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A B S T R A C T   

Olive (Olea europaea) is a crop of great agronomic, economic and cultural interest for the Mediterranean Basin, 
although the increase in world demand for olive oil is expanding its cultivation by other countries in the southern 
hemisphere. The main olive pathogens include bacteria (Pseudomonas savastanoi pv. savastanoi, Xylella fastidiosa), 
fungi (Colletotrichum spp., Verticillium dahliae, Fusarium spp. Rhizoctonia solani), oomycetes (Phytophthora spp.) 
and nematodes (Meloidogyne spp.). To combat these pathogens, different biocontrol strategies have been 
developed with bacteria and yeasts, although its capacity for establishment in the field entails several difficulties. 
In this sense, filamentous fungi represent an efficient and effective alternative in the control of the different 
pathogens of the olive tree. The present review compiles all the studies existing so far in the biocontrol of these 
pathogens through the use of mycorrhizal and endophytic filamentous fungi, making a separate section for the 
genus Trichoderma due to the special interest that their use has generated. The mechanisms used by these fungi 
include competition for space and nutrients, parasitism, antibiosis or activation of the plant’s defensive re
sponses, among others.   

1. Introduction 

Olive (Olea europaea) is cultivated in hundreds different varieties to 
produce fruit for table consumption and for oil in various geographical 
areas around the world. This species has its origins linked to the emer
gence of some of the oldest civilizations (about six millennia ago), being 
considered the most emblematic tree in the Mediterranean basin (Bes
nard et al., 2018). In the last two decades, the increasing international 
demand for olive oil and table olives, has led to expansion of olive 
cultivation in other countries such as Australia, Chile, Argentina or Peru 
(Torres et al., 2017). The world’s total harvested olive area is 10.7 
million hectares, being Spain the largest grower (2.6 million hectares), 
above Tunisia (1.6 million hectares) and Italy (1.2 million hectares) 
(Willer and Lernoud, 2019). 

Olive oil has been accepted internationally as a healthy natural 
product, culturally-shaped since the earliest times in the history of 
Western civilization and the main component of the Mediterranean diet, 
whereas its health benefits such as anticancer, anticholesterol, and 
antioxidant activities are well-known (Rodríguez-Cohard et al., 2019; 

Souilem et al., 2017). Nowadays, worldwide olive oil production is 
about 2.5 million tons, being more than 80% in Mediterranean countries 
(Seçmeler and Galanakis, 2019). 

Currently, olive sustainability is threatened by different factors 
including those linked to climate variability, pathogens and pests. 
Strategies for olive disease control relies mostly on the application of 
chemical pesticides, in particular of copper-based products. It is typi
cally applied twice a year, but sometimes can be higher (up to 5 times 
per year) (Roca et al., 2007). Frequent application of copper may led to 
the development of resistance in pathogens (Nguyen et al., 2018) and 
may have a negative impact on beneficial organisms (Martins et al., 
2012). In this sense, it becomes necessary to promote new control 
strategies against olive diseases that are respectful of the environment 
and health, such as biocontrol strategies (Sardaro et al., 2016; Mairech 
et al., 2020). 

Thanks to biocontrol, plant pathogens can be managed by different 
antagonistic microorganisms, which compete for space and nutrients, 
and produce cell wall degrading enzymes and antimicrobial compounds 
(Köhl et al., 2019). Furthermore, as plant disease management is a 
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significant cost component in crop production, the current market for 
this type of biocontrol formulations is booming, continuously devel
oping new biocontrol agents (BCAs) (O’Brien, 2017; Simionato et al., 
2017). In this sense, different groups of filamentous fungi have been 
reported in the laboratory and in the field as effective biocontrol agents 
against a diverse array of plant pathogens, not only through their direct 
action but also thanks to the interaction with the plant and the activation 
of its defensive responses (Poveda et al., 2020a). 

2. Principal olive pathogens 

The current agricultural development in olive cultivation, based on 
the implantation of intensive monocultures with few varieties selected 
for their productive characteristics, makes the agro-system very fragile 
against the entry of pathogens (Arenas-Castro et al., 2020). Among the 
main pathogens of the olive tree we find bacteria, fungi, oomycetes and 
nematodes. 

The most widely known and studied bacterium in olive cultivation is 
Pseudomonas savastanoi pv. savastanoi, which is the causal agent of olive 
knot disease (Rodríguez-Moreno et al., 2009). The main observed 
symptoms in infected olive trees is the formation of tumorous galls or 
knots on the stems and branches, although they can also appear on 
leaves and fruits. The so-called olive knot disease can cause serious 
problems for olive crops, by reducing growth, productivity and oil 
quality (Penyalver et al., 2006). 

Currently, as a consequence of its introduction into the European 
Union through Italy, in 2013, the Xylella fastidiosa bacterium has focused 
a large part of the European research programs on olive disease control. 
This was the first time that the bacterium was detected in the Mediter
ranean Basin, causing serious damage to the olive groves of this region, 
by causing the olive quick decline syndrome (OQDS), which begins with 
a severe branch desiccation that continues with the rapid death of the 
affected olive tree (Bucci, 2018; Sicard et al., 2018; Saponari et al., 
2019). 

Regarding fungi, the main disease that affects the aerial part is olive 
anthracnose, caused by the fungal complex species Colletotrichum 
gloeosporioides sensu lato, C. acutatum sensu lato and C. boninense sensu 
lato (Schena et al., 2014). Olive anthracnose affects mostly the fruits and 
is considered one of the most destructive and widespread olive disease 
around the world (Moral et al., 2017a). Even with a low effect on the 
fruits (5%), the olive oil obtained cannot be marketed as extra virgin 
olive oil, due to the chemical and organoleptic changes caused (Moral 
et al., 2017a). Other important diseases affecting the aerial part of olive 
tree include peacock spot, caused by Venturia oleaginea, and cercospor
iosis, caused by Pseudocercospora cladosporioides. Trees affected by these 
two diseases begin with the defoliation of their leaves until the death of 
the branches, considerably reducing their productivity (Varanda et al., 
2019). In the last decade, other fungal pathogens have also been iden
tified to affect the aerial part of the olive tree, such as Fomitiporia med
iterranea (causal agent of wood decay) (Markakis et al., 2019), Alternaria 
alternata (causal agent of blossom blight and Alternaria bud of olives) 
(Lagogianni et al., 2017), or Botryosphaeria dothidea (causal agent of 
“escudete” or small shield of olive fruit) (Moral et al., 2017b), among 
others. 

Soil-borne pathogens can persist in the soil and cause deep and se
vere symptoms, making the disease control difficult. As far as fungi-roots 
are concerned, currently, Verticillium wilt of olive (VWO) is considered 
the most limiting disease of olive production and one of the most 
devastating (Montes-Osuna and Mercado-Blanco, 2020). It is caused by 
Verticillium dahliae, an hemibiotrophic soil-borne fungus which invades 
the xylem vessels through the roots, causing symptoms derived from the 
absence of acute transport, such as chlorosis, early senescence, stunting, 
necrosis, defoliation and the death of the olive tree (Montes-Osuna and 
Mercado-Blanco, 2020). Other species of soilborne fungi that infect olive 
roots are Fusarium spp. (causal agents of death of nursery and young 
olive plants), Cylindrocarpon destructans and Rhizoctonia solani (causal 

agents of root rot) (Trabelsi et al., 2017). 
Within the group of oomycetes there are several species of the genus 

Phytophthora that affect the olive tree, rotting its roots, such as P. oleae, 
P. megasperma, P. inundata or P. palmivora (Ruano-Rosa et al., 2018). Its 
presence in the field is often unknown because they cause similar 
symptoms to VWO and, as V. dahliae, which is so widespread, the 
presence of the fungus is always thought (Msairi et al., 2016). 

On the other hand, olive trees are also affected by different genera of 
plant-parasitic nematodes. Due to their wide distribution and their 
sanitary importance in olive cultivation, the genera Meloidogyne (root- 
knot nematodes) and Xiphinema (transmitters of Nepovirus) stand out 
(Archidona-Yuste et al. 2016, 2018; Hamza et al., 2018). 

In response to the attack of pathogens, plants activate local and 
systemic defensive responses controlled, mainly, by the phytohormones 
salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) (Poveda, 
2020a). These defenses in olive trees include the synthesis and tissue 
accumulation of different secondary metabolites, such as terpenes 
(oleanolic acid), phenolics (coumarins, lignin, astringin, kaempferol, 
hydroxytyrosol glucoside, tannins, caftaric acid, quercetin, genistein 
and hesperidin), quinic acid or kynurenic acid (Vergine et al., 2020). 

3. Biocontrol of olive pathogens by filamentous fungi 

Due to the great diversity of pathogens that affect olive cultivation, 
many farmers are increasingly using chemical pesticides dangerous for 
the environment and human health. In contrast, many research groups 
have focused their efforts on developing new eco-friendly strategies 
based on the use of beneficial microorganisms (Bizos et al., 2020). These 
microorganisms, which include some bacterial and fungal groups, have 
been shown to play a crucial role in plant health and growth (del Carmen 
Orozco-Mosqueda et al., 2018). We will specifically focus on the role of 
filamentous fungi (mycorrhizal and endophytic fungi) on olive crop 
protection against diseases and on mechanisms involved. In Table 1 is 
shown schematically all the studies carried out with the different groups 
of filamentous fungi in the control of olive pathogens, together with the 
mechanisms of action involved. 

3.1. Mycorrhizal fungi 

Mycorrhizal fungi are obligate symbionts that can be found in 97% of 
the upper plants. According to their way of colonizing the roots, they are 
classified into ectomycorrhizal fungi (ECMF) and arbuscular mycor
rhizal fungi (AMF), colonizing the intercellular space or intracellularly 
forming arbuscles, respectively (Berruti et al., 2016; Ferlian et al., 
2018). 

Once the symbiosis is established, the fungal mycelium increases the 
volume of soil accessible to the plant, absorbing nutrients (phosphorus, 
ammonium, potassium, iron, sulfur, copper, zinc or molybdenum) and 
water for the plant (Chen et al., 2018), while the plant yields photo
assimilates to the fungus (Berruti et al., 2016). Furthermore, mycor
rhizal fungi increase plant tolerance to abiotic stresses such as drought, 
salinity, heavy metals and extreme of temperatures (Begum et al., 2019). 

As BCAs, mycorrhizal fungi develop mechanisms that include 
competition for photosynthates or colonization/infection sites, 
improvement of plant nutrition, production of morphological changes in 
the root system, changes in mycorrhizosphere microbial populations, 
and activation of plant defense mechanisms (Pozo et al., 2013; Singh 
et al., 2019). The effectiveness of mycorrhizal fungi as BCAs against 
fungal pathogens (Hilbig and Allen, 2019), oomycetes (Hou et al., 
2019), nematodes (Poveda et al., 2020a) and/or bacteria (Poveda et al., 
2021), are mainly due to these different mechanisms that frequently 
operate simultaneously. 

The activation of systemic resistance in the plant against pathogens 
and/or pests by mycorrhizal fungi is a mechanism denominated as 
mycorrhizal induced resistance (MIR) and widely reviewed by different 
authors (Pozo and Azcón-Aguilar, 2007; Hohmann and Messmer, 2017; 
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Table 1 
Mechanisms of action of filamentous fungi as biocontrol agents for olive pathogens.  

FILAMENTOUS FUNGI PATHOGENS EXPERIMENTAL 
CONDITIONS 

MECHANISMS REFERENCES 

GROUPS SPECIES 

Mycorrhizal 
fungi 

Glomus mosseae Verticillium dahliae Greenhouse Not indicated Karajeh and 
Al-Raddad, 1999 

G. mosseae Field Not indicated Porras-Soriano et al. 
(2006) G. intraradices 

G. claroideum 
Rhizofagus irregularis Field Restrict the fungal sporulation and 

growth 
Arici and Demirtas, 
2019 a G. mosseae 

G. aggregatum 
G. clarum 
G. monosporus 
G. deserticola 
G. brasilianum 
G. etunicatum, 
G. margarita 
Glomus irregulare Greenhouse Not indicated Boutaj et al. (2019) 
Rhizolive: mycorrhizal consortium inoculum 
with 25 species of Glomus, Acaulospora, 
Gigaspora, Entrophospora and Scutellospora 
Paraglomus occultum Greenhouse Not indicated Khrieba et al. (2019) 
Glomus etunicatum 
G. fasciculatum 
G. clarum 
Rhizolive: mycorrhizal consortium inoculum 
with 25 species of Glomus, Acaulospora, 
Gigaspora, Entrophospora and Scutellospora 

Greenhouse Competition in the rhizosphere for 
root penetration sites 

Boutaj et al. (2020b) 

Increase lignin deposition, PAL 
activity and accumulation of 
phenolic compounds 

Boutaj et al. (2020c) 

G. intraradices Field Not indicated Mulero-Aparicio 
et al. (2020a) 

Endophytic 
fungi 

Epiccocum nigrum Pseudomonas 
savastanoi pv. 
savastanoi 

In silico Antibiosis Berardo et al. (2018) 

Drechslera gigantea Xylella fastidiosa In vitro Antibiosis Bleve et al. (2018) 
Alternaria sp. Colletotrichum 

acutatum 
In vitro Antibiosis Landum et al. (2016) 

Diaporthe sp. 
Nigrospora oryzae 
Chondrostereum purpureum In vitro Antibiosis Preto et al. (2017) 
Chaetomium globosum 
Aspergillus sp. 
Epicoccum nigrum 
Aspergillus brasiliensis 
Fusarium oxysporum V. dahliae Greenhouse No indicated Varo et al. (2016a) 
Phoma sp. 
F. oxysporum In vitro 

Greenhouse 
Antibiosis Varo et al. (2016b) 

Phoma sp. Activation of plant defenses 
F. oxysporum In vitro 

Growth chamber 
No indicated Varo et al. (2018) 

F. oxysporum In vitro Rhizosphere competition for space 
and nutrients 

Mulero-Aparicio 
et al. (2019) 

F. oxysporum Field No indicated Mulero-Aparicio 
et al. (2020a) 

F. oxysporum Field Antibiosis Mulero-Aparicio 
et al. (2020b) Rhizosphere competition for space 

Metarhizium brunneum In vitro Antibiosis Lozano-Tovar et al. 
(2013) Beauveria bassiana 

M. brunneum In vitro Antibiosis Lozano-Tovar et al. 
(2017) 

M. brunneum Phytophthora 
megasperma 

In vitro Antibiosis Lozano-Tovar et al. 
(2013) B. bassiana 

M. brunneum In vitro Antibiosis Lozano-Tovar et al. 
(2017) 

Talaromyces assiutensis Meloidogyne javanica In field Parasitism Hamza et al. (2017) 
Arthrobotrys brochopaga 
A. conoides 
Drechslerella brochopaga 
Monacrosporium thaumasium 
Purpureocillium lilacinum 

Trichoderma T. harzianum X. fastidiosa In vitro Antibiosis Bleve et al. (2018) 
T. citrinoviride 
T. harzianum F. oxysporum Greenhouse Not indicated Mousa et al. (2006) 

F. solani 
R. solani 
Sclerotium rolfsii 

(continued on next page) 

J. Poveda and P. Baptista                                                                                                                                                                                                                     



Crop Protection 146 (2021) 105672

4

Jacott et al., 2017). Once plant and mycorrhizal fungi come into contact, 
the plant activates its defensive responses mediated by salicylic acid 
(SA), similar to against biotrophic pathogen. Subsequently, a down
regulation of this defensive response is required to enable the estab
lishment of the symbiosis. Once the symbiosis is established, a systemic 
defensive response controlled by jasmonic acid (JA) and ethylene (ET) 
pathways is induced. (Hohmann and Messmer, 2017). Examples of MIR 
have been reported against the bacteria Xanthomonas translucens in 
wheat leaves (Fiorilli et al., 2018) or the fungi A. alternata in leaves (Nair 
et al., 2015; Song et al., 2015) and Fusarium oxysporum f. sp. lycopersici in 
roots (Math et al., 2018) of tomato. 

In olive, there are numerous studies that report the benefits of 
symbiosis with mycorrhizal fungi, with a great diversity of species 
capable of forming this association (Palla et al., 2020). It has been 
verified how the plantlet establishment improves significantly after its 
micropropagation (Binet et al., 2007) since the symbiosis increases the 
acquisition of nutrients by the plant (Tekaya et al., 2017, 
Jiménez-Moreno et al., 2018; Boutaj et al., 2020a), its growth and 
development (Chenchouni et al., 2020), and improves the biochemical 
profile of olives and oil (Kara et al., 2015). Faced with abiotic stresses, 
the olive-mycorrhizal fungal symbiosis has been reported as increasing 
plant tolerance under situations of salinity (Kavroulakis et al., 2020) or 
drought (Bompadre et al., 2013; Ouledali et al., 2018). In what concerns 
the biocontrol role of AMF against olive tree diseases, numerous ex
amples have been reported in the literature (Table 1). In this sense, one 
of the mechanisms of action of mycorrhizal fungi against 
olive-pathogens are concerned is the ability to completely modify the 
plant-related microbiota, as a consequence of establishing the symbiosis 
and modifying the nutritional profile of the rhizosphere (Mechri et al., 
2014). Numerous greenhouse and field studies have been carried out 
with the aim of reducing olive damage by V. dahliae through the use of 
AMF. In greenhouse conditions, the root inoculation with the species 
Paraglomus occultum, Glomus etunicatum, G. fasciculatum and G. clarum 
decreases the harmful effect caused by V. dahliae, increasing fresh and 
dry weight of shoots and roots and the rate of leaf number (Khrieba 
et al., 2019). Also, the application of the Rhizolive formula, which in
cludes a mycorrhizal consortium inoculum with 26 species of Glomus, 
Acaulospora, Gigaspora, Entrophospora and Scutellospora genus, and of the 
species Glomus irregulare (formely known as Rhizophagus irregularis) 
significantly reduced the disease severity and percentage of dead plants, 
along with a lower dwarfing index and leaf alteration index (Boutaj 

et al., 2019). Subsequently, it has been verified with the Rhizolive 
consortium how the AMF compete in the rhizosphere for root penetra
tion sites with the pathogen and increase lignin deposition, phenylala
nine ammonia-lyase (PAL) activity and accumulation of phenolic 
compounds, which significantly reduced the presence of V. dahliae in the 
roots and stems of olive plants (Boutaj et al. 2020b, 2020c). In green
house conditions has been determined how Glomus mosseae (formely 
known as Funneliformis mosseae), G. intraradices (formely known as 
Rhizophagus irregularis) and G. claroideum (formely known as Clar
oideoglomus claroideum) species are able to reduce the damaging effect of 
V. dahliae on olive plantlets, and provide more and longer shoots and 
higher plant N, P and K concentrations (Porras-Soriano et al., 2006), 
being G. intraradices able to inhibit the inoculum density of V. dahliae in 
soils 2 and 12 months before the infection (Mulero-Aparicio et al., 
2020a). These results could be the consequence of a restriction of 
sporulation and growth of the pathogen, as it has been verified with the 
species Rhizophagus irregularis, G. mosseae, G. aggregatum, G. monosporus, 
G. clarum, G. deserticola, G. etunicatum, G. brasilianum and G. margarita, 
capable of suppressing the Verticillium wilt disease in combination with 
Trichoderma harzianum (Arici and Demirtas, 2019). Despite the results 
obtained, under desert conditions both G. intraradices and G. mosseae did 
not appear to improve resistance of Picual and Barnea varieties to 
V. dahliae (Kapulnik et al., 2010). However, under this condition AMF 
colonization enhanced vegetative growth, quantified as tree height and 
trunk circumference, and increased fruit and oil yields. 

3.2. Endophytic fungi 

Plant endophytic microorganisms include archaea, bacteria, fungi 
and protists that can be isolated from plant tissues after having been 
superficially disinfected and that do not cause damage to their host 
(Lugtenberg et al., 2016; Yan et al., 2019). Endophytic fungi can favor 
plant growth and protect their host plants against abiotic and biotic 
stresses, in addition to having great biotechnological potential (enzyme 
production, bioremediation, biotransformation, etc.) (Zheng et al., 
2016). Indeed, once the plant dies, the endophytic fungi begin to behave 
like saprophytes, recycling nutrients from plant tissues (Saikkonen et al., 
2015). 

Today there are numerous reviews on the use of endophytic fungi as 
BCAs, for example, by Chadha et al. (2015), Card et al. (2016), De Silva 
et al. (2019), or Rabiey et al. (2019). Their biocontrol abilities rely on 

Table 1 (continued ) 

FILAMENTOUS FUNGI PATHOGENS EXPERIMENTAL 
CONDITIONS 

MECHANISMS REFERENCES 

GROUPS SPECIES 

Alternaria alternata 
T. harzianum F. solani In vitro 

Greenhouse 
Mycoparasitism Amira et al., (2017), 

2018 Activation of plant defenses 
T. atroviride V. dahliae In vitro Antibiosis Lozano-Tovar et al. 

(2013) 
T. asperellum In vitro 

Greenhouse 
Antibiosis Carrero-Carrón et al. 

(2016) 
T. harzianum In vitro Mycoparasitism Ruano-Rosa et al. 

(2016) 
T. harzianum Greenhouse Rhizosphere competition for space Carrero-Carrón 

et al., 2018 
T. harzianum Field Restrict the fungal sporulation and 

growth 
Arici and Demirtas, 
2019 a 

T. asperellum In vitro Antibiosis Morán-Diez et al. 
(2019) 

T. asperellum Field Not indicated Mulero-Aparicio 
et al. (2020a) 

T. atroviride Phytophthora 
inundata 

In vitro Antibiosis Lozano-Tovar et al. 
(2013) 

P. megasperma 
T. asperellum M. javanica In field Parasitism Hamza et al. (2017) 
T. harzianum  

a The inoculum used presented together the arbuscular mycorrhizal fungi and T. harzianum. 
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the direct inhibition of the pathogen through parasitism, production of 
secondary metabolites and/or lytic enzymes, and competition for space 
and/or nutrients (Deshmukh et al., 2015; Larran et al., 2016; De Vries 
et al., 2018). Furthermore, endophytes can act as BCAs inducing host 
resistance, by triggering a systemic resistance through JA/ET-depended 
and/or salicylic-acid (SA)-dependent signaling pathways (Bastías et al., 
2018; Li et al., 2018; Vahabi et al., 2018). In olive, the diversity of 
endophytic fungi present in its different organs (aerial and root) has 
been extensively studied through various approaches (Nicoletti et al., 
2020). Up to date, the results showed that olive-associated endophytic 
fungal community is diverse and shaped by host cultivar (Fernández-
González et al., 2019), season and geographic location (Martins et al., 
2016), and plant organ (Abdelfattah et al., 2015). Important biotech
nological tools have been obtained from the wide diversity of endo
phytic fungi present in olive plants, such as different antimicrobial 
compounds (Malhadas et al., 2017) and anticancer (Mady et al., 2016). 
Also used for the decomposition of the pruning remains of olive-trees 
(Martín-Sampedro et al., 2017) or to improve the acclimatization pro
cess in soil after micropropagation processes (Oražem et al., 2016). 
However, the potential use of olive-associated fungal endophytes as 
BCAs to improve crop production has become a major priority recently 
(Table 1). Regarding pathogenic bacteria of olive, several endophytic 
fungi associated with the presence and absence of P. savastanoi disease 
have been identified, therefore, being components of the olive micro
biota with a possible role in the promotion or suppression of olive knot 
disease (Gomes et al., 2019). One of these fungal species showed the 
ability to reduce the growth/biomass of the pathogenic bacteria around 
96% after 48h of in vitro confrontation (Berardo et al., 2018). Similarly, 
the importance play by the endophytic microbiota in olive tree resis
tance to X. fastidiosa was demonstrated based on a study comparing the 
endophytic microbiota of olive trees susceptible (Cellina di Nardò) and 
resistant (Leccino) to X. fastidiosa after bacterial infection (Vergine et al., 
2020). The exploitation of non-native olive-associated endophytic mi
croorganisms in the control of X. fastidiosa has been similarly studied. 
For instances, the compound ophiobolin A (a sesterterpene) produced by 
the fungus Drechslera gigantea isolated from crabgrass plants (Digitaria 
sanguinalis) showed to be effective in inhibiting the growth of 
X. fastidiosa under in vitro assays (Bleve et al., 2018). 

Against pathogenic fungi of olive, the use of endophytic fungi to 
control the anthracnose of the olive tree has been recently reviewed 
(Martins et al., 2019). Several endophytic fungi isolated from olive tree 
revealed to be effective in reducing the growth, sporulation, germina
tion or cause hyphae abnormalities in the pathogen Colletotrichum acu
tatum under in vitro conditions (Landum et al., 2016; Preto et al., 2017). 
Some of these fungal endophytes include, for instances, Alternaria sp., 
Diaporthe sp., Nigrospora oryzae, Chondrostereum purpureum, Chaetomium 
globosum, Quambalaria cyanescens, Epicoccum nigrum, and several 
Aspergillus species. The inhibitory effect displayed by some of these en
dophytes was ascribed to the production and release of various volatile 
organic compounds (VOCs), such as phenylethyl alcohol, benzothiazole, 
4-methylquinazoline, lilial, galaxolide and benzyl alcohol (Landum 
et al., 2016). 

With regard to Verticillium wilt, there are several reports of the 
effectiveness of the non-pathogenic F. oxysporum and Phoma sp. isolates 
in inhibiting V. dahliae mycelial growth and spore germination in in vitro 
assays, and in reducing the symptoms of the disease in greenhouse or 
field conditions as well as in suppressing microsclerotia viability in soil 
(Varo et al. 2016a, 2016b, 2018). The biocontrol effect of these endo
phytes has been associated to the production of different secondary 
metabolites with antifungal activity, such as VOCs, the competition in 
the rhizosphere for the nutrients and space with the pathogen, and the 
activation of plant defenses (Mulero-Aparicio et al. 2019, 2020a, 
2020b). The ability of endophytic fungi typically used as entomopath
ogens, such as Metarhizium brunneum and Beauveria bassiana, to inhibit 
V. dahliae mycelial growth, conidia germination and microsclerotia 
formation has been similarly reported (Lozano-Tovar et al. 2013, 2017); 

same results obtained using these endophytic fungi against the patho
genic oomycete Phytophthora megasperma, inhibiting the germination of 
propagules. 

In the case of phytopathogenic nematodes, the active parasitism of 
several endophytic fungi species isolated from the olive rhizosphere, 
such as Talaromyces assiutensis, Arthrobotrys brochopaga, A. conoides, 
Drechslerella brochopaga, Monacrosporium thaumasium and Purpur
eocillium lilacinum, proved to be effective against the root-knot nematode 
Meloidogyne javanica (Hamza et al., 2017). 

The different mechanisms indicated through which some species of 
endophytic fungi are capable of controlling different pathogens of the 
olive tree can be studied to isolate the genes involved and use them in 
the transformation of olive plants, conferring resistance to diseases. In 
this sense, olive plants capable of expressing the gene that codes for an 
antifungal protein produced by Aspergillus giganteus have been obtained, 
which showed greater resistance against the pathogen Rosellinia neca
trix, but not against V. dahliae (Narvaez et al., 2018). 

3.2.1. The Trichoderma genus 
Trichoderma is a genus of endophytic filamentous fungi, although 

they colonize only the outermost layers of the root without ever 
reaching the vascular bundle (Alonso-Ramírez et al., 2014; Poveda et al., 
2020b). Due to the existing studies with this specific fungal genus, it will 
be treated in a different section than that of endophytic fungi. 

In its interaction with the plant, Trichoderma acts as a root colonizing 
symbiont, for which it establishes a complex molecular signal exchange 
with the plant. By interacting with olive roots, it has been proven how 
the species T. harzianum and T. atroviride are able to stimulate different 
biosynthetic routes in a systemic way, improving the profile of phenolic 
compounds in the leaves, of great interest for food, pharmaceutical and 
cosmetic industries (Dini et al., 2020). 

The mechanisms of action used by Trichoderma as BCAs and benefi
cial fungus in agriculture are the competition with the pathogen, the 
antibiosis, the mycoparasitism, the promotion of plant growth, the in
crease of its tolerance against abiotic stresses and the stimulation of host 
defenses against pathogens (Poveda et al. 2019a, 2019b, 2020b; Poveda, 
2020b). 

Antibiosis occurs during interactions with other microorganisms and 
involves a wide variety of secondary metabolites produced by Tricho
derma capable of inhibiting microbial growth and, therefore, plant 
colonization by pathogens (Bailey et al., 2008). An example of this 
mechanism of action as BCA is found in a study conducted by Marques 
et al. (2018), in which they observed the ability of different strains of 
this genus to produce non-volatile secondary metabolites capable of 
inhibiting the growth of Sclerotinia sclerotiorum, as well as the ability of 
two strains of T. brevicompactum to act against a wide variety of olive 
pathogens, including C. gloesporioides, V. dahliae and F. oxysporum 
(Marques et al., 2018). The bactericidal and bacteriostatic capacity of 
different secondary metabolites from T. harzianum and T. citrinoviride 
against X. fastidiosa has been similarly demonstrated (Bleve et al., 2018). 

Together with the competition for space or specific sites of infection, 
Trichoderma uses competition for nitrogen, carbon, and other growth 
factors, in order to control plant pathogens (Vinale et al., 2008). Tri
choderma has a superior ability to mobilize and absorb nutrients from 
the soil compared to other organisms (Harman, 2006). For example, 
T. asperellum was reported to be effective in protecting tomato plants 
against the pathogen F. oxysporum f.sp. lycopersici through competition 
for iron, in addition to exerting a protective effect against the toxicity of 
this metal (Segarra et al., 2010). 

In mycoparasitism, Trichoderma secretes cell wall degrading enzymes 
(β-glucosidase, endochitinases, proteases and mannosidases) (de Lima 
et al., 2016). T. harzianum demonstrated effectiveness against the olive 
root rot disease, caused by F. solani, being the main biocontrol mecha
nisms ascribed to direct mycoparasitism and the activation of plant 
defensive responses (Amira et al. 2017, 2018). As far as activation of 
systemc plant defenses is concerned, probably, the first clear 

J. Poveda and P. Baptista                                                                                                                                                                                                                     



Crop Protection 146 (2021) 105672

6

demonstration of resistance induced by Trichoderma was published in 
1997 by Bigirimana et al. showing that T. harzianum-root application 
reduced the diseases caused by fungal pathogens Botrytis cinerea and 
Colletotrichum lindemuthianu in bean plants. Subsequently, numerous 
studies have shown that, by colonizing the roots of plants, Trichoderma 
stimulates their defense mechanisms against numerous phytopathogenic 
microorganisms (Poveda et al., 2019b). 

Several Trichoderma species were very effective against Verticillium 
wilt and root rot. T. harzianum in the field has provided very good results 
in the control of V. dahliae when applied in combination with AMF, 
thanks to restrict the fungal sporulation and growth (Arici and Demirtas, 
2019). The effectiveness of T. harzianum also relies on mycoparasitism 
towards V. dahliae (Ruano-Rosa et al., 2016) and on the competition for 
space and nutrients, both on the surface and inside the roots 
(Carrero-Carrón et al., 2018). On the other hand, T. asperellum and 
T. atroviride significantly inhibit the growth of V. dahliae in vitro, and in 
planta reduce the severity of symptoms and increase plant growth 
(Lozano-Tovar et al., 2013; Carrero-Carrón et al., 2016). Their biocon
trol abilities rely on the production of secondary metabolites in the form 
of diffusible molecules and VOCs (Morán-Diez et al., 2019), including in 
the field (Mulero-Aparicio et al., 2020a). 

The bactericidal and bacteriostatic capacity of different secondary 
metabolites from T. harzianum and T. citrinoviride against X. fastidiosa 
has been demonstrated against olive bacteria (Bleve et al., 2018). But 
the largest number of studies in olive trees have been carried out against 
soil-borne pathogens, as F. oxysporum, F. solani, R. solani, Sclerotium 
rolfsii and Alternaria alternata, against whom it has been determined how 
a commercial formulation with T. harzianum, called Trichoderma 2000, 
significantly reduced incidence of root rot on olive transplants (Mousa 
et al., 2006). 

4. Conclusions 

For many countries, especially in the Mediterranean Basin, olive 
cultivation represents an important part of their economic and even 
cultural system. Currently, various pathogens threaten the correct 
development of the crop in its traditional areas in a very marked way, 
with examples such as the V. dahliae fungus or the X. fastidiosa bacteria. 
In this sense, BCAs represent an efficient, effective and environmentally 
friendly alternative whose development is in full expansion, with the 
group of filamentous fungi having good results as a consequence of their 
greater capacity for survival in the field compared to bacteria or yeast. 

Different species of filamentous endophytic fungi, including Tricho
derma, are able to control the pathogens P. savastanoi and X. fastidiosa 
through the production and release of secondary metabolites, as well as 
oomycetes and Colletotrichum. On the other hand, against V. dahliae all 
the groups of filamentous fungi indicated are effective through several 
mechanisms, including competition for space and nutrients in the 
rhizosphere, antibiosis, mycoparasitism and/or the activation of plant 
defensive responses. Finally, for the control of nematodes, the different 
filamentous endophytic fungi showed to act by active parasitism. 

All the commented studies show the efficacy in the laboratory, 
greenhouse and even in the field of the use of the different groups of 
filamentous fungi in the control of olive pathogens. Its massive use in 
agricultural production systems could develop successfully in a short 
time, since there are many different formulations on the market with 
some of the reported species. The correct development of sustainable 
agriculture that respects the environment and human health in olive 
cultivation must be linked to the implementation of successful biological 
strategies, such as those mentioned here. 
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Rodríguez-Moreno, L., Jiménez, A.J., Ramos, C., 2009. Endopathogenic lifestyle of 
Pseudomonas savastanoi pv. savastanoi in olive knots. Microbial Biotech 2, 476–488. 
https://doi.org/10.1111/j.1751-7915.2009.00101.x. 

Ruano-Rosa, D., Prieto, P., Rincón, A.M., Gómez-Rodríguez, M.V., Valderrama, R., 
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