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Abstract—Doubly-fed induction generators (DFIG) with LCL
filter are widely used for wind power generation. In these energy
conversion systems, there is an interaction between the grid side
converter (GSC) and the rotor side converter (RSC) control loops,
the generator and the LCL filter that must be properly modeled.
Such interaction between the GSC and the RSC proves to have
a significant influence on the stability. Several active damping
(AD) methods for grid-connected converters with LCL filter have
been proposed, nevertheless, the application of these techniques
to a DFIG wind turbine is not straightforward, as revealed in
this work. To achieve a robust damping irrespective of the grid
inductance, this paper proposes an AD strategy based on the
capacitor current feedback and the adjustment of the control
delays to emulate a virtual impedance, in parallel with the filter
capacitor, with a dominant resistive component in the range
of possible resonance frequencies. This work also proves that,
by applying the AD strategy in both converters simultaneously,
the damping of the system resonant poles is maximized when a
specific value of the grid inductance is considered. Experimental
results show the interaction between the GSC and the RSC and
validate the proposed AD strategy.

Index Terms—Active damping, Doubly-fed induction genera-
tor, LCL filter, Stability analysis, Virtual impedance.

I. INTRODUCTION

DOUBLY-fed induction generators with LCL filter are
widely used in commercial wind energy conversion

systems (WECS) [1], [2]. In this configuration, the stator
windings are directly connected to the grid, whereas a back-
to-back power converter is employed in the rotor circuit. Its
rated power is around 30% of the rated generator power,
leading to lower cost and lower power losses compared to
full converter wind turbines using synchronous generators. The
overall system cost can be further reduced if an LCL filter is
used to comply with the grid codes and attenuate the high-
frequency harmonics, compared to an L filter [3].

However, the resonance of the LCL filter and its interaction
with the converter control may cause stability problems, which
can be solved by means of passive [4] or active damp-
ing techniques [5]. Passive damping methods use additional
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damping resistors connected in series or in parallel with the
filter components, increasing power losses. Active damping
methods are a preferred option, as they modify the control
loop in order to guarantee system stability at no additional
cost or power loss.

Active damping methods have been widely discussed in the
literature for grid-connected converters with LCL filter so they
serve as background for this work. One common AD method
is the capacitor voltage feedforward. It highly simplifies the
plant to be controlled, which becomes equal to the converter
inductor admittance [6]. However, due to the delays of the
digital control loop, it may destabilize the system as the LCL
resonance frequency becomes closer to the controller sampling
frequency [7].

Another method consists of introducing filters in cascade
with the current controller, such as notch filters, lead-lag com-
pensators or low pass filters [8]–[10]. It is a simple technique
since it does not require additional sensors. However, the con-
trol bandwidth can be reduced when the resonance frequency
becomes closer to the controller bandwidth. It may also be
less effective in case of resonance frequency drifts caused by
changes in the value of the grid inductance or changes in the
LCL filter parameters due to ageing or parameter tolerances.
Besides, it does not provide sufficient damping to the resonant
poles to comply with current harmonic limits imposed by grid
codes [11].

All-pass filters in series with the current controller can also
be used to reshape the open-loop phase so that the closed-loop
system is stable. The open-loop phase can be made equal to
zero at the resonance frequency using a first order all-pass
filter [12] but it slows down the transient response. As an
alternative, a second order filter could be used but, in this case,
the system is less robust when it is connected to a weak grid.
In [13] a stable region is identified for a given range of grid
impedance and LCL filter parameter variations, when the grid
current is controlled. Then, the all-pass filter is used to move
the open-loop phase into this region. However, as specified by
the authors, this method is not very suitable for the inverter
current control because, for typical LCL filter parameters, a
phase lead is required and the instability may be shifted to
higher frequencies.

A different approach is based on the capacitor current
proportional feedback, which is equivalent to a virtual resistor
in parallel with the filter capacitor [14]. However, due to the
delay of the digital control loop and the measurement filters,
the virtual resistor becomes a virtual impedance [15]. If the
resonance frequency is located in the range where the virtual
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resistor is negative, the system will become unstable. This
reduces the stability region to fs/6, fs being the sampling
frequency. Several AD strategies have been proposed to extend
this stability range. The computation delay can be reduced
by shifting the capacitor current sampling instant towards the
PWM reference update instant [15], or a lead compensator
can be included in the feedback path in order to mitigate the
impact of this delay [16]. The critical resonance frequency is
extended to fs/4 in [17] by modifying the transfer function
that multiplies the capacitor current in the feedback loop.
In [18] a recursive infinite impulse response digital filter is
included in the feedback path in order to extend the system
critical frequency to 0.45fs, whereas in [19] a quasi-integral
element is employed to obtain a virtual positive resistor until
half of the sampling frequency, fs/2. In [20], the capacitor
current is fed back through a PI, extending the stability
range up to almost the Nyquist frequency, which improves
the robustness against grid impedance variations. However,
the range of possible resonance frequencies is bounded by
the short circuit ratio (SCR) limits at the point of common
coupling (PCC). Thus, extending the range where the virtual
resistor is positive might not be the most interesting strategy.
Instead, we could try to maximize the damping in the range
of resonance frequencies by making the virtual resistance
dominant against the reactance in this range.

Some works have been published that discuss AD strategies
for DFIG wind turbines, yet none of them explores the
capacitor current feedback AD. The DFIG system impedance
can be reshaped, emulating a virtual impedance in series with
the rotor winding or the GSC inductor, by means of the RSC
or the GSC current feedback. With this purpose, a resonant
controller can be used to reshape the frequency response
only at the resonance frequency [21]. As an alternative, in
[22] the damping controllers include a Chevyshev filter and
a negative second order differential element. A stator voltage
feedforward controller can also be employed to introduce a
virtual impedance for the stator current controlled DFIG [23].
The controller includes a low-pass filter to limit the frequency
range at which it actuates, and a lead-lag component to modify
the phase of the DFIG impedance. However, all these strategies
focus on mitigating the high-frequency resonance caused by
the interaction of the DFIG system with the parallel compen-
sated weak network, assuming that the internal resonance of
the LCL filter is stable, or even considering a simple L filter
[23].

Nevertheless, the LCL filter within the DFIG energy con-
version system interacts with the impedance of the machine,
the converter control and the grid, hence it must be precisely
studied and specific AD strategies should be designed to
stabilize it. As it is seen in Fig. 1, the stator of the generator
is connected to the LCL filter capacitor. Therefore, the range
of possible LCL resonance frequencies is modified by the
DFIG impedance [24], which needs to be taken into account
to calculate it. Moreover, the control loops of the GSC and
the RSC interact with each other since they are connected
in parallel to the grid through different impedances. This
interaction must be modeled, as demonstrated in this paper, to
properly evaluate the system stability and design effective AD

strategies. This paper proposes a capacitor current feedback
AD that considers the special features of DFIG wind turbines.
Since the range of possible resonance frequencies is modified
in this system, the strategies proposed so far, based on the
capacitor current feedback, either cannot be applied directly
because they increase instability, or do not maximize the
damping provided in the actual resonance frequency range.
The proposed strategy aims to maximize the damping in
the range of resonance frequencies by the adjustment of the
control delays. This method is shown to be effective and robust
irrespective of the grid inductance.

The AD strategy can be implemented in either the GSC
or the RSC, providing in both cases a similar damping to the
LCL filter resonant poles. The suitability of the implementation
in each converter is discussed in the paper. Finally, another
contribution of the proposed strategy is that it can be applied
in the GSC and the RSC at the same time in order to maximize
the damping for a single value of grid inductance, which may
be very helpful to comply with stringent grid codes that impose
limits on the grid current harmonic content for a specific
grid inductance [25]. This adjustment can be done thanks
to the combined modeling of the GSC and the RSC control
loops. The interaction between both converters, the DFIG
system model and the proposed AD strategy are validated by
experimental results obtained in a test bench.

II. SYSTEM MODELING AND STABILITY ANALYSIS

A. System Description and Model

The configuration of a DFIG wind turbine is shown in
Fig. 1. The back-to-back power converter that is connected to
the rotor windings is formed by two converters, the rotor side
converter and the grid side converter. The RSC controls the
stator active and reactive power, whereas the GSC provides
a stable DC-bus voltage. Both converters are connected in
parallel, therefore both dynamics and control loops interact
with each other, affecting the system stability.

All the system is connected to the medium voltage grid
through a step up transformer at the PCC, therefore the
transformer leakage inductance, Lt, is considered a part of
the LCL harmonic filter. Lpcc is the inductance at the PCC,
whose value depends on the grid SCR. LGSC is the GSC
output inductance and Cf is the filter capacitance.

In order to analyze the system stability, all the elements
must be modeled in the same reference frame. Since DFIG
wind turbines are normally controlled in the synchronous
reference frame, dq, all the elements are modeled in this
reference frame, using 2x2 impedance matrices and transfer
function matrices with cross-coupling terms, which leads to a
MIMO system. In this paper, impedance matrices and transfer
function matrices are defined between brackets. Vectors are
denoted by capital letters with the subscript dq to indicate the
reference frame in which they are expressed.

1) DFIG Model: The equations of a doubly-fed induction
generator are the following

VSdq = [ZLm
]ω0
IRdq + ([ZLm

]ω0
+ [ZRLSl

]ω0
)ISdq (1)
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Fig. 1. DFIG wind turbine with an LCL filter connected to the grid.

VRdq = ([ZLm
]ωR

+ [ZRLRl
]ωR

)IRdq + [ZLm
]ωR

ISdq, (2)

where the subscript S and R indicate whether the electrical
variables belong to the stator or rotor winding. The impedance
matrices [ZLm

]ω , [ZRLSl
]ω0

and [ZRLRl
]ωR

are defined as

[ZLm
]ω =

[
Lms −Lmω
Lmω Lms

]
, (3)

[ZRLSl
]ω0 =

[
RS + LSls −LSlω0

LSlω0 RS + LSls

]
, (4)

[ZRLRl
]ωR

=

[
RR + LRls −LRlωR

LRlωR RR + LRls

]
, (5)

where RR and RS are the windings series resistances, Lm

is the magnetizing inductance, LSl is the stator leakage
inductance and LRl is the rotor leakage inductance. All the
parameters of the DFIG machine are referred to the stator.
The subscript outside the brackets indicates the angular speed
of the cross-coupling terms. ω0 is the angular speed of the
dq axis, which is equal to the grid fundamental speed. ωR =
ω0 − ωm, ωm being the rotor electrical angular speed. Note
that [ZLm ]ω is evaluated at ω0 in (1) and ωR in (2). The stator

impedance matrix, [ZRLS
]ω0

, is the sum of [ZRLSl
]ω0

and
[ZLm

]ω evaluated at ω0. Similarly, [ZRLRl
]ωR

and [ZLm
]ωR

can be combined into [ZRLR
]ωR

.
The stator voltage is equal to the LCL filter capacitor voltage

VSdq = VCfdq. (6)

2) LCL Harmonic Filter Model: The impedance matrices
of the LCL filter components are the following

[ZRLGSC
]ω0 =

[
RGSC + LGSCs −LGSCω0

LGSCω0 RGSC + LGSCs

]
, (7)

[ZCf ]ω0
=

[
RCf + s

Cf (s2+ω2
0)

ω0

Cf (s2+ω2
0)

− ω0

Cf (s2+ω2
0)

RCf + s
Cf (s2+ω2

0)

]
, (8)

[ZRLg
]ω0

=

[
Rg + Lgs −Lgω0

Lgω0 Rg + Lgs

]
, (9)

where RGSC is the GSC inductor series resistance, RCf is the
filter capacitor series resistance, Rg is the grid inductor series
resistance and Lg = Lt + Lpcc.

The current through the GSC inductor IGdq is given by

Fig. 2. Block diagram of the GSC and RSC current control loop.
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IGdq = [ZRLGSC
]−1
ω0

(VGdq − VCfdq) , (10)

where VGdq is the voltage imposed by the GSC. The filter
capacitor voltage, VCfdq , is given by

VCfdq = [ZCf ]ω0
ICfdq. (11)

The grid current Igdq is defined as follows

Igdq = [ZRLg
]−1
ω0
VCfdq. (12)

Finally, the current through the filter capacitor ICfdq is
given by

ICfdq = IGdq − Igdq − ISdq. (13)

3) Plant Model: Equations (1), (2), (6), (10), (11), (12)
and (13) are combined to obtain the complete plant model
that relates the GSC and the RSC currents, IGdq and IRdq , to
the voltages imposed by each converter, VGdq and VRdq . As a
result, a 4x4 transfer function matrix, [Plant]4x4, is obtained{

IGdq

IRdq

}
= [Plant]4x4

{
VGdq

VRdq

}
. (14)

4) GSC and RSC current control loop model: The GSC
and the RSC are controlled as current sources. The block
diagram of the current control loop of each power converter
appears in Fig. 2, demonstrating the interaction between the
two converters as both of them act on the same plant, which
is formed by the DFIG machine and the LCL filter.

The GSC and the RSC currents are controlled using a PI
regulator in the synchronous reference frame dq, filtering the
currents with a low pass analog filter, LPAF (s) = 1/(τs+1),
used to filter noise at the switching frequency. The cutoff
frequency is fs/4. The control is implemented in a digi-
tal signal processor (DSP), sampling the variables once per
switching period (symmetrical regular sampling). Dconv(s)
models the computational delay of the DSP and the effect
of the PWM, approximated by a zero order hold. The total
delay of 1.5 sample periods is modeled using the fourth order
approximation given in [11], in order to obtain an accurate
representation at high frequencies.

There are three reference frames in the system. The elements
of the GSC control loop, i.e. LPAF (s) and Dconv(s), are
defined in the stator stationary reference frame, αβs; and
the elements of the RSC control loop are defined in the
rotor stationary reference frame, αβm, which rotates at the
rotor angular speed ωm. The system is controlled in the
synchronous reference frame, dq, so in order to perform the
stability analysis, all the elements are modeled in dq. For
that, each element is defined in its corresponding reference
frame, where there are no cross-coupling terms, and then
a rotation is performed using the transformation detailed in
[26]. For example, considering the transfer function Dconv(s),
the transformation from the stationary to the synchronous
reference frame is given by

[Dconv]ω =
1

2

[
Dconv1(s) Dconv2(s)
−Dconv2(s) Dconv1(s)

]
, (15)

where Dconv1(s) = Dconv(s + jω) + Dconv(s − jω) and
Dconv2(s) = jDconv(s+ jω)− jDconv(s− jω).

The speed used to perform the rotation, ω, depends on the
reference frame in which each element is defined. The rotation
of the elements defined in the αβs reference frame is made
using the grid fundamental speed ω0, whereas the rotation of
the elements defined in the αβm reference frame is made using
ωR. In the block diagram of Fig. 2, the subscript outside the
brackets of each transfer function matrix indicates the angular
speed at which the element is rotated. This way, different
transfer functions are obtained for the elements of the control
loop of each converter.

The last element of the current control loop is the PI
regulator, which is defined in dq axis as shown in (16).
There are two PI controllers, [PIG] and [PIR], one for each
converter, which have different parameters: KpG and TnG for
the GSC; and KpR and TnR for the RSC.

[PI] =

[
Kp

Tns+1
Tns

0

0 Kp
Tns+1
Tns

]
. (16)

All the impedance matrices and transfer function matrices
that model the elements of the system are symmetric matrices.
The system plant is modeled by a 4x4 transfer function matrix,
[Plant]4x4, whereas the elements of the current control loops
are modeled by 2x2 transfer function matrices, so they must
be expanded to 4x4 matrices. For example, the 4x4 transfer
matrix of the GSC PI regulator, [PIG]4x4, is given by

[PIG]4x4 =

[
[PIG] [02]
[02] [02]

]
, (17)

where [02] is the second order zero matrix.
From the plant model and the expanded models of the

elements of the current control loops, the open-loop transfer
function matrix [Hol]4x4 can be obtained. This 4x4 transfer
matrix consists of four 2x2 matrices, each of them having
two subscripts. The first one refers to the output, whereas the
second one refers to the input. In both cases, G stands for the
GSC and R for the RSC.

[Hol]4x4 =

[
[HGG] [HGR]
[HRG] [HRR]

]
. (18)

This matrix relates the GSC and the RSC currents to their
current tracking errors{

IGfdq

IRfdq

}
=

[
[HGG] [HGR]
[HRG] [HRR]

]{
εGdq

εRdq

}
. (19)

B. Influence of the DFIG machine on the LCL filter resonance
frequency

The resonance frequency of an LCL filter depends on the
grid SCR. The variability of the SCR can lead to a wide
range of possible resonance frequencies and the system should
be stable in every case. Therefore, the full range of possible

Authorized licensed use limited to: UNIV PUBLICA DE NAVARRA. Downloaded on June 20,2021 at 12:07:01 UTC from IEEE Xplore.  Restrictions apply. 



0885-8993 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2021.3089282, IEEE
Transactions on Power Electronics

resonance frequencies is obtained taking as the lower limit the
value corresponding to a SCR of zero and, as the upper limit,
the value calculated for a SCR of infinity. The limits for an
LCL filter without the DFIG are given by

frlLCL =
1

2π

√
1

LGSCCf
(20)

frhLCL =
1

2π

√
LGSC + Lt

LGSCLtCf
. (21)

In a DFIG system the impedance of the machine interacts
with the impedance of the LCL filter, modifying the resonance
frequency. The complete model of the DFIG generator that has
been derived before is too complex to study this interaction.
Thus, the model is simplified neglecting the magnetizing
inductance, Lm, which offers a high reactance at high frequen-
cies and may have a low influence on the LCL filter resonance.
This way, the block diagram of the plant in Fig. 3 is obtained.

The equation of the doubly-fed induction generator is now

IRdq ≈ −ISdq = [ZDFIG]
−1 (VRdq − VSdq) , (22)

where [ZDFIG] = [ZRLSl
]ω0

+ [ZRLRl
]ωR

.
Fig. 4 shows the comparison between the frequency re-

sponse of the transfer function correlating the grid current
Igdq and the rotor voltage VRdq , using the complete plant
model (blue curve) versus the simplified model (red curve)
that reduces the DFIG model to the stator and rotor leakage
inductances. These Bode diagrams are represented for the
system parameters reported in Table II. Since the impedance
matrices are symmetric matrices, and the resulting 2x2 matrix
that models the dynamics between Igdq and VRdq is also
symmetric for both models, two Bode diagrams are sufficient
to analyze the plant dynamics. At high frequencies where the
LCL filter resonance occurs, the diagonal term is dominant
over the anti-diagonal term. By observing Fig. 4 (a), it can
be deduced that at the lower end of the range, the dominant
response is inductive, then the magnitude increases at the
resonance frequency and, at the higher end of the range, the
system has a capacitive response. In dq axis two resonance
peaks appear at ±f0 of the real value of the resonance
frequency, f0 being the grid fundamental frequency equal to
50 Hz. In both Fig. 4 (a) and (b), the response of the plant
with the simplified model of the DFIG is very similar to
the response using the complete model within the range of
resonance frequencies. Thus, the magnetizing inductance does
not influence the dynamics of the system at high frequencies

Fig. 3. Block diagram of the plant with the simplified model of the DFIG
machine.
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Fig. 4. Frequency response of the transfer function correlating the grid current
Igdq and the rotor voltage VRdq using the complete plant model and the
simplified model, diagonal term (a) and anti-diagonal term (b).

and the simplification is validated in the resonance frequency
range.

Neglecting the magnetizing inductance, Lm, the limits of
the resonance frequency range for the DFIG system are given
by

frlDFIG =
1

2π

√
LGSC + Ll

LGSCLlCf
(23)

frhDFIG =
1

2π

√
LGSCLt + LGSCLl + LlLt

LGSCLlLtCf
, (24)

where Ll = LSl + LRl.

TABLE I
RESONANCE FREQUENCY RANGE LIMITS

Configuration frl frh
LCL 0.13fs (516 Hz) 0.26fs (1024 Hz)
DFIG + LCL 0.17fs (686 Hz) 0.28fs (1120 Hz)
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TABLE II
SYSTEM PARAMETERS

Parameter Value
DFIG

S = 5 kVA, U = 230 V
Rotor resistance 0.071 p.u.
Rotor leakage inductance 0.122 p.u.
Stator resistance 0.059 p.u.
Stator leakage inductance 0.128 p.u.
Magnetizing inductance 2.375 p.u.

Power converters
Switching frequency 4 kHz
Sampling frequency 4 kHz
GSC inductor 0.192 p.u.
GSC inductor series resistance 0.028 p.u.
Filter capacitor 0.049 p.u.
Filter capacitor series resistance 0.001 p.u.
Transformer inductor 0.065 p.u.
Transformer inductor series resistance 0.010 p.u.

Control parameters
GSC PI proportional gain 2
GSC PI integration time 0.01
RSC PI proportional gain 2.8
RSC PI integration time 0.01
GSC, RSC current LPAF time constant 150.10−6

Capacitor current LPAF time constant 47.10−6

The value of these limits are given in Table I as a ratio with
respect to fs, as well as the absolute value in Hz. The limits
are calculated for the system parameters given in Table II. In
the DFIG system, the total value of the inductance decreases,
compared to an LCL filter, and the resonance frequency shifts
towards higher frequencies. Besides, the range of possible
resonance frequencies becomes narrower. It can be concluded
that the interaction between the machine impedance and the
LCL filter impedance must be considered in order to calculate
the system resonance frequency. Otherwise, the AD strategy
would be adjusted for the wrong frequencies and the resonant
poles would not be properly damped.

C. Stability Analysis

In the previous subsection, the interaction between the
DFIG machine and the LCL harmonic filter impedances has
been analyzed. Now, the system stability and the interaction
between the GSC and the RSC control loops are studied.

The stability of a MIMO system can be evaluated through
the open-loop matrix eigenvalues’ analysis. The controllers of
the GSC and the RSC are designed to achieve the desired
dynamic performance in each converter. Thus, the GSC and the
RSC open-loop transfer matrices, [HGol] and [HRol], which
are 2x2 matrices, are computed from [Hol]4x4 in (19). If
the interaction between both converters is neglected, [HGol],
relating εGdq to IGfdq , is computed imposing εRdq = 0; and
[HRol], relating εRdq to IRfdq , is computed making εGdq = 0.
This way, [HGol] = [HGG] and [HRol] = [HRR]. The
expression for their eigenvalues is

λ1,2 = Hol1 ± jHol2, (25)

where Hol1 and Hol2 are the diagonal and anti-diagonal terms
of the matrices.

The MIMO Generalized Bode Criterion [27] is applied to
calculate the number of closed-loop unstable poles, Z, by

analyzing the Bode diagram of the open-loop eigenvalues. This
criterion is expressed as

Z = P − [2(C+ − C−) + C0], (26)

where P is the number of open-loop unstable poles, C+ is
the number of ±m180 degree crossings with positive mag-
nitude and increasing phase (m odd integer) only at positive
frequencies in the Bode diagram of all the system open-loop
eigenvalues, C− is the number of crossings with decreasing
phase and C0 is the number of crossings at 0 Hz.

The stability analysis is done with the complete plant
model derived in subsection II-A. The system parameters
are reported in Table II. The rotor speed does not influence
the impedance of the DFIG system in the range of possible
resonance frequencies [28], therefore a slip equal to -0.25 is
selected to perform this analysis, where slip = ωR

ω0
.

The PI controllers design is based on the method proposed
in [27]. Following this design procedure, it can be verified
that both eigenvalues of the GSC have a crossing at 0 Hz,
thus C0 = −2, whereas the RSC has no crossings, so C0 = 0.
This way, for the GSC to be stable a ±m180 degree crossing
with positive magnitude and increasing phase needs to be
introduced in one eigenvalue according to (26). In the case
of the RSC, no crossings have to be introduced. The PI
parameters Kp and Tn for both converters are computed to
achieve the desired dynamics. A controller bandwidth of 90 Hz
is selected for the GSC and 60 Hz for the RSC, with a
minimum phase margin of 30 degrees for a SCR of 20. The
resulting PI parameters appear in Table II.

The eigenvalues Bode diagram of [HGol] and [HRol] for
a SCR of 20 are represented in Fig. 5. In the case of the
GSC (blue), the 180 degree crossing with positive magnitude
and increasing phase is produced, thus C+ = 1. Since C0 =
−2 and there are no open-loop unstable poles, the number
of closed-loop unstable poles is zero and the system is stable
(Z = 0 in (26)). For the RSC (red), there are no crossings
with ±m180 degrees and positive magnitude, nor open-loop

C+

Fig. 5. Eigenvalues Bode diagram of the GSC and the RSC open-loop transfer
matrix neglecting the interaction between both converters, for a SCR of 20.
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C+

C+

C-
C-

Fig. 6. Eigenvalues Bode diagram of the GSC open-loop transfer matrix
considering the interaction between the GSC and the RSC.

unstable poles, so Z = 0 and the closed-loop system is also
stable. It is demonstrated that both control loops are stable
when the converters do not interact with each other.

However, in the complete DFIG system, the GSC and
the RSC are connected in parallel to the grid, so there is
an interaction between both control loops. Now, the system
stability is analyzed taking into account this interaction. In
this case, [HGol] is calculated making IRrefdq = 0 and thus,
εRdq = −IRfdq . Equivalently, [HRol] is obtained imposing
IGrefdq = 0, which means εGdq = −IGfdq . These two
matrices are given by

[HGol] = [HGG]− [HGR] ([I2] + [HRR])
−1

[HRG] (27)

[HRol] = [HRR]− [HRG] ([I2] + [HGG])
−1

[HGR], (28)

where [I2] is the order two identity matrix.
Fig. 6 shows the eigenvalues of [HGol], for a SCR of 1

and 20 and the PI parameters previously computed. For each
SCR, there are two crossings at 0 Hz, one in each eigenvalue,
thus C0 = −2. There is one 180 degree crossing with positive
magnitude and increasing phase, therefore C+ = 1. Since
there are no open-loop unstable poles, if there were no more

crossings with ±180 degrees, the system would be stable in
both cases. However, the interaction between both converters
tends to increase the magnitude in the Bode diagram, which in-
troduces two crossings with decreasing phase at the resonance
frequency for each SCR, so C− = 2. As a consequence, there
are 4 unstable closed-loop poles at this frequency for each
SCR. The frequency of the unstable poles is within the range
of possible resonance frequencies for the DFIG wind turbine
that has been calculated in the previous subsection by means
of (23) and (24).

It can be concluded that the interaction between the GSC
and the RSC must be considered, as otherwise the stability
analysis can lead to incorrect conclusions. Furthermore, the
DFIG system is unstable due to the resonance of the LCL
filter. Because of that, a damping strategy is needed.

III. PROPOSED ACTIVE DAMPING STRATEGY

A. Fundamentals of the Strategy

The proposed active damping method is based on the capac-
itor current feedback. As it is seen in Fig. 7 (a), the capacitor
current is filtered using a low pass analog filter, modeled in
dq axis by [LPAF ]ω0

, to attenuate noise at the switching
frequency. [HADG] and [HADR] are the proposed AD transfer
matrices, which are defined in dq axis, and kG and kR are
the proportional gains. By operating in the block diagram of
Fig. 7 (a), it can be deduced that the effect of this control action
from each converter is equivalent to implementing a virtual
impedance in parallel with the filter capacitor. The input node
is shifted from the capacitor current, ICfdq , to the capacitor
voltage, VCfdq; and the AD action is shifted from the output
of the PI controllers to before the filter capacitor impedance
matrix, [ZCf ]ω0 . These virtual impedances are represented in
Fig. 7 (b) by the dashed red blocks. The expression of the
virtual impedance matrix in dq coordinates implemented by
each converter is given by

[ZADG] =

=
(
[ZCf ]

−1
ω0

[LPAF ]ω0
[HADG]kG[Dconv]ω0

[ZRLGSC
]−1
ω0

)−1

(29)

[ZADR] =

=
(
[ZCf ]

−1
ω0

[LPAF ]ω0
[HADR]kR[Dconv]ωR

[ZDFIG]
−1
)−1

.
(30)

(a) (b)

Fig. 7. Block diagram of the simplified plant and the proposed capacitor current feedback active damping (a) and equivalent virtual impedance (b).
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All the terms in (29) and (30) are symmetric matrices,
so the virtual impedance matrices are also symmetric. The
magnitude of the diagonal terms is 6 times greater than the
magnitude of the anti-diagonal terms within the range of
possible resonance frequencies. Therefore, the anti-diagonal
terms can be neglected when designing the AD strategy, so
that the virtual impedance matrices become diagonal matrices.
As a result, the AD transfer matrices, [HADG] and [HADR],
are diagonal matrices, whose diagonal terms are HADG1(s)
and HADR1(s), respectively. This way, the AD feedback is
the same in both d and q axis, so only one axis can be
considered to adjust the AD strategy. The expressions of the
virtual impedances in one axis are given by

ZADG1(s) =
LGSC

CfkGHADG1(s)Dconv1(s)LPAF1(s)
(31)

ZADR1(s) =
Ll

CfkRHADR1(s)Dconv1(s)LPAF1(s)
. (32)

The resistive component of the virtual impedance is related
to the cosine of the phase of ZADG1(s), which is shown in
Fig. 8, against frequency. ZADG1(s) is chosen as an example
but the same reasoning can be done by studying the phase
of ZADR1(s). Initially, without any AD action, the lag is
given by Dconv1(s) and LPAF1(s) (dashed line). In this case,
the resistive component in the resonance frequency range is
dominated by the reactance, which does not provide enough
damping to the system resonant poles. Even at low SCRs, the
AD action would have a destabilizing effect if the sign of the
emulated virtual resistance changes.

Our objective is to adjust the phase of the virtual impedance
so that it has a dominant resistive behavior in the range
of possible resonance frequencies in order to maximize the
damping of the system resonant poles. For that purpose, the

Fig. 8. Cosine of the phase of the virtual impedance versus frequency without
adjusting the delay of the AD feedback loop (dashed line) and with the delay
adjusted (continuous line).

transfer functions HADG1(s) and HADR1(s) include a pure
delay of y sample periods, e−syTs , where Ts is the sampling
period. A different delay can be adjusted for the GSC and the
RSC, yG and yR, respectively. Furthermore, the AD should
only actuate in the resonance frequency range, for this reason
the AD action is filtered. The inner AD loop already includes a
low pass analog filter, thus, an additional first order high pass
digital filter, HPDF (s), is needed. It filters the fundamental
component, which is seen at 0 Hz in the dq reference frame,
to reduce the applied AD action. Therefore, the filter cutoff
frequency is 100 Hz, providing an attenuation of -60 dB at
0 Hz.

The general expression for HAD1(s) is

HAD1(s) = HPDF (s)e−syTs . (33)

By making (31) equal to (32), the same virtual impedance
can be emulated with both converters. The only elements that
are different in both virtual impedances are the AD transfer
functions, HADG1(s) and HADR1(s), the proportional gains,
kG and kR, and the inductances, LGSC and Ll. HPDF (s)
is the same in both transfer functions, so if the same delay,
yG and yR, is adjusted in both converters, HADG1(s) and
HADR1(s) would be identical. Thus, in order to obtain the
same virtual impedance with both converters, the relation
between the gains, kG and kR, must satisfy the following
expression

kG
kR

=
LGSC

Ll
. (34)

B. Active Damping Implementation in the GSC

In (31) the only elements that need to be adjusted are the
gain kG and and the delay yG. First, the required delay yG is
calculated to emulate a pure resistor at the central resonance
frequency, frc = (frlDFIG+frhDFIG)/2, in order to ensure
a robust damping of the system resonant poles regardless of
the SCR. For that purpose, the phase of the virtual impedance
ZADG1(s) at frc should be equal to π, as expressed in (35).
In this case, the required delay is yG = 0.617.

φ(ZADG1(jωrc)) = (2n+ 1)π

= −φ(HPDF (jωrc)e
−jωrcyGTsDconv1(jωrc)LPAF1(jωrc))

(35)

for n = 0, 1, 2...
Fig. 8 shows the resistive component of the virtual

impedance ZADG1(s) once the delay of yG sample periods
is adjusted (continuous line). Now, greater resistive behavior
is achieved throughout the whole resonance frequency range,
maximizing the damping. A negative resistor is emulated with
this strategy, thus the inner AD loop becomes a capacitor
current positive feedback.

Finally, the value of the gain kG is determined. To that end,
the eigenvalues of the inner AD open-loop transfer matrix are
represented first, in Fig. 9. There are no unstable open-loop
poles in the inner AD loop, therefore, considering (26), there
should be no ±m180 degree crossings with positive magnitude
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-180º

450

Fig. 9. Eigenvalues Bode diagram of the inner AD open-loop transfer matrix
for two SCRs.

for the AD feedback loop to be stable. The minimum gain
margin for all SCRs is 29 dB. So, to guarantee the system
stability in all cases, the maximum allowed value of kG is
28. Otherwise a C− crossing would be introduced at 450 Hz,
and thus, there would be two unstable closed-loop poles at that
frequency. Then, given this upper limit, the system closed-loop
poles are studied for different values of kG for a SCR of 20, as
shown in Fig. 10, in order to determine the optimal value that
provides the greatest damping to the system resonant poles. In
this figure, the color of the zeros and poles becomes lighter
as the gain increases. With a small gain, the system resonant
poles are not sufficiently damped. As the gain increases, so
does the damping, reaching the optimal value with kG = 16.
However, if the gain increases too much the system becomes
unstable. In Fig. 10, the system poles with kG = 16 are marked
in red.

As it is observed, there are some poles around 450 Hz
that are less damped as the value of the gain increases. This
is due to the interaction between the implemented virtual

Fig. 10. Closed-loop poles of the system for different values of kG for a
SCR of 20.
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Fig. 11. Frequency response of the capacitor, the virtual impedance and the
parallel connection of both of them.

impedance and the filter capacitor. Fig. 11 shows the frequency
response of the capacitor, the virtual impedance, ZADG1(s),
and the parallel connection of both of them, for kG = 16. As
it is observed, the virtual impedance has inductive behavior
around 450 Hz and resonates with the capacitor when both
elements are connected in parallel. This new resonance tends
to destabilize the system. In Fig. 10, the frequency of these
poles varies slightly as the gain kG changes because it modifies
the value of the emulated virtual impedance. For this reason,
the gain kG has to be carefully selected, so that both the
resonant poles and the medium frequency poles are properly
damped.

Fig. 12 shows the closed-loop poles of the system for three
different values of SCR that cover the whole range of possible
resonance frequencies. As it is observed, the resonant poles,
circled in the figure, are stabilized in all the cases thanks to
the proposed active damping strategy.

Fig. 12. Closed-loop poles of the system with the proposed AD implemented
in the GSC for three SCRs.
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Fig. 13. Closed-loop poles of the system for different values of kR for a
SCR of 20.

C. Active Damping Implementation in the RSC

As for the GSC, the only elements that need to be adjusted
in (32) are the gain kR and the delay yR. Again, a virtual
resistor is emulated at the central resonance frequency, frc,
in order to obtain a robust damping of the resonant poles
for any SCR. Since both virtual impedances contain equal
elements, the delay remains the same as before, yR = 0.617.
Considering that the delay does not change, (34) is used to
calculate the optimal value of the gain kR, which is 21.

The system closed-loop poles for a SCR equal to 20 are
studied for different values of kR, close to the calculated one,
in order to verify whether it is the optimal value that provides
the greatest damping. In Fig. 13, the closed-loop poles of the
system for kR between 10 and 40 are represented and the poles
corresponding to kR = 21 are marked in red. It is observed
that the calculated value is very close to the optimal one, as
expected. In Fig. 14, the closed-loop poles of the system for
three SCRs are represented, with the AD strategy implemented
in the RSC. As it is observed, the resonant poles, circled in

Fig. 14. Closed-loop poles of the system with the proposed AD implemented
in the RSC for three SCRs.

the figure, are stabilized whether the converter is connected to
weak or strong grids.

It has been proved that the resonant poles of the DFIG wind
turbine can be effectively damped applying the AD strategy in
either of the two converters, which increases the flexibility of
the control strategy. The main difference between the required
AD action in each converter is due to the difference of the
proportional gains, kG and kR. The higher the value of the
gain, the higher the AD action. Therefore, the AD strategy can
be implemented in the converter that is further from saturation.
This way, the DC-bus voltage does not need to be increased
in order to provide the additional action calculated by the AD
feedback loop.

D. Combined Active Damping Implementation in the GSC and
the RSC

In the previous subsections, it has been explained the
adjustment of the AD strategy to obtain a robust damping
of the resonant poles for the full range of possible resonance
frequencies. However, during operation, the value of the grid
SCR does not vary between zero and infinity. Normally, the
strength of the grid to which the wind turbine is connected
is known, hence the resonance frequency range is narrower
and the AD can be adjusted to maximize the damping in
this desired interval. Furthermore, the grid current harmonic
content must comply with the limits imposed by grid codes,
which often consider the value of the SCR at the PCC [25].
In this case, the damping could be maximized for that specific
resonance frequency.

In order to do that, the usage of both converters, GSC and
RSC, is proposed in this paper. The AD strategy is imple-
mented in both converters simultaneously, properly adjusting
the delay and the gain of each of them. We assume that
the robust AD of the GSC is already adjusted as shown in
subsection III-B, which stabilizes the resonant poles for every
SCR. Then, the AD of the RSC is readjusted with the aim of
providing more damping at the desired resonance frequency.
In this case, the strategy is tuned for a SCR of 20, which
corresponds to a resonance frequency of 956 Hz.

First, the closed-loop poles of the GSC control loop are
analyzed after the AD strategy has been applied. The emulated
virtual impedance has a real part and an imaginary part. The
real part damps the resonant poles, whereas the imaginary part
changes the resonance frequency. For that reason, the new
frequency of the resonant poles for the SCR of 20 is 1100 Hz,
as seen in Fig. 12, using the lines of constant frequency. Then,
the AD of the RSC is adjusted considering that the resonant
poles are already damped by the GSC. The RSC control loop
sees the resonant poles at this new frequency. Thus, the delay
yR is calculated to obtain a pure virtual resistor at 1100 Hz, so
that the damping is maximized at this frequency. In this case,
yR = 0.204, which is lower than in the previous adjustment for
the RSC because the LCL filter resonance is shifted towards
higher values by the virtual impedance [ZADG]. Finally, the
value of the gain kR has to be determined.

Fig. 15 shows the closed-loop poles of the system for
different values of kR and a SCR of 20, in green, considering
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Fig. 15. Closed-loop poles of the system when the AD is only implemented
in the GSC (blue) and when the AD is also implemented in the RSC for
different values of kR (green), for a SCR of 20.

that the AD is already implemented in the GSC. In this case,
the gain that provides the maximum damping is kR = 17,
which yields the closed-loop poles marked in red in the figure.
The damping that is obtained in this case is ξ = 0.16, whereas
the damping that is obtained when the AD is only applied in
the GSC is ξ = 0.11. The closed-loop poles of the system
with the AD only implemented in the GSC are represented
in blue in Fig. 15. It can be concluded that the damping of
the resonant poles can be increased by implementing the AD
in both converters at the same time, when a specific value of
SCR is considered. This can be very helpful to comply with
the current harmonic content limits enforced by certain grid
codes. Table III shows a summary of the AD parameters that
have been adjusted for each control strategy as well as the
damping of the system resonant poles that is achieved in each
case for a SCR of 20.

IV. VALIDATION OF THE PROPOSED ACTIVE DAMPING
STRATEGY

A. Experimental Results

In this subsection the interaction between the GSC and the
RSC, the DFIG system model and the proposed AD strategy
are validated. For this purpose, the experimental setup shown
in Fig. 16 is built in the lab. The setup consists of a 5 kW
doubly-fed induction generator, connected to a permanent
magnet three-phase motor actuating as prime mover. This
motor is controlled by a three-phase power converter that
imposes the rotational speed of the mechanical shaft. Two
10 kW three-phase two-level power converters, namely the

TABLE III
ACTIVE DAMPING PARAMETERS AND ACHIEVED DAMPING FOR A SCR

OF 20

Strategy kG kR yG yR ξ
AD in GSC 16 0 0.617 0 0.11
AD in RSC 0 21 0 0.617 0.08
Combined AD 16 17 0.617 0.204 0.16

Fig. 16. Experimental setup of a DFIG wind turbine.

GSC and the RSC, are connected through the DC-bus to form
a back-to-back structure. They are controlled by means of two
Arduino Due and the DC-bus capacitors are connected to a
DC source. The system parameters are the same as the ones
used in the stability analysis, which appear in Table II. The
switching and sampling frequencies are equal to 4 kHz. The
tests are performed for two SCR values, 1 and 20.

First, the DFIG system is studied without any damping
technique. The GSC current (purple) and the RSC current

(a)

(b)

Fig. 17. GSC current (purple) and RSC current (light blue) without any
damping strategy for a SCR of 1 (a) and 20 (b).
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(a)

(b)

Fig. 18. Zoom to the last cycle of the GSC current (a) and the RSC current
(b) before the converters disconnect for a SCR of 20.

(light blue) are shown in Fig. 17, for the two SCR values. For
a SCR equal to 1, Fig. 17 (a), the GSC reference current is
activated first and, after some time, the RSC is connected and
its reference current is activated. As it is observed, the system
is stable at the beginning when only the GSC is connected.
However, when the RSC is activated the system becomes
unstable. This interaction is also observed for a SCR of 20,
as shown in Fig. 17 (b). Now, the reference current of the
RSC is activated first and, then, the GSC is connected and
its reference current is activated. It is observed that when the
GSC is connected the system starts to resonate and, eventually,
it becomes unstable. The last cycle of both converter currents
before they disconnect is zoomed in order to determine the
frequency of this resonance. As it is seen in Fig. 18 (a),
where the GSC current is represented, the resonance frequency
is 940 Hz. This is also verified by calculating the harmonic
content of this waveform, which shows that there is a large
harmonic around this frequency. The same analysis is done for
the RSC current, which appears in Fig. 18 (b). The resonance
frequency is also 940 Hz. In this case, the harmonic at this
frequency is lower than in the GSC current, because it is more
damped. This result validates the stability analysis performed
in subsection II-C and confirms that there is an interaction
between both converter control loops that must be considered

(a)

(b)

Fig. 19. GSC current (purple) and RSC current (light blue) when the AD
strategy is activated and deactivated in the GSC for a SCR of 1 (a) and 20
(b).

to properly analyze the stability. Besides, for the SCR of 20,
the instability appears close to 956 Hz, which is the DFIG
system resonance frequency predicted by the model derived in
subsection II-B for this SCR, and so, this model is validated.

Next, the proposed active damping strategy is validated.
First, the AD is only implemented in the GSC with the param-
eters that have been adjusted in subsection III-B, yG = 0.617
and kG = 16. Fig. 19 shows the GSC current and the RSC
current when the AD strategy is activated and deactivated in
the GSC, which is indicated by the dark blue binary signal,
for a SCR of 1 (a) and 20 (b). Initially, the AD is activated,
stabilizing the system. At the rising edge of the dark blue
signal, the AD is deactivated and the system starts to resonate
at the system resonance frequency. After 4 cycles, the AD is
reactivated (falling edge of the dark blue signal), stabilizing
the system again.

The same test is performed to validate the AD strategy in
the RSC with yR = 0.617 and kG = 21. Fig. 20 shows the
GSC current, the RSC current and the signal that deactivates
the AD for a SCR of 1 (a) and 20 (b). First, the AD is activated
in the RSC. At the rising edge of the dark blue signal, the AD
is deactivated and the system becomes unstable, resonating
at the resonance frequency of the DFIG system. After some
time the AD is reactivated, stabilizing the system. It is proved
that the proposed active damping method effectively damps
the system resonant poles when it is applied in either of the
two converters, whether the DFIG wind turbine is connected
to weak or strong grids. These results validate the theoretical
analysis reflected in Fig. 12 and 14.
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(a)

(b)

Fig. 20. GSC current (purple) and RSC current (light blue) when the AD
strategy is activated and deactivated in the RSC for a SCR of 1 (a) and 20
(b).

Finally, the grid current harmonic content is analyzed with
the AD implemented in the GSC and in both converters,
as explained in subsection III-D. For that purpose, the har-
monic currents are divided into integer harmonics and inter-
harmonics, and compared to the limits given in the BDEW
grid code [25]. Fig. 21 shows the comparison of the grid
current harmonic content around the resonance frequency for
a SCR of 20. As it is observed, when the active damping
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Fig. 21. Grid current harmonic content with the AD implemented in the GSC
and in both converters for a SCR of 20.
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Fig. 22. RSC and GSC currents for a SCR of 20 when a voltage sag to 10 %
occurs in the grid.

strategy is applied in both converters, the harmonic content is
reduced since the system resonant poles are more damped in
this case. These results validate the previous theoretical results
from Fig. 15.

B. Large Signal Disturbance Validation

In this subsection the active damping strategy is tested under
grid fault conditions. A voltage sag to 10 % of the nominal
value is simulated at 1 s, with the AD strategy activated in both
converters. The simulation is performed in Matlab/Simulink
using the Simscape Electrical Library to create a model of the
DFIG WECS. Fig. 22 shows the GSC and the RSC currents
during the fault, proving that the DFIG system is stable.

The results in this section validate the proposed active
damping method at different operating conditions.

V. CONCLUSION

In this work an active damping strategy based on the
capacitor current feedback for a DFIG wind turbine with
LCL filter is proposed. This paper is centered in two main
aspects: the modeling of the DFIG wind turbine and the
design of the AD strategy. A simplified plant model has been
derived to analyze the interaction between the DFIG and
the LCL filter impedances, which modifies the value of the
resonance frequency. Besides, the GSC and the RSC control
loops also interact with each other, which introduces a source
of instability. Therefore, properly calculating the resonance
frequency of the system and using a model that considers the
interaction between the GSC, the RSC, the DFIG and the LCL
filter, are key to design an effective AD strategy.

The proposed AD method stabilizes the system resonant
poles and is robust against variations in the grid inductance,
properly adjusting the delay of the feedback loop by means
of a pure delay. It can be implemented in either of the two
converters that form the back-to-back conversion structure
connected to the DFIG’s rotor windings. This increases the

Authorized licensed use limited to: UNIV PUBLICA DE NAVARRA. Downloaded on June 20,2021 at 12:07:01 UTC from IEEE Xplore.  Restrictions apply. 



0885-8993 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2021.3089282, IEEE
Transactions on Power Electronics

flexibility of the control strategy since the AD can be activated
in the converter that is more convenient, which may be the
one that is further from saturation. Furthermore, the strategy
can be applied in both converters simultaneously in order to
maximize the damping for a specific grid inductance. For
instance, several grid codes impose limits on the grid current
harmonic content for a specific value of SCR at the PCC. In
this case, it has been proved that by adjusting the delay of
each converter we achieve a lower harmonic content in the
grid current when the AD strategy is implemented in both
converters at the same time.
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[12] J. Roldán-Pérez, E. J. Bueno, R. Peña-Alzola, and A. Rodrı́guez-Cabero,
“All-pass-filter-based active damping for vscs withlclfilters connected to
weak grids,” IEEE Transactions on Power Electronics, vol. 33, no. 11,
pp. 9890–9901, 2018.

[13] W. Yao, Y. Yang, Y. Xu, F. Blaabjerg, S. Liu, and G. Wilson, “Phase
reshaping via all-pass filters for robust lcl-filter active damping,” IEEE
Transactions on Power Electronics, vol. 35, no. 3, pp. 3114–3126, 2019.

[14] M. B. Saı̈d-Romdhane, M. W. Naouar, I. Slama-Belkhodja, and E. Mon-
masson, “Robust active damping methods for lcl filter-based grid-
connected converters,” IEEE transactions on power electronics, vol. 32,
no. 9, pp. 6739–6750, 2016.

[15] D. Pan, X. Ruan, C. Bao, W. Li, and X. Wang, “Capacitor-current-
feedback active damping with reduced computation delay for improving
robustness of lcl-type grid-connected inverter,” IEEE Transactions on
Power Electronics, vol. 29, no. 7, pp. 3414–3427, 2013.

[16] Y. Lei, Z. Zhao, F. He, S. Lu, and L. Yin, “An improved virtual resistance
damping method for grid-connected inverters with lcl filters,” in 2011
IEEE Energy Conversion Congress and Exposition. IEEE, 2011, pp.
3816–3822.

[17] X. Li, X. Wu, Y. Geng, X. Yuan, C. Xia, and X. Zhang, “Wide damping
region for lcl-type grid-connected inverter with an improved capacitor-
current-feedback method,” IEEE Transactions on Power Electronics,
vol. 30, no. 9, pp. 5247–5259, 2014.

[18] J. Liu, L. Zhou, and M. Molinas, “Damping region extension for dig-
itally controlled lcl-type grid-connected inverter with capacitor-current
feedback,” IET Power Electronics, vol. 11, no. 12, pp. 1974–1982, 2018.

[19] S. He, J. Xiong, Z. Wang, and S. Lin, “Robust ad for lcl-type grid-
connected inverter with capacitor current quasi-integral feedback,” IET
Power Electronics, vol. 13, no. 7, pp. 1332–1342, 2020.

[20] Y. He, X. Wang, X. Ruan, D. Pan, X. Xu, and F. Liu, “Capacitor-current
proportional-integral positive feedback active damping for lcl-type grid-
connected inverter to achieve high robustness against grid impedance
variation,” IEEE Transactions on Power Electronics, vol. 34, no. 12, pp.
12 423–12 436, 2019.

[21] Y. Song, X. Wang, and F. Blaabjerg, “High-frequency resonance damp-
ing of dfig-based wind power system under weak network,” IEEE
Transactions on Power Electronics, vol. 32, no. 3, pp. 1927–1940, 2016.

[22] H. Nian and B. Pang, “Stability and power quality enhancement strategy
for dfig system connected to harmonic grid with parallel compensation,”
IEEE Transactions on Energy Conversion, vol. 34, no. 2, pp. 1010–1022,
2018.

[23] B. Pang, C. Wu, H. Nian, and F. Blaabjerg, “Damping method of high-
frequency resonance for stator current controlled dfig system under
parallel compensation grid,” IEEE Transactions on Power Electronics,
vol. 35, no. 10, pp. 10 260–10 270, 2020.

[24] Y. Song, X. Wang, and F. Blaabjerg, “Impedance-based high-frequency
resonance analysis of dfig system in weak grids,” IEEE Transactions on
Power Electronics, vol. 32, no. 5, pp. 3536–3548, 2016.

[25] W. Bartels, F. Ehlers, K. Heidenreich, R. Huttner, H. Kuhn, T. Meyer,
T. Kumm, J. Salzmann, H. Schafer, and K. Weck, “Generating plants
connected to the medium-voltage network,” Technical Guideline of
BDEW, 2008.

[26] D. N. Zmood, D. G. Holmes, and G. Bode, “Frequency domain analysis
of three phase linear current regulators,” in Conference Record of the
1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual
Meeting (Cat. No. 99CH36370), vol. 2. IEEE, 1999, pp. 818–825.

[27] J. Samanes, A. Urtasun, E. L. Barrios, D. Lumbreras, J. López, E. Gubia,
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