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Abstract: This paper investigates the ability of insulation cellulose fiber powder (CFP) to be pelletized
for its valorization as biomass fuel. CFP is a waste originating from insulation cellulose manufacturing
that lacks any method of valorization because of its boron salts content. A sugar byproduct and
lignosulfonate (LS) were considered as binders for the pellet manufacturing process. Physical tests
were carried out to characterize the pellets’ performance. Chemical and combustion tests were
considered to state the pellets’ potential as a green energy source. Raw CFP showed good ability in its
pelletization and durability in the range of 15–30% of moisture content. The pellet’s density decreased
as water content increased. Binders increased the pellet’s length before and after the durability test.
Binders also increased the CFP pellet’s water absorption, demonstrating a potential decrease in
durability against environmental factors. Binders also decreased the lower heating value. Ultimate
analysis showed a slight Nitrogen increase in both binder combinations that could potentially raise
the pollutant NOx combustion emissions. All the combinations showed adequate combustion
characteristics, but binders increased ash production. Additives decreased the CFP volatile matter
content and increased the fixed carbon, which could facilitate a more stable combustion. DTA curves
showed a mass loss rate decrease in the volatile stage for the binder combinations, which also could
be considered as an indicator of a more stable combustion. The ashes’ chemical compositions when
analyzed by XPS showed boron contents oscillating between 10.03% and 16.42%, demonstrating the
possibility of recovering them from the combustion ashes.

Keywords: cellulose fiber powder; biomass fuel; pelletization; sugar; lignosulfonate

1. Introduction

Cellulose fiber (CF) is a popular material for the insulation of the external envelope of
buildings. This is due to its favorable thermal and acoustic properties, low manufacturing
cost and easy installation by blowing it in closed wall cavities or attics. CF is a natural,
renewable and recyclable material with low embodied energy and carbon dioxide footprint.
Moreover, it is a non-toxic resource and, thanks to its high hygrothermal conductivity, it
can help control the building’s indoor air humidity [1–6]. CF is usually manufactured from
recycled newspaper which is clawn in a fiberizer machine to separate the fibers. Because
of the combustible and organic nature of this material, the addition of substances, usually
boron salts known as borax, is required to increase its fire resistance and to avoid cellulose
vermin and rotting. During manufacturing, once CF and borax are mixed, a separator
removes the shorter fibers which are not adequate for applying as an insulator. As a result,
a fine cellulose fiber powder (CFP) is generated, remaining as a useless waste because
of its boron salts content. Based on actual circular economy thinking, CFP would not be
considered a waste but a valuable resource to take advantage of, saving resources and
avoiding its disposal in landfills.
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The manufacture of non-conventional fuel alternatives to fossil fuels is an application
with sizeable economic and environmental benefits that would contribute to the valoriza-
tion of this waste [7,8]. Many published studies have demonstrated the ability of the manu-
facturing of non-conventional fuels for the valorization of different kinds of waste. Among
these, different kinds of biomass stand out, like agricultural crop residues [9–12], agroindus-
trial residues [13–15], forest biomass [16] and wood processing industry residues [17,18].
Other wastes benefit from this advantageous method of valorization, such as sewage
sludge [19–21] or waste paper [22]. CFP could become a green energy source based on its
close composition to wastepaper. Table 1 shows the heating value ranges of different wastes
used for the manufacturing of solid fuels, as well as the EN 14961-2 and EN ISO 17225-6
Standard heating requirements for woody and non-woody solid biofuels, respectively.

Table 1. Heating values of different wastes’ constituents of non-conventional fuels and EN 14961-2
and EN ISO 17225-6 Standard heating requirements.

Waste Kind Higher Heating
Value (MJ/kg) Source Lower Heating

Value (MJ/kg) Source

Agricultural crop residues 14.64–18.38 [19]

Forest biomass 13.06–20.82 [23,24] 16.06–18.01 [11,16]

Wood processing industry residues 15.86 [22]

Other wastes 15.59–19.67 [22,25]

EN 14961-2 16.50–19.00

EN ISO 17225-6 >14.50

Cellulose, the main constituent of CFP, has a lower heating value (LHV) of 14.570 MJ/kg,
which suggests this waste’s potential for valorization as a solid, non-woody biomass
fuel for green energy production [26]. Before use, CFP requires a densification process
because of its low density and powdery nature. Once densified, CFP could become a
commodity able to be managed by the nowadays common solid biomass fuel handling,
transportation, storage, feeding and combustion systems. Pelletization is the most usual
biomass densification technology, Ref [27–30]. During this process, solid particles, with
or without binders, are bonded to each other by attracting forces, diffusion of molecules
or ingredient crystallization. In this way, a hardened commodity with higher density,
improved durability and improved combustion properties is produced [11,19,22,23,31–36].
Although there are many works that demonstrate the suitability of different lignocellulosic
materials for solid biomass fuels manufacturing [12,37–41], there is a lack of knowledge
about the potential of CFP with boron salts as an energy source. Therefore, the aim of
the present study is to investigate the suitability of CFP for the manufacturing of a solid
biomass fuel by means of the characterization of the key points of solid fuels: (1) physical
properties and durability, (2) heating value and combustion characteristics and (3) ashes’
production and potential emissions. The following parameters were analyzed: the ability
of the CFP to be pelletized, the effect of binders on the pellet’s physical characteristics and
durability, the energy recovered from its combustion, its combustion properties and the
ash production. The ash was chemically characterized to determine its boron content. This
way, the energetic valorization of the CFP would allow not only for the production of green
energy but also for the recovery of boron.

2. Materials and Methods

For the laboratory investigation, a sample of 250 kg of CFP was collected in the
AISLANAT cellulose fiber manufacturing factory in Pamplona (Spain). The sample was
homogenized in the laboratory before its physical characterization. The CFP sample’s bulk
density was 0.091 g/cm3 and its moisture content reached 1%. For the pellet manufacturing,
two binders were considered: lignosulphonate and sugar dust. Lignosulphonate is a
commercial additive extracted from carob pop which contains calcium sulphate. It is
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usually added in the pelletization process of materials with low or no content of natural
lignin, for example, in animal feed production. Sugar dust is a byproduct obtained in the
sugar manufacturing process by accumulation of saccharose particles on factory surfaces.

Different combinations of moisture and additive contents were considered for the pel-
lets’ production. Sample manufacturing was carried out as follows: for each combination,
2 kg of CFP were prepared. When the combination contained any additives, constituents
were carefully dry mixed in a laboratory mixer for 20 min. After that, the water required to
reach the considered moisture content was slowly sprayed and mixed for 5 additional min-
utes. To guarantee the homogeneity of the moisture in the samples, they were maintained
in closed containers for 24 h after mixing. Pelleting was carried out in a 4 kW electric pellet
mill (PLT100, ECOFRICALIA, Las Pedroñeras, Spain) equipped with two rotating rollers
and a steel die ring of 22 mm thickness with 4 mm diameter holes. Prior to manufacturing,
the pellets the machine was kept working for 10 min to guarantee the die ring had reached
the working temperature. Each mixture was carefully introduced in the machine by its
upper hopper. When the material gets inside, pelletizer rotating rollers push it down and
compress it in the die ring through the orifices. The resulting pellets come out below the
die ring; breaking by themselves, they are collected in an inside chamber and removed
from a lower orifice. The first 500 g of pellets of each combination were rejected to avoid
any possible contamination by the remains of previous combinations. After manufacturing,
pellets were kept in laboratory conditions for 12 h for cooling and drying before testing.
Table 2 shows the combinations of CFP, additives and moisture contents considered for the
laboratory investigation. Figure 1 shows CFP pellets manufactured without binders with
10% and 40% moisture content.

Table 2. Laboratory investigation combinations.

Number Code Additive Additive
Percentage (%) Water Added (%)

1 C-0-5W - - 5

2 C-0-10W - - 10

3 C-0-15W - - 15

4 C-0-20W - - 20

5 C-0-30W - - 30

6 C-0-40W - - 40

7 C-1S-5W Sugar 1 5

8 C-1S-10W Sugar 1 10

9 C-1S-15W Sugar 1 15

10 C-1S-20W Sugar 1 20

11 C-1S-30W Sugar 1 30

12 C-1S-40W Sugar 1 40

13 C-2S-5W Sugar 2 5

14 C-2S-10W Sugar 2 10

15 C-2S-15W Sugar 2 15

16 C-2S-20W Sugar 2 20

17 C-2S-30W Sugar 2 30

18 C-2S-40W Sugar 2 40

19 C-1L-5W Lignosulphonate 1 5

20 C-1L-10W Lignosulphonate 1 10
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Table 2. Cont.

Number Code Additive Additive
Percentage (%) Water Added (%)

21 C-1L-15W Lignosulphonate 1 15

22 C-1L-20W Lignosulphonate 1 20

23 C-1L-30W Lignosulphonate 1 30

24 C-1L-40W Lignosulphonate 1 40

25 C-2L-5W Lignosulphonate 2 5

26 C-2L-10W Lignosulphonate 2 10

27 C-2L-15W Lignosulphonate 2 15

28 C-2L-20W Lignosulphonate 2 20

29 C-2L-30W Lignosulphonate 2 30

30 C-2L-40W Lignosulphonate 2 40
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Figure 1. Pellets manufactured, (a) moisture content 10% and (b) moisture content 40%.

The convenience of pellets as solid biomass fuel was defined by two main charac-
teristics: the first was the ability of the CFP to produce a densified material suitable as a
commodity product. The second consisted of the pellets’ chemical analysis, combustion
properties evaluation and ash characterization. Manufacturing performance was defined
as the material ability to produce pellets with a low content of small particles. It was
defined as the percentage of mass of the processed sample that was retained by the 4 mm
sieve. A pellet’s bulk density was considered representative of the energy per volume
unit, in accordance with the European Standard EN ISO 17828. Mechanical durability
was characterized by means of an abrasion and knocking test adapted from the European
Standard EN ISO 17831-1. This test consisted of maintaining 500 g of sample under rotation
in a 600 mm diameter drum, 30 degrees tilted for 20 min. After that, mechanical durability
was defined by means of two parameters: the first one was the pellets’ loss of mass by
sieving the sample with the 4 mm sieve. The second mechanical durability parameter was
the reduction of a pellet’s length. To analyze this parameter, 100 pellets of each combination
were randomly chosen, measuring their length before and after testing with an 0.01 mm
electronic caliper. Water absorption was considered an estimator of the durability against
the environmental conditions. This test was carried out in a wet chamber at 20 ◦C and 100%
of relative humidity over 4 h. A sample of 500 g of each combination was weighted at differ-
ent testing times in a 0.01 g laboratory balance to measure the weight increases, expressed
as a percentage of the initial sample mass. From a chemical point of view, ultimate and
proximate analyses were considered. The element compositions of the raw materials were
analyzed by means of a Thermo Finnigan FlashEA 1112 analyzer. Tests were conducted



Appl. Sci. 2021, 11, 8223 5 of 14

in a helium atmosphere at 900 ◦C with oxygen injection and chromatographic columns
gases separation Proximate analyses were carried out in a METTLER-TOLEDO TG-DSC2
system. Tests were conducted with 10 mg of sample under an air flux of 100 mL/min and
a heating rate of 10 ◦C/min. A N2 atmosphere was used, raising the room temperature to
600 ◦C and a N2:O2 (4:1) atmosphere from 600 ◦C to 900 ◦C. Combustion tests were carried
out using the same equipment and the same conditions, but with the room temperature
at 900 ◦C with a N2:O2 (4:1) oxidizing atmosphere. Lower heating values (LHV) were
determined using an IKA C5003 calorimeter. Finally, samples of the different combinations
considered were calcined in a laboratory oven at 550 ◦C, according to EN ISO 18122, and
ashes were analyzed by X-ray photoelectron spectroscopy (XPS) in a K-alpha Thermo
Scientific instrument to identify and quantify their chemical composition.

3. Results and Discussion
3.1. Manufacturing Performance

Figure 2 shows the pellet manufacturing performance of the tested combinations.
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Figure 2. Pelletization performance.

All the combinations reached their lower manufacturing performance results at 5%
of moisture content. Thus, C-0-5W, C-1S-5W, C-2S-5W, C-1L-5W and C-2L-5W combi-
nations obtained a performance of 90.0%, 97.3%, 96.0%, 84.6% and 97.6%, respectively.
For this water content, sugar improved the raw CFP results for both dosages. On the
other hand, LS showed an opposite effect for the same water content, depending on its
dosage. At 1%, LS decreased the value achieved by CFP to 84.6%; meanwhile, at 2% of
the dosage, performance increased to 97.6%. For all the mixes, the manufacturing perfor-
mance increased as the water content did, reaching their maximum values in the range
of 15–20% of moisture content. Above these water contents, no differences based on the
additive kind or dosage were observed. Thus, C-0-20W, C-1S-20W, C-2S-20W, C-1L-15W
and C-2L-20W combinations obtained performances of 99.8%, 99.7%, 99.5%, 99.6% and
99.5%, respectively. For higher water contents, performances remained steady or decreased
slightly. This demonstrated that CFP pelleting performance could be increased at the
lowest moisture content by means of both sugar dosages as well as 2% of lignosulphonate.
For higher moisture contents, the use of binders does not significantly increase the CFP
pelletizing performance.
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3.2. Pellet Bulk Density

Figure 3 shows the pellets’ bulk dry densities reached by the mixes tested related to
their water content.
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Figure 3. Bulk dry densities.

Moisture content showed an indirect relationship with the pellets’ bulk dry densities
due to the lack of compressibility of water absorbed by cellulose fibers, which does not
allow the CFP proper compression during the pelletizer process or evaporation after
manufacturing. The samples’ densities oscillated between 766.20 kg/m3 and 464.20 kg/m3

for the C-2L-5W and C-0-40W combinations, respectively. No relationship was observed
between a pellet’s bulk density and the use or absence of additives, their dosage or the
additive kind. The ISO 17225-6 Standard states a minimum bulk density for the non-woody
pellets of 600 kg/m3 that is only achieved by samples being manufactured with a moisture
content lower than 20%.

3.3. Mechanical Durability

As stated previously, pellets’ mechanical durabilities were characterized by the
loss of mass by sieving after the abrasion and knocking test and the decrease in their
length. Figure 4 shows the pellets’ loss of mass after testing as a percentage of the initial
samples’ masses.

Mixes with 5% of moisture content showed the highest losses of mass in this test. Thus,
C-0-5W, C-1S-5W, C-2S-5W, C-1L-5W and C-2L-5W combinations lost 22.32%, 6.31%, 6.30%,
17.66% and 4.40% of the initial mass, respectively. For higher moisture contents the loss
of mass decreased, reaching the mixes’ lowest losses in the range of 10–20% of moisture
content, showing the existence of an optimum moisture content for particle bonding. Thus,
C-0-20W, C-1S-20W, C-2S-15W, C-1L-15W and C-2L-10W combinations lost 2.95%, 1.67%,
1.84%, 0.94% and 1.10% of the initial mass, respectively. For values of moisture content
above the optimum for each mix, all the combinations showed a slight increase in the
loss of mass, probably due to an excess of water that hampered the particles’ contact and
bonding mechanisms. Combinations between 10% and 30% of moisture content showed a
loss of mass under the limits stated in the Standard ISO 17225-6.
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Figure 4. Loss of mass of the mechanical durability test.

Figure 5 shows the pellets’ lengths before and after the abrasion and knocking test.
CFP produced the longest pellets for all the moisture contents. Thus, for the combi-

nation of C-0-5W the pellets’ mean lengths reached 18.5 mm. For higher water contents,
pellet lengths increased up to mean values close to 30 mm for the 10–40% moisture content
range. After the abrasion and knocking test, CFP pellet lengths decreased to about 54–69%
of the initial value of each combination. For the sugar-containing combinations, pellets
reached mean length values between 17.8 for the combination C-1S-5W and 23.1 mm for
the C-1S-15W. After the abrasion and knocking test, pellet lengths decreased, oscillating
the final lengths between 70% and 96% of the initial values for the C-2S-10W and C-1S-40W
combinations, respectively.

No relationship was observed between the pellet lengths and the sugar dosage or the
moisture content. It is remarkable that after the abrasion and knocking test, only sugar
pellet lengths clearly overcame the CFP results for 5% of moisture content mixes. On the
other hand, 1% of lignosulphonate combinations required a minimum moisture content
of 15% to reach these mixes’ potential lengths of about 20 mm. The pellet length obtained
its higher value of 20.7 mm for a 20% moisture content and slightly decreased for higher
moisture contents, showing the existence of a possible adverse effect of the excess water, in
accordance with the loss of mass results. The 2% lignosulphonate mixes showed a much
better result than the 1% dosage for the 5 and 10% moisture contents. The best pellet length
was reached by combination C-2L-15W, at 22.0 mm. For higher moisture contents results
slightly decreased, demonstrating the existence of an optimum moisture content of 15%
for the combinations containing a dosage of 2% of this binder. These combinations’ pellet
lengths after the abrasion and knocking test remained in the range of 88–98% of the initial
values. It is remarkable that all the combinations reached the pellet lengths stated by the
ISO 17225-6 Standard before and after the abrasion and knocking test. The results obtained
after this test highlight the complexity of the relationship between the binder kinds, their
dosages or the moisture content and the pellets’ durability.

3.4. Water Absorption

Figure 6 shows the water absorption results when the pellet combinations were
maintained in a wet chamber at 100% of relative humidity for 4 h.
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Figure 5. Pellet length before (B) and after (A) the abrasion and knocking test. (a) Sugar and
(b) lignosulphonate containing mixes.

The lowest water absorption values were obtained by the mixes with 5% of manufac-
turing moisture content. This is probably due to the highest density of these combinations,
which results in a denser structure and a closed pellet surface. Thus, C-0-5W, C-1S-5W,
C-2S-5W, C-1L-5W and C-2L-5W combinations absorbed 1.51%, 1.46%, 1.34%, 1.84% and
1.46% of the initial mass, respectively. For all the mixes, water absorption capacity increased
as manufacturing moisture content did, up to 30%, when the maximum of water absorption
was reached by all the combinations. Water absorption decreased again for the 40% mixes.
LS combinations showed a higher water absorption capacity than the other mixes for the
same manufacturing moisture contents. This could be highlighting a higher hygroscopicity
of this additive than the sugar and hence a lower durability against environmental condi-
tions. The positive results obtained by the raw CFP samples are remarkable, probably due
to the insoluble nature of their constituents that are mobilized to the pellet’s surface in the
pelleting process.
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3.5. Chemical Properties and Combustion Characterization

Table 3 shows the LHV of the different combinations’ proximate and ultimate analyses,
as well as their ashes composition.

Table 3. Combustion characterization of the CF combinations and the ashes’ chemical compositions.

Analysis CFP CFP + 1% S CFP + 2% S CFP + 1% LS CFP + 2% LS

Lower heating
value (MJ/kg) 14.984 14.185 12.718 14.294 13.741

Ultimate analysis (wt%)
N 0 0.11 0.17 0.13 0.88
C 39.15 38.67 34.68 38.39 33.39
H 5.48 5.33 5.14 5.45 5.05
S 0 0 0 0 0
O 55.38 55.89 60.01 56.04 60.69

Proximate analysis (wt%)
Moisture 7.83 8.65 6.05 6.5 6.64
Volatiles 54.49 51.17 46.59 51.59 45.81

Fixed carbon 26.97 28.42 27.61 27.6 28.71
Ash 10.71 11.76 19.75 14.31 18.84

Ashes chemical composition (wt%)
C 16.78 16.25 30.25 13.45 23.65
O 57.93 56.73 49.05 59.19 52.21
Si 5.04 7.15 5.02 7.93 4.29
B 16.42 13.09 10.03 14.4 15.67

Ca 3.83 6.78 5.65 5.03 4.18

The CFP showed an LHV value adequate for its use as biomass fuel [12]. As expected,
the lower heating power of the pellets decreased when additives were used [18]. This
partial substitution of CFP by less energetic products reduced LHV by 5.3% and 15.1% for
the sugar at 1% and 2% of dosage, respectively. Lignosulfonate at the same dosages reduced
CFP LHV by 4.6% and 9.3%, respectively, demonstrating its higher energetic power than
sugar. Ultimate analysis showed a slight increase in the nitrogen that could potentially
increase the pollutant NOx’s combustion emissions of combinations containing binders,
particularly for the combination CFP + 2% LS. Despite the CFP + 2% LS combination
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presenting 0.88% of N, all the combinations meet the parameters of the 17225-6 Standard.
Unexpectedly, lignosulfonate combinations did not show the presence of sulfur, probably
because of its low content in lignosulfonate and the low dosages considered.

All the pellet combinations showed similar combustion characteristics, highlighting
their potential as a green energy source compared to other non-conventional biomass
fuels [18,42–46]. All the combinations showed adequate combustion characteristics, except
those with high ash content due to the presence of Boron salts in their composition. These
oscillated in the range of 10.71–18.84, much higher than the 10% required by the ISO
17225-6 Standard for non-woody type B pellets. The use of additives decreased the CFP
volatile matter content and increased the fixed carbon that could facilitate a more stable
combustion. Figure 7 shows the thermogravimetric analysis of the raw CFP and additives
containing pellets.

Thermogravimetric curves (TG) show the typical four stages throughout the combus-
tion processes: dewatering, volatilization and burning, char burning and burnout. As the
DTG curve depicts, the combustion of CFP generates two exothermic peaks due to the
burning of volatile and fixed carbon, the fixed carbon peak being higher than the one due
to volatile burning. DTG curves corresponding to the combinations with additives show a
decrease in the volatile peaks that suggests a higher proportion of fixed carbon in these
combinations, in accordance with the proximate analysis test results. This reduction in the
volatiles could be related to a more stable combustion that could provide other beneficial
consequences by using sugar or lignosulfonate for pellet manufacturing. DTA curves
showed a decrease in the mass loss rate in the volatile stage for the binder-containing com-
bination compared to the raw CFP one, which also could be considered an indicator of a
more stable combustion. Finally, the ash’s chemical composition was analyzed by XPS. The
sample’s spectrum showed two contributions at 192.5 eV and 193.7 eV that demonstrated
that boron remains are an important constituent in ashes generated by all the combinations,
as shown in Table 3. Considering the calcining temperature, the main boron constituent
would be B2O3. This demonstrates the possibility of recycling CFP ashes as a boron source.
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4. Conclusions

The experimental investigation carried out has demonstrated the suitability of CFP
for the manufacturing of pellets of biomass solid fuel based on the following conclusions:

1. CFP produced pellets with a manufacturing performance higher than 97.5%. The use
of sugar or lignosulfonate did not increase this performance except for CFP moisture
content below 10%, demonstrating that for higher moisture contents the effect of the
binders over the manufacturing performance was negligible.

2. Pellet density and moisture content showed an indirect relationship with no ev-
ident differences among the combinations, based on the use of additives or the
dosages considered.

3. Mechanical durability test results were contradictory. Moisture contents between 10%
and 30% were optimum to obtain pellets with the lowest loss of fine particles. In this
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range of moisture contents, no differences were observed between combinations with
or without any one of the binders and the dosages tested. On the other hand, the
use of binders demonstrated effectiveness in obtaining more resistant pellets against
handling cracking.

4. The use of binders reduced the resistance of pellets against environmental conditions.
This effect was clearer when using lignosulfonate, whose combinations demonstrated
a higher hygroscopicity than those of sugar or CFP.

5. The use of binders reduced the pellets’ energy power and could increase their pol-
lutant potential and increase the ash content. On the other hand, binders would
improve the combustion properties of this biomass fuel.

6. Boron remained in the ashes after combustion. This would allow an effective method
of valorization for the CFP as well as the recovery of this product from among the
ashes generated.
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