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Abstract

Objective: This study sought to analyze the prospective association between vigorous-intensity physical activity (VPA) and health-related out-

comes in children and adolescents.

Methods: Studies reporting associations between device-measured VPA and health-related factors in children and adolescents aged 3�18 years

were identified through database searches (MEDLINE, EMBASE, and SPORTDiscus). Correlation coefficients were pooled if outcomes were

reported by at least 3 studies, using DerSimonian-Laird random effects models.

Results: Data from 23 studies including 13,674 participants were pooled using random effects models. Significant associations were found

between VPA at baseline and overall adiposity (r =�0.09, 95% confidence interval (95%CI): �0.15 to �0.03; p = 0.002; I2 = 89.8%), cardiome-

tabolic risk score (r =�0.13, 95%CI: �0.24 to �0.02, p = 0.020; I2 = 69.6%), cardiorespiratory fitness (r = 0.25, 95%CI: 0.15�0.35; p < 0.001;

I2 = 57.2%), and total body bone mineral density (r = 0.16, 95%CI: 0.06 to 0.25; p = 0.001; I2 = 0%).

Conclusion: VPA seems to be negatively related to adiposity and cardiometabolic risk score and positively related to cardiorespiratory fitness and

total body bone mineral density among children and adolescents at follow-up. Therefore, our findings support the need to strengthen physical

activity recommendations regarding VPA due to its health benefits in children and adolescents.
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1. Introduction

There is robust evidence that physical activity (PA) in

youth, specifically moderate-to-vigorous PA (MVPA; i.e., a

combination of moderate and vigorous PA), is strongly associ-

ated with several favorable health-related outcomes.1 Accord-

ingly, many national and international organizations have

developed guidelines recommending that children and adoles-

cents accumulate at least 60 min of MVPA daily.1�3 These

guidelines also recommend the inclusion of vigorous-intensity,
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bone-strengthening, and muscle-strengthening PAs at least

3 times weekly.1�3

Most exercise-related research in youth has been

focused on MVPA,4,5 and there is less evidence for a link

between vigorous PA (VPA) and health outcomes in this

population. In this regard, 2 narrative reviews suggested

that VPA may be especially beneficial for youth and may

even bring more benefits than moderate-intensity activi-

ties.6,7 However, the findings supporting the favorable

associations between VPA and health-related outcomes in

youth are typically derived from cross-sectional studies,

and it is unclear whether the relationship is temporal in

nature.
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The sporadic nature of PA in youth is characterized by daily

brief intermittent bouts of VPA.8 Several studies suggest that

every minute of VPA favors the same improvements in adipos-

ity as 2 min or 3 min of moderate PA,9,10 and it therefore seems

reasonable to think that this type of PA is more attainable by

children and adolescents; that is, VPA may be more attainable

simply because a health-improving dose is less time consuming

to attain. Because each PA intensity seems to provide different

benefits,11 this type of study could provide important informa-

tion for those who develop national and international PA guide-

lines and determine how much daily VPA children and

adolescents should be acquiring. To date, however, only a lim-

ited number of longitudinal studies have analyzed associations

between VPA and health-related outcomes among youth, with

inconsistent results.6,12 Thus, the purpose of the present study

was to analyzes the prospective association between VPA and

health-related factors in children and adolescents.
2. Methods

The protocol was published in the International Platform of

Registered Systematic Review and Meta-analysis Protocols

under registration number (INPLASY202060082) and was

conducted in accordance with Preferred Reporting Items for

Systematic Reviews and Meta-Analyses (PRISMA)

guidelines.13

2.1. Search strategy

The search was performed independently by 2 authors

(AGH and YE) in the electronic databases MEDLINE,

EMBASE, and SPORTDiscus, from inception to September

2020. Studies had to be observational prospective reports on

the associations between device-measured VPA and health-

related outcomes in children and adolescents. We combined

variations of terms related to children and adolescents (e.g.,

pediatrics, child, adolescent, youth*, paediatr* or pediatr* or

infant* or child* or teenage* or adolescen* or pre-schooler*

or pre-schooler* or schoolchild* or girl* or boy* or teen*),

VPA (e.g., vigorous physical activity, vigorous exercise),

device-measured VPA (e.g., accelerometer, heart rate moni-

tor), and health-related factors (e.g., body mass index, body

fat, fat mass index, waist circumference, bone health, cardio-

metabolic risk factors, health-related physical fitness) (Supple-

mentary Material 1). Hand-searching of reference lists of

potentially eligible studies was undertaken to identify addi-

tional articles. Only studies published in peer-reviewed

English-language journals were considered.
2.2. Selection criteria

To be included in our systematic review and meta-analysis,

each article had to include the following elements: (1) expo-

sure: device-measured VPA (e.g., accelerometers, heart rate

monitors, or similars); (2) population: children and adolescents

aged 3 years up to 18 years at baseline (mean age); (3) out-

comes: health-related factors, including adiposity (e.g., body

mass index, body fat, fat mass index, waist circumference),
cardiometabolic outcomes (e.g., cardiometabolic risk score,

systolic blood pressure, homeostatic model assessment for

insulin resistance), bone outcomes (e.g., total body bone min-

eral density (BMD) and bone mineral content), and/or health-

related physical fitness (e.g., cardiorespiratory fitness, muscu-

lar fitness, speed-agility); and (4) study design: observational

prospective cohort studies. Disagreements or uncertainties

were discussed and resolved by consensus with 2 other authors

(RRV and MI), and reasons for exclusions were recorded.

2.3. Data collection process and data items

Two authors (AGH and YE) extracted the following infor-

mation for each study: study characteristics (e.g., country,

follow-up duration), population characteristics (e.g., sex, age),

VPA data reduction (e.g., wear time in terms of days, number

of valid days, epochs, cut-points), and analysis and study

results (e.g., adjusted variables, outcome of interest). Study

authors were contacted to retrieve any missing data or to seek

clarification if inadequate or insufficient information was

detected.

2.4. Risk of bias and quality assessment in individual studies

The risk of bias was assessed by the Quality Assessment

Tool for Observational Cohort and Cross-sectional Studies.14

This methodological tool is composed of 14 items classified as

“yes”, “no”, or “not reported”. Two authors (YE and AGH)

conducted the risk-of-bias assessment independently. If neces-

sary, a third author (RRV) was consulted. For Item 9—“Were

the exposure measures (independent variables) clearly defined,

valid, reliable, and implemented consistently across all study

participants?”, and Item 14—“Were key potential confounding

variables measured and adjusted statistically for their impact

on the relationship between exposure(s) and outcome(s)?”, we

have included additional details in order to consider specific

and topic-relevant biases. For Item 9, it was considered

“yes” if the study used an epoch �15 s for the reduction of

VPA data;15 for Item 14, it was considered “yes” if the anal-

ysis was adjusted at least for baseline values of the outcome

(the strongest confounder in prospective analyses) and sed-

entary time.

2.5. Meta-analysis

All analyses were performed using STATA Version 16.1

(STATA Corp., College Station, TX, USA). We used the cor-

relation coefficient (r) as the main effect size for the present

study. We converted other estimations (e.g., standardized

regression coefficients, unstandardized regression coefficients,

standardized mean differences (Cohen’s d), and odds ratios) to

correlation coefficients according to their corresponding for-

mulas.16�18 We selected fully adjusted models, partial models,

or unadjusted models according to availability (i.e., in that

order). DerSimonian-Laird random effects models19 were used

to pool correlation coefficients if outcomes were reported by at

least 3 studies. Separate pooled analyses were conducted on

the following parameters based on the available data:



Fig. 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) flow chart.
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overweight/obesity, body mass index, waist circumference,

body fat, fat mass index, cardiometabolic risk score, systolic

blood pressure, cardiorespiratory fitness, total body BMD,

lumbar spine BMD, and femoral neck BMD. Also, we deter-

mined an overall effect on adiposity parameters according to

Cliff et al.20 To avoid duplication, we selected only 1 coeffi-

cient from each study using the following hierarchy: (1) body

fat measured by dual-energy X-ray absorptiometry; (2) body

fat measured by skinfolds thickness; (3) body fat measured by

bioelectrical impedance analysis; (4) waist circumference; and

(5) body mass index and overweight/obesity.

Random effects models19 were used to account for anticipated

between-study heterogeneity, calculated using the total variance

(Q) and the inconsistency index (I2).21 Inconsistency was con-

sidered insignificant for I2 < 25%, low for 25% � I2 < 50%,

moderate for 50% � I2 < 75%, and high for I2 � 75%.22

Publication bias was determined by visual examination of

funnel plots (we have only used this visual test for overall adi-

posity due to the limited number of studies in the rest of the

parameters).23 Also, small-study effects bias was assessed

using Egger’s test24 in all of the parameters.

Finally, random-effects meta-regression analyses using

method of moments25 were estimated to independently evalu-

ate whether results were different by length of follow-up

(months). Sub-group analyses according to age and sex were

not possible because most of the included studies used both

sexes and ages (children and adolescents) in their analyses.
3. Results

3.1. Study selection

A total of 3612 potentially relevant articles were identified,

and, after screening for duplicates, 601 full-text studies were

assessed for inclusion after checking titles and abstracts.

Finally, 23 studies met the eligibility criteria and were

included in the systematic review26�48 and 21 in the meta-

analysis. The reasons for exclusion based on full texts are

reported in Supplementary Material 2. The PRISMA flow dia-

gram illustrating the number of studies excluded at each stage

of the systematic review and meta-analysis is shown in Fig. 1.
3.2. Study characteristics

The end points for all 23 prospective cohort studies are

listed in Table 1. The studies involved a total sample of 13,674

children and adolescents with mean ages between 4.5 years

and 17.5 years at baseline (mean age: 10.0 years). Most studies

included boys and girls (49.7% and 50.3%, respectively), with

the exception of 5 studies that included only boys29,33,36,45,47

and two only girls.39,42 Sample sizes across studies ranged

from 8833 to 477044 participants. The mean follow-up time

was 38.5 months (between 7 and 120 months).

The correlation coefficient was presented in 4 studies33,43,45,47.

Other effect sizes were converted from studies reporting b coeffi-

cients (n = 17), analysis of variance (ANOVA) (n = 1), and odds

ratio (n = 1). Most of the studies analyzed associations between

VPA at baseline and the dependent variables at follow-up
(n = 19) (i.e., a determinant model); other studies also ana-

lyzed the association between changes in the VPA and

changes in the dependent variables during follow-up (n = 8)

(i.e., a change model). Regarding the covariates used in the

statistical models applied, there was much heterogeneity

between studies and few of these included baseline values

of the outcomes or other important covariables such as mat-

uration or time spent in other intensity domains.

3.3. Measurements

All studies device-measured VPA using accelerometers placed

on the hip, waist, or wrist, and 2 studies used an Actigraph chest-

worn monitoring device.35,43 The VPA data reduction across

studies was diverse, with different cut-off points characterizing

VPA, epochs, total days of use, criteria for non-wear time and

minimum wear time per day used for analysis.

Regarding health-related outcomes, most studies reported

data on adiposity,26�28,32,34,35,37,38,41�44,47,48 cardiometabolic

risk factors,26,30,32,35,38 bone outcomes,29,31,33,36,39,40,45,46 and

health-related physical fitness27,38,41,48 (Table 1).

3.4. Risk of bias and quality assessment within studies

All 23 studies met at least 8 criteria (between 8 and 12 crite-

ria) and were considered to have low-moderate methodologi-

cal quality. Overall, all studies satisfied Items 1, 2, 6, 7, 8, and

11. In contrast, only 2 studies34,43 fulfilled Item 12 (regarding

assessors blinding), and no studies fulfilled Item 14 (i.e.,

regarding potential confounding variables and it adjust in the

analyses). The average score was 9.6 of 14 (Supplementary

Table 1).



Table 1

Study characteristics

Study, country n Females

Mean age

at baseline

(year)

Study

length

(month)
Outcome VPA device VPA data reduction Covariate

Arvidsson et al.

(2018)26

Sweden

248 109 9.8 24 Adiposity, cardiometa-

bolic risk factors

ActiGraph 7164 VPA: �6000 cpm

Epoch: 10 s

Non-wear: 10 min of 0 count

Wear time: 8 h/day

Valid days: 3

NR

Bland et al. (2020)39

USA

131 131 12.9 24 Bone outcomes Actigraph GT3X VPA: �4012 cpm

Epoch: 1 s

Non-wear: �30 min

Wear time: 10 h/day

Valid days: 3

Total days: 7

Accelerometer wear time, baseline

peripheral quantitative computed

tomography measurement, 2-year

maturity offset (years), and 2-year

height (cm), and 2-year lean body

B€urgi et al. (2011)27

Switzerland

217 113 5.2 9 Adiposity, health-related

physical fitness

ActiGraph GT1M VPA: �842 cpm

Epoch: 15 s

Non-wear: 10 min of 0 count

Wear time: 6 h/day

Valid days: 3

Total days: 6

Parental migrant status, educational

level, and, for the fitness variables,

body fat

Carson et al. (2014)38

Canada

315 187 12.2 24 Adiposity, health-related

physical fitness, and car-

diometabolic risk factors

Actical

B101270-B101375

VPA: >6500 cpm

Epoch: 15 s

Non-wear: 60 min of 0 count

Wear time: 8 h/day

Valid days: 3

Total days: 7

Age, sex, and dietary intake

Cohen et al. (2014)42

USA

265 265 13.9 24 Adiposity Accelerometer NR VPA: �2600 counts/30 s

Epoch: 15 s

Wear time: 8.3 h/day (weekend)

and 10.6 h/day (weekday)

Valid days: NR

Total days: NR

Age, race/ethnicity, mother’s educa-

tion, and neighborhood percent

households in poverty

Collings et al.

(2016)43

UK

728 415 17.5 29 Adiposity Actiheart NR VPA: �7 METs

Epoch: 30 s

Wear time: >32 h (weekday)

and 16 h/day (weekend)

Total days: 4

Basline, age, sex, area-level SES,

follow-up duration, season of base-

line assessment, ST, sleep duration,

ethnicity, pubertal status, energy

intake, depressive symptoms, birth

weight, maternal age at parturition,

and FMI

Hamer and Stamata-

kis (2018)44

UK

4770 2329 7.0 84 Adiposity ActiGraph GT1M VPA: >3841 cpm

Epoch: 15 s

Non-wear: 60 min of 0 count

Wear time �8 h /day
Valid days: 3

Total days: 7

Total volume of MVPA, BMI at

baseline, sex, ethnicity, and social

status

(continued on next page)
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Table 1 (Continued)

Study, country n Females

Mean age

at baseline

(year)

Study

length

(month)
Outcome VPA device VPA data reduction Covariate

Ivu�skans et al.

(2015)45

Estonia

169 0 12.1 12 Bone outcomes ActiGraph GT1M VPA: >4012 cpm

Epoch: 60 s

Non-wear: 10 min of 0 count

Wear time: 8 h/day

Valid days: 2 weekdays and 1

weekend day

Total days: 7

Age, pubertal status, and body mass

Janz et al. (2014)46

USA

369 197 5.2 120 Bone outcomes ActiGraph GT1M VPA: >4012 cpm

Epoch: 60 s

Non-wear: 60 min of 0 count

Wear time: �10 h/day

Valid days: 2

Total days: 4

Height, weight, linear age, non-linear

age, maturity, and MVPA

L€att et al. (2015)47

Estonia

136 0 11.9 24 Adiposity ActiGraph GT1M VPA: >4000 cpm

Epoch: 15 s

Non-wear: 10 min of 0 count

Wear time: 8 h/day

Valid days: 2 weekdays

and 1 weekend day

Total days: 7

ST

Lepp€anen et al.

(2017)48

Sweden

138 65 4.5 12 Adiposity and health-

related physical fitness

ActiGraph

wGT3XBT

VPA: �1969 VM

Epoch: 10 s

Non-wear: blocks of 30 min

Wear time: >10 h/day

Valid days: 3 weekdays and 1

weekend day

Total days: 7

Sex, age, ActiGraph awake wearing

time, and ST

Lima et al. (2019)28

Denmark

2520 1406 9.8 36 Adiposity Actigraph GT3X VPA: �4012 cpm

Epoch: 2 s

Non-wear: 30 min of 0 count

Wear time: 10 h/day

Valid days: �4

Total days: NR

School type, age, sex, height, school

class, mother’s education, pubertal

status, season of accelerometer meas-

urements, accelerometer wearing

time, learning difficulty, physical

disabilities, and cluster structure

Marin-Puyalto et al.

(2018)29

Estonia

140 0 11.9 12 Bone outcomes ActiGraph GT1M VPA: �4012 cpm

Epoch: 15 s

Non-wear: 20 min of 0 count

Wear time: 10 h/day

Valid days: �3

Total days: 7

Change in body weight and skeletal

age

Metcalf et al. (2020)40

USA

439 220 11.2 96 Bone and musculoskeletal

outcomes

ActiGraph 7164,

GT1M, and GT3X+

VPA: >4012 cpm

Epoch: 60 s

Non-wear: 60 min of 0 count

Wear time: �10 h/day

Valid days: 3�5

Total days: 5

Height and weight

(continued on next page)
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Table 1 (Continued)

Study, country n Females

Mean age

at baseline

(year)

Study

length

(month)
Outcome VPA device VPA data reduction Covariate

Reisberg et al.

(2020)41

Estonia

200 98 6.6 12 Adiposity and health-

related physical fitness

Actigraph GT3X VPA: �4000 cpm

Epoch: 15 s

Non-wear: >20 min of 0 count

Wear time: 600 min/day

Valid days: 3

Total days: 7

Sex, age at measurement, total awake

wear time, and ST

Ried-Larsen et al.

(2014)30

Denmark

251 145 9.8 72 Cardiometabolic risk

factors

Actigraph AM7164,

GT3X, and GT1M

VPA: >1733 counts per 20 s

Epoch: 20 s

Non-wear: >60 min of 0 count

Wear time: 576 min/day

Valid days: 3

Total days: 5

Sex, body height, and biological

development at follow-up

Rønne et al. (2019)31

Denmark

663 333 9.6 72 Bone outcomes Actigraph GT3X and

GT3X+

VPA: >4012 cpm

Epoch: 10 s

Non-wear: �30 min of 0 count

Wear time: 10 h/day

Valid days: 3

Total days: 7

Maturity, sex, size (height, TBLH

BA), body composition (weight, lean

mass), and baseline TBLH BMC

Skrede et al. (2017)32

Norway

700 356 10.2 7 Adiposity and cardiome-

tabolic risk factors

Actigraph GT3X VPA: >4012 cpm

Epoch: 10 s

Non-wear: >20 min of 0 count

Wear time: >480 min/day

Valid days: �4

Total days: 7

Sex, group allocation, pubertal sta-

tus, SES, monitor wear time, baseline

clustered cardiometabolic risk score,

Andersen test, and adiposity

Tamme et al. (2019)33

Estonia

88 0 12.1 72 Bone outcomes ActiGraph GT1M and

GT3X

VPA: >4000 cpm

Epoch: NR

Non-wear: >10 min of 0 count

Wear time: >10 h/day

Valid days: 2 weekdays

and 1 weekend day

Total days: 7

Baseline bone age and mean body

mass

Tanaka et al. (2018)34

UK

356 182 7.5 24 Adiposity ActiGraph GT1M VPA: >2050 counts per 15 s

Epoch: 15 s

Non-wear: wear time diaries

and visual inspection

Wear time: 6 h/day

Valid days: 3

Total days: 7

Sex, ST, and MVPA or moderate PA,

and BMI z-score or fat index at

baseline

V€aist€o et al. (2019)35

Finland

258 140 7.6 24 Adiposity and cardiome-

tabolic risk factors

Actiheart VPA: >7.0 METs

(1METwas 71.2 J/min/kg)

Epoch: 60 s

Non-wear: NR

Wear time: 48 h/day

Valid days: 2 weekdays and

2 weekend days

Total days: 7

Age, sex, the explanatory and out-

come variables at baseline and

puberty

(continued on next page)
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3.5. Synthesis of results

The association between VPA and overall adiposity was

statistically significant (r =�0.09, 95% confidence interval

(95%CI): �0.15 to �0.03; p = 0.002; I2 = 89.8%; n = 14)

(Fig. 2). For each adiposity outcome separately, VPA was neg-

atively associated with overweight/obesity (r =�0.20, 95%CI:

�0.38 to �0.03; p = 0.022; I2 = 82.2%; n = 4) and waist cir-

cumference (r =�0.06, 95%CI: �0.10 to �0.01; p = 0.016;

I2 = 25.7%; n = 5) (Supplementary Fig. 1). Analyzing changes

along time, change in VPA was not negatively related to

change in overall adiposity (r =�0.11, 95%CI: �0.26 to 0.04;

p = 0.139; I2 = 84.7%; n = 4) (Supplementary Fig. 2).

Regarding cardiometabolic risk factors, there was a nega-

tive relationship between VPA and cardiometabolic risk score

(r =�0.13, 95%CI: �0.24 to �0.02; p = 0.020; I2 = 69.6%;

n = 3) (Fig. 3). Also, VPA was positively related to cardiore-

spiratory fitness (r = 0.25, 95%CI: 0.15�0.35; p < 0.001;

I2 = 57.2%; n = 4) (Fig. 4). Finally, the results indicated a posi-

tive association between VPA and total body BMD (r = 0.16,

95%CI: 0.06�0.25; p = 0.001; I2 = 0%; n = 3) (Fig. 5).

Based on meta-regression analysis, there was no significant

effect of length of follow-up (b = 0.001, 95%CI: �0.004 to

0.006, p = 0.663) on the correlation coefficient estimate for

overall adiposity (Supplementary Fig. 3).

Egger’s test indicated no small-study effects bias for any

outcome (overall adiposity, p = 0.117; cardiometabolic risk

factors, p = 0.273; cardiorespiratory fitness, p = 0.378; speed-

agility, p = 0.057; and bone and musculoskeletal outcomes,

p = 0.756). The funnel plot for overall adiposity also showed

no asymmetry (Supplementary Fig. 4).
4. Discussion

The present systematic review and meta-analysis summa-

rizes the evidence for the prospective association between

VPA and health-related factors among children and adoles-

cents. Overall, VPA seems to be negatively related to adi-

posity and cardiometabolic risk score and positively related

to cardiorespiratory fitness and total body BMD later in

life.

Our results are consistent with prior reports in the literature

given that a number of previous reviews have emphasized that

time spent in higher intensities of PA is a significant predictor

of levels of adiposity in children and adolescents.6,11,12 Owens

et al.12 suggested that VPA provided adiposity-related benefits

to children and adolescents over and above those obtained from

moderate or light PA. Specifically, the authors stated that every

minute of VPA favors the same improvements in adiposity as 2

or 3 min of moderate PA, in accordance with cross-sectional

studies.9,10 This is also consistent with a review published by

Gralla et al.,6 which reported favorable associations between

VPA and adiposity in children and adolescents, particularly in

studies where participants engaged in an average of at least

10 min of VPA. The majority of the studies included in the

aforementioned reviews are, however, cross-sectional in nature,

and therefore the directionality of the relationship between



Fig. 2. Forest plot showing the correlation of vigorous physical activity at baseline on adiposity at follow-up for each adiposity study. Weights are from random

effects analysis. p value represents significance for the heterogeneity test. 95%CI = 95% confidence interval; DXA = dual energy X-ray absorptiometry.

Fig. 3. Forest plot showing the correlation of vigorous physical activity at baseline on cardiometabolic risk score and systolic blood pressure at follow-up for each study.

Weights are from random effects analysis. p value represents significance for the heterogeneity test. 95%CI = 95% confidence interval.
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VPA and fatness parameters cannot be established;34 it is possi-

ble that excess adiposity may cause less VPA.

There is also a growing body of evidence suggesting that VPA

may favor a healthier cardiometabolic profile among youth,7 but
equivocal findings were reported in the aforementioned reviews.

For example, Gralla et al.6 reported that VPA does not have a

strong relationship with cardiometabolic risk score in youth. By

contrast, Owens et al.12 suggested that VPA is associated with a



Fig. 4. Forest plot showing the correlation of vigorous physical activity at baseline on cardiorespiratory fitness and speed-agility at follow-up for each study. Weights

are from random effects analysis. p value represents significance for the heterogeneity test. 95%CI = 95% confidence interval.

Fig. 5. Forest plot showing the correlation of vigorous physical activity at baseline on bone outcomes at follow-up for each study. Weights are from random effects

analysis. p value represents significance for the heterogeneity test. 95%CI = 95%confidence interval; BMD = bone mineral density; FN = femoral neck; LS = lum-

bar spine; TB = total body.
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more favorable blood lipid and glucose�insulin profile, which

matches the results of V€aist€o et al.35 Consistent with the literature

about combined moderate and VPA,4 our meta-analysis reveals

that VPA is inversely related to cardiometabolic risk score, which

is also supported by experimental studies.49 There are several

possible biological mechanisms that explain our results. For

example, PA improves insulin action in skeletal muscle and

glucose transport,50 and also improves fat metabolism and

increases blood flow and oxygen supply through the increased

density of capillaries and vasodilatation by nitric oxide.51 In

contrast to earlier findings,51 however, no relationship
between VPA and systolic blood pressure was detected in our

study, which differs from studies using high-intensity train-

ing52 or even moderate-intensity training among obese

youths.53 This inconsistency may be due to the initial health

status of youth in various studies, which may greatly affect

the observed association54 (i.e., associations are more likely

to occur in high-risk participants such as obese children and

adolescents).53

In line with previous reviews,6,12 we found that VPA is con-

sistently associated with cardiorespiratory fitness. Published

experimental studies also indicate that VPA is as effective,55
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or even superior, to moderate PA for improving cardiorespira-

tory fitness among children and adolescents.53 For example, a

randomized controlled trial in children with obesity reported

that 6 weeks of high-intensity interval training using games-

based exercises led to an improvement in cardiorespiratory fit-

ness.55 In addition, a meta-analysis of randomized controlled

trials suggested that high-intensity training in children with

obesity is considered a more effective intervention for improv-

ing cardiorespiratory fitness than other training protocols with

lower intensities.53 PA at a higher intensity could favor an

increase in oxygen availability through central effects (such as

maximal cardiac output, total hemoglobin, and blood plasma

volume).56 VPA also seems to increase muscle oxidative

potential and the ability to extract and use available oxygen,

reflecting peripheral adaptations.57 Our findings have impor-

tant implications since cardiorespiratory fitness is a central

marker of health status during childhood and adolescence, and

also in later life.58 In light of the small number of studies

involving muscular fitness parameters in the meta-analysis, the

results could not be pooled to determine their relationship with

VPA. However, Lepp€anen et al.48 reported that VPA among

children 4.5 years old was related to higher muscular strength

(r = 0.20 and r = 0.36 in handgrip and standing long-jump tests,

respectively) 1 year later.

Regarding bone health, it is generally acknowledged that

weight-bearing activities, more specifically high-impact activi-

ties, during youth are effective for promoting bone health.59,60

Our meta-analysis suggests that VPA favors higher total body

BMD later in life. The results of a recent 8-year prospective

study by Metcalf et al.40 showed that accumulating 5 extra

minutes per day of VPA was associated with up to 3.0%

and 5.1% greater bone structural outcomes by age 19 years

in boys and girls, respectively. The Rønne et al’s. study31

meta-analyzed here and the aforementioned Metcalf et al.’s

study40 underpin the notion that greater attention should be

placed on promoting high-impact VPA throughout adoles-

cence and emerging adulthood to maximize bone strength

and reduce fracture risk. Indeed, Ivu�skans et al.45 also

found that increases in VPA during a 12-month period

favors bone mineral acquisition in peripubertal boys. There-

fore, although we have included limited studies, the existing

data from longitudinal designs and experimental trials59

point to bone health advantages for children and adoles-

cents engaged in daily high-impact VPA.

Overall, several methodological factors could have poten-

tially influenced our study results and heterogeneity. First,

there are discrepancies regarding the reduction of accelerome-

ter data; VPA cut-offs varied from �842 counts per minute27

to �6500 counts per minute38 in our meta-analysis, which

could result in significantly different estimates of time spent in

VPA. Also, a recent study recommends the use of short epochs

when analyzing accelerometry data in youth in order to mirror

their activity patterns and capture VPA correctly.61 A majority

of the included studies in our review used 10�60-s epochs,

and therefore we could have underestimated the VPA levels.62

These choices related to data reduction could impair the true

association between VPA and health parameters and
complicate comparability between studies. Unfortunately,

evidence on reaching consensus on VPA data reduction pro-

tocols is currently lacking. Second, and no less important,

are the statistical models applied in the included studies.

Most of the studies used a determinant model, in which the

follow-up outcome or its change is regressed on a baseline

value; however, not all studies adjusted for baseline values

of the outcome, which is the strongest confounder in pro-

spective analyses.4 Also, few studies34,36,43,47,48 adjusted

their analysis by time spent in other intensity domains. Con-

versely, these intensities are codependent and difficult to

separate statistically; recent studies suggest more appropriate

analytical methods such as compositional data analysis.63

Therefore, not including both confounding variables could

be considered a major methodological flaw. Third, our find-

ings should be interpreted with caution given the short dura-

tion of follow-up time in the included studies (the mean

follow-up time was 38.5 months). Fourth, many prospective

studies in the literature only include MVPA and/or sedentary

time levels in their results, creating one of the strongest

biases in our study (i.e., selection bias). Fifth, correlation

coefficient could be a poor metric because it is difficult to

translate into clinical findings; however, this coefficient is

standardized and can itself serve as an effect size.25 Finally,

reverse causality could also be possible given that the pro-

spective design of the included studies did not eliminate the

possibility of bi-directional associations.

5. Conclusion

Overall, VPA seems to be negatively related to adiposity

and cardiometabolic risk score and positively related to cardio-

respiratory fitness and total body BMD among children and

adolescents at follow-up. Our results support the need to fur-

ther strengthen VPA recommendations for children and ado-

lescents. However, more studies are warranted, including

rigorous experimental trials, to confirm the optimal dose of

VPA for overall health status among youth.
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