracting high quality building and road masks from satellite imagery. To the best of our
knowledge, we achieve the greatest accuracy for these tasks using 10 m satellite imagery.
To test the proposed methodology, 44 cities across the Spanish territory have been selected
and divided into training and testing cities according to machine learning principles [26].
In order to evaluate the performance of the developed models, the mean Intersection over
Union metric (mIoU) and the F-score have been used. Experiments demonstrate that using
high-resolution satellite imagery is possible to accurately detect complex elements such
as building or roads, showing the possibility of quadrupling the resolution at the output
up to 2.5 m. Moreover, the increase in the model’s performance when combining optical
and SAR data is reassured. Finally, the usefulness of the proposed validation masks to deal
with labeling errors inherent to open databases such as OSM is proved.

The remainder of this article is organized as follows. Deep learning and convolutional
neural networks (CNNs), focusing on building and road detection, are briefly recalled in
Section 2. Thereafter, our proposal for automated building footprint and road network
extraction fusing S1, S2, and OSM data is detailed in Section 3. Then, the experimental
framework, experiments and results are presented and discussed in Section 5. Finally,
Section 6 concludes this work and present some future research.

2. Related Works

This section is divided into four subsections. Firstly, deep learning and the application
of CNNs to remote sensing tasks are outlined in Section 2.1. Thereafter, the usage of
deep learning in satellite imagery segmentation is described in Section 2.2, paying special
attention to the use of S1 and S2 sensors. Then, in Section 2.3 recent approaches for building
footprint detection and road network extraction are briefly recalled. Finally, the capabilities
of open databases for remote sensing data-set labeling are assessed in Section 2.4.

2.1. Deep Learning, Convolutional Neural Networks, and Semantic Segmentation

Deep learning has been one of the major breakthroughs in artificial intelligence during
the last decade, showing many successful applications. With respect to computer vision
and image processing, CNNs have become the standard for almost every task such as
image classification [27], object detection [28], or semantic segmentation [16]. For this
reason, we have focused on CNN-based semantic segmentation.
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The first network for semantic segmentation tasks was proposed by Long et al. [29]
and named as Fully Convolutional Network (FCN). It was one of the first CNN-based
semantic segmentation methods where the segmentation map was obtained through a
single forward pass. Shortly thereafter, U-Net [15] was proposed, based on FCN, where
the encoder-decoder structure enhanced the segmentation quality. U-Net can be seen as a
convolutional auto-encoder [30] that predicts pixel-wise class labels instead of predicting
the input image again. In this architecture, feature maps are shared between the encoder
and decoder to propagate context information to higher resolution layers. Despite the
simplicity of its structure, U-Net produces precise segmentation maps and hence, it has
been employed in many studies to get better performance in various fields [31,32], including
remote sensing [2,3].

2.2. Deep Learning in Remote Sensing: Applications Using Sentinel-1 and Sentinel-2

The geoscience community has rapidly adopted deep learning-based methods for
many applications [2], including remote sensing tasks [3,33]. The accuracy level that can be
obtained across different remote sensing tasks highly depends on the characteristics of the
sensors, especially on their spatial resolution [34]. In this regard, sensors which provide
lower resolution products are mainly used for image recognition of whole image chips [35],
so-called scene labeling, whereas, sensors with a higher resolution are used for a wider
range of tasks including image segmentation [36] and object detection [37].

S2 has established itself as the leading high-resolution multi-spectral sensor for remote
sensing tasks, partly, due to the free availability of its products. However, due to its
limited spatial resolution, its products have been mostly used for scene labeling tasks [35].
Accordingly, many data-sets have been recently released aiming at pushing remote sensing
research with S2 [20,21].

In the last years, growing attention has been given to S1 focusing on flood mappings [38]
and land cover classification of agricultural areas [39]. However, little research has been
conducted to assess the S1’s GRD data capabilities for detecting more complex elements
such as buildings or roads. Taking into account the characteristics of S2 and S1, both sensors
complements each other perfectly. A great deal of data-sets have also been recently released
aiming at making the most of this synergy [10,11]. However, they do not deal with specific
labels such as roads or buildings.

In spite of the upward trend in the number of released S1 and S2 remote sensing
data-sets, the volume of annotated images is relatively small. Moreover, the vast majority
of public data-sets are focused on scene labeling tasks [20,35]. The few of them that are
oriented to semantic segmentation tasks [11,21] have coarse labels limiting their application
for problems where a high degree of detail is required. Thus, they are insufficient to train
robust CNN-based high-resolution semantic segmentation models. One way of tackling
this problem is using open databases for labeling purposes. We recall works related to this
procedure in Section 2.4.

2.3. Semantic Segmentation of Buildings and Roads

Promising building footprint detection approaches have been proposed in the liter-
ature. Wagner et al. [40] presented a modified U-Net capable of discriminating between
adjacent buildings. To incorporate the structure information of buildings, Hui et al. [41]
opted for a multi-task learning strategy, replacing the vanilla U-Net encoder with an Xcep-
tion module. A similar approach was taken by Guo et al. [42], incorporating lightweight
soft-attention mechanisms to deal with the large intraclass variance of buildings.

Regarding the road network extraction task, several approaches have been developed
in recent years. Zhang et al. [43] combined the strengths of residual learning with the
U-Net architecture aiming at facilitating the propagation of information while reducing the
number of parameters. On the other hand, Zhou et al. [44] opted for a LinkNet architecture
with a pre-trained encoder and dilated Convolutions (D-LinkNet) to enlarge the receptive
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field without diminishing the resolution of the feature maps. The D-LinkNet architecture
was recently rebuilt by Fan et al. [45], replacing the ResNet backbone with a ResNeXt.

However, these works make use of aerial imagery (<1 m) to produce detailed building
and road mappings. Consequently, the high costs of those products limits the possibility of
keeping building and road maps up-to-date. Despite not being, a priori, the most adequate
sensor for detecting complex elements such as buildings and roads due to its limited spatial
resolution [34,46], a few works have focused on assessing the capabilities of S1 and S2
imagery for the extraction of buildings and roads.

Helber et al. [31] and Rapuzzi et al. [47] aimed at detecting building footprints using
different versions of the U-Net architecture. Whereas the former relied on S2 imagery, the
latter opted for using S1 data. A similar approach was taken by Oehmcke et al. [48] to
detect hardly visible roads using S2 time series. On the other hand, Abdelfattah et al. [49]
proposed a semi-automatic approach to extract off-roads and trails from S1 imagery.

Nevertheless, the aforementioned works resulted in coarse building and road map-
pings, drastically hindering their application. Nonetheless, our hypothesis is that minor
tweaks in the architecture and an appropriate methodology may lead to huge improve-
ments on the detection tasks. In fact, our hypothesis is that the output resolution can
achieve sub-pixel width accuracy, that is, segmentation maps at higher resolution than the
original one (10 m). To the best of our knowledge, no previous attempts have been made in
this direction.

2.4. Open Data for Deep Learning Labeling

When freely-available remote sensing data-sets do not meet the requirements, databases
such as OSM may come in handy [50]. Accordingly, vector data from OSM is rasterized
(transformed to pixel coordinates) to generate the ground truth masks for training. How-
ever, there are two types of labeling noise present in OSM that could have a negative impact
on the learning of deep learning models:

• Omission noise: refers to an object, clearly visible in a satellite/aerial image, which has
not been labeled. This type of noise is particularly noticeable in the building labels,
since many rural-areas are not completely labeled in OSM. Moreover, small roads and
alleys also suffer from omission noise, commonly being omitted from maps.

• Registration noise: refers to an object which has been labeled but its location in the map
is inaccurate. Due to the greater spatial resolution, labeling misalignment are more
noticeable when dealing with aerial imagery.

Mnih et al. [19] proposed to reduce both omission and registration errors at training
time using two robust loss functions. Li et al. [51], on the other hand, undertook the
misalignment between OSM building footprints and satellite imagery caused by different
projections and accuracy levels from data sources, when generating the data-set. Others
such as Kaiser et al. [50] proposed to perform a large-scale pre-training using the full data-
set and then, apply a domain adaptation with hand-labeled data. As it will be explained in
Section 3.2, we will take this approach but highly reducing data-set hand-labeling costs
through the use of the proposed validation masks.

3. Proposal: Enhanced Building Footprint and Road Network Detection

The proposal consists in a simple and reproducible methodology to use S1 and S2
data together with OSM to generate deep learning models for sub-pixel width building
footprint and road network detection. We will not only show the capabilities of S1 and
S2 data fusion, but also make use of them to output a higher resolution mapping than
the input resolution. That is, whereas the maximum resolution used for S1 and S2 will be
10 m, the output mappings will be at 2.5 m resolution. Although this work is focused on
extracting building and roads, the proposed methodology could be extrapolated to any
desired OSM label that can be observed from S2 imagery.
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Figure 1 gives an overview of our approach, whose modules will be further described
in the following sections. We explain how to generate the data-set in Section 3.1 (Mod-
ule A). Section 3.2 (Module B) delves into the validation masks generation process. Finally,
modifications proposed for the U-Net network are presented in Section 3.3 (Module C).

Figure 1. Overview of the proposal. Module A shows how the data is retrieved and pre-processed.
Module B outlines the data-set validation phase. It must be noted that in Module B, Building LVM
and Road LVM stands for the Label-specific Validation Masks corresponding for the building and
road labels, respectively. Finally, Module C depicts the inference procedure and how the generated
mappings could be merged.

3.1. Data-Set Generation

Pixel labeling tasks are the most common remote sensing tasks. Training deep learning-
based models requires image pairs representing the scene and the desired labeling. In this
work, we fused five S2 bands with two S1 bands to build our inputs, whereas OSM has
been used to generate the target labeling (although any other data source could be used
either for the inputs or the outputs). Briefly, the goal is to produce a complete semantic
segmentation of a satellite image. In this scenario, the availability of accurately labeled data
for training tends to be the limiting factor when automating tasks using deep learning-based
approaches. Despite the fact that hand-labeled data tends to be reasonably accurate, the
cost of manual labeling and the lack of publicly available hand-labeled data-sets strongly
restricts the size of the training and testing sets for remote sensing tasks.

Crowd-sourced projects such as OSM may come in handy when generating remote
sensing data-sets. Portals such as Geofabrik [52] exploit OSM data in order to freely provide
ready-to-use geodata to the public. Accordingly, it is now possible to construct data-sets
that are much larger than the ones that have been hand-labeled. The use of these larger
data-sets has improved the performance of deep learning methods on some remote sensing
tasks [22,53].

The data-set used in this paper has been generated following the workflow shown
in Module A on Figure 1. The processing steps for a generic area of interest are described
hereafter. Notice that the final training set will be formed using several areas.

Firstly, S2 products are queried and downloaded from the Sentinels Scientific Data
Hub (SciHub) [54], given a bounding box, a time interval, and a maximum cloud cover
percentage of 5. Depending on the extent of the bounding box, multiple S2 products may
be required. Therefore, products are filtered ensuring a full bounding box coverage and,
at the same time, minimizing the temporal distance between them as well as the overall
cloud cover percentage and maximizing their solar zenith angle at acquisition time [55].

Even though S2 offers thirteen multi-spectral bands, we only made use of the Red,
Green, Blue, and Near Infrared bands as they are the only ones provided at the greatest
resolution of 10 m. Additionally, the Normalized Difference Vegetation Index (NDVI) is
computed considering it is a reliable source of information about impervious surfaces
in urban spaces [56]. Obviously, there will be exceptions such as buildings whose roofs
are covered by grass. In these cases, the CNNs should be capable of understanding the
geometries and the surroundings to properly label the buildings.
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Regarding S1, we have worked with the Level-1 GRD product in Interferometric Wide
(IW) swath mode. That product combines a swath width of 250 km with a moderate resolu-
tion of 20× 22 m (depending on the beam id) and could be provided in four polarization
modes (VV, VH, HH, HV). However, our approach only considers dual vertical polariza-
tion (VV, VH), since dual horizontal polarization (HH, HV) is limited to polar regions.
S1 products were firstly downloaded from the SciHub filtering using as time interval 7 days
± the mean of the ingestion times of the S2 products considered in the previous step. Then
different pre-processing steps were applied. Firstly, backscatter intensities were calculated
using the GRD metadata in the radiometric calibration step. Thereafter, the side looking
effects were corrected using the Digital Elevation Model (DEM) from the Shuttle Radar
Topography Mission (SRTM) in the terrain correction step. Finally, backscatter intensities
were log-scaled from Chi-squared to Gaussian distribution and converted to decibels. Note
that S1 pre-processing workflow follows the recommendations in [57] and has been made
within the Sentinel application platform (SNAP) [58], a common architecture for all Sentinel
satellite toolboxes.

Resulting bands from S1 and S2 are then stacked to create the 7-band inputs. Regarding
ground-truth data, OSM is used to generate the masks. Due to the plethora of OSM classes
available, we perform a reclassification, aggregating different classes on the basis of the
desired legend. Hence, a great deal of road types (OSM codes 5111-5115, 5121-5124, and
5132-5134) constitute the label road, whereas building polygon outlines (OSM code 1500)
comprise the label building. It should be noted that as OSM contains vector data that must
be rasterized. According to the low spatial resolution of the imagery used (10 m), buildings
are filtered, discarding those whose surface area is inferior to 50 m2. Likewise, since roads
came as line-strings, we buffered them to 10 m before rasterizing. Taking into account that
roads are not always 10 m width, we firstly rasterize roads and then buildings into the
same mask to make them more realistic. It is worth stressing that ground-truth masks are
generated at both 10 m and 2.5 m to evaluate the x1 and x4 models, respectively.

Additionally, for the same generic area, we propose a data augmentation technique
based on using several images from the same place at different time-steps. This is possible
thanks to the high revisit times of S1 and S2. In this way, a temporal component is added to
the data-set. As we will show in the experimental framework in Section 4.1, in this paper
we consider data from the four seasons of a year, but this could be arbitrarily increased
up to 70 time-steps on the equator per year. It must be noted that many studies have
already used multi-temporal Sentinel images for a wide range of use cases such as crop
type classification [59] or tree species classification [60]. However, our approach differs
from the standard way of dealing with image time series in deep learning, which mainly
consist on combining CNNs with Recurrent Neural Networks. In this work, the temporal
information will only be used to increase the diversity of the samples used to feed the
models. That is, a color data augmentation is applied but using real Sentinel images from
different timestamps. Note that we will also test the proposal in different time frames.

3.2. Validation Masks

Despite that the data-set may seem ready to be used to train deep learning-based
models, if we carefully analyze the data-set we will notice that a great deal of labeling
noise is present due to the usage of OSM. Additionally, we will also find sensing noise
which cannot be easily overcome trough pre-processing techniques (e.g., artifacts due to
planes crossing the sensing area). Since high-quality data is crucial in order to develop
robust models, we propose the use of validation masks at both training and testing times.
Validation masks are the result of splitting an image into multiple tiles and labeling each
tile as valid or not valid, depending on the quality of its corresponding ground-truth mask.
The use of validations masks at training time is optional since it is possible to achieve a
high performance without them. However, they are of great importance to achieve the
maximum level of accuracy as we will show in Section 5.3. In particular, we propose
performing a large-scale pre-training using all the available OSM data (without further
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treatment) and then, fine-tune for a few epochs making use of the validation masks. It
must be noted that validation masks are always used when testing the models to carry out
a fair evaluation.

As explained in Section 2.3, either registration or omission noise can occur when using
OSM for automatic labeling. Luckily, when labeling S1 and S2 images, registration errors
become unnoticeable due to the limited spatial resolution. Therefore, in this work we
focused on omission noise and sensing errors. Accordingly, two types of validation masks
are defined:

• Sensor validation masks: contain information related to low quality data resulting from
sensing errors such as the presence of clouds, shadows, etc.

• Label-specific validation masks: address omission noise derived from the use of open
databases such as OSM. Specific validation masks are individually generated for each
target label (building and road), allowing one to reuse those masks when building up
different legends.

Both validation masks are manually generated by visual inspection as shown in
Module B on Figure 1. It should be highlighted that the spatial resolution of those masks
has been reduced to 640 m, aiming at saving time and effort during their generation (for a
city such as Barcelona North in Figure 2, just 18 × 27 pixels need to be annotated, which
takes approximately 5 min using QGIS [61]). Therefore, validation masks are fast to label,
orders of magnitude faster than manual labeling the whole scene, which is the common
practice. Moreover, it must be noted that third party applications such as cloud detectors
could be easily included to semi-automate some hand-labeling tasks, reducing human
intervention. To better understand this concept, sensor and road-specific validation masks
are presented in Figure 2 along with the corresponding RGB image and ground truth for
Barcelona North city (included in our data-set).

S2 (RGB) Road Ground Truth

Sensor Validation Mask (SVM) Road-Specific Validation Mask (LVM)

Figure 2. Validation masks generated for Barcelona N. city.

3.3. Network Implementation

Our model is based on Fully Convolutional Networks (FCNs) and U-Net architecture.
Figure 3 illustrates the architectures we have used for building footprint and road detection.
As shown in Figure 3, the U-Net network consists of a contracting path to capture context
and an expansive path to refine localization, which is symmetrical to the former and
gives it the u-shaped architecture. The down-sampling or contracting part has a FCN-
like architecture that extracts features with 3× 3 convolutions. The up-sampling path
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uses up-convolutions, increasing the dimensions of the feature maps while reducing their
number. Among the main novelties of the U-Net architecture, there is the concatenation of
feature maps between the down-sampling and up-sampling parts. Moreover, the sharing
of feature maps avoids losing pattern information and hence, enables precise localization.
Finally, a 1× 1 convolution processes the feature maps to generate a segmentation map
that categorizes each pixel of the input image.

(a) (b)
Figure 3. U-Net + ResNet34 architecture approaches to enhance output segmentation maps’ spatial
resolution. (a) Deconvolution (up-sampling at the output). (b) Input re-scaling (up-sampling at
the input).

In this work we have replaced the original U-Net encoder with a ResNet-34 [62]
on account of the density and precision of the features extracted by residuals models.
Moreover, residual connections exploit all the information available along the down-
sampling process while reducing the computational cost.

Semantic segmentation of satellite imagery with a spatial resolution of 10 m results in
blurry and imprecise segmentation masks. This is due to the coexistence of multiple labels
in a single pixel. Recognizing this issue, this paper raises the possibility of enhancing the
spatial resolution of the mappings resulting from the segmentation of S1 and S2 imagery
at 10 m. In particular, we propose to increase the output resolution up to 2.5 m (4 times
larger than the input). This is possible due to the nature of OSM, whose data in vector
format can be rasterized to any desired resolution. For this purpose, two strategies have
been contemplated:

• Deconvolution (up-sampling at the output): To append two extra deconvolutional layers
to the decoder (Figure 3a). Note that, this approach prevents the deconvolutional
layers from getting contextual information due to the lack of shared weights (there
are no same-level layers on the contraction path). However, the computational cost is
lower compared to increasing the resolution at the input.

• Input re-scaling (up-sampling at the input): To increase the input resolution before
the feature extractor (Figure 3b). On the one hand, this outlook allows one to keep
the network architecture unaltered, avoiding losing pattern information. However,
the increase in the input resolution has a negative effect on the computational cost.
In order to enhance input’s resolution two classical interpolation algorithms have
been considered (Bicubic and Nearest Neighbor) as well as a state-of-the-art S2 super-
resolution approach (Galar et al. [63]).

3.4. Network Training

FCNs are usually fed with fixed-size patches, generated by tiling every image in the
data-set. However, that may lead to overfitting considering it is quite likely that patches
pass through the network more than once. Therefore, we have opted for using random
tiles rather than fixed ones. Despite the fact that increasing tile variability making it almost
impossible for the model to see a sample twice, other training issues should be addressed.
We may find not only samples which are extremely unbalanced due to the randomness, but
also samples containing labeling errors. That is the reason why in Section 3.2 we introduced
the validation masks. Validation masks are used to compute valid sample origins in an
efficient but not exhaustive way, which is of great importance considering the large amount
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of data to be processed. In this way, random patches will only be generated if all their
pixels belong to valid zones.

Similarly to other works [40,64,65], we opted for a well-established loss function
known as the Combo Loss [66] (Equation (1)), which combines Binary Cross-Entropy [67]
(Equation (2)) and Dice Loss [68] (Equation (3)). Briefly, it leverages the flexibility of Dice
loss in controlling the trade-off between false-negatives and false-positives whereas, binary
cross-entropy is used for curve smoothing.

LCL(y, ŷ) =
1
2
(LBCE(y, ŷ) + LDL(y, ŷ)) (1)

LBCE(y, ŷ) = −(y log(ŷ) + (1− y) log(1− ŷ)) (2)

LDL(y, ŷ) =
2yŷ + 1

y + ŷ + 1
(3)

Two binary semantic segmentation models will be trained, one for detecting building
footprints and the other for road networks, respectively. It is worth stressing that resulting
segmentation masks could be merged as it is exemplified in Figure 1 to build up more
elaborated legends.

4. Experimental Framework

In this section, the experimental framework is described. Section 4.1 presents the
data-set. Then, in Section 4.2 details regarding the training procedure are given. Thereafter,
in Section 4.3 the performance measures and evaluation criterion are explained. Finally,
Section 4.4 introduces the experiments carried out in Section 5.

4.1. Data-Set

The data-set used in further experiments is composed by a selection of 44 cities spread
across the Spanish territory. Moreover, the seasonal component comprises 4 trimesters
from June 2018 to March 2019. It must be noted that some periods have been discarded in
cities mainly due to the substantial presence of clouds, shadows, and other adverse weather
conditions. Details about the data-set are presented in Table 1. For each target zone, its
dimensions in pixels of 10 m, as well as the total number of tiles comprising the validation
masks (64 × 64 pixels) are displayed. Moreover, for each trimester the number of valid
tiles corresponding to each target label is included. Finally, the sub-set correspondence is
presented. Additionally, the data-set geographical distribution is shown in Figure 4.

Figure 4. Data-set geographical distribution (green train set/red test set).

The data-set was split into two sub-sets (training and test) according to the machine
learning guidelines suggested in [26]. Consequently, each zone is assigned to a single set
to prevent data-leakage and make the evaluation fairer. For this reason, trimesters of the
same zone cannot be assigned to different sets.
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Table 1. Summary of the data-set. Overall, the training set comprises 31 zones (70.45%) whereas the
testing set consists of 13 zones (29.55%). Discarded trimesters are marked with a dash.

Trimester (# Valid Tiles Building/Road)

Zone Dimensions # Tiles 2018/06 2018/09 2018/12 2019/03 Set

A coruña 704 × 576 99 88/86 88/86 88/78 88/86 Train
Albacete 1280 × 1152 366 192/360 192/360 192/360 192/360 Train
Alicante 1216 × 1472 437 224/414 246/415 246/415 246/415 Train
Barakaldo 1088 × 896 238 214/231 215/231 215/231 -/- Train
Barcelona N. 1152 × 1728 486 203/283 203/283 201/283 203/283 Test
Barcelona S. 896 × 1088 238 135/116 137/116 137/116 137/116 Test
Bilbao 576 × 832 117 88/110 88/111 88/111 88/111 Train
Burgos 512 × 704 88 54/70 54/70 54/70 53/69 Train
Cáceres 1024 × 896 224 110/126 110/127 110/126 110/127 Test
Cartagena 768 × 1216 228 132/226 133/226 132/226 132/226 Train
Castellón 1024 × 1024 256 134/254 135/254 134/254 134/254 Train
Córdoba 1088 × 1792 476 194/461 194/461 194/461 194/461 Train
Denia 640 × 768 120 83/115 83/116 83/116 83/116 Train
San Sebastián 512 × 768 96 38/53 -/- 38/53 38/52 Test
Ferrol 384 × 704 66 42/27 42/27 43/27 42/27 Test
Gijón 704 × 832 143 20/38 21/38 20/38 20/38 Test
Girona 1536 × 1216 456 287/443 287/445 287/443 -/- Train
Granada 1664 × 1600 650 203/426 203/427 204/427 204/426 Test
Huesca 448 × 576 63 47/63 47/63 47/63 -/- Train
León 1216 × 768 228 53/215 53/215 53/215 53/215 Train
Lleida 576 × 768 135 55/131 55/132 41/105 -/- Test
Logroño 768 × 960 180 123/178 123/178 123/178 123/178 Train
Lugo 768 × 576 108 14/49 15/49 15/50 15/49 Test
Madrid N. 1920 × 2688 1260 -/- -/- 860/1121 861/1121 Train
Madrid S. 1280 × 2624 820 455/776 459/776 459/776 459/776 Train
Majadahonda 1472 × 1344 483 200/313 202/316 202/316 202/316 Test
Málaga 1024 × 1472 368 -/- -/- -/- 269/359 Train
Mérida 512 × 640 80 20/62 21/63 21/62 21/62 Train
Murcia 1792 × 1600 700 130/681 130/681 130/681 130/681 Train
Ourense 960 × 704 165 36/164 36/164 36/164 36/164 Train
Oviedo 960 × 896 210 153/209 153/209 155/209 155/209 Train
Palma 1024 × 1344 336 94/212 94/212 94/213 94/212 Test
Pamplona 1600 × 1536 600 382/455 382/459 382/459 384/459 Test
Pontevedra 384 × 512 48 16/46 18/46 18/46 18/46 Train
Rivas-vacía 1088 × 1088 289 191/265 191/265 191/265 191/265 Train
Salamanca 832 × 960 195 130/181 130/181 130/181 130/181 Train
Santander 1152 × 1216 342 174/333 174/333 174/333 174/333 Train
Sevilla 2176 × 2368 1258 491/1159 492/1159 491/1159 492/1159 Train
Teruel 640 × 768 120 67/55 67/55 67/58 67/41 Test
Valencia 2304 × 1728 972 341/718 341/720 341/718 341/720 Test
Valladolid 1408 × 1408 484 193/265 164/265 194/265 193/265 Test
Vigo 704 × 1024 176 61/159 61/159 62/159 62/159 Train
Vitoria 576 × 896 126 124/126 124/126 124/126 124/126 Train
Zamora 512 × 576 72 15/72 17/72 17/72 17/72 Train
Zaragoza 2304 × 2752 1548 1217/1537 1217/1537 1217/1537 1217/1537 Train

The training set has been used to learn the parameters of the models, whereas the
test set has been used to assess the generalization capability of the different architectures.
It is noteworthy to mention that through experimentation we decided not make use of
a validation set considering that in this specific scenario it would only have increased
the training time without anything in exchange. Therefore, we prefer to renounce to the
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validation set and use its data for training. The set to which each city has been assigned is
shown in Table 1. Again, this split has been done in such a way that both sets have a good
representation of the different scenarios.

4.2. Training Details

Since no validation set has been used, we take the last epoch model without applying
early stopping or model selection based on validation loss. Data augmentation is essential
to prevent overfitting, especially when the data-set is too large to fit into memory. Moreover,
in large data sets, the use of reasonable data augmentation methods can still improve the
performance of the network [69]. In the field of image semantic segmentation, the scarcity
of data is more apparent. We augment our data applying horizontal and vertical flips,
as well as 90-degree rotations. Despite the fact that color augmentations are usually
utilized in building and road detection, their results are unrealistic. Therefore, we have
opted for augmenting our data-set in a realistic manner rather than in a synthetic one,
including a hyper-temporal component as described in Section 3.1. Additionally, test-
time augmentation (TTA) is also applied. That is, the final prediction is obtained as the
aggregation of predictions across transformed versions of a test input. In this paper we
combine 90-degree rotations with vertical and horizontal flips, resulting in eight different
inputs.

With respect to the specific hyper-parameters for the experiments, we use the Adam
optimizer [70] with a learning rate of 1−4. The batch size has been set to 14 according to
the previous guidelines. That is, the maximum number of samples that fits into memory.
All the models have been trained for 1000 epochs. Therefore, to properly assess the impact
of validation masks, in the third experiment we pre-train the model for 900 epochs and
fine-tune for 100 epochs. The experiments have been run on a server equipped with an
Intel Xeon E5-2609 v4 @ 1.70 GHz, 64 GB of RAM and 4x NVIDIA RTX 2080Ti GPUs.

4.3. Performance Measures and Evaluation

The performance of each experiment has been quantitatively evaluated using the
F-score and the Intersection over Union (IoU) metrics. Notice that ground truth masks
have been generated at both 10 m (x1) and 2.5 m (x4) to evaluate the models depending on
their output resolution. The metrics are computed twice, considering and not considering a
tolerance buffer. Metrics computed using a tolerance buffer can be seen as a relaxed version
and hence, we refer to them as relaxed IoU (rlx. IoU) and relaxed F-Score (rlx. F-Score).
Using the tolerance buffer the negative impact of mislabeled edge pixels are diminished,
which are hard to detect given the limited spatial resolution of the imagery used [12,71].
However, the metrics with respect to the unaltered ground truth are also provided. The
tolerance buffer is computed as the union of the erosion of the ground truth (in green) and
two times its dilation (in blue) as it is illustrated in Figure 5. Here, the tolerance buffers for
a 10 m (x1) and 2.5 m (x4) resolution ground truths are compared. With the usage of these
buffers, pixels inside them are not used for metrics computation.

Additionally, the performance of each experiment has been qualitatively evaluated
through the visual inspection of the IoU in form of true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN). This approach yields to a better description
of how the models are behaving, clearly identifying their differences.
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Building Ground Truth (x1) Tolerance Buffer (x1)

Building Ground Truth (x4) Tolerance Buffer (x4)

Figure 5. Tolerance buffer composition for the building label for a patch of 256 × 256 pixels at both
10 m (x1) and 2.5 m (x4). The erosion is shown in green whereas the dilation is shown in blue.

4.4. Summary of Experiments

The experiments carried out in the next section have been devised in such a way that
the capabilities of S1 and S2 data fusion for achieving sub-pixel width accuracy extracting
buildings and roads are assessed. For this purpose, we will try to answer the following
key questions.

• What is the advantage of combining optical and SAR data for building and
road detection?

• Can the output resolution be greater than the input resolution?
• How much can the performance be pushed with sensor and label-specific valida-

tion masks?

Section 5 attempts to shed light on these questions through individual experiments.

5. Experimental Study

In this section we try to answer the questions posed in Section 4.4 through
three experiments:

• Experiment 1: On the goodness of S1 and S2 data fusion: assesses the suitability of optical
(S2) and SAR (S1) data, as well as their fusion for building and road extraction tasks.

• Experiment 2: Enhancing the output resolution: evaluates different approaches for en-
hancing the output resolution up to 2.5 m.

• Experiment 3: Assessing the impact of validation masks: studies the impact the use of
validation masks has on the model performance.
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5.1. Experiment 1: On the Goodness of S1 and S2 Data Fusion

Here the capabilities of both satellites in terms of building and road extraction are
evaluated. To do so, we have trained U-net models using S1 and S2 data individually and
combining the data of both satellites (with output resolution at 10 m).

The results in terms of IoU and F-score (and their relaxed versions) in the test set
are presented in Table 2. Metrics are presented for each target label (roads and buildings)
together with their average. It must be noted that these metrics are computed taking into
account only valid pixels, according to the sensor and label-specific validation masks. The
best results achieved for each label (building, road and average) and metric are presented
in boldface . Finally, a visual comparison in form of segmentation maps over the different
approaches is presented in the first row in Figures 6 and 7 for the building and road
labels, respectively. Accordingly, each figure’s row corresponds to a different experiment.
The last element of each row is directly compared to the elements of the subsequent row.
For example, the last element of the second row (S1 + S2) is compared to all the elements of
the third row (Deconv x4, EDSR x4, ...) in the second experiment.

Table 2. Comparison between using S1 and S2 data individually and fusing the information provided
by both sensors.

Model Label F-Score Rlx. F-Score IoU Rlx. IoU

S1
Building 0.6204 0.6559 0.4704 0.5133

Road 0.3819 0.3884 0.2376 0.2430
Average 0.5011 0.5221 0.3540 0.3781

S2
Building 0.6870 0.7248 0.5389 0.5883

Road 0.5966 0.6288 0.4331 0.4693
Average 0.6418 0.6768 0.4860 0.5288

S1 + S2
Building 0.7003 0.7400 0.5549 0.6078

Road 0.6044 0.6385 0.4415 0.4805
Average 0.6523 0.6892 0.4982 0.5441

These results show that S1 struggles to extract roads on its own (0.2376 IoU). Re-
garding the building detection, S1 is far from being as good as S2 (0.4704 vs. 0.5389 IoU,
respectively). However, when fusing S1 and S2 data (S1 + S2), the network is capable
of internally learning how to use S1 data to complement S2 data (achieving 0.5549 and
0.4415 of IoU for building and road labels, respectively). The benefit of combining S1 and
S2 data is reflected not only in the metrics (0.4982 vs. 0.4860 avg. IoU, respectively) but
also in the figures, showing an improvement in both tasks compared to using only S2 data.
With respect to the relaxed versions of the metrics, we can observe that there are slight
differences compared with the standard ones, which indicates that the model is not only
mislabeling edge pixels, but also failing to properly define structures globally.

5.2. Experiment 2: Enhancing the Output Resolution

In this experiment different alternatives for enhancing the output resolution up to
2.5 m are tested and compared to the standard segmentation approach (without enhance-
ment). Recall that two ways for increasing the output resolution have been proposed,
depending on whether the up-scaling is performed at the input or at the output. For the
former, three alternatives are considered (EDSR, bicubic, and nearest), whereas for the
latter we have used two deconvolutional layers stacked at the end of the network. The
results of this experiment are presented in Table 3 and in the third row of Figures 6 and 7.

These results show an increase in the model performance when increasing the output
resolution (from 0.4982 up to 0.6004 avg. IoU in the best alternative, Nearest x4). This is
due to the greater number of pixels the model has to define the edges of the objects and
the objects themselves. As it is reflected on the metrics, models that perform the up-scale
at the input outperforms the one doing so at the output (0.5700, 0.5980, and 0.6004 vs.
0.5617 avg. IoU). According to the figures, adding deconvolutional layers at the output
produces a behavior similar to the usage of Conditional Random Fields. Since there is no
extra information to super-resolve the output, the model is only able to smooth the final
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output. Finally, Bicubic x4 and Nearest x4 outperform EDSR achieving higher metrics (0.5980
and 0.6004 vs. 0.5700 avg. IoU, respectively) and more fine-grained segmentation masks
according to the figures. Accordingly, it seems that the network prefers to internally learn
how to super-resolve the input to best fit the segmentation task rather than starting from an
already super-resolved input and generating a segmentation mask from it. Overall, Nearest
x4 achieves the best metrics (0.6004 vs. 0.5980 avg. IoU, respectively) although Bicubic x4
performs slightly better in terms of roads (0.5982 vs. 0.5986 IoU, respectively). However,
this difference is much lower than the one obtained in terms of buildings (0.5974 vs. 0.6027
IoU, respectively). In this case, it must be noted that there are substantial differences
between the standard metrics and their relaxed versions, which means that the model is
failing to detect edge pixels accurately, due to the limited spatial resolution.

Table 3. Comparison between standard semantic segmentation approach and different ways of
enhancing the resolution at the output.

Model Label F-Score Rlx. F-Score IoU Rlx. IoU

x1
Building 0.7003 0.7400 0.5549 0.6078

Road 0.6044 0.6385 0.4415 0.4805
Average 0.6523 0.6892 0.4982 0.5441

Deconv x4
Building 0.7172 0.7849 0.5684 0.6611

Road 0.7132 0.7810 0.5551 0.6420
Average 0.7152 0.7829 0.5617 0.6515

EDSR (Galar et al.)
Building 0.7277 0.7980 0.5753 0.6791

Road 0.7258 0.7965 0.5648 0.6557
Average 0.7267 0.7972 0.5700 0.6674

Bicubic x4
Building 0.7432 0.8162 0.5974 0.6994

Road 0.7481 0.8236 0.5986 0.7015
Average 0.7456 0.8199 0.5980 0.7004

Nearest x4
Building 0.7469 0.8214 0.6027 0.7074

Road 0.7478 0.8242 0.5982 0.7024
Average 0.7473 0.8228 0.6004 0.7049

5.3. Experiment 3: Assessing the Impact of Validation Masks

Previous experiments have followed the traditional approach of using all the data
available for training the models. However, as it is recalled in Section 3.2, this data may
contain a great deal of labeling noise. To get the most out of the available noisy data,
previous works [50] proposed pre-training the models using the full data-set and then
performing a domain adaptation using hand-labeled data. In this work the sensor and
label-specific validation masks have been introduced aiming at reducing the data-set hand-
labeling costs. This experiment assesses the impact the use of validations masks has on
the model performance. The results of this experiment are presented in Table 4 and in the
fourth row of Figures 6 and 7.

There are significant differences between training for 1000 epochs with validation
masks VM 1000ep and without them No VM 1000ep (0.5810 vs. 0.6004 avg. IoU, respectively).
This is due to the aggressive filtration, drastically reducing the amount of data. However,
when pre-training the models for 900 epochs without validation masks and then fine-tuning
(FT) for 100 epochs using them, the results are completely different. Note that, the epoch
division has been done in such a way that the total number of iterations was the same.
Even though SVM greatly increase the performance on the road label (0.6054 vs. 0.5982 IoU,
respectively), metrics decrease for the building one (0.5998 vs. 0.6027 IoU, respectively).
This is due to the fact that roads are better registered in OSM than buildings. Therefore,
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the usage of LVM increases the performance on the building label (0.6054 vs. 0.5998 IoU,
respectively). As a result, SVM and LVM can be used jointly to push the performance to
its limit for both building and road detection (0.6075 of avg. IoU when combining SVM +
LVM vs. 0.6004 when no validation masks are used).

Table 4. Assessing the impact of validation masks.

Model Label F-Score Rlx. F-Score IoU Rlx. IoU

VM 1000ep
Building 0.7216 0.7869 0.5743 0.6645

Road 0.7395 0.8116 0.5878 0.6846
Average 0.7305 0.7992 0.5810 0.6745

No VM 1000ep
Building 0.7469 0.8214 0.6027 0.7074

Road 0.7478 0.8242 0.5982 0.7024
Average 0.7473 0.8228 0.6004 0.7049

No VM 900ep
→ FT 100ep SVM

Building 0.7448 0.8195 0.5998 0.7044
Road 0.7536 0.8292 0.6054 0.7093

Average 0.7492 0.8243 0.6026 0.7068

No VM 900ep
→ FT 100ep LVM

Building 0.7491 0.8245 0.6054 0.7117
Road 0.7540 0.8297 0.6061 0.7102

Average 0.7515 0.8271 0.6057 0.7109

No VM 900ep
→ FT 100ep SVM + LVM

Building 0.7503 0.8263 0.6071 0.7147
Road 0.7555 0.8312 0.6080 0.7125

Average 0.7529 0.8287 0.6075 0.7136

5.4. Discussion

Considering the results obtained in the experiments, the following conclusions are drawn:

• Combining optical (S2) and radar (S1) data aids the network to cope with complex
scenarios, reducing the negative effect of color spectrum variations.

• Enhancing the resolution at the output gives the model more room for better defining
the edges of the objects. Moreover, when using U-Net based architectures enhancing
the resolution at the input, the model can take advantage of skip connections resulting
in more accurate segmentation masks.

• Validation masks are a simple yet effective artifact to increase the quality of the data,
drastically reducing the hand-labeling costs.

To complement the results shown in this paper and to better understand the level of
accuracy that can be achieved with this methodology, predicted mappings obtained for Pam-
plona 2019/03 have been included as Supplementary Materials. Moreover, aimed at showing
the generalization capability of the model presented in this work, road networks have been
extracted for the main cities within the Iberian Peninsula. The complete map is available at our
webpage (https://tracasa.es/sin-categoria-en/tracasa-succeeds-in-identifying-roads-and-
highways-using-images-from-sentinel-satellites-super-resolved-with-artificial-intelligence/
(accessed on 1 August 2021)). In the near future the map will be updated including a
building footprint layer.

https://tracasa.es/sin-categoria-en/tracasa-succeeds-in-identifying-roads-and-highways-using-images-from-sentinel-satellites-super-resolved-with-artificial-intelligence/
https://tracasa.es/sin-categoria-en/tracasa-succeeds-in-identifying-roads-and-highways-using-images-from-sentinel-satellites-super-resolved-with-artificial-intelligence/
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Figure 6. Visual comparison of the results obtained with all the models included in the experiments, for two zones taken from the test
set. TP are presented in green, FP in blue, FN in red and TN in white.
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Figure 7. Visual comparison of the results obtained with all the models included in the experiments,
for two zones taken from the test set. TP are presented in green, FP in blue, FN in red, and TN
in white.
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6. Conclusions and Future Work

This work proposes a simple and reproducible methodology to accurately extract
building footprints and road networks from S1 and S2 satellite imagery. Firstly, we have
studied the advantages of fusing optical (S2) and SAR (S1) data for these tasks. Thereafter,
a few simple modifications have been proposed to the U-Net architecture to enhance the
resolution of the generated segmentation mappings. As it can be seen in the quantitative
and qualitative results, the model learns internally how to super-resolve the data in order
to produce enhanced segmentation masks, sometimes beyond the limits of S2. Finally,
since the performance of deep learning-based models is highly dependent on the amount
of training data available and, considering that manually labeling is a very costly and time-
consuming process, this work sets of an approach to filter large-scale data-sets efficiently.
In this regard, a novel artifact named as validation mask is introduced to tackle not only
the noise inherent to open data-bases such as OSM, but also sensing errors.

Apart from the novelties proposed in this paper, there are still a few approaches that
should be tackled on this topic aiming at making models more robust. Regarding the
data-set, more zones could be included for training and testing. Moreover, greater sample
variety could be achieved if other continents were taking into account. Likewise, more
non-rural areas could be considered in order to extract disseminated buildings and narrow
roads. In this regard, the performance of the models can be evaluated in a global setting,
comprising different building and road patterns.

Regarding the architecture, bigger feature extractors such as Efficient-Nets could
extract richer features in comparison to the actual ResNet-34. However, it would require a
bigger computation infrastructure. Additionally, other architectures that exploit SAR and
multi-spectral data in a clever and better way should be further studied. Finally, despite
the fact that in this work we have opted for quadrupling the output, in the future we would
like to study where the enhancement limit is when using S1 and S2 imagery (x8, x10, ...).

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-429
2/13/16/3135/s1.
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Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
DEM Digital Elevation Model
EO Earth Observation
ESA European Space Agency
FCN Fully Convolutional Network
FN False Negative
FP False Positive
GRD Ground Range Detected
IoU Intersection over Union
IW Interferometric Wide
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LVM Label-specific Validation Mask
mIoU Mean Intersection over Union
NDVI Normalized Difference Vegetation Index
OSM OpenStreetMap
S1 Sentinel-1
S2 Sentinel-2
SAR Synthetic Aperture Radar
SciHub Sentinels Scientific Data Hub
SNAP Sentinel Application Platform
SRTM Shuttle Radar Topography Missing
SVM Sensor Validation Mask
SWIR Short-Wave Infrared
TN True Negative
TP True Positive
TTA Test Time Augmentations
vIoU Visual Intersection over Union
VM Validation Mask
VNIR Visible/Near Infrared
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