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Abstract

The Volterra function µ(t, β, α) was introduced by Vito Volterra in 1916 as the so-
lution to certain integral equations with a logarithmic kernel. Despite the large number
of applications of the Volterra function, the only known analytic representations of this
function are given in terms of integrals. In this paper we derive several convergent
expansion of µ(t, β, α) in terms of incomplete gamma functions. These expansions may
be used to implement numerical evaluation techniques for this function. As a particular
application, we derive a numerical series representation of the Fransén-Robinson con-
stant F := µ(1, 1, 0) =

∫∞
0

1
Γ(x) dx. Some numerical examples illustrate the accuracy of

the approximations.
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1 Introduction
The Volterra function is defined by means of the following definite integral [3]:

µ(t, β, α) :=
1

Γ(β + 1)

∫ ∞
0

tu+αuβ

Γ(u+ α + 1)
du, (1)

with <β > −1 and t > 0. Some particular notations are usually adopted in the following
special cases:

ν(t) := µ(t, 0, 0) =

∫ ∞
0

tu

Γ(u+ 1)
du, (2)
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ν(t, α) := µ(t, 0, α) =

∫ ∞
0

tu+α

Γ(u+ α + 1)
du, (3)

µ(t, β) := µ(t, β, 0) =
1

Γ(β + 1)

∫ ∞
0

tu uβ

Γ(u+ 1)
du. (4)

The four functions defined above are analytic functions of t with branch-points at t = 0
and t = ∞ and no other singularity [4]. Also, ν(t, α) and µ(t, β, α) are entire functions of
α and the definition of µ can be extended to the entire β−plane by repeated integration by
parts:

µ(t, β, α) =
(−1)m

Γ(β +m+ 1)

∫ ∞
0

uβ+m dm

dum

[
tα+u

Γ(u+ α + 1)

]
du, <β > −m− 1. (5)

The right hand side above is an explicit representation of the analytical continuation of
µ(t, β, α) from <β > −1 to the whole complex β−plane (for large enough m).

These functions were introduced by Vito Volterra in 1916 as solutions to certain integral
equations with a logarithmic kernel [14]. Several other famous mathematicians have consid-
ered these functions along the twentieth century, in the study of prime numbers, the Laplace
transform, several types of integral equations, and other important fields in mathematics
(see for example [7], [9], [13] and references there in). At the beginning of the twenty-first
century, Volterra functions were considered by Mainardi et al. [10], [11] as solutions to frac-
tional relaxation/diffusion equations of distributed order. Other applications in fractional
calculus may be found in [4, Chap. 18].

More recently, A. Apelblat has collected a comprehensive set of information about the
Volterra function, providing a historical perspective, abundant bibliography, important iden-
tities and several integral transforms related to this function [1]. In particular, we have the
following recurrence relation,

t µ(t, β, α) = (β + 1)µ(t, β + 1, α + 1) + (α + 1)µ(t, β, α + 1), (6)

that we show here for convenience in our later analysis. Recurrence (6) may be derived from
(1) and the duplication formula of the gamma function Γ(u+ 1) = uΓ(u).

A specially interesting particular case of the Volterra function is the so called Fransén-
Robinson constant F , defined in the form

F :=

∫ ∞
0

1

Γ(x)
dx. (7)

Therefore, the Fransén-Robinson constant is nothing but F = µ(1, 0,−1) = µ(1, 1, 0), and
has several important applications in Statistics [5]: for any positive constant c, the reciprocal
Gamma function 1/Γ(x) decreases faster than e−c x, and thus it may be useful as a one-sided
density function for certain probability models. Then, the value of F is needed for the sake
of normalization.
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Despite its importance in mathematics, most books on Special Functions do not consider
the Volterra function. Then, in particular, convergent and asymptotic expansions of this
functions have not been fully investigated. To our knowledge, convergent expansions are not
known. About its asymptotics, we can find an asymptotic study of this function in [4], and
in the more recent publication [6]. More precisely, an asymptotic expansion for t → 0 and
t→∞ may be found in [6, eq.(4.1)] and [6, eq.(4.8)] respectively. On the one hand, we have

µ(t, β, α) ∼ tα
∞∑
n=0

(β + 1)nD
(α)
n

(
log

1

t

)−β−1−n

, t→ 0, t ∈ C \ [1,+∞), (8)

with
D(α)
n :=

(−1)n

n!
µ(1,−n− 1, α) =

1

n!

dn

dxn

[
1

Γ(α + x+ 1)

]
x=0

.

On the other hand, we have

µ(t, β, α) ∼ E(t, β, α) +H(t, β, α), |t| → ∞ | arg(t)| < π, (9)

where H(t, β, α) is the expansion in the right hand side of (8), and

E(t, β, α) := et
∞∑
n=0

E
(α,β)
n

Γ(β + 1− n)
tβ−n,

where the coefficients E(α,β)
n are given by

E(α,β)
n :=

(−1)n

n!

dn

dxn

[
(1− x)−α−1(−x)β+1

logβ+1(1− x)

]
x=0

.

Observe that the coefficients D(α,β)
n and E(α,β)

n of these expansions are not given explicitly,
but must be computed by evaluating derivatives of Gamma and other elementary functions.

Then, asymptotic expansions of the Volterra function for large and small |t| are known.
But as far as we know, convergent expansions of the Volterra function are not available.
Convergent expansions could be used for its analytic approximation and, eventually, could
be implemented in algorithms that would let the evaluation of this function. In this paper we
provide a family of convergent series representations of the Volterra function in terms of in-
complete gamma functions. As a particular case, we derive a numerical series representation
of the Fransén-Robinson constant.

The paper is organized as follows: in the following section we introduce some preliminary
results needed for our later analysis. In particular, we derive an integral representation of
the Volterra function different from the original definition (1) that is more appropiate for our
analysis. Then, we consider a convenient expansion of the incomplete gamma function and
we define a family of definite integrals related to the incomplete gamma function. In Section
3 we derive the main result of the paper, a family of convergent series representations of
the Volterra function. A numerical series representation of the Fransén-Robinson constant
and some numerical experiments that show the accuracy of our expansion are postponed to
Section 4.
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Figure 1: A possible path C is obtained joining a circle of radius R > |t| with the contour of the
strip =w = ±ε, 0 < ε < R; traversed in the counterclockwise direction. Eventually, we may take
ε→ 0.

2 Preliminaries

2.1 A convenient integral representation of the Volterra function

Consider the integral representation of the reciprocal gamma function [2, eq.5.9.2]:

1

Γ(z)
=

1

2πi

∫
C

eww−zdw, z ∈ C,

where the integration contour C is the closed loop (−∞, 0+) that starts at w = −∞ with
arg(w) = −π, surrounds the point w = 0 counterclockwise and comes back to w = −∞ with
arg(w) = π (see Figure 1). Replacing this expression into the integral (1) and interchanging
the order of integration we find:

µ(t, β, α) =
tα

Γ(β + 1) 2πi

∫
C

eww−α−1dw

∫ ∞
0

(
t

w

)u
uβdu,

∣∣∣∣ tw
∣∣∣∣ < 1.

The restriction |w| > |t| is necessary for the convergence of the inner integral. This restriction
imposes that the distance from the contour C to the origin w = 0 must be larger than |t|.
Then, evaluating the inner integral we find

µ(t, β, α) =
tα

2πi

∫
C

eww−α−1

logβ+1(w/t)
dw. (10)

For <α ≥ −1 we can deform the contour C to the vertical contour C ′ := {w = R + iu;
−∞ < u <∞}, with R > |t|, and then

µ(t, β, α) =
eRtα

2π

∫ ∞
−∞

eiu(R + iu)−α−1

logβ+1[(R + iu)/t]
du. (11)
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Figure 2: Integration contour L in integral (12) (left) and integration contour Γ in integral (13)
(right). Both paths intersect the real axis at an arbitrary point c > 0.

After the change of variable u → s defined by the equality R + iu = tes, or s = log
(
R+iu
t

)
with |=s| < π, the Volterra function is written in the form

µ(t, β, α) =
1

2πi

∫
L

e−αss−β−1ete
s

ds, (12)

where the contour L := {s = log
(
R+iu
t

)
; −∞ < u < ∞, |=s| ≤ π/2} is depicted in

Figure 2 (left). The right hand side of (12) is an analytic function of β. Therefore, it
is an explicit expression for the analytic continuation of µ(t, β, α) defined in (1) from the
half-plane <β > −1 to the entire complex β−plane. The path L in formula (12), Figure 2
(left), may be further deformed to the path Γ in Figure 2 (right): L → Γ := {s = u − iπ;
c < u <∞} ∪ {s = c+ iu; −π < u < π} ∪ {s = u+ iπ; c < u <∞}, where c := log(R/t) is
any positive constant. Then, for any arbitrary c > 0, the Volterra function may be written
as the sum of the integrals

µ(t, β, α) = µ0(t, β, α, c) + µ∞(t, β, α, c), (13)

with

µ∞(t, β, α, c) :=
e−iαπ

2πi

∫ ∞
c

e−αue−te
u

(u+ iπ)β+1
du− eiαπ

2πi

∫ ∞
c

e−αue−te
u

(u− iπ)β+1
du,

(14)

µ0(t, β, α, c) :=
e−αc

2π

∫ π

−π

e−iαuete
ceiu

(c+ iu)β+1
du.

2.2 An expansion of the incomplete Gamma function

For later convenience, in the following proposition we derive a convergent expansion of the
incomplete Gamma function in terms of Laguerre polynomials.
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Proposition 1. Let a ∈ C and x ∈ R such that x > 0 > <a. Then, for any n ∈ N,

Γ(a, x) = e−x xa
n−1∑
m=0

Lm(x) β(1− a,m+ 1) + rn(a, x), (15)

where Ln(x) are the Laguerre polynomials [8], β(a, b) is the beta function [2, Sec. 5.12] and
the remainder term is bounded in the form

|rn(a, x)| ≤ e−x/2 x<a β(−<a, n+ 1) ≤ e−x/2 x<a Γ(−<a)n<a. (16)

The expansion is convergent for any complex a in the semi-plane <a ≤ Λ < 0, and the
convergence rate is of power order: rn(a, x) = O(n<a) when n→∞.

Proof. From the integral representation of the incomplete Gamma function [12, Eq. 8.2.2],
and after a straightforward change of variable, we obtain

Γ(a, x) = xa
∫ ∞

0

ea ue−x e
u

du = xa
∫ 1

0

t−a−1e−x/t dt. (17)

On the other hand, the Laguerre polynomials Ln(x), have the following generating function
[8, eq.18.12.13],

ex
w
w−1

1− w
=
∞∑
n=0

Ln(x)wn, |w| < 1.

When we set w = 1− t we obtain

1

t
e−

x
t = e−x

∞∑
n=0

Ln(x) (1− t)n, |1− t| < 1. (18)

Replacing the exponential factor in the last integral in (17) by the right hand side of (18)
and interchanging summation and integration we obtain (15) with

rn(a, x) := e−x xa
∫ 1

0

t−a
∞∑
m=n

Lm(x) (1− t)m dt. (19)

Taking into account the bound e−x/2 |Ln(x)| ≤ 1 [8, eq. 18.14.8], the integral representation
of the beta function, the bound |Γ(z+a)/Γ(z+b)| ≤ |z|a−b valid for <z > 0 and 0 ≤ a ≤ b−1

[2, Eq. 5.6.8], and formula
∑∞

m=n (1− x)m = (1−x)n

x
, valid for |1− x| < 1, we derive the two

bounds in (16).
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2.3 A family of definite integrals

For later convenience we define the following family of definite integrals:

φ(a, b, c) :=

∫ π

−π

e−a (c+iu)

(c+ iu)b+1
du; a, b, c ∈ C, (20)

with the restriction <b < 0 if <c = 0 and =c ∈ [−π, π].
They admit the following integral representation if <c > 0 and <b > −1:

φ(a, b, c) =
2e−c a

Γ(b+ 1)

∫ ∞
0

xbe−c x sin(π(a+ x))

a+ x
dx, (21)

which follows from the well known integral representation of the Gamma function [2, Eq.
5.9.1], also valid for <c > 0 and <b > −1,

Γ(b+ 1)

zb+1
=

∫ ∞
0

wbe−z w dw. (22)

In the following proposition we compute the integrals φ(a, b, c) in terms of incomplete
gamma functions.

Proposition 2. Let a, b, c ∈ C with the restrictions <b < 0 if <c = 0 and =c ∈ [−π, π].
Then, the following formulas hold true,

1. If a 6= 0,

(1.1) and b /∈ Z,

φ(a, b, c) =
i π

Γ(b+ 1) sin(πb)

[
γ∗(−b, a (c+ i π))

(c+ i π)b
− γ∗(−b, a (c− i π))

(c− i π)b

]
,

where γ∗(α, z) is the regularized incomplete gamma function γ∗(α, z) := z−α

Γ(α)
γ(α, z).

(1.2) When b ∈ Z,

φ(a, b, c) =i ab
[
Γ(−b, a (c+ iπ)) +

(−1)b(log(a (c+ iπ))− log(c+ iπ))

Γ(b+ 1)
−

Γ(−b, a (c− iπ))− (−1)b(log(a (c− iπ))− log(c− iπ))

Γ(b+ 1)

]
.

2. If a = 0,

(2.1) and b 6= 0,

φ(0, b, c) =
2

b

sin[ b arctan(π/c) ](√
c2 + π2

)b .
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(2.2) When b = 0,

φ(0, 0, c) = 2 arctan
(π
c

)
.

Proof. Replacing the power series expansion of the exponential function in the integral in
(20) and interchanging sum and integral we obtain

φ(a, b, c) =
1

i(c+ iπ)b

∞∑
n=0

(−a(c+ iπ))n

n! (n− b)
− 1

i(c− iπ)b

∞∑
n=0

(−a(c− iπ))n

n! (n− b)
. (23)

Now, from the series representation [12, eq.8.7.1] of the regularized incomplete gamma func-
tion γ∗(α, z) we obtain (1.1). Taking the limit b→ n, with n integer, we get (1.2). Finally,
formulas (2.1) and (2.2) follow after a straightforward computation of the integral (20).

3 A family of series representations of the Volterra func-
tion

In this section we derive our main result: a convergent expansion of the Volterra function
in terms of incomplete gamma functions and elementary functions. The starting point is
the integral representation given in (13)-(14) with <α ≥ −1, <β > −1, t > 0 and arbitrary
c > 0. In the two following subsections we analyze the respective integrals µ∞(t, β, α, c) and
µ0(t, β, α, c) and derive a series representation of each one. Because of the recurrence (6),
without loss of generality, we restrict ourselves to <α > 0 in the remaining of the paper.

3.1 A family of series representations of µ∞(t, β, α, c)

From the well known integral definition of the Gamma function (22), and using Fubini’s
theorem in the definition (14) of µ∞(t, β, α, c), we find

µ∞(t, β, α, c) =
1

Γ(β + 1) 2πi
×

[∫ ∞
c

e−α(u+iπ)e−te
u

∫ ∞
0

vβe−(u+iπ) v dv du−
∫ ∞
c

e−α(u−iπ)e−te
u

∫ ∞
0

vβe−(u−iπ) v dv du

]
=

− 1

Γ(β + 1) π

∫ ∞
0

vβ sin(π(v + α))

∫ ∞
c

e−u(v+α)e−te
u

du dv.

The later integral is an incomplete Gamma function and then

µ∞(t, β, α, c) = − 1

Γ(β + 1) π

∫ ∞
0

vβ sin(π(v + α)) tv+α Γ(−v − α, tec) dv. (24)
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Using formula (15) in Proposition 1 with a = −v − α and x = tec, and (21) we obtain
that, for any n ∈ N,

µ∞(t, β, α, c) =
e−t e

c
ec

2 π

n−1∑
m=0

Lm(t ec)
m∑
k=0

(
m

k

)
ec k φ(α + k + 1, β, c) +R∞n (t, c, β, α), (25)

where the functions φ(a, b, c) have been defined in Section 2.3. On the other hand,

R∞n (t, c, β, α) := − 1

Γ(β + 1) π

∫ ∞
0

vβ sin(π(v + α)) tv+α rn(−v − α, tec) dv, (26)

with rn(a, z) defined in (19). Using the first inequality in (16) we find∣∣tv+α rn(−v − α, tec)
∣∣ ≤ e−te

c/2 e−c(v+<α)β(v + <α, n+ 1).

Due to the fact that the above beta function is a decreasing function of v and inequality
|Γ(z + a)/Γ(z + b)| ≤ |z|a−b, valid for <z > 0 and b ≥ a+ 1 ≥ 1 [2, Eq. 5.6.8], we find∣∣tv+α rn(−v − α, tec)

∣∣ ≤ e−te
c/2 e−c(v+<α) Γ(<α)

n<α
.

Using this bound in (26) we obtain

|R∞n (t, c, β, α)| ≤ e−te
c/2−c<α+π|=α| Γ(<β + 1) Γ(<α)

π |Γ(β + 1)| c<β+1

1

n<α
, (27)

that proves the convergence of expansion (25). Moreover, taking into account the bound
Γ(<β + 1)/|Γ(β + 1)| ≤

√
cosh(π=β), valid for <β ≥ −1/2 [2, Eq. 5.6.7], we find

|R∞n (t, c, β, α)| ≤ e−te
c/2−c<α+π|=α| Γ(<α)

π
√

sech(π=β) c<β+1

1

n<α
, <β ≥ −1

2
. (28)

This last bound shows that expansion (25) is uniformly convergent in <β in the semi-plane
<β ≥ −1/2.

Then, in principle, for a fixed c > 0, the speed of convergence of expansion (25) is only
of power order. However, a convenient election of the arbitrary constant c let us improve
the convergence speed: if we let c depend on n in the form tec = λn for any fixed positive
parameter λ, that is, c = log(λn/t), then (28) becomes

|R∞n (t, log(λn/t), β, α)| ≤ eπ|=α|−λn/2t<α

λ<απ
[
log
(
λn
t

)]<β+1√sech(π=β)

Γ(<α)

n2<α , (29)

which is valid for <β ≥ −1
2
, whenever n > t/λ, for any fixed λ > 0. This formula shows that

R∞n (t, log(λn/t), β, α) = O
(

e−λn/2

(log n)<β+1n2<α

)
, when n→∞.
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3.2 A family of series representations of µ0(t, β, α, c)

Consider the well-known series expansion representation of the exponential function

ete
c+iu

=
n−1∑
k=0

tk

k!
ek(c+iu) + rn(t, c, u), (30)

valid for any n ∈ N, with

|rn(t, c, u)| ≤
∞∑
k=n

(tec)k

k!
= ete

c γ(n, tec)

Γ(n)
. (31)

Replacing the exponential function in the integral definition of µ0(t, β, α, c) in (14) by the
right hand side of (30) we obtain that, for any n ∈ N,

µ0(t, β, α, c) =
n−1∑
k=0

tk

2π k!
φ(α− k, β, c) +R0

n(t, c, β, α), (32)

where the functions φ(a, b, c) were defined in Section 2.3 and

R0
n(t, c, β, α) :=

1

2π

∫ π

−π

e−α(c+iu)

(c+ iu)β+1
rn(t, c, u)du.

Using the bound (31), we find that the remainder R0
n(t, c, β, α) may be bounded in the form

|R0
n(t, c, β, α)| ≤ e−c<α+π|=α|+tec

2π

γ(n, tec)

Γ(n)

∫ π

−π

du

|(c+ iu)β+1|
≤ e−c<α+π(|=α|+|=β|/2)+tec

c<β+1

γ(n, tec)

Γ(n)
.

(33)
From the integral definition of the incomplete gamma function [12, Eq. 8.2.1], it is clear
that γ(n, tec) ≤ (tec)n/n and then,

|R0
n(t, c, β, α)| ≤ e−c<α+π(|=α|+|=β|/2)+tec

c<β+1

(tec)n

n!
. (34)

From Stirling formula for the factorial n! we find |R0
n(t, c, β, α)| = O

(
(tec+1)nn−1/2−n) , as n→

∞, that proves the convergence of expansion (32) for any c > 0.
However, if tec is large, we may need a large number of terms n to obtain a result

numerically satisfactory. Then, as in the previous subsection, we let c depend on n in the
form tec = λn, for any fixed parameter λ > 0. Then, from (33), the asymptotic behaviour of
the incomplete gamma function γ(n, λn) given in [12, Eq. 8.11.6], that is valid for 0 < λ < 1,
and the Stirling approximation of the gamma function, we find

|R0
n(t, log(λn/t), β, α)| ≤ t<αeπ(|=α|+|=β|/2)

√
2π

(1− λ)λ<α
[
log
(
λn
t

)]<β+1

(eλ)n

n<α+1/2
, (35)

which shows that

R0
n(t, log(λn/t), β, α) = O

(
(eλ)n

(log n)<β+1n<α+1/2

)
, when n→∞.

Therefore, for any number 0 < λ < e−1 and c = log (λn/t), the rate of convergence of
expansion (32) is exponential.
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3.3 A family of series representations of µ(t, β, α)

A series representation of µ(t, β, α) follows from (13), (25) and (32), for any c > 0. The
remainder Rn(t, c, β, α) = R∞n (t, c, β, α) + R∞0 (t, c, β, α) can be bounded by means of (28)
and (34). Since c is a free parameter, we may take, as in the previous subsections, a varying
parameter c defined in the form tec = λn, with 0 < λ < e−1. Then

Rn(t, log(λn/t), β, α) = O

(
n−<α

(log n)<β+1

[
e

−λn
2

n<α
+

(eλ)n

n1/2

])
, when n→∞. (36)

For any number 0 < λ < e−1, both terms inside the brackets in (36) decay faster than a
negative exponential. The optimal value of the parameter λ is the unique solution λ0 of
the trascendent equation log(eλ) + λ/2 = 0, λ = λ0 := 0.31436990296762807 . . .; because in
this case both terms inside the brackets in (36) are equal. This makes the expansion (25)
of µ∞(t, β, α, c) and the expansion (32) of µ0(t, β, α, c) to have a similar convergence rate.
Hence, a numerically satisfactory approximation of µ(t, β, α) requires to truncate expansions
(25) and (32) at a number of terms n > t/λ, with 0 < λ < e−1 (ideally λ = λ0) and set
c = log

(
λn
t

)
.

We summarize all the calculations above in the following theorem.

Theorem 1. Let α, β ∈ C, t ∈ R with <α > 0, <β > −1 and t > 0. Then, for any positive
integer n, and any arbitrary positive number c > 0,

µ(t, β, α) =
1

2π

n−1∑
m=0

[
e−t e

cLm(t ec)
m∑
k=0

(
m

k

)
ec (k+1) φ(α + k + 1, β, c)

+
tm

m!
φ(α−m,β, c)

]
+Rn(t, c, β, α),

(37)

where Lm(x) are the Laguerre polynomials and φ(a, b, c) are the functions defined in Propo-
sition 2 in terms of incomplete gamma functions. The remainder Rn(t, c, β, α) is bounded in
the form

|Rn(t, c, β, α)| ≤ e−c<α+π|=α|

c<β+1

[
e−te

c/2M(β)Γ(<α)

πn<α
+
eπ|=β|/2+tecγ(n, tec)

Γ(n)

]
, (38)

with
M(β) :=

Γ(<β + 1)

|Γ(β + 1)|
.

For <β ≥ −1/2, M(β) may be replaced by [sech(π=β)]−1/2 and therefore, expansion (37) is
uniformly convergent in <β in the semi-plane <β ≥ −1/2. When n→∞,

Rn(t, c, β, α) = O
(

1

n<α
+

(tec+1)n

nn+1/2

)
,

and then, the expansion (37) is convergent, with a convergence order of power type.
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Moreover, let 0 < λ < e−1 (ideally λ = λ0 := 0.31436990296762807 . . ., the unique
solution of the trascendent equation log(eλ) + λ/2 = 0) and take c = log (λn/t). Then, the
rate of convergence of expansion (37) is of exponential type:

Rn(t, log(λn/t), β, α) = O

(
n−<α

(log n)<β+1

[
e

−λn
2

n<α
+

(eλ)n

n1/2

])
, when n→∞. (39)

4 Final comments and Numerical experiments

The Fransén-Robinson constant is the particular case F = µ(1, 0,−1) = µ(1, 1, 0) = 2µ(1, 2, 1)+
µ(1, 1, 1), where the last equality follows from the recurrence relation (6). Then, a family of
numerical series representations of F can be obtained from Theorem 1: for any c > 0,

F = 2µ(1, 2, 1) + µ(1, 1, 1) =
1

2π

∞∑
n=0

{
1

n!
[2φ (1− n, 2, c ) + φ (1− n, 1, c )]

+e−e
c Ln(ec)

n∑
k=0

(
n

k

)
ec(k+1) [2φ (k + 2, 2, c ) + φ (k + 2, 1, c )]

}
.

(40)

As pointed out in the previous section, for λ as close to λ0 := 0.31436990296762807 . . . as
possible, a more appropriate numerical approximation of F may be derived by truncating
expansion (40) at a given number of terms n > 1/λ, and setting c = log(nλ).

Figure 3 and Table 1 are some numerical experiments that show the accuracy of the
expansion (37) given in Theorem 1, for certain values of the parameters α and β and different
values of the variable t. We have used the command NIntegrate of Wolfram Mathematica
11.3 to compute the "exact" value of the Volterra function.

Moreover, in Figure 3 we compare the approximation supplied by expansion (37) with the
asymptotic approximations supplied by (8) and (9). On the one hand, the number of terms
used in (8) and (9) is such that these divergent expansions are numerically useful in the
largest possible range of the variable t. On the other hand, expansion (37) is convergent and
then, the more terms used the better (we have taken a moderate number of terms). From a
numerical point of view, expansion (8) is more appropriate for small values of t, expansion
(9) is more appropriate for large values of t, whereas expansion (37) is more appropriate for
intermediate values of t. In any case, expansion (37) produces a globally more satisfactory
approximation.
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Figure 3: Plot, in logarithmic scale, of the Volterra function µ(t, 3.1, 2.5) (black, dashed),
the first term of the asymptotic expansion for small t (8) (blue), the 4 first terms of the
asymptotic expansion for large t (9) (green) and the 12 first terms of the expansion given by
(37) with c = 0.1 (red).
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t n = 4 n = 7 n = 10 n = 20

0.1 3.42493 0.0938748 0.00898929 0.00006397

0.5 6.89635 0.119798 0.0103995 0.0000612484

2 — 0.22662 0.00777211 0.0000275787

6 — — — 0.0000375823

t n = 4 n = 7 n = 10 n = 20

0.1 180.876 9.63543 6.77157 2.30558

0.5 7.24844 0.0891918 0.0215027 0.00272701

2 6.13141 0.211356 0.00473969 0.00000289376

6 0.734252 1.17147 0.492865 0.0000637623

Table 1: Absolute value of the relative error provided by formula (37) with the optimum
value c = log

(
λn
t

)
, λ = 0.3143699 (top) and c = 0.3 (bottom), for different values of the

variable t, and several orders n of the approximation. Parameter values: α = 2.4 + 1.1i,
β = 0.8 + 2.9i.
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