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Abstract: Methanolysis of vegetable oils in the presence of homogeneous catalysts remains the most
important process for producing biodiesel. However, there is still a lack of accurate description of
the reaction kinetics. This is in part due to the complexity of the reacting system in which a large
number of interconnected reactions take place simultaneously. In this work, attention is focused on
the biphasic character of the reaction medium, formed by two immiscible liquid phases. The behavior
of the phases is investigated regarding their physicochemical properties, mainly density and mutual
solubility of the components, as well as composition. In addition, two kinetic models with different
level of complexity regarding the biphasic character of the reaction medium have been developed.
It has been found that a heterogeneous model considering the presence of the two phases and the
distribution of the several compounds between them is indispensable to get a good description of the
process in terms of oil conversion and products yields. The model captures the effects of the main
variables of an isothermal batch methanolysis process: methanol/oil molar ratio, reaction time and
catalyst concentration. Nevertheless, some adjustment is still required as concerns modelling of the
saponification reactions and catalyst deactivation.

Keywords: biodiesel; biofuel; kinetics

1. Introduction

Triglyceride transesterification is the basis of biodiesel synthesis from vegetable oils.
Methanol is the most commonly used transesterification reagent; in this case, the reaction
is also known as methanolysis; the fatty acid methyl esters (FAMEs or MEs) formed
constitute biodiesel. As for the catalyst, in most industrial biodiesel production processes,
basic compounds such sodium methoxide or hydroxide are used. These compounds stand
out for being very active due to their strong basicity and solubility in methanol, and for
this reason, they are categorized as homogeneous catalysts [1].

Knowing the kinetics of the methanolysis reaction is key for obvious reasons related
to the design, scale-up, operation, and control of industrial reactors. Several researchers
have performed kinetic studies on the vegetable oil transesterification reaction [2,3]. In
addition, some kinetic modelling approaches have been reported. A pseudo-homogeneous
model was proposed by Noureddini and Zhu [4] that included the three consecutive
and reversible transesterification reactions corresponding to the complete conversion of
triglycerides into biodiesel and glycerol. It was found that a sigmoid curve described
the evolution of the oil conversion with reaction time. This behavior was ascribed to the
existence of two distinct regimes during the progress of the reaction. Initially, the reaction
takes place under a mass-transfer-limited regime, followed by a regime controlled by the
intrinsic reaction kinetics. Pseudo-homogeneous models are characterized by disregarding
the biphasic nature of the reacting system which, actually, consists in an emulsion formed
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by droplets containing methanol and glycerol dispersed in a continuous phase constituted
by the partially converted triglycerides and fatty acid methyl esters. This model has been
adopted in several previous woks [5,6].

Stamenkovic et al. [7], on the other hand, developed a heterogeneous model consid-
ering the presence of two immiscible liquid phases and three reaction regimes. The first
and slowest regime corresponded, like in the previous case, to a mass-transfer-limited
step due to the biphasic nature of the system that can be avoided by operating the reactor
at a sufficiently high temperature. Successively, the process was controlled by intrinsic
chemical kinetics and thermodynamic equilibrium. A drastic reduction of the emulsion
droplet size with reaction time was noticed.

A variety of kinetic studies can be found in the literature in which important simplifi-
cations were adopted, such as considering the reactions irreversible [8–10] or neglecting the
presence of partially converted intermediates (i.e., diglycerides and monoglycerides) [11].
In addition, many kinetic models reported in the literature do not take into consideration
explicitly a very important variable such as the catalyst concentration, though some rele-
vant studies do include it in the reaction rate equations [12,13]. Saponification reactions of
glycerides and methyl esters have been also included in other models [14–16].

Clearly, the heterogeneous character of the reaction medium, in which one of the
reacting phases is dispersed in the other one forming an emulsion [17,18], has important
consequences. In particular, the interfacial surface area, which depends on the size of
the dispersed phase droplets, and the rate of mass transfer through the liquid–liquid
interphase become essential for developing a model that properly describes the reaction
kinetics [19,20].

In the present work, the kinetics of the methanolysis of sunflower oil catalyzed by
NaOH is investigated with the aim of developing models with different level of complex-
ity that can be suitable for different levels of description of the process. In this regard,
pseudo-homogeneous and heterogeneous models considering the distribution of the com-
ponents among the phases and the consumption of the catalyst by saponification reactions
are developed.

Although the use as feedstock for biodiesel production of low-cost non-edible veg-
etable oils is highly desirable [21], in this work, refined sunflower oil was used. As the aim
of the study was to develop an adequate kinetic model, refined sunflower oil is particularly
suitable for this purpose both because its composition is close to that of relevant non-edible
oils such as jatropha curcas regarding the fatty acids profile, containing mainly glycerides of
the linoleic and oleic acids, as well as low acidity [22], and because it is easily available with
the required purity to perform a kinetic investigation without uncontrolled interferences.

2. Materials and Methods
2.1. Transesterification Reactions

Transesterification reactions were carried out in a batch 1 L jacketed glass reactor
fitted with a reflux condenser, a nitrogen gas inlet, a stainless-steel stirrer comprising a
turbine, a thermocouple probe, and a heated circulating water bath for reaction temperature
control. Kinetic runs were conducted at 323 K and atmospheric pressure with refined
sunflower oil (acid value of 0.07 mg KOH/g; density of 0.902 g/mL at 323 K). Selected
reaction temperature is not far from the boiling point of methanol (337.8 K at 1 atm) while
allowing to limit methanol losses that could otherwise affect the reactants and products
concentrations and then the kinetics. HPLC grade methanol and NaOH (Sigma Aldrich, St.
Louis, MO, USA, 99.9% P.A.) were used. Experiments were performed at constant reaction
volume, with the proper amount of the reactants as to get initial methanol:oil molar ratios
between 6:1 and 24:1. The catalyst (NaOH) concentration was within the 0.1–0.4 wt.%
range, referred to the oil weight. Two kinds of samples were withdrawn at various intervals
during the course of the reaction: samples for global composition analysis and samples
for liquid phases characterization. As for the kinetic study, a first set of samples (around
0.5 g each) were taken using a recirculation loop comprising a diaphragm-type metering
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pump and a stainless-steel three-way ball valve. This liquid was poured upon 0.1 mL of
a 0.6 N acetic acid solution in tetrahydrofuran for catalyst neutralization (THF, Scharlau,
Barcelona, Spain, HPLC grade), and immediately diluted in 10 g of additional THF. As
concerns the samples for liquid phases analysis, about 40 g of the reaction medium were
directly taken through one of the reactor’s ports and immediately centrifuged at 6000 rpm
for 15 min in order to separate the liquid phases and quench the reaction. The two liquid
phases obtained were further diluted in THF. This process was typically repeated on about
7–8 samples for each reaction carried out.

2.2. Analytical Methods

Samples dissolved in THF were filtered on a 0.22 µm Teflon filter and analyzed by
means of Size Exclusion Chromatography (SEC) for determining their composition. This
technique allowed the determination of the reactants, both methanol and triglycerides
from sunflower oil, as well as the main products, namely, biodiesel and glycerol, and the
intermediate diglycerides and monoglycerides. The analysis system consisted of a Waters
510 HPLC pump, a Rheodyne 7725i manual injector and a Waters model 410 differential
refractive index (RI) detector [23]. The mobile phase was HPLC grade THF at 1.0 mL/min
flow rate. A configuration of three GPC columns connected in series was used: Styragel®

HR0.5, HR1 and HR2. Sample injection volume was 50 µL, and all the analyses were
carried out at room temperature. The experimental errors were ±2% for the oil conversion
and FAMEs yield, ±4% and ±6% for diglycerides and monoglycerides yield, respectively.

The miscibility of the oil-methanol-biodiesel system was studied by titrations with
biodiesel of methanol-oil mixtures. The end point was established by turbidity analyses [22,24].
Briefly, stirring of methanol-oil mixtures generates a highly turbid emulsion; after that,
biodiesel was added until a single transparent homogeneous phase was obtained. Biodiesel
produced at the laboratory from refined sunflower oil was used in these experiments.

Density values were obtained by a tensiometer Krüss K100, using a DE-0601 adapter
and viscosity was measured by a Viscostar Plus L. Densities of the pure components (oil,
methanol, glycerol and biodiesel) were measured both at room temperature and at 323 K.

3. Kinetic Modelling
3.1. Reaction System

Vegetable oils methanolysis comprises three consecutive reversible steps represented
by Equations (1)–(3) [25]. In the first one, triglycerides (TG) conversion into diglycerides
(DG) occurs, followed by the conversion of diglycerides into monoglycerides (MG). The
last step permits to produce glycerol (GL) from MG. In each of these reactions, a molecule
of methanol (MeOH) is consumed whereas a molecule of fatty acid methyl ester (ME), or
biodiesel, is formed.

TG + MeOH
k1
�

k−1

DG + ME (1)

DG + MeOH
k2
�

k−2

MG + ME (2)

MG + MeOH
k3
�

k−3

GL + ME (3)

According to the overall reaction stoichiometry, three methanol molecules are nec-
essary for the complete conversion of a TG molecule to obtain three ME molecules and
GL. Some kinetic studies take into account the overall conversion as a single reaction, the
so-called Shunt reaction [2,25].

When alkaline hydroxides are used as catalysts, it is necessary to consider the saponi-
fication reactions that lead to the irreversible formation of soaps and then to the decrease
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of the catalyst concentration, which is obviously undesirable. Saponification reactions can
involve free fatty acids (FFAs) and acylglycerols as represented by Equations (4)–(7).

FAA + NaOH
ksap−→ RCOONa + H2O (4)

TG + NaOH
ksap−→ RCOONa + DG (5)

DG + NaOH
ksap−→ RCOONa + MG (6)

MG + NaOH
ksap−→ RCOONa + GL (7)

It can be seen that the methanolysis of triglycerides constitutes a complex reaction
system in which various chemical reactions can take place simultaneously. In addition, two
immiscible liquid phases coexist that will contain different concentrations of the several
chemical species involved in the process according to their affinity towards the oil and the
alcohol. The distribution of several compounds, including the catalyst, among the phases
was investigated by Zhou and Boocock [26]. Chiu et al. [27] used a MeOH distribution
coefficient, defined as the ratio of the mass fraction in each phase. The distribution of
the components among the phases in mixtures of biodiesel, glycerol, methanol and water
has been also reported [28]. All of these studies were concerned with the reactants and
final products. As for the intermediate products, Devender et al. stated that presence of
monoglycerides greatly affected the compounds partitions [29].

3.2. Kinetic Models Formulation

Two kinetic models have been developed. The simplest one is the pseudo-homogeneous
model, so named because no distinction among phases is made. In this case, it is con-
sidered that the reactions take place in the entire reactor volume, which behaves like a
homogeneous system. Other models can be elaborated with similar complexity level by
considering that the transesterification reactions occur exclusively in one of the liquid
phases (lipidic or alcoholic).

A more realistic approach is to consider that the reactions take place at the liquid–
liquid interface. However, this requires knowing the interfacial area, which is directly
related to the droplet size distribution of the dispersed phase, that is, the alcoholic one.
However, the drops size depends on the mixing conditions and undergoes variations
throughout the reaction that cannot been easily measured. To overcome this difficulty
retaining the heterogeneous character of the reacting system, an alternative model is
proposed in this work considering that the overall reaction is the result of the contributions
from each individual phase. It has been assumed that the interfacial mass transfer is not a
limiting factor provided that an efficient mixing system is used. In addition, it has been
considered that the distribution of the several compounds between the two phases is fast
enough as to reach partitioning equilibrium, so that the concentrations can be related
through the corresponding partition coefficients.

In this work, the partition coefficient of each individual compound (K(i)) involved in
the reaction is defined as the ratio between the mass fractions in the lipidic (wLip(i)) and
alcoholic (wOl(i)) phases, so being mj(i) the mass of species i the phase j:

K(i) =
wLip(i)
wOl(i)

=
mLip(i)/∑ mLip(i)

mOl(i)/∑ mOl(i)
(8)

These coefficients, like the kinetic constants, depend on the temperature and should
be determined at the prevailing reaction conditions.

The general expression for the mass balance of each individual species i can be written
as follows:

dNi

dt
=

2

∑
j=1
νik·Rik·Vj (9)
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In this equation, Ni stands for the number of moles of species i; νik and Rik denote
the stoichiometric coefficient and reaction rate, respectively, of species i in reaction k. A
term adopts negative values when i is a reactant and positive values when i is a reaction
product. Vj stands for the total reaction volume of the pseudo-homogeneous model, and
the specific volume of each phase (j = 1 for the alcoholic phase and j = 2 for the lipid phase)
in the heterogeneous model, which has been calculated following Equation (10):

Vj = ∑
i

mj(i)
ρi

(10)

Accordingly, the individual balances written in terms of the molar concentrations of
each species [i] are as follows:

dTG/dt =
2
∑

j=1

(
−k1·

(
[TG]j·[MeOH]j − 1

KC1
·[DG]j·[ME]j

)
·[NaOH]j·Vj − ksap·[TG]j

·[NaOH]j·Vj·δsap

) (11)

dDG/dt =
2
∑

j=1
(k1·

(
[TG]j·[MeOH]j − 1

KC1
·[DG]j·[ME]j

)
·[NaOH]j·Vj − k2

·
(
[DG]j·[MeOH]j − 1

KC2
·[MG]j·[ME]j

)
·[NaOH]j·Vj + ksap

·([TG]j − [DG]j)·[NaOH]j·Vj·δsap

) (12)

dMG/dt =
2
∑

j=1
(k2·

(
[DG]j·[MeOH]j − 1

KC2
·[MG]j·[ME]j

)
·[NaOH]j·Vj − k3

·
(
[MG]j·[MeOH]j − 1

KC3
·[GL]j·[ME]j

)
·[NaOH]j·Vj + ksap

·([DG]j − [MG]j)·[NaOH]j·Vj·δsap

) (13)

dME/dt =
2
∑

j=1

(
k1·

(
[TG]j·[MeOH]j − 1

KC1
·[DG]j·[ME]j

)
·[NaOH]j·Vj + k2

·
(
[DG]j·[MeOH]j − 1

KC2
·[MG]j·[ME]j

)
·[NaOH]j·Vj + k3

·
(
[MG]j·[MeOH]j − 1

KC3
·[GL]j·[ME]j

)
·[NaOH]j·Vj

) (14)

dGL/dt =
2
∑

j=1

(
k3·

(
[MG]j·[MeOH]j − 1

KC3
·[GL]j·[ME]j

)
·[NaOH]j·Vj + ksap·[MG]j

·[NaOH]j·Vj·δsap

) (15)

dMeOH/dt =
2
∑

j=1
(−k1·

(
[TG]j·[MeOH]j − 1

KC1
·[DG]j·[ME]j

)
·[NaOH]j·Vj − k2

·
(
[DG]j·[MeOH]j − 1

KC2
·[MG]j·[ME]j

)
·[NaOH]j·Vj − k3

·
(
[MG]j·[MeOH]j − 1

KC3
·[GL]j·[ME]j

)
·[NaOH]j·Vj

) (16)

dNaOH/dt =
2

∑
j=1

(
−ksap·([TG]j + [DG]j + [MG]j)·[NaOH]j·Vj

)
·δsap (17)

Operator δsap allows considering (δsap = 1) or not (δsap = 0) the saponification reactions.
In this work, refined sunflower oil of very low acidity (0.07 mg KOH/g) has been

used; it is assumed that FFA neutralization takes place instantaneously. In order to reduce
the number of adjustable parameters, the same kinetic constant (ksap) is applied to all
saponification reactions, among which, TG saponification obviously stands out due to
predominance of that reactant. Equilibrium constants (KC1, KC2, KC3) were taken from the
literature [4], and the partition coefficients (K(i)) have been considered constant throughout
the reaction.
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3.3. Kinetic Parameters Estimation

To integrate Equations (11)–(17), it is necessary to calculate the concentration of
species i in both phases. Thus, the following iterative method has been implemented [30]:
suppose the mass of the lipidic (mLip,s) and alcoholic (mOl,s) phases are known; then,
Equations (18) and (19) can be solved for each species i. Furthermore, Equations (20) and (21)
provide new values for each phase masses, and the condition given by Equation (22) is
applied, giving rise to a new iteration or the converged solution of the problem.

mLip(i) =
m (i)

1 + mOl,s
mLip,s·K(i)

(18)

mOl(i) = m(i)−mLip(i) (19)

mLip = ∑
i

mLip(i) (20)

mOl = ∑
i

mOl(i) (21)

if
∣∣∣∣mOl,s −mOl

mOl,s

∣∣∣∣ or
∣∣∣∣mOl,s −mOl

mOl,s

∣∣∣∣ > ε then mOl,s = mOl ; mLip,s = mLip (22)

Integration of Equations (11)–(17) was carried out using Compaq Visual Fortran V6.6
that includes the IMSL subroutines library (IMSL Fortran 90 MP Library). The ordinary
differential equations were solved using the DIVPRK subroutine that applies the 5th and
6th orders adaptive Runge-Kutta-Verner method. This allowed obtaining the number of
moles of each compound at a given reaction time (Ni) and, given the initial number of
moles of oil (NTG0), calculating the oil conversion (XTG, Equation (23)) and the yields of
biodiesel (YBD, Equation (24)), diglycerides, monoglycerides and glycerol (YDG, YMG, and
YGL, respectively, Equation (25)):

XTG =
NTG0 −NTG

NTG0
(23)

YBD =
NBD

3·NTG0
(24)

Yi =
Ni

Ni0
; (i = DG, MG, GL) (25)

Kinetic parameters estimation was carried out using a complex method of direct
search furnished by the DBCPOL optimization subroutine (IMSL Fortran 90 MP Library).
An objective function given by the sum of the differences between the experimental values
of the oil conversion and products yields and the values predicted by the model was
established as follows:

F = ∑
i=1, NR

∑
j=1, N

∑
k=1, NV

1
N
·
(
Vmod(i, j, k)−Vexp(i, j, k)

)2

Vexp(i, j, k)2 ·wk (26)

where Vexp(i, j, k) and Vmod(i, j, k) are the values of the k different variables obtained
experimentally and throughout the model, respectively, at each sampling point (j) for a
given reaction (i). NR stands for the number of experimental runs performed, NV for the
number of variables, and N for the number of experimental data for each run. Finally, wk is
a weighting factor for each variable introduced to balance its contribution to the total error.

The mass balance equations can be rewritten as functions of the oil conversion instead
of the reaction time applying the following relationships [16]:

dNi

dX
=

dNi/dt

dX/dt
(27)
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dX
dt

= − 1
TG0
·dTG

dt
(28)

Therefore, it is possible to estimate the ratios k2/k1 and k3/k1, which are used to
estimate the kinetic constant k1 and the saponification constant, ksap.

4. Results and Discussion
4.1. Relevance of the Heterogeneous Character of the Reaction System

As mentioned before, the reacting medium is a biphasic liquid–liquid system. This
feature has obvious consequences as concerns the reaction rate because of the possible
influence of mass transport limitations. Once the reaction starts, methanol and TG contents
of the alcoholic and lipidic phases begin to decrease whereas those of ME and GL increase.
These are the main components of the system which have different mutual affinities. In this
study was observed that whereas the ME-MeOH, ME-TG and MeOH-GL binary mixtures
are completely miscible, the GL-ME and GL-TG ones are virtually immiscible. At the
reaction start, the alcoholic and the lipidic phases do not contain a single reactant because
methanol and sunflower oil are not fully immiscible. It has been determined that mixtures
of methanol and the oil generate an alcoholic phase containing 2.8 wt.% oil and a lipidic
phase containing 5.9 wt.% of methanol at room temperature.

Previous studies [29,31] have focused on the behavior of GL-MeOH-ME ternary
mixtures because they contain the most abundant compounds at very high oil conversions.
This mixture is of interest as concerns the separation processes required to isolate and
purify biodiesel. However, during the course of the reaction, it is also interesting to know
the behavior of mixtures containing oil (TG). In this regard, Figure 1 shows the equilibrium
diagram with the solubility curve of the ternary TG-ME-MeOH system.

Energies 2021, 14, x FOR PEER REVIEW 8 of 17 
 

 

purify biodiesel. However, during the course of the reaction, it is also interesting to know 
the behavior of mixtures containing oil (TG). In this regard, Figure 1 shows the equilib-
rium diagram with the solubility curve of the ternary TG-ME-MeOH system. 

MeOH0 10 20 30 40 50 60 70 80 90 100

ME

0

10

20

30

40

50

60

70

80

90

100

OIL

0

10

20

30

40

50

60

70

80

90

100

Xoil XME

XMeOH

 
Figure 1. Solubility curve of the TG(oil)-ME-MeOH ternary system at room temperature. Com-
pounds’ compositions correspond to the respective mass fractions. 

It can be seen that any mixture composition located under the curve will give rise to 
two phases. In contrast, compositions above the curve lead to a single phase, which cor-
responds to mixtures very rich in biodiesel. Interestingly, this means that biodiesel can be 
regarded as a co-solvent of the methanolysis reactants. The curve is closer to the axis on 
the MeOH side; this is because the solubility of the oil in methanol is much lower than 
that of the alcohol in the oil. 

Besides the main components mentioned before, reaction intermediates such as 
monoglycerides and diglycerides should be taken also into account as they can reach at 
intermediate oil conversion levels non-negligible contents of c.a. 10 wt.%. Figure 2 shows 
the experimental results for the phases’ composition evolution with TG conversion. 

Figure 1. Solubility curve of the TG(oil)-ME-MeOH ternary system at room temperature. Compounds’
compositions correspond to the respective mass fractions.

It can be seen that any mixture composition located under the curve will give rise
to two phases. In contrast, compositions above the curve lead to a single phase, which
corresponds to mixtures very rich in biodiesel. Interestingly, this means that biodiesel can
be regarded as a co-solvent of the methanolysis reactants. The curve is closer to the axis on
the MeOH side; this is because the solubility of the oil in methanol is much lower than that
of the alcohol in the oil.
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Besides the main components mentioned before, reaction intermediates such as mono-
glycerides and diglycerides should be taken also into account as they can reach at inter-
mediate oil conversion levels non-negligible contents of c.a. 10 wt.%. Figure 2 shows the
experimental results for the phases’ composition evolution with TG conversion.

Figure 2. Evolution of the alcoholic and lipidic phases’ composition with the oil (TG) conversion
during a methanolysis reaction conducted at 323 K with a methanol/oil molar ratio of 12:1 and
0.1 wt.% NaOH (referred to the initial oil mass).

For an oil conversion of 0.5, TG content in the lipidic phase is about 30 wt.% whereas
those of ME and MeOH reach c.a. 50 wt.% and roughly 10 wt.%, respectively (Figure 2).
Among the intermediate acylglycerols, DG predominate over MG, as expected for a reaction
in series at intermediate conversions of the main reactant. Glycerol content of the lipidic
phase is extremely low, though it reaches about 2 wt.% at very high TG conversions. As
for the alcoholic phase, clearly MeOH is the most abundant compound throughout the
reaction due to the very high methanol excess used compared to the stoichiometric value
(MeOH/oil ratio of 3). Glycerol content is of course relevant (about 16 wt.% at 0.5 oil
conversion) and that of ME reaches c.a. 6 wt.%. It can be concluded that the lipidic phase
is much more affected than the alcoholic one by the presence of reaction products. As
a matter of fact, the presence of triglycerides and acylglycerols in the alcoholic phase is
almost negligible.

Partition coefficients were obtained experimentally from the analysis of samples
with different oil conversion levels corresponding to methanolysis reactions conducted at
323 K and methanol/oil molar ratios between 6 and 12. These coefficients were estimated
from the analysis of reaction samples because it is necessary to take into account the
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presence of intermediate products (diglycerides, and specially monoglycerides), which
have emulsifying properties and can affect the distribution of products. Results are shown
in Figure 3a,b for the main and minority compounds, respectively. According to the
definition given by Equation (8), the partition coefficients of the main components in the
lipidic phase have values higher than one, whereas the most abundant in the alcoholic
phase have values within the 0–1 range. It was found that the oil conversion level does
not affect the partition coefficient values for most compounds. For TG, DG and MG, the
following mean values have been adopted: 92, 13.5 and 0.67, respectively. It is apparent
that the values decrease as the polarity and affinity towards the alcohol increase.
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It should be noted that at the beginning of the reactions (very low oil conversions),
the experimental error is higher due to the low concentration of the products. ME par-
tition coefficient is slightly affected by the excess of methanol in the reaction mixture.
A linear relationship can be established between the partition coefficient and the molar
methanol/oil ratio; as the MeOH in excess increases, the biodiesel partition coefficient
decreases. It is noteworthy the very low values of the mass partition coefficients for MeOH
and specially GL, whereas for MG it is close to 1, meaning that monoglycerides show
similar affinities for both phases. This is the reason by which monoglycerides are capable
of stabilizing the emulsion and are undesired in the final mixture as they complicate the
separation of the lipidic and alcoholic phases. In this work, the catalyst is previously
dissolved in the methanol, so it will be supposed that both MeOH and NaOH have the
same partition coefficient.

The change of composition of the liquid phases during the reaction is also evidenced
by significant changes in some of their physico-chemical properties. It has been found
that both phases experience changes in their viscosity. In this regard, the presence of
minority components such as diglycerides and monoglycerides can have a significant
influence on the liquid phases’ viscosity. Furthermore, there are evident changes in the
density. As for the reactants, the oil is significantly heavier (0.902 g/mL at 323 K) than
methanol (0.764 g/mL at 323 K). As the methanolysis reaction progresses, the lipidic phase
composition evolves increasing the biodiesel content at the expense of oil, which results
in a decrease of the density due to the lower density of biodiesel (0.863 g/mL at 323 K)
compared to that of the oil. At the same time, the alcoholic phase becomes heavier because
methanol is being replaced by glycerol which has a much higher density (1.244 g/mL
at 323 K). Consequently, an oil conversion exists at which the alcoholic phase becomes
heavier than the lipidic one. Changes in viscosity and density can affect relevant emulsion
properties such as the interfacial surface area. Previous works on immiscible liquids
behavior [32] demonstrated that inversion between the dispersed and continuous phases
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can take place aided by enough mixing time and the presence of suitable surfactants. The
general trend is that the higher is the continuous phase volume, the longer the time required
to attain the inversion. As for the system of interest in this study, the oil conversion at
which the alcoholic phase becomes the heaviest one depends on the initial methanol/oil
molar ratio. When the ratio was 6:1, the change was observed a few minutes after the
reaction has started. On the other hand, when the reaction is carried out with a larger
excess of methanol, the change requires longer reaction times. It can be expected that such
changes in the liquid phases’ properties will have an important impact on the emulsion
behavior. Diglycerides and monoglycerides seem to play a relevant role due to their
surfactant properties [33], as well as the mixing conditions. The nature of the dispersed
and that of the continuous phases depend in a complex way on the initial composition of
the system and the operating conditions [32].

4.2. Kinetic Models Performance

Previous pseudo-homogeneous [4,34] or hybrid approaches [7] considered only a
single methanol/oil ratio of 6:1. These models failed in describing the evolution of the
reaction system upon changing that ratio. Vicente et al. [34] considered that the conversion
of monoglycerides into glycerol is an irreversible reaction. In our case, the kinetic constant,
though low, is not so small as to neglect the reverse step.

The best fits for k1 were 0.014 L2/(mol2·s) for the pseudo-homogeneous model and
0.19 L2/(mol2·s) for the heterogeneous model. In both cases, wide ranges of methanol/oil
molar ratios (6:1 to 24:1) and NaOH concentrations (0.005 to 0.5 wt.%) were considered. It
should be noted that, according, to the pseudo-homogeneous model, the concentrations
of the several compounds become diluted because the whole volume of the liquid system
is accessible to reactants and products. In contrast, as for the heterogeneous model, the
concentration of methanol in the lipidic phase and that of oil in the alcoholic phase are
very low due to poor mutual solubility. These distinct features of the models can explain
the large difference (almost an order of magnitude) between the values of the kinetic
constants. The same happens to ksap, whose values are 0.00027 and 0.0028 L/(mol·s) for
the pseudo-homogeneous and the heterogeneous models, respectively.

Figure 4 shows the results of the reactions carried out at 323 K, with 0.2 wt.% of NaOH
and methanol/oil molar ratios of 6:1, 9:1, 12:1, and 24:1. The Figure also includes the best
fittings of the pseudo-homogeneous and heterogeneous kinetic models to the experimental
results. The pseudo-homogeneous model (Figure 4a) overestimates the oil conversions for
the highest methanol/oil ratios. Even for the lowest methanol/oil ratio, the model does not
capture the evolution of the system at short reaction times. In contrast, the heterogeneous
model (Figure 4b) provides a better description of the system evolution. Particularly, the
model adapts well to the range of oil conversions achieved with each methanol/oil ratio
for long reaction times.

In previous works, the pseudo-homogeneous model has been applied to cases in which
the initial methanol/oil ratio remained constant. For the sake of comparison, in this study,
parameters estimation was also been carried for each methanol/oil molar ratio separately.
The results show a clear trend towards lower k1 values as the excess of methanol increased,
i.e., k1 was 0.030, 0.013, 0.008 and 0.006 L2/(mol2·s) for initial methanol/oil molar ratios of
6, 9, 12 and 24:1, respectively. When all the results are considered, a somewhat intermediate
value of 0.014 L2/(mol2·s) is obtained, as indicated before. The same effect is observed on
the saponification kinetic constant. As far as only one set of results corresponding to the
same methanol/oi ratio is considered, the quality of the individual fit improves notably,
but the model loses general validity and prediction capability.
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From the foregoing discussion, it can be concluded that the pseudo-homogeneous
model is only capable of describing the methanolysis of triglycerides if a set of specific
kinetic parameters is used for each methanol/oil molar ratio. This model is not capable of
capturing the effects associated to the use of different methanol/oil ratios. The proportion
between these two immiscible reactants is a key parameter arising from the heterogeneous
character of the methanolysis reacting system, so a heterogeneous model is required to
describe it. In this regard, the heterogeneous model provides the following ratios between
the kinetic constants at 323 K: k2/k1 = 0.979 and k3/k1 = 0.12. It is clear that the second
and specially the third transesterification steps are slower than the first one.

Figure 5 shows the evolution of the contents of the several components of the reaction
mixture with reaction time at 323 K with 0.2 wt.% NaOH and methanol/oil molar ratios of
6:1 (Figure 5a) and 12:1 (Figure 5b). It can be seen that the heterogeneous model fits well the
results for the most abundant compounds, triglycerides, methyl esters and glycerol under
different conditions of methanol excess. It also captures the maxima that characterize the
evolution with reaction time of the diglycerides and monoglycerides contents.
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The combined effects of the methanol/oil molar ratio and the oil conversion on the
evolution of the intermediate compounds contents according to the heterogeneous kinetic
model are shown in Figure 6. The two maxima are clearly seen. Both become more
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pronounced as the methanol/oil ratio decreases, i.e., values between 9:1 and 4:1, likely due
to the slowing down of the second and third methanolysis steps. The yields are almost
insensitive to the methanol excess for methanol/oil ratios above 12:1.
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Another advantage of the heterogeneous kinetic model is the possibility of predicting
the evolution of the composition of each phase. Figure 7 shows the results corresponding
to the methanol and biodiesel contents in the lipidic and alcoholic phases for reactions
performed at 323 K with 0.1 wt.% NaOH and different initial methanol/oil molar ratios.
It can be seen that the model describes very well the biodiesel content. It is remarkable
the good description provided of the very low contents of methanol in the lipidic phase
and that of biodiesel in the alcoholic one. It is observed that the methanol/oil ratio has
little effect on the biodiesel content of the lipidic phase. The non-negligible solubility of
methanol in the lipidic phase, particularly if biodiesel is present, impedes to reach methyl
esters contents closer to 100 %. Obviously, the fact that the reactions are reversible and
the presence of intermediate transesterification products also contribute to the maximum
biodiesel content in the lipidic phase. In this case, it should be taken into account also that
the catalyst content is very low, which makes difficult reaching higher biodiesel contents
due to the negative influence of the saponification reactions.

As for the decrease of the methanol content in the alcoholic phase, the model captures
well the trend associated to the effect of the methanol/oil ratio although there is an im-
portant scatter of the experimental results that affects the fitting quality. The experimental
values of methanol content in the lipidic phase and that of biodiesel content in the alcoholic
phase are very similar for methanol/oil ratios between 6:1 and 12:1. This result supports the
assumption made that the partition coefficients are independent of the methanol/oil ratio.

Figure 8 shows the experimental and kinetic modelling results corresponding to
the effect of the initial catalyst concentration. As can be seen, the pseudo-homogeneous
model overestimates the oil conversion, especially at low catalyst contents. Therefore, just
considering the saponification reactions is not sufficient to obtain a good description of the
reacting system evolution. The heterogeneous kinetic model, on the other hand, fits well the
results obtained at catalyst concentrations above 0.1 wt.% NaOH; however, for the lowest
catalyst concentration, the discrepancies remain important. Clearly, the model provides
results as if the catalyst concentration was higher than expected. In this regard, one of our
assumptions was to assign the same kinetic constant to all the saponification reactions in
order to reduce the number of parameters. However, it seems that this simplification has
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to be reconsidered. In addition, catalyst deactivation can be also an issue, as previously
noted [35].
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5. Conclusions

In this work, triglyceride methanolysis with a homogeneous catalyst has been studied
experimentally and by means of kinetic modelling. Two levels of detail have been consid-
ered in the description of the reaction medium nature as concerns its biphasic character.

The complex behavior of the reaction system has obvious consequences as regards
the methanolysis kinetics. For this reason, a pseudo-homogeneous model is not able to
describe adequately the process, since it disregards the biphasic character of the reaction
medium. This simple model, however, can be of some utility if the initial methanol/oil
molar ratio is not changed. However, this parameter is of high practical importance due to
the reversible nature of the three steps involved in the methanolysis process. Conversely, a
heterogeneous model is capable of capturing the effects of the main reaction parameters
on the oil conversion and the composition of the phases because it considers the presence
of the two liquid phases, the distribution of the several compounds between them, and
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saponification reactions. Good results have been obtained for the main and minority com-
ponents. The quality of the fittings is lower at the lowest catalyst concentrations considered.
Further adjustment is required, for example, considering different saponification kinetic
constants and catalyst deactivation phenomena.
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