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Abstract The paper considers the attitude nonlinear stability analysis of the
spatial satellite problem and takes it one step further. A study of the Lie
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1 Introduction

The interest of studying the nonlinear stability of the satellite problem is due
to the importance of astrodynamics projects related to putting satellites into
orbit. Attitude control provides information about the satellite’s orientation
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D. Cárcamo-Dı́az, C. Vidal
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with respect to a reference system and its precise guidance, which includes
attitude stabilization. This has been a fundamental problem since the begin-
ning of the Space Age and therefore, there is a vast literature on the attitude
stability of a satellite in a circular orbit in a central gravity field. A beautiful
historical introduction on the study of the librational stability of satellites can
be found in [21]. Here we only mention a few papers. For a basic reference see
for instance, [19].

The linear stability of the satellite problem was studied by Beletskii [3], [4],
Delp [11] and DeBra and Delp in [10]. They found that in the plane of param-
eters defined by the quotients of the satellite’s principal moments of inertia
there are two regions, I and II, where the problem’s equilibria are linearly
stable. In fact, in region I there is Liapunov stability, thus nonlinear stability,
whereas in region II the conditions for stability are necessary but not suffi-
cient. In the literature, region I is known as Lagrange region and II is called
Beletskii-DeBra-Delp region. In [24] we find the first nonlinear stability analy-
sis in region II. Certain non-resonant and single resonant cases are inspected.
Some of them are found to be Liapunov stable, others are formally stable,
further ones are stable for the majority of initial conditions and others are
unstable. In [31] and [32], Zhavnerchik determines the instability in a certain
double resonant situation. Generalisations of this problem have been widely
considered in the literature, see for instance, the elliptical case [2].

Lie stability of equilibria is a special case of formal stability of Siegel [30]
and Moser [27]. It was dubbed Birkhoff stability in the pioneer work by
Khazin [20]. This concept appears as a strong alternative in cases where Lia-
punov stability cannot be ensured [6], [7] and one requires a sort of nonlinear
stability. Moreover, Lie stability is obtained for Hamiltonian systems that do
not satisfy Nekhoroshev’s theory necessary conditions. For example we find
degenerate cases that do not comply with directional quasi-convexity or cases
where stability is decided by the resonant terms [8]. The determination of Lie
stability passes through obtaining the required convexity of the Hamiltonian
function restricted to a subspace that we will call S and that is contained in
the orthogonal space related to the frequency vector. We recall the definition
of S, as well as other basics on Lie stability, in Appendix 7.

In the Lie stable cases, the error estimates of the solutions over exponen-
tially long times are obtained through a result based in the determination of
error bounds for adiabatic invariants in Hamiltonian systems [9]. The theorem
appears for the first time in [7], see also [6]. We recall it in Appendix 7 and
particularise it for our system in Sect. 4.

The paper is structured as follows. In Sect. 2 we establish the equations of
motion of the system, the equilibria and the regions where linear stability is
accomplished. The main results of the manuscript are contained in Sect. 3 and
Sect. 4, the first one including our analysis on the Lie stability of the satellite’s
attitude dynamics. Sect. 4 presents the asymptotic estimates on the solutions
in the Lie stable cases. In Sect. 5 we establish the existence of invariant 3-
tori encasing the quasi-periodic solutions corresponding to the equilibria. In
Sect. 6 we outline some conclusions. At the end of the paper there are three
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appendices, respectively, Sects. 7, 8 and 9. The first one is devoted to recall the
concepts and central theorems used to establish Lie stability and give estimates
on the solutions. Readers not familiar with Lie stability are recommended to
go through this section before getting immersed in Sect. 3. Some useful tables
with coefficients lists appear in the second appendix. Finally, Sect. 9 applies
Nekhoroshev theory for the study of the attitude stability.

The main contributions of our approach are Theorem 1, where we establish
the Lie stability of the attitude dynamics in terms of two external parameters,
which are the ratios of the satellite’s principal moments of inertia, and Theo-
rem 2 where asymptotic bounds for the Lie stable cases are provided. Finally,
we also establish Theorem 3, that deals with the existence of 3-dimensional
KAM tori and quasi-periodic motions associated to the Lie stable equilibria
and also a case of an unstable equilibrium.

2 Setting of the problem

We consider the motion of a satellite with respect to its centre of mass in a
central gravitational field. The centre of mass describes a circular orbit and
the satellite has non-necessarily equal principal central moments of inertia,
namely, a, b and c. For more details the reader is addressed to [24] or [23] and
references therein.

Let Ouvw be a coordinate system whose origin coincides with the centre
of mass of the satellite and whose axes are directed along the principal central
axes of the satellite’s ellipsoid of inertia. Its position relative to the orbital
coordinate system OUVW (the OU axis is directed along the radius vector
of the centre of mass, OV is along the transversal, and OW is along the
normal to the plane of the orbit) is specified by means of the Euler angles x,
y and z, see Fig. 1. The momenta conjugate to (x, y, z) are named (X,Y, Z).
According to [24], [23] the relative motion of the satellite can be described by
the canonical system of differential equations associated to the autonomous
Hamiltonian function with three degrees of freedom

H =
1

2
Y 2

(
A

C
+
A cos2 y + sin2 y

tan2 x

)
+

1

2
(A− 1)XY cotx sin(2y)

+
3(C − 1)

2A
sin2 x sin2 z +

3(A− 1)

2A
(cos y cos z − cosx sin y sin z)2

− (A− 1)XZ
sin(2y)

2 sinx
− Y Z

(
A cos2 y + sin2 y

) cosx

sin2 x

+
Z2

2 sin2 x

(
A cos2 y + sin2 y

)
+

1

2
X2
(
A sin2 y + cos2 y

)
− Z,

(1)

where A = a/b, C = c/b are positive dimensionless parameters with the re-
strictions

C + 1 ≥ A, A+ 1 ≥ C, A+ C ≥ 1.
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Fig. 1 Representation of the satellite in its coordinate frames: the orbital system OUVW
and the system Ouvw moving with the satellite. The ON axis corresponds to the line of the
nodes. The angles x, y, z are the Euler angles.

This problem possesses 24 equilibria (see [17] and [19] for more details):

P1 =
(
π
2 ,

π
2 , 0, 0, 0, 1

)
, P2 =

(
π
2 ,

π
2 ,

π
2 , 0, 0, 1

)
,

P3 =
(
π
2 , 0, 0, 0, 0,

1
A

)
, P4 =

(
π
2 , 0,

π
2 , 0, 0,

1
A

)
,

P5 =
(
π
2 ,

π
2 , π, 0, 0, 1

)
, P6 =

(
−π2 ,

π
2 , 0, 0, 0, 1

)
,

P7 =
(
−π2 ,

π
2 , π, 0, 0, 1

)
, P8 =

(
π
2 ,−

π
2 , 0, 0, 0, 1

)
,

P9 =
(
π
2 ,−

π
2 , π, 0, 0, 1

)
, P10 =

(
−π2 ,−

π
2 , 0, 0, 0, 1

)
,

P11 =
(
−π2 ,−

π
2 , π, 0, 0, 1

)
, P12 =

(
π
2 ,

π
2 ,−

π
2 , 0, 0, 1

)
,

P13 =
(
π
2 ,−

π
2 ,

π
2 , 0, 0, 1

)
, P14 =

(
π
2 ,−

π
2 ,−

π
2 , 0, 0, 1

)
,

P15 =
(
−π2 ,

π
2 ,

π
2 , 0, 0, 1

)
, P16 =

(
−π2 ,

π
2 ,−

π
2 , 0, 0, 1

)
,

P17 =
(
−π2 ,−

π
2 ,

π
2 , 0, 0, 1

)
, P18 =

(
−π2 ,−

π
2 ,−

π
2 , 0, 0, 1

)
,

P19 =
(
π
2 , 0, π, 0, 0,

1
A

)
, P20 =

(
−π2 , 0, 0, 0, 0,

1
A

)
,

P21 =
(
−π2 , 0, π, 0, 0,

1
A

)
, P22 =

(
π
2 , 0,−

π
2 , 0, 0,

1
A

)
,

P23 =
(
−π2 , 0,

π
2 , 0, 0,

1
A

)
, P24 =

(
−π2 , 0,−

π
2 , 0, 0,

1
A

)
.

Due to the four independent discrete symmetries of the problem, given by

S1 : (x, y, z,X, Y, Z) −→ (−x, y, z,−X,Y, Z),

S2 : (x, y, z,X, Y, Z) −→ (x,−y,−z,−X,Y, Z),

S3 : (x, y, z,X, Y, Z) −→ (x, y + π, z,X, Y, Z),

S4 : (x, y, z,X, Y, Z) −→ (x, y, z + π,X, Y, Z),
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the study of their stability can be reduced to the analysis of the equilibria P1,
P2, P3 and P4. The equivalence classes determined by the symmetries appear
in Table 1.


P1

P5

...
P11

S4

−−−−−−→


P1

P6

P8

P10

S1

−−−−−−→

{
P1

P8

S2

−−−−−−→ P1


P2

P12

...
P18

S4

−−−−−−→


P2

P13

P15

P17

S1

−−−−−−→

{
P2

P13

S3

−−−−−−→ P2


P3

P19

P20

P21

S4

−−−−−−→

{
P3

P20

S1

−−−−−−→ P3


P4

P22

P23

P24

S4

−−−−−−→

{
P4

P23

S1

−−−−−−→ P4

Table 1 The equivalence classes of equilibrium points Pj , for j = 1, . . . , 24 under the
symmetries Sj , j = 1, . . . , 4.

In order to determine the stability regions of Pj , we introduce a linear
symplectic change of variables Tj associated to each point Pj , j = 1, . . . , 4, in
the following way:

T1 : (x, y, z,X, Y, Z) −→
(
x, y + π

2 , z,X, Y , Z + 1
A − 1

)
,

T2 : (x, y, z,X, Y, Z) −→
(
x, y + π

2 , z + π
2 , X, Y , Z + 1

A − 1
)
,

T3 : (x, y, z,X, Y, Z) −→
(
x, y, z,X, Y , Z

)
,

T4 : (x, y, z,X, Y, Z) −→
(
x, y, z + π

2 , X, Y , Z
)
.

(2)

Then, we apply Tj to Hamiltonian (1) and translate the equilibrium so-
lution Pj = (Pj1, Pj2, Pj3, Pj4, Pj5, Pj6) to the origin by means of the linear
change of coordinates given by

x = x1 + Pj1, y = y1 + Pj2, z = z1 + Pj3,

X = X1 + Pj4, Y = Y1 + Pj5, Z = Z1 + Pj6,
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with j = 1, . . . , 4. After these transformations are performed, the Hamiltonian
function (1) assumes the same form in all cases, namely, the function

H =
1

2
Y 2
1

(
A

C
+ tan2 x1

(
A cos2 y1 + sin2 y1

))
+

3(C − 1)

2A
cos2 x1 sin2 z1

+
3(A− 1)

2A
(sinx1 sin y1 sin z1 + cos y1 cos z1)2

− 1

2
(A− 1)X1Y1 tanx1 sin(2y1) +

1

2
X2

1

(
A sin2 y1 + cos2 y1

)
− 1

2
(A− 1)X1

(
1

A
+ Z1

)
secx1 sin(2y1)

+Y1

(
1

A
+ Z1

)
tanx1 secx1

(
A cos2 y1 + sin2 y1

)
+

1

2

(
1

A
+ Z1

)2

sec2 x1
(
A cos2 y1 + sin2 y1

)
−
(

1

A
+ Z1

)
.

(3)

Proposition 1 The stability of the equilibria Pj of Hamiltonian (1) is the
same for all j = 1, . . . , 24.

Proof. By applying the symmetries Sj and the transformations Tj , with
j = 1, . . . , 4, as described above, we obtain the same Hamiltonian for the
study of the stability of every Pj with j = 1, . . . , 24.

Then, from now on we generically allude to the stability of the equilibrium
P for referring to any equilibrium Pj , with j = 1, . . . , 24.

Hamiltonian function (3) is expanded in Taylor series around 0, constant
terms are dropped and we get an expansion of the form

H = H2 +H3 +H4 + · · · , (4)

where

H2 =
1

2A
x21 −

(A− 1)(3A+ 1)

2A2
y21 +

3(C −A)

2A
z21 +

1

2
X2

1 +
A

2C
Y 2
1 +

A

2
Z2
1

+x1Y1 −
A− 1

A
X1y1,

H3 = x21Z1 −
A− 1

A
y21Z1 +

3(A− 1)

A
x1y1z1 +Ax1Y1Z1 − (A− 1)X1y1Z1,

H4 =
1

3A
x41 +

(A− 1)(3A+ 1)

6A2
y41 −

C −A
2A

z41 +
5

6
x31Y1 +

2(A− 1)

3A
y31X1

−A− 1

2A2
x21y

2
1 −

3(C − 1)

2A
x21z

2
1 +

3(A− 1)

2A
y21z

2
1 +

A

2
x21Y

2
1 +

A

2
x21Z

2
1

+
1

2
(A− 1)y21X

2
1 −

1

2
(A− 1)y21Z

2
1 −

A− 1

2A
x21y1X1 −

A− 1

A
y21x1Y1

− (A− 1)x1y1X1Y1.
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The linearisation matrix associated to the equilibrium P is

B =



0 1−A
A 0 1 0 0

1 0 0 0 A
C 0

0 0 0 0 0 A

− 1
A 0 0 0 −1 0

0 (A−1)(3A+1)
A2 0 A−1

A 0 0

0 0 3(1−C)
A 0 0 0


,

whose characteristic polynomial is pB(r) = a0 + a2r
2 + a4r

4 + r6 with

a0 =
12

AC
(A− 1)(C − 1)(C −A),

a2 =
1

AC
(9A3 − 15A2C − 6A2 + 6AC2 + 13AC − 7A− 3C2 − C + 4),

a4 =
1

AC
(−3A2C − 3A2 + 3AC2 + 2AC + 2A− C + 1).

We write pB(t) = a0+a2t+a4t
2+t3 with t = r2 and apply Sturm’s theorem

to determine the conditions on the parameters to obtain three distinct non-
positive real roots of the cubic polynomial pB(t). These values will correspond
with six pure imaginary or zero roots of the polynomial pB(r). The polynomials
in the Sturm sequence are

p0(t) = pB(t),

p1(t) = a2 + 2a4t+ 3t2,

p2(t) = b0 + b1t,

p3(t) =
9α1α

2
2

4α2
3

,

where bj and αj are given in Table 5 of Appendix 8. By calculating the limit
when t→ −∞ of each sequence’s term we get the following sequence of signs,
{−,+,−sign(b1), sign(α1)}. Let us denote the number of sign changes in this
sequence by V (−∞). The evaluation of the sequence at 0 results in {sign(a0),
sign(a2), sign(b0), sign(α1)}. The number of sign changes in this sequence is
denoted by V (0). Then, the number of distinct non-positive real roots of pB(t)
is V (−∞)− V (0). For this number to be three, the following conditions must
be fulfilled: a0 > 0, a2 > 0, b0 > 0, b1 > 0, α1 > 0. These requirements are
satisfied in region I, that is the finite region enclosed by the straight lines
A = C, C = 1 and A = 1 − C, and in region II, that is the finite region
enclosed by the straight lines A = C, A = 1, A = C − 1 and the curve α1 = 0,
that comes from the last term of the Sturm sequence, see Fig. 2. These are
the regions found by Beletskii [3,4] and Delp and DeBra [11], [10].
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Fig. 2 Regions in the parameter plane defined by A and C where the necessary conditions
for the equilibrium point to be linearly stable are satisfied.

The eigenvalues of matrix B are λ1 = ±iω1, λ2 = ±iω2, λ3 = ±iω3, whose
frequencies read as

ω1 =

√
β +
√
α1√

2AC
, ω2 =

√
β −√α1√

2AC
, ω3 =

√
3(C −A), (5)

with α1 comes from the last term in the Sturm sequence, that we repeat for
the sake of clarity:

α1 = 9A4− 12A3(C+ 1)− 2A2(6C2− 15C+ 1) + 4A(3C2− 4C+ 1) + (C− 1)2

and

β = A(−3A+ 2C + 2)− C + 1.

The frequencies are ω1 > ω2 > 0, ω3 > 0 and thence, the eigenvalues are
pure imaginary in regions I and II and on the boundaries A = 1 − C with
C ∈ (1/2, 1); and A = C − 1 with A ∈ (1, (−3 + 8

√
6)/15]. In all these cases

the equilibrium is elliptic, matrix B is diagonalisable and therefore, the point
is linearly stable. On the rest of the boundary of regions I and II matrix B is
non-diagonalisable. Outside regions I and II the equilibrium is unstable.

For simplification purposes it is interesting to have the expressions of the
fundamental parameters A and C as functions of the frequencies ω1 and ω2,
as well as ω3(ω1, ω2), at hand:

A = − (ω2
1 − 4)(ω2

2 − 4)

3(ω2
1ω

2
2 − 4)

, C = − 16(ω2
1 − 1)(ω2

2 − 1)

(ω2
1ω

2
2 − 4) (ω2

1ω
2
2 + 4(1− ω2

1 − ω2
2))

,

ω2
3 =

16(ω2
1 − 1)2 − 4(2ω4

1 − ω2
1 + 8)ω2

2 + (ω2
1 − 4)2ω4

2

(ω2
1ω

2
2 − 4) (4− 4ω2

2 + ω2
1(ω2

2 − 4))
.
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Now we introduce a real linear symplectic change of coordinates to put H2

in linear normal form by using the eigenvalues and eigenvectors of matrix B.
We call x = (q1, q2, q3, p1, p2, p3) the transformed variables, where qi stand for
coordinates and pi do for their conjugate momenta. Using Markeev’s procedure
for the normalisation of the quadratic terms in rectangular coordinates, see
details in [22], H2 is converted into

H2(I) = ω1I1 + ω2I2 + ω3I3,

in region I and
H2(I) = ω1I1 − ω2I2 + ω3I3, (6)

in region II, where (I, θ) = (I1, I2, I3, θ1, θ2, θ3) are the usual action-angle
variables, with Ij = 1

2 (q2j + p2j ) the actions conjugate to the angles θj =

tan−1(pj/qj) for j = 1, 2, 3. Thus, the equilibrium is nonlinearly (Liapunov)
stable in region I by Dirichlet’s Theorem [13], and a nonlinear stability anal-
ysis is required in region II, as found by Beletskii [4]. That is why our study
will be focused in region II from now on. The linear symplectic change from
(x1, y1, z1, X1, Y1, Z1) to x can be provided by the first author.

We continue with the computation of the normal form of Hamiltonian
H appearing in (4). It is convenient to introduce a complex linear change to
expressH2 in complex diagonal form. The two changes applied toH2 up to now
are also applied to the higher-order terms. Subsequently, a standard procedure
based on Lie transformations [12,25] is performed to normalise the terms from
H3 on, so that the resulting Hamiltonian commutes with H2 at every step.
This process is executed up to a finite order and, in most of the cases in this
paper, order two is enough, which means including the polynomials of degree
four in x that define H4.

We denote by Hp the normalisation of Hp, the terms composed by homo-
geneous polynomials of degree p in x, and by Hp the normal form truncated
at order p− 2. Thus,

Hp(x) = H2(x) +H3(x) + · · ·+Hp(x) (7)

represents the truncation of the normal form at terms of degree p in rectangular
coordinates. The Poisson brackets {H2,Hk} = 0 for k = 3, . . . , p. The normal
form is achieved through the calculation of the associated generating function,
which is used to define the symplectic transformation.

The normalised Hamiltonian put in action-angle variables corresponding
to (7) reads as

Hp(I, θ) = H2(I) +H3(I, θ) + · · ·+Hp(I, θ), (8)

where the dependence of Hj with respect to θ occurs only due to the possible
resonances of H2. In fact, Hamiltonians Hj(I, θ) can be rewritten as Hj(I, φ)
where φ = (φ1, . . . , φs), φi = ki · θ, with the vectors ki introduced in Ap-
pendix 7. The operator (·) stands for the usual inner product of two vectors.
It is stressed that Hj may be independent of some angles φj or even of all of
them.
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Remark 1 Using action-angle variables defined above, Hamiltonian function
Hp in (7) leads to a finite Fourier series in θ whose coefficients are polynomials
in
√
Ii, with terms of the form

c I
α1/2
1 · · · Iαn/2

n cos(β1θ1+· · ·+βnθn), s I
α1/2
1 · · · Iαn/2

n sin(β1θ1+· · ·+βnθn),

where c, s are real constants, the αj are non-negative integers and the βj are
integers. Since the Fourier series came from a real power series the terms above
satisfy the so called d’Alembert character [25], i.e., the following relations hold:

for j = 1, . . . , n, αj ≥ |βj | and αj ≡ βj mod 2. (9)

We observe that H in (8) is an analytic function of the variables
√
Ij , θj and is

2π-periodic in θj , j = 1, . . . , n excepting at I = 0. To circumvent the problem
at the origin of R6 one proceeds by keeping track of the d’Alembert charac-
ter of the Hamiltonians and related formulae in action-angle coordinates. If
this character is maintained through the different manipulations, transform-
ing these formulae back to rectangular coordinates, the resulting expressions
are polynomials in x, thus analytic everywhere. Throughout the text we have
checked that all Hamiltonians and related functions satisfy (9), hence all the
calculations are performed in the analytic setting.

Returning to the normal form Hamiltonian (4), when no resonance of order
three and four are present in the normal form Hamiltonian we write

H(I, θ) = H2(I) +H4(I) + · · · , (10)

where

H4(I) = c200I
2
1 + c020I

2
2 + c002I

2
3 + c110I1I2 + c011I2I3 + c101I1I3, (11)

and

c200 =
f2

192f10g1h21h2

(
4(−4g31g2 − 4g21g3ω

2
1 + g6ω

4
1 + g5ω

6
1 + g2g4ω

8
1ω

2
2)

−h2(4g21g7 + g9ω
2
1 + g2g8ω

4
1)ω2

3

)
,

c020 =
g2

192g10f1h21h2

(
4(−4f31 f2 − 4f21 f3ω

2
2 + f6ω

4
2 + f5ω

6
2 + f2f4ω

2
1ω

8
2)

−h2(4f21 f7 + f9ω
2
2 + f2f8ω

4
2)ω2

3

)
,

c002 = −A
4
,

c110 =
8t4ω

2
1 + 2t3ω

4
1 − 2t2ω

6
1 + t1ω

8
1 − 128g1t19ω

2
2 − 2t5ω

10
1 ω

2
2 + t18ω

12
1 ω

2
2

48h21h2h3ω1ω2
,

c011 =
64g1t17 − 16t16ω

2
1 + 4t14ω

4
1 + t15ω

6
1 + g2t13ω

8
1 + g22t12ω

10
1

24g10h1h2h3ω2(4 + g2ω2
1 − 4ω2

2)ω3
,

c101 =
1

24f10h1h2h3ω1

(
4 + g2ω2

1 − 4ω2
2)ω3

(−16g1t11ω
2
1 + 4t8ω

4
1 − t6ω6

1

+t7ω
8
1 − g2t9ω10

1 + g2t10ω
12
1 + g32t20ω

14
1 − 256g21t21ω

2
3

)
,
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with fj , gj , hj , tj functions of ωi that are given in Tables 6 and 7 of Appendix 8.
Note that in this generic normal form Hamiltonian odd terms H3,H5, . . . are
always zero. The expressions of the corresponding two generating transforma-
tion’s terms are lengthy, thus we do not include them in the paper, but they
are available upon request from the first author. In particular, the generating
function associated to the normal form Hamiltonian is needed to build the
transformation explicitly.

The reader should be aware that this normal form is valid in the absence
of certain resonances, as we explain below.

The normal form truncated at polynomials of degree four in rectangular
coordinates (that is, at order two of the Lie transformation) is meaningful
when there are no resonances of orders three and four. Taking into account
Definition 1 in Apppendix 7, there are exactly 21 possible distinct resonance
vectors of orders three and four, namely,

k1 = (0, 1, 2), k2 = (0, 2, 1), k3 = (1, 2, 0), k4 = (1,−1,−1),

k5 = (1, 0,−2), k6 = (1, 1,−1), k7 = (2, 0,−1), k8 = (0, 1, 3),

k9 = (0, 3, 1), k10 = (1, 2, 1), k11 = (1, 3, 0), k12 = (0, 2, 2),

k13 = (1,−2,−1), k14 = (1,−1,−2), k15 = (1, 0,−3), k16 = (1, 1,−2),

k17 = (1, 2,−1), k18 = (2,−1,−1), k19 = (3, 0,−1), k20 = (2, 1,−1),

k21 = (2, 0,−2).

After the analysis of the coefficient’s denominators of the function H4(I)
and the corresponding generating functions of first and second order needed
to determine H4 (see details on the normalisation procedure based on Lie
transformations in [12]).

Taking into account that ω1 > ω2 > 0, ω3 > 0 and (C,A) ∈ region II,
we arrive at the fact that there are nine cases where the normalised Hamilto-
nian (11) does not apply. These are the resonances satisfying ki ·ω = 0 for i =
2, 4, 6, 7, 11, 12, 14, 16, 21, see Fig. 3. Here and from now on ω = (ω1,−ω2, ω3).
In each of these cases, a specific normal form has been calculated. However
for the remaining 12 resonances the normal form transformation determined
above works properly because in these cases the resonant part of the Hamil-
tonian normal form is null. Then, in these twelve resonances the normalised
Hamiltonian including terms of order four has the form (10). For a specific
point in the plane of parameters (C,A) which does not belong to a resonance
curve but is near to it, the normal form can produce the appearance of small
divisors in case of non-Diophantine frequencies σi introduced in (23), but one
can avoid them, as it is explained in Remark 7 of Sect. 3.
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Fig. 3 Representation in region II of the nine curves as functions of the parameters (C,A)
where the normal form (10) truncated at order 2 is not well defined. They correspond to
the following single resonances: k2 : 2ω2 = ω3, k4 : ω1 + ω2 = ω3, k6 : ω1 =
ω2 + ω3, k7 : 2ω1 = ω3, k11 : ω1 = 3ω2, k12 : ω2 = ω3, k14 : ω1 + ω2 =
2ω3, k16 : ω1 = ω2 + 2ω3, k21 : ω1 = ω3.

3 Lie stability of the equilibrium point

We plan to determine the Lie stability regions in II, see Definition 6 in Ap-
pendix 7. To simplify the discussion, we consider ω1 = ω1/ω3, ω2 = ω2/ω3,
ω3 = 1. The first step is the determination of the set S (see the definition
in Appendix 7). This passes through the construction of the formal inte-
grals Fi associated to H2. The number of linearly independent integrals is
1 ≤ d(= 3 − s) ≤ 3. On the one hand, when I ∈ S then H2(I) = 0 and by
applying (6) we can write

I2 =
1

ω2
(ω1I1 + I3) , (12)

with I1, I3 ≥ 0. On the other hand,

k1ω1 − k2ω2 + k3 = 0, (13)

with k = (k1, k2, k3) ∈ Z3. The following situations are in order:

(a1) If ω1, ω2 ∈ Q, then we obtain F1 = ω1I1 − ω2I2 + I3, d = 1, s = 2 and

S =

{(
I1,

1

ω2
(ω1I1 + I3) , I3

) ∣∣∣∣ I1, I3 ≥ 0

}
.
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(a2) If ω1 ∈ Q and ω2 ∈ R \ Q, then one gets F1 = ω1I1 + I3, F2 = I2. Thus,
d = 2, s = 1 and

S = {(I1, I2, I3) | ω1I1 + I3 = 0, I2 = 0, I1, I3 ≥ 0} = {0}.

(b1) If ω1, ω2 ∈ R \ Q and there is no integer vector k = (k1, k2, k3) 6= (0, 0, 0)
satisfying (13) we conclude that there are no resonances among the Ij .
Hence, Fj = Ij for j = 1, 2, 3. Therefore, d = 3, s = 0 and S = {0}.

(b2) If ω1, ω2 ∈ R \Q and there is an integer vector k 6= 0 satisfying (13), then

ω1 =
k2
k1
ω2 −

k3
k1
, (14)

with k1 6= 0. Notice that k1 = 0 would imply −ω2k2 + k3 = 0 and then,
either k2 = 0, in which case k1 = k2 = k3 = 0 that is impossible, or
ω2 = k3/k2 ∈ Q, contradicting the hypotheses of (b2). Analogously k2 6= 0
because k2 = 0 would lead to ω1 = −k3/k1 ∈ Q that is not feasible.
However, k3 = 0 is possible and this implies k1ω1 = k2ω2.
Using (14) we get

H2 =

(
k2
k1
I1 − I2

)
ω2 −

k3
k1
I1 + I3,

from where we deduce that F1 = k2I1/k1 − I2, F2 = −k3I1/k1 + I3, d = 2
and s = 1.
Consider the set

K =
{
k = (k1, k2, k3) ∈ Z3 | k1 6= 0, k2/k1 > 0, k3/k1 ≥ 0

}
.

If k ∈ K then dimS = 1 with

S =

{(
I1,

k2
k1
I1,

k3
k1
I1

) ∣∣∣∣ I1 ≥ 0

}
.

If k /∈ K from F1 and F2 it is readily deduced that S = {0}.

(b3) If ω1 ∈ R \ Q and ω2 ∈ Q, then we take F1 = I1, F2 = −ω2I2 + I3, from
where we get d = 2, s = 1 and

S =

{(
0,

1

ω2
I3, I3

) ∣∣∣∣ I3 ≥ 0

}
.

Remark 2 According to Remark 12 in Appendix 7, when S = {0} Lie stability
holds. Therefore in cases (a2), (b1) and (b2) with k /∈ K, Lie stability is
concluded directly from H2 regardless of the higher-order terms.
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In the remaining cases (i.e. Remark 2 does not hold) the analysis of the
higher-order terms is necessary. In accordance to Theorem 4 we have to eval-
uate H4 in S \ {0} and determine the regions where it does not change sign.
First, we consider the generic (non-resonant) situations and analyse the regions
in II where Hamiltonian (11) evaluated in S \ {0} does not change sign.

Consider I ∈ S \ {0} and replace (12) in (11) to get

H4(I) = β1I
2
1 + β2I1I3 + β3I

2
3 , (15)

with

β1 =
1

ω2
2

(
c020ω

2
1 + c110ω1ω2 + c200ω

2
2

)
,

β2 =
1

ω2
2

(
2c020ω1 + c110ω2 + c011ω1ω2 + c101ω

2
2

)
,

β3 =
1

ω2
2

(
c020 + c011ω2 + c002ω

2
2

)
.

(16)

When H4(I) = 0, then for β1 6= 0,

I1 =
−β2 ±

√
β2
2 − 4β1β3

2β1
I3,

which defines a line through the origin of the I1I3-plane. Taking into account
that I1, I3 ≥ 0, if the line’s slope is positive then H4(I) = 0 for I1, I3 > 0,
therefore H4(I) changes sign for I1, I3 > 0. When β1 = 0, then I3 = 0 and
I1 = −β3 I3/β2. Thus, H4(I) changes sign in the regions where β1 6= 0 and

−β2 +
√
β2
2 − 4β1β3

2β1
> 0 or

−β2 −
√
β2
2 − 4β1β3

2β1
> 0,

and in the regions where β1 = 0 and β3/β2 < 0. If one of the slopes is
positive and the other one is zero, one has that (15) also changes sign. In
summary, Hamiltonian (15) does not change sign in the dark-blue region of
Fig. 4, whereas the light-blue region stands for the values where the normal
form (15) changes sign.
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Fig. 4 Cases (a1): ω1, ω2 ∈ Q and (b2): ω1, ω2 ∈ R \ Q with k ∈ K. The dark-blue region
corresponds to the Lie stable cases. In the light-blue region the normal form (15) changes
sign. The coloured curves stand for the resonances appearing in Fig. 3, where (15) does not
apply.

Consequently, when HamiltonianH2 is not enough to conclude Lie stability,
we need to consider different situations, accordingly with the analysis made in
the above paragraphs. We proceed as follows:

(a1) By virtue of Theorem 4 the equilibrium P is Lie stable whenever (C,A)
belongs to the dark-blue region.

(b2) Taking I ∈ S \ {0} and replacing conveniently in (15) we get

H4(I) =

(
β1 + β2

k3
k1

+ β3
k23
k21

)
I21 ,

with β1, β2, β3 given in (16). The analysis of the sign of H4(I) coincides
with the one performed above. Thence, using Theorem 4 the equilibrium
P is Lie stable whenever (C,A) belongs to the dark-blue region.

(b3) Restricting I to be in S \ {0}, we have that

H4(I) = β3I
2
3 ,

with β3 given in (16). The coefficient β3 ≡ β3(C,A) is zero on the black
lines appearing in Fig. 5. Therefore, the application of Theorem 4 allows
us to conclude that the equilibrium P is Lie stable in the whole region
II, excepting on the black curves in Fig. 5. When β3 = 0 a higher-order
normalisation would be required, but we do not pursue it in this paper.
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Fig. 5 Case (b3): ω1 ∈ R \ Q, ω2 ∈ Q. The light-blue and dark-blue regions correspond to
the Lie stable cases. On the black curves the normal form is null. The coloured curves stand
for the resonances appearing in Fig. 3, where (15) does not apply.

It is instructive to compare the analysis performed so far with the one
applying Nekhoroshev stability theory accomplished in Appendix 9. We note
that the curves separating the blue and the light-blue regions of Figs. 4 and 5
are the same as the curves separating the quasi-convex and directionally quasi-
convex regions of Fig. 9. However we obtain more stable cases, in particular
those of Remark 2 and the ones corresponding to case (b3) (see Fig. 5). See
also point 6 in Sect. 6.

Once the main regions in the parametric plane (C,A) have been analysed
we need to deal with the nine resonances appearing in Fig. 3. We classify them
into four groups.

1. Resonances defined through k2 = (0, 2, 1), i.e. 2ω2 = ω3 and 2ω2 = 1; and
k12 = (0, 2, 2), i.e. ω2 = ω3 and ω2 = 1.
These resonances belong either to case (a1) or to case (b3), therefore
dimS = 2 or dimS = 1, respectively.

– For k2 the truncated normal form is

H3(I, φ1) = ω1I1 − 1
2ω3I2 + ω3I3 + γ1I2I

1/2
3 cosφ1, (17)

with φ1 = 2θ2 + θ3, γ1 given in Table 8 of Appendix 8. This normal
form is well defined on the resonance curve in II, except on the point
obtained as the intersection between the resonance curves related to the
vectors k2, k6, k11 and k14. It is a point in the parametric plane (C,A)
that corresponds to the 3:1:2 resonance. For this case a specific normal
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form should be calculated and will be analysed below when considering
k11.
When dimS = 1, i.e. in the absence of other resonances, we obtain

S = {(0, 2I3, I3) | I3 ≥ 0}.

In this situation we take I in S \ {0}, arriving at

H3(I, φ1) = 2γ1I
3/2
3 cosφ1.

As γ1 is not null on the resonance curve 2ω2 − ω3 = 0, see also Fig. 6,
then H3 has a simple zero as a function of φ1 and therefore, applying
Theorem 6, the equilibrium P is unstable.

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

- 12

- 10

- 8

- 6

- 4

- 2

0

C

1
(C
)

Fig. 6 Graph of γ1 ≡ γ1(C) on the resonance curve k2: 2ω2 − ω3 = 0.

When dimS = 2, i.e. when there is an additional resonance, one gets

S = {(I1, 2 (ω1I1 + I3) , I3) | I1, I3 ≥ 0}.

In particular, this corresponds to these points: (i) the one obtained from
the intersection of the resonance lines related to k2 and k16, thus H2 is
in 5:1:2 resonance; (ii) the intersection point of the lines related to k2

with k21, and then H2 is in 2:1:2 resonance.
Now taking I in S \ {0} we obtain

H3(I, φ1) = 2γ1 (ω1I1 + I3) I
1/2
3 cosφ1.

Applying Theorem 7 the point P is unstable in both situations.

– For k12 the truncated normal form reads as

H4(I, φ1) = ω1I1 − ω3I2 + ω3I3 + c200I
2
1 + c110I1I2 + c101I1I3

+ c020I
2
2 + c011I2I3 + c002I

2
3 + γ3I2I3 cosφ1,

(18)

where φ1 = 2θ2 + 2θ3 and γ3, cjkl are the coefficients given in Tables 12
and 13 in Appendix 8. The normal form is valid excepting on the two
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points of the parametric plane (C,A) determined as the intersections
between the resonance curve associated to k12 with other two resonance
curves. For these points specific normal forms should be computed, see
details in Fig. 3.
When dimS = 1, i.e. in the absence of other resonances, we arrive at

S = {(0, I3, I3) | I3 ≥ 0}.

Taking I in S \ {0} we get

H4(I, φ1) = I23 (c020 + c011 + c002 + γ3 cosφ1)

≡ I23 (A12 +B12 cosφ1) .

The coefficient of I23 has a simple zero as a function of φ1 when |A12| <
|B12| on the resonance curve, which corresponds to 1 < C . 1.16741543,
see the red curve in Fig. 7 (b). Therefore, with the application of The-
orem 6, these values correspond to the point P being unstable. Hamil-
tonian H4(I, φ1) 6= 0 on the resonance curve for I ∈ S \ {0} and all
φ1 when 1.16741543 . C . 1.26357367. Thence, by the application of
Theorem 4 the equilibrium P is Lie stable in these situations, see the
blue curve in Fig. 7 (b). When C ≈ 1.16741543 then A12 +B12 = 0 and
a higher-order normal form should be calculated.

(a) k11, A11 = c200 + 3c110 + 9c020, B11 =
3
√

3γ2

(b) k12, A12 = c020 + c011 + c002, B12 = γ3

Fig. 7 Curves of instability and Lie stability of the equilibrium point P on the resonance
curves defined by ki ·ω = 0, with i = 11, 12 inside region II. We consider Ai = Ai(C,A), Bi =
Bi(C,A), which minimises the computational cost in the calculations. The “islands” in white
represent the regions where |Ai(C,A)| < |Bi(C,A)| and the zones in light grey account for
|Ai(C,A)| > |Bi(C,A)|. Then, we intersect these regions with the resonance curve to obtain
the stability and instability intervals. Note that the instability curves (in red) appear as
intersections between the white regions and the resonance curves, whereas the Lie stability
curves (in blue) are intersections between the light grey regions and the resonance curves.

When dimS = 2, there is an additional resonance and we have obtained

S = {(I1, ω1I1 + I3, I3) | I1, I3 ≥ 0}.
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In particular this is the intersection of the lines related to k12 with
either k11 and k16, that will be handled when we consider k11; and
with k6, which corresponds to the 2:1:1 resonance and that requires
a specific normal form. In the latter situation the truncation of this
normal form evaluated in S \ {0} reads as

H3(I, φ1) ≈ 1.10453482I
1/2
1 (2I1 + I3)1/2I

1/2
3 cosφ1,

where φ1 = θ1 + θ2− θ3. After applying Theorem 6 it is concluded that
the point P is unstable.

2. Resonances defined through the following vectors: k4 = (1,−1,−1), so
ω1 + ω2 = ω3 and ω1 + ω2 = 1; k6 = (1, 1,−1), so ω1 = ω2 + ω3 and
ω1 − ω2 = 1; k14 = (1,−1,−2), so ω1 + ω2 = 2ω3 and ω1 + ω2 = 2; and
k16 = (1, 1,−2), so ω1 = ω2 + 2ω3 and ω1 − ω2 = 2.

These resonances belong either to case (a1) or to case (b2) with k /∈ K.
Therefore dimS = 2 or S = {0}, respectively.
When S = {0}, i.e. in the absence of resonances, Lie stability holds from
H2 by applying Theorem 4. However, when dimS = 2 there is an extra
resonance. For example this occurs in the intersection of lines associated
to the different ki:
– k4 and k11, which corresponds to the 3:1:4 resonance and that will be

studied when we tackle the case k11.
– k6 with k12, that is the 2:1:1 resonance, and that was analysed when

we handled k12. It yields instability.
– k6 with k2, k11 and k14, that corresponds to the 3:1:2 resonance and

that will be analysed when we consider k11.
– k16 with k2, that corresponds to the 5:1:2 resonance and that was

analysed when we studied the resonance vector k2; it leads to instability.
– k16 with k11 and k12, that corresponds to the 3:1:1 resonance and that

will be seen when we handle k11.

When dimS = 2 we compute the normal form, evaluate it at I ∈ S \ {0}
and obtain the following results:

– For vectors k4 and k6, the normal form at order one can be written as

H3(I, φ1) = f(ω1, ω2)I
1/2
1 I

1/2
2 I

1/2
3 cosφ1,

where f(ω1, ω2) is well defined in region II for k4 and is well defined
for k6 excepting the 3:1:2 resonance, that requires a specific normal
form that will be computed when analysing k11. The angle φ1 is either
θ1 − θ2 − θ3 for k4 and θ1 + θ2 − θ3 for k6.
In the truncated normal form we set I2 = (ω1I1 + I3)/ω2 and evalu-
ate the resulting Hamiltonian in S \ {0}, checking that it changes sign,
hence Lie stability cannot be concluded from Theorem 4. Moreover,
it is not possible to apply Theorem 7 because the components of ki

(i = 4, 6) change sign.
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– For vectors k14 and k16, the normal form at order two becomes

H4(I, φ1) = f1I
2
1 + f2I1I3 + f3I

2
3 + f4I

1/2
1 I

1/2
2 I3 cosφ1,

where the functions fi ≡ fi(ω1, ω2) are well defined in II for k14 and
k16 excepting the 3:1:2 resonance (for k14) and the 3:1:1 and 5:1:2
resonances (for k16). These resonances require specific normal forms.
The angle φ1 is θ1 − θ2 − 2θ3 for k14 and θ1 + θ2 − 2θ3 for k16.
In H4 we replace I2 = (ω1I1 + I3)/ω2, concluding that in contrast
with the former case, i.e. the resonance vectors k4 and k6, there are
resonances for which the point P is Lie stable and others for which P
is unstable.

3. Resonances defined through k7 = (2, 0,−1), i.e. 2ω1 = ω3 and 2ω1 = 1;
and k21 = (2, 0,−2), i.e. ω1 = ω3 and ω1 = 1.
These resonances belong either to case (a1) or to case (a2). Therefore,
dimS = 2 or S = {0}, respectively.
When S = {0} Lie stability is concluded from H2 by the application of
Theorem 4, and when dimS = 2 there is a double resonance. In this latter
case we compute a specific normal form for k7 and another one for k21,
evaluate them at I ∈ S \ {0} and obtain the following:

– For k7 the normal form is

H3(I, φ1) = f(ω1, ω2)I1I
1/2
3 cosφ1,

where φ1 = 2θ1 − θ3, f(ω1, ω2) is well defined in region II.

– For k21 we end up with

H4(I, φ1) = f(ω1, ω2)I1I3 cosφ1,

where φ1 = 2θ1−2θ3, f(ω1, ω2) is well defined in region II excepting the
2:1:2 resonance. This is precisely the intersection point of the resonance
lines related to k21 and k2, see Fig. 3. At this point a specific normal
form should be computed and, as we have seen in the analysis of k2, it
leads to instability.

In conclusion, when dimS = 2 instability or Lie stability cannot be estab-
lished for resonances related to k7 and k21, as the truncated normal form
evaluated in S \ {0} changes sign, thus Theorem 4 does not apply.

4. Resonance defined through k11 = (1, 3, 0), so ω1 = 3ω2 and ω1 = 3ω2.

In this case we are either in (a1) or in (b2) with k ∈ K, thence dimS = 2
or dimS = 1, respectively. The normal form truncated at order 2 is

H4(I, φ1) = 3ω2I1 − ω2I2 + ω3I3 + c200I
2
1 + c110I1I2 + c101I1I3

+ c020I
2
2 + c011I2I3 + c002I

2
3 + γ2I

1/2
1 I

3/2
2 cosφ1,

(19)
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where φ1 = θ1 + 3θ2 and γ2, cjkl are given in Tables 9, 10 and 11 in
Appendix 8. This normal form is well defined excepting at four values,
which correspond to the four intersection points of the curve related to the
vector k11 with the other resonance curves, see Fig. 3. A specific normal
form should be computed at these points.

– When dimS = 1, i.e. in the absence of more resonances, one gets

S = {(I1, 3I1, 0) | I1 ≥ 0}.

Evaluating H4 in S \ {0} we end up with

H4(I, φ1) = I21
(
c200 + 3c110 + 9c020 + 3

√
3γ2 cosφ1

)
≡ I21 (A11 +B11 cosφ1).

If the coefficient of I21 has a simple zero as a function of φ1 then, apply-
ing Theorem 6, the equilibrium P is unstable. This occurs when |A11| <
|B11| on the resonance curve, which corresponds to 1.19633123 . C .
1.31669778 and 1.76531759 . C . 1.96884828, see the red curves in
Fig. 7 (a). Hamiltonian H4(I, φ1) 6= 0 on the resonance curve for I ∈
S \ {0} and all φ1 when 1.11679395 . C . 1.19633123, 1.31669778 .
C . 1.76531759 and 1.96884828 . C . 2.04222818. In this situation,
by the application of Theorem 4 the equilibrium P is Lie stable, see the
blue curves in Fig. 7 (a). When C ≈ 1.31669778, 1.76531759, 1.96884828
a higher order analysis is required because |A11|+ |B11| = 0. The value
C ≈ 1.19633123 corresponds to the intersection point of the resonance
lines associated to k2, k6, k11 and k14, i.e. the 3:1:2 resonance, that
will be considered below.

– When dimS = 2, as it corresponds to a case of double resonance, we
arrive at the following possibilities:

– The intersection of the resonance lines associated to k11 with k12

and k16, which corresponds to the 3:1:1 resonance. The truncated
normal form is

H4(I, φ1) = 3ω2I1 − ω2I2 + ω2I3 + c200I
2
1 + c110I1I2 + c101I1I3

+ c020I
2
2 + c011I2I3 + c002I

2
3 + γ1I

1/2
1 I

3/2
2 cosφ1

+ γ2I
1/2
1 I

1/2
2 I3 cosφ2 + γ3I2I3 cos(φ1 − φ2),

where φ1 = θ1+3θ2, φ2 = θ1+θ2−2θ3 and the coefficients ωi, γj and
cijk are real numbers. The Hamiltonian evaluated in S\{0} changes
sign and then Lie stability cannot be deduced from Theorem 4.

– The intersection of the lines related to k11 with k2, k6 and k14,
that corresponds to the 3:1:2 resonance. The truncated normal form
evaluated in S \ {0} with floating-point approximation reads as

H3(I, φ) ≈ 0.80806060I
1/2
1 I

1/2
2 I

1/2
3 cosφ1

+ 0.54123511I2I
1/2
3 cosφ2,
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with φ = (φ1, φ2) = (θ1 + θ2− θ3, 2θ2− θ3). Applying Theorem 2.1
in [31] the equilibrium is unstable, see also [32], [6].

– The intersection of the lines obtained from k11 with k21, that is
the 3:1:3 resonance. The specific truncated normal form is

H4(I, φ) = 3ω2I1 − ω2I2 + ω2I3 + c200I
2
1 + c110I1I2 + c101I1I3

+ c020I
2
2 + c011I2I3 + c002I

2
3 + γ1I

1/2
1 I

3/2
2 cosφ1

+ γ2I1I3 cosφ2,

where φ = (φ1, φ2) with φ1 = θ1 +3θ2, φ2 = 2θ1−2θ3 and the coef-
ficients are numbers. The Hamiltonian evaluated in S \{0} changes
sign, thence Lie stability cannot be obtained from Theorem 4.

– The intersection of the lines associated to k11 with k4, that is the
3:1:4 resonance. The truncated normal form evaluated in S \ {0}
with floating-point approximation is

H3(I, φ1) ≈ 1.20430590I
1/2
1 I

1/2
2 I

1/2
3 cosφ1,

where φ1 = θ1 − θ2 − θ3. The Hamiltonian evaluated in S \ {0}
changes sign and then Theorem 4 cannot be used to get Lie stabil-
ity.

– In the remaining cases with dimS = 2 there are resonances asso-
ciated to Lie stable cases, such as the 15:5:4, whereas others are
related to unstable ones, for instance the 12:4:9, 9:3:10, 60:20:97,
30:10:51 and 15:5:27 resonances.

Remark 3 The expressions of f(ω1, ω2) and fi(ω1, ω2) in items 2 and 3 as
well as the numerical coefficients of the normal form Hamiltonians H4(I, φ)
corresponding to the cases with dimS = 2 in item 4 can be provided by the
first author.

Remark 4 The computations performed in the previous analysis are done in
rational arithmetic, that is, without resorting to floating-point approximations.
However since some numerical expressions become huge we have opted by
representing them using eight digits.

We summarise the results in the following.

Theorem 1 For (C,A) ∈ II the equilibrium P associated to the Hamiltonian
system related to (3) is Lie stable in the following cases (see details in Fig. 4):

– In the dark-blue region.
– In the light-blue region when
(a2) ω1 ∈ Q, ω2 ∈ R \Q;
(b1) ω1, ω2 ∈ R \Q, @k;
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(b2) ω1, ω2 ∈ R \Q, ∃k /∈ K;
(b3) ω1 ∈ R \Q, ω2 ∈ Q.

– On the resonance lines associated to k4, k6, k7, k14, k16 and k21 in the
absence of other resonances.

– On the resonance lines associated to k11 and k12: for certain double res-
onances and in the blue parts of lines in Fig. 7 in the absence of further
resonances.

– On the resonance lines associated to k14 and k16 for certain double reso-
nances.

The equilibrium P is unstable in the following cases:

– On the resonance curve related to k2.
– On the resonance curves related to k11 and k12: for certain double res-

onances and in the red parts of lines in Fig. 7 in the absence of further
resonances.

– On the intersection of the resonance lines related to k6 and k12, i.e. the
2:1:1 resonance.

– On the resonance curves related to k14 and k16 for certain double reso-
nances.

Remark 5 As we have pointed out when performing the analysis to accomplish
Theorem 1, there are some cases that are more likely to be unstable. The
reason is that Hamiltonian function changes sign, thus Lie stability cannot be
accomplished from part (A) of Theorem 4, but part (B) of the same theorem
suggests that we could achieve instability for the equilibrium point. However
we would need to add extra hypotheses to the higher-order terms in normal
form in order to build a suitable Chetaev function needed to get instability.
These situations are:

– The intersection of the resonance curves associated to k4 and k11, i.e. the
3:1:4 resonance.

– The intersection of the resonance curves associated to k11, k12 and k16,
i.e. the 3:1:1 resonance.

– The intersection of the resonance curves associated to k11 and k21, i.e. the
3:1:3 resonance.

– Double resonances associated to the resonance lines related to the vectors
k4, k6, k7 and k21.

There are cases that require the computation of a higher-order normal form
Hamiltonian, namely,

– The case β3 = 0 and ω1 ∈ R \Q, ω2 ∈ Q (see Fig. 5).
– On the resonance line related to the vector k11, the values that correspond

to |A11|+ |B11| = 0, i.e. C ≈ 1.31669778, 1.76531759, 1.96884828.
– On the resonance line related to the vector k12 the value C ≈ 1.16141543,

which corresponds to the identity A12 +B12 = 0.
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Remark 6 All cases of Theorem 1 related to double resonances form infinite
although countable (i.e. discrete) sets, and in the parametric plane (C,A) they
always appear as isolated points.

In Tables 14 and 15 the resonant cases of orders 3 and 4 corresponding to
dimS = 0 and dimS = 1 are listed, respectively, in the absence of more reso-
nances. Both tables appear in Appendix 8. There, together with the resonance
vectors, we find the first integrals Fi with the corresponding coefficients σ that
are used to express H2 as a linear combination of Fi as written in formula (23).
Note that σ is always a Diophantine vector.

Remark 7 Sufficiently close to the resonance lines of Fig. 3, the normal form
Hamiltonian (10) cannot be used when the vector σ is not Diophantine, as
in the process of the transformation to normal form small denominators arise
in some terms of the generating functions and in H4, deteriorating the cal-
culations. Then, we can apply a detuning argument and vary the parameters
ωi adequately. We notice that it is enough to introduce two small parame-
ters, say δ1, δ2, in such a way that for the resulting quadratic term H2 one
always has dimS = 0 or 1, due to the density character of these cases in the
parametric plane (C,A). When dimS = 0 one readily obtains Lie stability.
When dimS = 1, because of the detuning process, considering I ∈ S \ {0},
the leading term of the perturbation is of the form h̄(δ1, δ2)Ij with j either 1,2
or 3 (as terms of orders three and higher are always of smaller size). Without
exception we can take h̄ 6= 0, yielding Lie stability in all cases.

4 Asymptotic estimates

To determine bounds on the solution and time for the Lie stable equilibria
we apply Corollary 1, given in Appendix 7, to bound over exponentially long
times the solutions corresponding to the equilibria when they are Lie stable.

In our study the solution is expressed as I(t), that is a function of the
order of |x|2. So, |x(0)| ∼ ε implies |I(0)| ∼ ε2. Introducing ε = ε2 and setting
I0 = I(0), then the thesis of Corollary 1 reads as

|I(t)| < α εj
′/j for all t with 0 ≤ t ≤ T = C exp

(
E

ε1/(2(ν+1))

)
, (20)

where α, C, E are obtained respectively from a, C and E appearing in Theo-
rem 5 or Corollary 1.

On the one hand, the solution’s bound depends on the order j in the normal
form (7) that determines the Lie stability. The lower the order, the better, as
the solution is closer to the initial point. When S = {0}, then j′ = j = 2 and in
the rest of situations addressed in this paper, j′ = j = 4 as Lie stability cannot
be reached with j = 3. For the degenerate cases where H4 is not enough to
conclude Lie stability one should reach at least order 6 in order to obtain more
Lie stable cases, thus j = 6. (Note that we have not tackled these degeneracies
in our analysis.)
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On the other hand, the time validity depends on the number of indepen-
dent first integrals, that is d, because vector σ = (σ1, . . . , σd) satisfies the
Diophantine condition with ν ≥ d − 1 (see Definition 3 in Appendix 7). The
number of independent first integrals ranges from 1 to 3 in the problem at
hand. The lower the number of integrals, the better the estimate, because the
time validity is longer. If d = 1 then no Diophantine assumption is required. In
Table 2 we give j′, j and d for each Lie stable case in the absence of resonances
of orders 3 and 4. Table 3 accounts for the same data on the resonance curves
appearing in Fig. 3, excluding the intersection points.

Case j′/j d

(a1) ω1, ω2 ∈ Q 4 1

(a2) ω1 ∈ Q, ω2 ∈ R \ Q 2 2

(b1) ω1, ω2 ∈ R \ Q & @k 2 3

(b2) ω1, ω2 ∈ R \ Q & ∃k ∈ K 4 2

(b2) ω1, ω2 ∈ R \ Q & ∃k /∈ K 2 2

(b3) ω1 ∈ R \ Q, ω2 ∈ Q 4 2

Table 2 Values of the parameters involved in the estimates: j′ (lowest degree of the per-
turbating Hamiltonian), j (degree that determines Lie stability) and d (number of linearly
independent integrals) in each case in the absence of resonances of orders 3 and 4. Vector k
is a resonance vector.

Resonance j′/j d

k12 4
(a1) : 1
(b3) : 2

k4

k6

}
(b2) ∃k /∈ K : 2 (b2) ∃k /∈ K : 2

k14

k16

}
(a1) : 4

(b2) ∃k /∈ K : 2
(a1) : 1

(b2) ∃k /∈ K : 2

k7

k21

}
(a2) : 2 (a2) : 2

k11 4
(a1) : 1

(b2) ∃k ∈ K : 2

Table 3 Values of the parameters involved in the estimates: j′ (lowest degree of the per-
turbing Hamiltonian), j (degree that determines Lie stability) and d (number of linearly
independent integrals) in the Lie stable cases corresponding to the resonances of orders 3
and 4, excluding the intersection points.

The main result in this section is the following.
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Theorem 2 For the Hamiltonian system associated with (3), in the cases
where the equilibrium P is Lie stable and (C,A) ∈ II (excepting the resonance
curves):

1. When ω1, ω2 ∈ Q, then there exist α > 1, C > 0, E > 0 and ε0 > 0 such
that for all ε ∈ (0, ε0) with |I0| < ε:

|I(t)| < α ε for all t with 0 ≤ t ≤ T = C exp

(
E
ε1/2

)
.

2. When σ is Diophantine, then there exist α > 1, C > 0, E > 0 and ε0 > 0
such that for all ε ∈ (0, ε0) with |I0| < ε:

(a) If either ω1 ∈ Q and ω2 ∈ R \ Q or ω1 ∈ R \ Q and ω2 ∈ Q or
ω1, ω2 ∈ R \Q and there is k ∈ Z3 satisfying (13), then

|I(t)| < α ε for all t with 0 ≤ t ≤ T = C exp

(
E
ε1/4

)
.

(b) If ω1, ω2 ∈ R \Q and there is no k ∈ Z3 satisfying (13), then

|I(t)| < α ε for all t with 0 ≤ t ≤ T = C exp

(
E
ε1/6

)
.

Remark 8 For the resonance lines represented in Fig. 3 1, the estimates in
the Lie stable cases are obtained by replacing in (20) the values appearing in
Table 3 for each situation, setting ν = d− 1 in Definition 3.

Notice that the constants α, C and E do not depend on ε and are calculated
using bounds on the normal-form terms.

5 Quasi-periodic solutions and KAM 3-tori

In the following we carry out the existence of 3-dimensional KAM tori and
quasi-periodic motions encasing the equilibrium P of the Hamiltonian system
related to (3). For this we start by applying both the classical Kolgomorov
theorem and the extension due to Arnold, see the details in Chapter 6 in [1].
We consider the truncated normal form H4 determined by Hamiltonian (11)
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and compute the determinants

D3 =

∣∣∣∣∂2H4

∂I2

∣∣∣∣
I=0

= − 2
(
c200(c2011 − 4c020c002) + c2110c002 − c110c101c011 + c2101c020

)
,

D4 =

∣∣∣∣∣∣∣
∂2H4

∂I2
∂H4

∂I
∂H4

∂I
0

∣∣∣∣∣∣∣
I=0

= ω2
1

(
c2011 − 4c020c002

)
+ ω2

2(c2101 − 4c200c002) + ω2
3(c2110 − 4c200c020)

+ 2ω1ω2(c101c011 − 2c110c002) + 2ω1ω3(2c101c020 − c110c011)

+ 2ω2ω3(c110c101 − 2c200c011).

Note that the function D3 ≡ D3(C,A) is null on the white curves and D4 ≡
D4(C,A) is null on the black lines in Fig. 8.

Fig. 8 KAM tori: The white lines correspond to D3(C,A) = 0 and the black ones account
for D4(C,A) = 0. The dashed colour lines stand for the resonances appearing in Fig. 3.

Therefore, we end up with the following result.

Theorem 3 For (C,A) ∈ II \
{
k2 · ω = 0, k4 · ω = 0, k6 · ω = 0, k7 · ω =

0, k11 · ω = 0, k12 · ω = 0, k14 · ω = 0, k16 · ω = 0, k21 · ω = 0
}

:

– when D3 6= 0, i.e. when Hamiltonian H4 determined by (11) is non-degen-
erate, or

– when D4 6= 0, i.e. when Hamiltonian H4 determined by (11) is isoenerget-
ically non-degenerate,
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then the Hamiltonian (3) is of general elliptic type and under a sufficiently
small Hamiltonian perturbation, most of the non-resonant invariant 3-tori I =
const. will, slightly deformed, persist for any sufficiently small perturbation of
them, that is, for the full system (3). Moreover, the Lebesgue measure of the
complement of the set of tori in the polydisc |I| < ε tends to zero when the
perturbation is small. More precisely, these invariant tori form a majority in
the sense that the measure of the complement of their union is of the order
O(ε1/4) and can be refined to O(ε(l−3)/4) when the frequency vector ω does
not satisfy resonance relations of order l with l > 4. Furthermore, when the
frequency vector ω is Diophantine the estimate becomes exponentially small of
order O(exp(−c−1/εα)) for suitable constants c, α > 0. In the case of isoener-
getic non-degeneracy the invariant tori form a majority on each energy-level
manifold.

To achieve the above result we have applied Theorem 6.23 together with
Remark 6.20 in [1].

Remark 9 When the Hamiltonian system is degenerate and isoenergetically
degenerate, the classical KAM theorems do not apply. Nevertheless, under
certain conditions we can resort to a theorem by Han, Li and Yi [18] and the
previous result can be extended. As an example, consider the following values
for the parameters

C ≈ 1.56294188, A ≈ 1.00803422.

In this case D3 = 0 and D4 = 0, thus it corresponds to one of the points
that belong to the black and yellow curves in Fig. 8. Our plan is to prove
the persistence of 3-tori from H4. The coefficients cjkl for the specific values
of C and A given above appear in Table 16 of Appendix 8, they have been
obtained from the normal form coefficients calculated in (11). We perform the
usual symplectic stretching of coordinates (I, θ) → (ε2I, θ) with associated
multiplier ε−2 and collect terms in ε reaching

H(I, θ) = η0(I1, I2, I3) + ε2η1(I1, I2, I3) +O(ε4), (21)

where η0 = H2, η1 = H4. Following the notation in [18]: n = 3, a = 1, m1 = 2,
n0 = n1 = 3, yn0 = yn1 = (I1, I2, I3), ŷn0 = ŷn1 = (I1, I2, I3). (Notice that
the appearance of θ in H occurs at order O(ε4).) In this case, the vector of
frequencies has dimension 6 and is given by

Ω = (Ω1, Ω2, Ω3, Ω4, Ω5, Ω6) =

(
∂η0
∂I1

,
∂η0
∂I2

,
∂η0
∂I3

,
∂η1
∂I1

,
∂η1
∂I2

,
∂η1
∂I3

)
.
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The corresponding 6× 4-matrix

MΩ =



Ω1
∂Ω1

∂I1
∂Ω1

∂I2
∂Ω1

∂I3

Ω2
∂Ω2

∂I1
∂Ω2

∂I2
∂Ω2

∂I3

Ω3
∂Ω3

∂I1
∂Ω3

∂I2
∂Ω3

∂I3

Ω4
∂Ω4

∂I1
∂Ω4

∂I2
∂Ω4

∂I3

Ω5
∂Ω5

∂I1
∂Ω5

∂I2
∂Ω5

∂I3

Ω6
∂Ω6

∂I1
∂Ω6

∂I2
∂Ω6

∂I3


evaluated at I = 0 has rank 3 as the maximum minor in absolute value of
order 3 is approximately 2.90804425. Therefore, Han, Li and Yi’s Theorem
guarantees the existence of KAM 3-tori. These invariant tori form a majority
in the sense that the measure of the complement of their union is of the order
O(εδ) with a fixed value of δ such that 0 < δ < 1/5. Pushing the normal form
calculation to higher order we would improve this estimate but it has not been
done in this paper.

Remark 10 There are invariant tori associated to some unstable elliptic equi-
libria. For example, consider

C ≈ 1.28077074, A ≈ 1.04523803.

For these values there is a fifth-order resonance relation 4ω2 = ω3. The trun-
cated normal form to order three is given by the Hamiltonian function

H5(I, φ1) = H2(I) +H4(I) +H5(I, φ1), (22)

where

H4(I) = c200I
2
1 + c110I1I2 + c020I

2
2 + c101I1I3 + c011I2I3 + c002I

2
3 ,

H5(I, φ1) = dI22I
1/2
3 sinφ1,

with φ1 = 4θ2 + θ3 and cjkl, d have been written in Table 17 of Appendix 8.
Specfically, the cjkl in the table have been determined by using the coefficients
cjkl of (11), replacing ωi conveniently whereas d is derived from the normal
form terms of order three. In this case, the resonance vector is k = (0, 4, 1);
F1 = −I2 + 4I3 and F2 = I1 are the corresponding first integrals and, in the
absence of other resonances, the set S is given by {(0, 4I3, I3) | I3 ≥ 0}, thus
dimS = 1. Considering I ∈ S \{0}: H4(I) = 0 and H5(I, φ1) has a simple zero
as a function of φ1. Then, using Theorem 6 we conclude that the equilibrium
is unstable. Nevertheless,∣∣∣∣∂2H4(I)

∂I2

∣∣∣∣
I=0

≈ −0.10557520.

Therefore, the Hamiltonian is non-degenerate and Theorem 6.23 in [1] leads
to the existence of invariant KAM tori and quasi-periodic solutions.
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6 Concluding remarks

1. This work extends the results about non-linear stability appearing in the
literature. On the one hand, Markeev and Sokolskii [24] prove the formal
stability in the hatched region in their Fig. 3 (although there is a misprint
and they say instability). Their formal stability region corresponds to our
dark blue region in Fig. 4. With respect to the non-hatched region, they
explain that the analysis of H6 would be required. With the approach
followed in the present paper, we have obtained Lie stability of a dense set
of points in our light-blue region with the analysis of H4 as it is stated in
Theorem 1.
On the other hand, these authors establish the stability for the majority of
initial conditions off the resonance curves where D3 or D4 are non-zero. In
other words, they prove the existence of invariant tori in the region where
D3 or D4 are non-zero. This is our Fig. 8, that is not given in [24].

2. We also generalise the stability results on the resonance curves. Specifi-
cally, we conclude Lie stability in the cases where [24] establish that they
cannot be unstable. In the resonant cases k11 and k12 we obtain Lie stabil-
ity for the full Hamiltonian, while Markeev and Sokolskii [24] only achieve
stability for the truncated Hamiltonian system up to terms of degree 4 in
rectangular coordinates.

3. The present study also deals with double resonances. In fact, case (a1), i.e.
ω1, ω2 ∈ Q, corresponds to double resonances. We achieve Lie stability for
all double resonances in the dark blue region and also some double reso-
nances related with the resonance vectors k11, k12, k14 and k16.

4. One of the strengths of Theorem 4 is that it allows one to decide on Lie sta-
bility through Hamiltonians depending on resonant angles. For instance,
this is the case of resonances related to the vectors k11 and k12, whose
stability is accomplished through H4(I, φ), see Fig. 7.

5. In addition to the study of the Lie stability we bound the solutions on
exponentially long times, see Theorem 2. This type of bounds have never
been established up to now.

6. Comparing our Lie stability approach with Nekhoroshev procedure we ob-
serve the following:

– In Appendix 9 we determine the regions of quasi-convexity and di-
rectional quasi-convexity. They are represented in Fig. 9 in red and
dark-blue, respectively. The union of both regions corresponds to the
dark-blue region in Fig. 4, i.e. the region where there is Lie stability for
any value of the frequencies (excluding the resonance lines).

– For the light-blue region, following the procedure based on Nekhoroshev
theory we should proceed to the next step by checking a 3-jet non-
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degeneracy condition, that is, H6(I) = 0 implies I = 0 (together with
H2(I) = H4(I) = 0). When it occurs, H6 is steep at I = 0 and estimates
of Nekhoroshev type are available, see [5].
Applying the Lie stability approach we have obtained Lie stability ex-
cepting for a measure-zero set in the light-blue region by using the
information given by H4. Thus, we improve largely the set of points in
the plane of parameters (C,A) where Nekhoroshev stability is attained.
For the points where Theorem 4 does not provide information we can
apply Nekhoroshev’s point of view. In this sense, both procedures are
complementary.

– On the one hand, we have bounded the solutions for exponentially long
times by using Nekhoroshev estimates in the regions of quasi-convexity
and directional quasi-convexity, see details in Appendix 9.
On the other hand, we have applied Corollary 1 to bound the solutions
in the Lie stable cases. In Table 4 we show, for each case, the bound
for the solution by applying Corollary 1 (first and second rows) and by
applying Nekhoroshev estimates. The third column in the table shows
the time-validity following both approaches. We highlight in boldface
the best bounds in each case. The optimal case corresponds to the Lie
stable cases when dimS = 2. In this situation Corollary 1 can be ap-
plied under no Diophantine conditions.

Case |I| |t|

(a1) ω1, ω2 ∈ Q
ε1

ε1/3

ε1/2

exp
(
ε−1/2

)
exp

(
ε−1/3

)
exp

(
ε−1/6

)
(a2)ω1 ∈ Q, ω2 ∈ R \ Q
(b2)ω1, ω2 ∈ R \ Q& ∃k /∈ K

ε1

ε1/3

ε1/2

exp
(
ε−1/4

)
exp

(
ε−1/3

)
exp

(
ε−1/6

)
(b1) ω1, ω2 ∈ R \ Q& @k

ε1

ε1/3

ε1/2

exp
(
ε−1/6

)
exp

(
ε−1/3

)
exp

(
ε−1/6

)
(b2)ω1, ω2 ∈ R \ Q& ∃k ∈ K
(b3)ω1 ∈ R \ Q, ω2 ∈ Q

ε1

ε1/3

ε1/2

exp
(
ε−1/4

)
exp

(
ε−1/3

)
exp

(
ε−1/6

)
Table 4 Estimates comparison. The second column indicates the bounds for the solution,
whereas the third one states the time validity. For each case, the first row corresponds to
the results obtained by the application of Corollary 1 in this paper and the remaining rows
account for Nekhoroshev estimates. The best results in each case are shown in boldface type.

– A drawback of Theorem 5 and Corollary 1 is that, when there are more
than one independent formal integral, i.e. d > 1 a Diophantine condition
for the frequency vector σ is required. Fortunately, for a fixed ν the
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Lebesgue measure of the set of vectors in Rd that are not Diophantine
for any c > 0 is null.

Finally we stress that the calculations have been performed with Mathe-
matica, version 12.

7 Appendix: On Lie stabiliy

In this appendix we review the main concepts and results related to Lie sta-
bility that are applied in Sects. 3 and 4.

Definition 1 Hamiltonian (3) with associated H2 as defined in (6) presents
a resonance relation if there exists an integer vector k = (k1, k2, k3) 6= 0 such
that

k1ω1 − k2ω2 + k3ω3 = 0.

The 1-norm of vector k, |k|1 = |k1| + |k2| + |k3|, is called the order of the
resonance, while k is known as the resonance vector and ω = (ω1,−ω2, ω3)
stands for the frequency vector. The symbol | · | means the Euclidean norm.

Suppose {k1, . . . ,ks} is a basis of the Z-module Mω associated to the
possible resonances of H2(I) in (6), where 0 ≤ s ≤ 2. Specifically,Mω is defined
as

Mω = {k = (k1, k2, k3) ∈ Z3
∣∣ k1ω1 − k2ω2 + k3ω3 = 0},

and as it is finitely generated we also write

Mω = k1 Z + · · ·+ ks Z = {i1k1 + · · ·+ isk
s
∣∣ i1, . . . , is ∈ Z},

with the kj linearly independent.
It is clear that Mω = {0} is equivalent to consider ω1, ω2, ω3 linearly in-

dependent over Q, that is, Mω = {0} if and only if Hamiltonian (3) does not
possess resonances.

Definition 2 Assume that Mω 6= {0}. If Mω is cyclic (s = 1) we say that the
Hamiltonian (3) possesses a single resonance, otherwise (s > 1) we say that
the system possesses multiple resonances.

The null space of Mω is a vector subspace of R3 spanned by the vectors
{a1, . . . ,ad} with d = 3 − s that satisfy ai · kj = 0, see details in [14], [15].
Setting Fl = al · I, with l = 1, . . . , d, I ∈ R3, we get the independent (formal)
first integrals of the normal form Hamiltonian (10).

Consider the set

S =
{
I = (I1, I2, I3) ∈ R3

∣∣ Ij ≥ 0, F1(I) = . . . = Fd(I) = 0
}
,

which was first introduced in [14]. It is the linear subspace of R3 that contains
the essential vectors where the Hamiltonian is evaluated to decide on the Lie
stability of the system. We note that 0 ≤ dimS ≤ s.
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The quadratic part of H in terms of the formal first integrals Fk assumes
the form

H2(I) =

d∑
k=1

σkFk(I), (23)

where σk are linear combinations of ωj , see for instance [16].

Definition 3 It is said that vector σ = (σ1, . . . , σd) satisfies a Diophantine
condition when there are fixed constants c > 0 and ν > d− 1 such that

∀k ∈ Zd \ {0} , |k · σ| ≥ c|k|−ν1 . (24)

As we deal with the different types of stability, it is convenient to recall
them in the setting of the paper.

Definition 4 We say that the origin of R6 related to (3) is positively (respec-
tively negatively) stable, if for every ε > 0 there is δ > 0 such that if ψ(t, ζ)
is the general solution of the system associated to (3) then |ψ(t, ζ)| < ε for
all t ≥ 0 (respectively t ≤ 0) whenever |ζ| < δ. The origin of R6 is said to be
Liapunov stable if it is both positively and negatively stable.

Definition 5 We say that the origin of R6 related to (3) is formally stable if
there exists a real formal power series G(x), possibly divergent, which is an
integral of H in the formal sense and is positive definite near x = 0.

Definition 6 We say that the origin of R6 related to (3) is Lie stable if there
exists p ≥ 2 such that the truncated Hamiltonian system in normal form
associated toHq is stable in the sense of Liapunov for any arbitrary q ≥ p. (The
truncated Hamiltonian system associated to Hq corresponds to equation (7)
where p is replaced by q.)

Remark 11 Lie stability is a type of formal stability, see for instance refer-
ence [15].

We state the main result about Lie stability given in [6] and [7]. Assume
that Hamiltonian (3) is in normal form up to a high-enough order p as is given
in (7) or (8).

Theorem 4 Consider Hamiltonian (8) related to Hamiltonian (3) with I ∈
S \ {0}, φ ∈ Ts.

(A) Suppose there is an even integer j (with 4 ≤ j ≤ p) such that Hj(I, φ) 6=
0 for |I| small enough and all φ. Then the origin of R6 is Lie stable for the
Hamiltonian system (3).

(B) Suppose there is an integer i ≥ 3 such that Hi(I, φ) changes sign for
some I, φ. Then there is no index j (with i < j ≤ p) such that Hj(I, φ) 6= 0
for |I| sufficiently small.
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Remark 12 When S = {0} Lie stability always holds, details can be looked
up in [15], [7].

Assume that x(t,x0) is a solution of the Hamiltonian system associated
to H in (3) with initial condition x0. For the Lie stable equilibria we give an
estimate of the solution’s evolution according to the following theorem, see
more details in [6], [7].

Theorem 5 If the real analytic Hamiltonian (3) has the origin of R6 as a
formally stable equilibrium in accordance to hypotheses (A) of Theorem 4,
while the frequency vector σ satisfies the Diophantine condition (24), then
there exist C > 0, E > 0, a > 1 and ε0 > 0 such that for all ε ∈ (0, ε0), and
for all x0 with |x0| < ε we have

|x(t,x0)| < aε2/j for all t with 0 ≤ t ≤ T = C exp

(
E

ε1/(ν+1)

)
.

The proofs of Theorems 4 and 5 are given in [6], [7].

We can improve the confinement’s bound on the solution with a slight
change in hypotheses of Theorem 4 part (A), as follows.

Corollary 1 Suppose there are two even integers j′, j such that 4 ≤ j′ ≤ j ≤
p, Hk(x) = 0 for k = 3, . . . , j′ − 1 and

∑j
k=j′ Hk(x) 6= 0 for all x associated

to I ∈ S \{0}. Suppose in addition that the frequency vector σ is Diophantine.
Then with the same notation as in Theorem 5, the estimates are of the form

|x(t,x0)| < aεj
′/j for all t with 0 ≤ t ≤ T = C exp

(
K

ε1/(ν+1)

)
.

See the proof and associated examples in [7].

Other recent works on Lie stable and unstable systems are due to dos San-
tos and coworkers [14,15] where the authors establish several criteria dealing
with Lie stable equilibria in cases of single and multiple resonances. We present
the results for n = 3.

Let k = (k1, k2, k3) be a vector of resonance. In the case k1, k2, k3 ≥ 0 or
≤ 0 and without loss of generality, we assume k1 6= 0. We define the function

Fm(I1, φ) = Hm
(
k1

k1
I1,

k2

k1
I1,

k3

k1
I1, φ

)
= A2I1 + . . .+A2lI

l
1 + Ψ|k|(φ)I

|k|/2
1 + Ψ|k|+1(φ)I

(|k|+1)/2
1 (25)

+ . . .+ Ψm(φ)I
m/2
1 ,

where φ = k1 · θ = k11θ1 + k12θ2 + k13θ3 is the resonant angle and 2l is an even
natural number smaller than or equal to |k| and

A2j = k−j1 H2j(k), j = 1, . . . , l and Ψs(φ) = k
−s/2
1 Hs(k, φ),

where s = |k|, . . . ,m. The main result for single resonances where the linear
part is diagonalisable is as follows.
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Theorem 6 Assume that the system (3) possesses a single resonance, with
the vector of resonance given by k = (k1, k2, k3).

(A) If there exist i, j ∈ {1, 2, 3}, i 6= j, such that kikj < 0, then the null solution
of (3) is Lie stable.

(B) If k1, k2, k3 ≥ 0 or ≤ 0 and one of the coefficients A2j 6= 0 for some
j = 1, . . . , |k|−1 or when A2j = 0 for all j = 1, . . . , |k|−1 but the function
in (25) Ψ|k|(φ) 6= 0 for all φ, then the null solution of (3) is Lie stable.

(C) If k1, k2, k3 ≥ 0 or ≤ 0 and there exists φ = φ∗ such that Ψ|k|(φ
∗) = 0

and Ψ ′|k|(φ
∗) 6= 0 (i.e., φ∗ is a simple zero), then the null solution of (3) is

unstable.

Now, we assume that |k1| < |k2| ≤ . . . ≤ |ks| and 2|k1| − 2 < |k2|. If
η = |k1|, the function H2η−2 takes the form

H2η−2 = H2(I) + . . .+H2l(I) +Hη(I,k1 · θ) + . . .+H2η−2(I,k1 · θ),

where 2l is an even natural number smaller than η. We suppose that H is in
normal form up to orden 2η − 2. In the case k11, k

1
2, k

1
3 ≥ 0 with k11 > 0, we

consider the auxiliary function

Ψ(φ) =
(
k11
)−η/2Hη(k1, φ).

Theorem 7 With the same notations as above, if k1i ≥ 0, k11 > 0, H4(k1) =
. . . = H2l(k

1) = 0 and if there exists φ∗ such that Ψ(φ∗) = 0 and Ψ ′(φ∗) 6= 0,
then the null solution of (3) is unstable.

8 Appendix: Coefficients lists

We include the coefficients of some formulae that appear in this article.

Table 5 contains the polynomials’ coefficients of the Sturm sequence asso-
ciated to the characteristic polynomial pB corresponding to the linearisation
matrix related to Pj , with j = 1, . . . , 4.
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b0

1
9A2C2

(
−27A5(C + 1) + 9A4(8C2 + 9C + 4)− 3A3(21C3 − C2 + 59C − 6)

+ 2A2(9C4 − 24C3 + 22C2 + 51C − 16)

+A(−9C4 + 93C3 − 111C2 + 26C + 1) + (C − 1)2(3C + 4)
)

b1

2
9A2C2

(
9A4(C2 − C + 1)− 3A3(6C3 − 5C2 + 2C + 4)

+A2(9C4 − 6C3 − 17C2 + 29C − 2) +A(3C3 + 5C2 − 12C + 4)

+ (C − 1)2
)

α1 9A4 − 12A3(C + 1)− 2A2(6C2 − 15C + 1) + 4A(3C2 − 4C + 1) + (C − 1)2

α2 9A3(C − 1) +A2(−18C2 + 15C + 6) +A(9C3 − 6C2 − 5C − 1) + 3C2 − 7C + 4

α3

9A4(C2 − C + 1)− 3A3(6C3 − 5C2 + 2C + 4)

+A2(9C4 − 6C3 − 17C2 + 29C − 2) +A(3C3 + 5C2 − 12C + 4) + (C − 1)2

Table 5 Coefficients of the polynomials p2(t) and p3(t) corresponding to the Sturm se-
quence associated to pB .

Tables 6 and 7 account for the terms that define the normalisation of H4

in the absence of resonances of orders 3 and 4.
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f1 ω2
1 − 1 g1 ω2

2 − 1

f2 ω2
1 − 4 g2 ω2

2 − 4

f3 ω4
1 + 14ω2

1 − 8 g3 ω4
2 + 14ω2

2 − 8

f4 2ω4
1 − 3ω2

1 + 4 g4 2ω4
2 − 3ω2

2 + 4

f5 −9ω8
1 + 26ω6

1 + 12ω4
1 − 48ω2

1 + 64 g5 −9ω8
2 + 26ω6

2 + 12ω4
2 − 48ω2

2 + 64

f6 15ω8
1 + 5ω6

1 − 108ω4
1 + 132ω2

1 − 80 g6 15ω8
2 + 5ω6

2 − 108ω4
2 + 132ω2

2 − 80

f7 5ω2
1 − 4 g7 5ω2

2 − 4

f8 3ω4
1 − 4ω2

1 + 4 g8 3ω4
2 − 4ω2

2 + 4

f9 −7ω6
1 + 24ω4

1 − 24ω2
1 + 16 g9 −7ω6

2 + 24ω4
2 − 24ω2

2 + 16

f10 4ω2
1 − ω2

3 g10 4ω2
2 − ω2

3

h1 ω2
1 − ω2

2 h2 ω2
1ω

2
2 − 4

h3 ω4
1 − 2(ω2

2 + ω2
3)ω2

1 + (ω2
2 − ω2

3)2

t1
ω12
2 + (6− 4ω2

3)ω10
2 + (3ω4

3 + 60ω2
3 − 88)ω8

2 − 2(8ω4
3 + 97ω2

3 − 45)ω6
2

+ 2(11ω4
3 + 78ω2

3 − 20)ω4
2 + 24(3ω2

3 + 16)ω2
2 − 128

t2
3ω12

2 − (11ω2
3 + 19)ω10

2 + (8ω4
3 + 97ω2

3 − 45)ω8
2 − 2(17ω4

3 + 46ω2
3 + 28)ω6

2

+ (25ω4
3 − 280ω2

3 + 192)ω4
2 + 4(7ω4

3 + 117ω2
3 + 65)ω2

2 − 128(ω2
3 + 1)

t3
3ω12

2 − 7(2ω2
3 + 7)ω10

2 + (11ω4
3 + 78ω2

3 − 20)ω8
2 + (−25ω4

3 + 280ω2
3 − 192)ω6

2

− 8(10ω4
3 + 103ω2

3 − 81)ω4
2 + 4(53ω4

3 + 177ω2
3 − 32)ω2

2 − 64(ω4
3 + 3ω2

3 + 1)

t4
ω12
2 − (ω2

3 + 2)ω10
2 + (9ω2

3 + 48)ω8
2 − (7ω4

3 + 117ω2
3 + 65)ω6

2

+ (53ω4
3 + 177ω2

3 − 32)ω4
2 − 16(5ω4

3 + 3ω2
3 − 2)ω2

2 + 16(ω4
3 + ω2

3)

t5 ω8
2 + (2ω2

3 − 3)ω6
2 − (11ω2

3 + 19)ω4
2 + 7(2ω2

3 + 7)ω2
2 + 4(ω2

3 + 2)

t6

(37ω4
3 + 293ω2

3 + 48)ω10
2 − 2(23ω6

3 + 271ω4
3 − 14ω2

3 + 368)ω8
2

+ (9ω8
3 + 361ω6

3 + 608ω4
3 − 3088ω2

3 − 768)ω6
2

+ 4ω2
3(−11ω6

3 − 106ω4
3 + 843ω2

3 + 391)ω4
2 + 16

(
ω8
3 − 60ω6

3 − 399ω4
3

+ 74ω2
3 + 16

)
ω2
2 + 64(ω8

3 + 16ω6
3 + 38ω4

3 + 10ω2
3 + 12)

t7

2(5ω4
3 + 72ω2

3 + 18)ω10
2 − (11ω6

3 + 247ω4
3 + 478ω2

3 + 96)ω8
2

+ (ω8
3 + 119ω6

3 + 1054ω4
3 − 592ω2

3 − 128)ω6
2

− 4(2ω8
3 + 86ω6

3 + 157ω4
3 − 516ω2

3 + 336)ω4
2

+ 16(ω8
3 + 6ω6

3 − 122ω4
3 − 113ω2

3 − 72)ω2
2 + 64(5ω6

3 + 17ω4
3 + 13ω2

3 + 20)

t8

2(9ω4
3 + 35ω2

3 − 40)ω10
2 − (27ω6

3 + 115ω4
3 − 268ω2

3 + 336)ω8
2

+ (9ω8
3 + 121ω6

3 − 469ω4
3 − 865ω2

3 + 864)ω6
2

+ (−24ω8
3 + 161ω6

3 + 1525ω4
3 + 752ω2

3 − 832)ω4
2

− 4(6ω8
3 + 199ω6

3 + 376ω4
3 − 41ω2

3 − 96)ω2
2 + 16ω2

3(3ω6
3 + 31ω4

3 + 38ω2
3 − 26)

Table 6 Coefficients of Hamiltonian function (11). Part I.
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t9

(ω4
3 + 34ω2

3 + 4)ω8
2 − (ω6

3 + 39ω4
3 + 127ω2

3 − 40)ω6
2

+ (10ω6
3 + 163ω4

3 + 133ω2
3 + 16)ω4

2

+ 4(−6ω6
3 − 29ω4

3 + 12ω2
3 + 120)ω2

2 + 16ω2
3(8− 3ω2

3)

t10
ω2
2(−2ω4

2 + 17ω2
2 − 36)ω4

3 + (ω2
2 − 4)2(3ω4

2 − 6ω2
2 + 5)ω2

3

+ 4(2ω6
2 − 7ω4

2 + 20ω2
2 + 48)

t11

(4ω4
2 + 5ω2

2 − 24)ω8
3 − (9ω6

2 + 18ω4
2 − 130ω2

2 + 112)ω6
3

+ (5ω8
2 + 16ω6

2 − 191ω4
2 + 293ω2

2 − 72)ω4
3

+ (−3ω8
2 + 117ω6

2 − 181ω4
2 − 40ω2

2 + 80)ω2
3 − 48ω4

2(ω2
2 − 1)2

t12
3ω2

3ω
8
2 − (ω4

3 + 10ω2
3 + 4)ω6

2 + 2(ω4
3 + 8ω2

3 + 2)ω4
2

+ (−5ω4
3 − 5ω2

3 + 48)ω2
2 − 16ω2

3

t13

ω2
3ω

12
2 − 2(ω4

3 + 19ω2
3 − 4)ω10

2 + (ω6
3 + 35ω4

3 + 111ω2
3 + 8)ω8

2

− (7ω6
3 + 107ω4

3 + 34ω2
3 + 64)ω6

2 + 2(9ω6
3 + 57ω4

3 − 82ω2
3 + 240)ω4

2

− 4(9ω6
3 + ω4

3 − 104ω2
3 − 144)ω2

2 − 64ω2
3(3ω2

3 + 4)

t14

12(ω2
3 + 1)ω14

2 + (−26ω4
3 − 135ω2

3 + 48)ω12
2

+ (16ω6
3 + 192ω4

3 + 121ω2
3 − 104)ω10

2

− (2ω8
3 + 86ω6

3 + 157ω4
3 − 516ω2

3 + 336)ω8
2

+ω2
3(11ω6

3 + 106ω4
3 − 843ω2

3 − 391)ω6
2

+ (−24ω8
3 + 161ω6

3 + 1525ω4
3 + 752ω2

3 − 832)ω4
2

− 4(ω8
3 + 148ω6

3 + 484ω4
3 + 141ω2

3 + 48)ω2
2 + 64ω2

3(ω6
3 + 8ω4

3 + 12ω2
3 + 4)

t15

−4(3ω2
3 + 1)ω14

2 + (25ω4
3 + 221ω2

3 − 60)ω12
2

− (14ω6
3 + 319ω4

3 + 641ω2
3 − 144)ω10

2

+ (ω8
3 + 119ω6

3 + 1054ω4
3 − 592ω2

3 − 128)ω8
2

+ (−9ω8
3 − 361ω6

3 − 608ω4
3 + 3088ω2

3 + 768)ω6
2

+ 4(9ω8
3 + 121ω6

3 − 469ω4
3 − 865ω2

3 + 864)ω4
2

− 16(4ω8
3 − 9ω6

3 − 207ω4
3 − 298ω2

3 − 144)ω2
2 − 256ω2

3(3ω4
3 + 10ω2

3 + 6)

t16

4(ω2
3 + 3)ω14

2 + (−9ω4
3 − 39ω2

3 + 8)ω12
2 + 2(3ω6

3 + 13ω4
3 − 2ω2

3 − 60)ω10
2

+ (−ω8
3 − 6ω6

3 + 122ω4
3 + 113ω2

3 + 72)ω8
2

+ (ω8
3 − 60ω6

3 − 399ω4
3 + 74ω2

3 + 16)ω6
2

+ (6ω8
3 + 199ω6

3 + 376ω4
3 − 41ω2

3 − 96)ω4
2

−ω2
3(29ω6

3 + 242ω4
3 + 365ω2

3 − 120)ω2
2 + 16(2ω8

3 + 7ω6
3 + 6ω4

3 + ω2
3)

t17

4ω12
2 − (5ω2

3 + 8)ω10
2 + (−3ω4

3 + 3ω2
3 − 8)ω8

2

+ (5ω6
3 + 14ω4

3 + 16ω2
3 + 12)ω6

2 − ω2
3(ω6

3 + 11ω4
3 + 24ω2

3 − 6)ω4
2

+ 2ω2
3(ω6

3 + 10ω4
3 + 7ω2

3 − 10)ω2
2 − 4ω4

3(ω2
3 + 1)2

t18 ω6
2 − 6ω4

2 + 6ω2
2 + 8 t19 (ω2

2 − ω2
3)(ω2

2 − ω2
3 − 1)

t20 ω2
2ω

2
3 − 4 t21 (ω2

2 − ω2
3)(ω2

2 − ω2
3 − 1)2

Table 7 Coefficients of Hamiltonian function (11). Part II.
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In Tables 8, 9, 10 11, 12 and 13 we present the coefficients that define the
normalisation of H3 in the resonances related to the vectors k2, and H4 in k11

and k12.

γ1
−ω2

1(ω
4
2+ω2

2+2)+2(ω2
2+1)

4(ω2
1−ω2

2)

√
(4−ω2

1)(4−ω2
2)

3ω2(4−ω2
1ω

2
2)

Table 8 Resonance associated to k2: Coefficient γ1 in the normal form up to order 1 given
in (17).

c200
(4−9ω2

2)
∑9

i=1 Aiω
18−2i
2

12288ω4
2(1−ω2

2)(4−9ω4
2)(36ω

2
2−ω2

3)

c020
(4−ω2

2)
∑9

i=1 Biω
18−2i
2

12288ω4
2(1−9ω2

2)(4−9ω4
2)(4ω

2
2−ω2

3)

c002 − (4−ω2
2)(4−9ω2

2)

12(4−9ω4
2)

c110

∑10
i=1 Diω

20−2i
2

9216ω4
2(4−9ω4

2)(4ω
2
2−ω2

3)(16ω
2
2−ω2

3)

c011

∑11
i=1 Eiω

22−2i
2

192ω3
2ω3(4−9ω4

2)(9ω
4
2−40ω2

2+4)(4ω2
2−ω2

3)(16ω
2
2−ω2

3)

c101

∑12
i=1 Fiω

24−2i
2

576ω3
2ω3(4−9ω4

2)(9ω
4
2−40ω2

2+4)(4ω2
2−ω2

3)(16ω
2
2−ω2

3)(36ω
2
2−ω2

3)

γ2

√
4−9ω2

2

√
1−ω2

2

√
4−ω2

2

∑7
i=1 Tiω

14−2i
2

3072
√
3ω4

2

√
1−9ω2

2(4−9ω4
2)(4ω

2
2−ω2

3)

Table 9 Resonance associated to k11. Coefficients of the normal form H4 given in (19).
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A1 = −52488

A2 = 2187(ω2
3 + 144)

A3 = −81(151ω2
3 + 6180)

A4 = 36(437ω2
3 + 10651)

A5 = −4(2169ω2
3 − 44176)

A6 = −4(1415ω2
3 + 58636)

A7 = 16(383ω2
3 + 1905)

A8 = −16(49ω2
3 + 85)

A9 = 64(ω2
3 + 1)

B1 = −52488

B2 = 729(27ω2
3 + 368)

B3 = −81(711ω2
3 + 5860)

B4 = 36(3933ω2
3 + 2419)

B5 = −36(481ω2
3 − 7824)

B6 = −4(15615ω2
3 + 33004)

B7 = 112(169ω2
3 + 215)

B8 = −16(121ω2
3 + 125)

B9 = 64(ω2
3 + 1)

D1 = −419904

D2 = 87480(3ω2
3 + 32)

D3 = −243(81ω4
3 + 7032ω2

3 + 20096)

D4 = 180(648ω4
3 + 17055ω2

3 + 4928)

D5 = −144(1359ω4
3 + 4846ω2

3 − 7840)

D6 = 540(75ω4
3 − 1716ω2

3 − 4096)

D7 = 16(3393ω4
3 + 51516ω2

3 + 69920)

D8 = −80(477ω4
3 + 3929ω2

3 + 2048)

D9 = 128(127ω4
3 + 273ω2

3 + 64)

D10 = −1280ω2
3(ω2

3 + 1)

Table 10 Resonance related to k11. Part II: Terms appearing in Table 9, that contain the
coefficients of the normal form H4 given in (19).
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E1 = −45927ω2
3

E2 = 729(9ω4
3 + 786ω2

3 + 64)

E3 = −243(327ω4
3 + 10645ω2

3 + 1984)

E4 = 9(81ω6
3 + 40545ω4

3 + 568528ω2
3 + 92928)

E5 = −7209ω6
3 − 880677ω4

3 − 3781728ω2
3 + 3548672

E6 = 4(7488ω6
3 + 278631ω4

3 − 546104ω2
3 − 2312448)

E7 = −4(13644ω6
3 − 39301ω4

3 − 1320541ω2
3 − 787968)

E8 = −16(139ω6
3 + 42559ω4

3 + 113692ω2
3 + 22016)

E9 = 16(1569ω6
3 + 11422ω4

3 + 14765ω2
3 + 768)

E10 = −128ω2
3(39ω4

3 + 132ω2
3 + 101)

E11 = 256ω2
3(ω2

3 + 1)2

F1 = −6377292ω2
3

F2 = 59049(19ω4
3 + 1384ω2

3 + 256)

F3 = −6561(9ω6
3 + 2422ω4

3 + 55404ω2
3 + 29952)

F4 = 729(1233ω6
3 + 103915ω4

3 + 870080ω2
3 + 1108992)

F5 = −81(81ω8
3 + 56709ω6

3 + 1594980ω4
3 + 4398976ω2

3 + 13969408)

F6 = 9(6561ω8
3 + 910845ω6

3 + 3240656ω4
3 + 16711296ω2

3 + 33681408)

F7 = −4(34992ω8
3 + 244863ω6

3 − 6689052ω4
3 + 4233212ω2

3 − 1824768)

F8 = 4(5004ω8
3 − 713205ω6

3 − 3079245ω4
3 − 1220800ω2

3 − 1990656)

F9 = 16(3411ω8
3 + 64155ω6

3 + 145780ω4
3 + 27204ω2

3 + 27648)

F10 = −16ω2
3(1249ω6

3 + 12350ω4
3 + 15789ω2

3 − 9440)

F11 = 128ω2
3(31ω6

3 + 140ω4
3 + 93ω2

3 − 88)

F12 = −256ω4
3(ω2

3 + 1)2

T1 = 729(3ω2
3 − 8)

T2 = −324(9ω2
3 − 91)

T3 = −144(75ω2
3 + 437)

T4 = 12(303ω2
3 − 1124)

T5 = 64(66ω2
3 + 161)

T6 = −16(65ω2
3 + 93)

T7 = 64(ω2
3 + 1)

Table 11 Resonance associated to k11. Part III (continuation of Table 10): Terms appearing
in Table 9, that contain the coefficients of the normal form H4 given in (19).
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Table 12 Resonance related to k12. Part I: Coefficients of the normal form H4(I) given
in (18).
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A1 = 4ω2
3(4− ω2

3)(2ω4
3 − 3ω2

3 + 4)

A2 = (ω2
3 + 2)(3ω8

3 + 14ω6
3 − 112ω4

3 + 160ω2
3 − 128)

A3 = −7ω10
3 − 48ω8

3 + 20ω6
3 + 368ω4

3 − 464ω2
3 + 320

A4 = 4(5ω10
3 − 3ω8

3 + 37ω6
3 − 120ω4

3 + 104ω2
3 − 32)

A5 = −16(1− ω3)2(ω3 + 1)2(4ω4
3 + ω2

3 − 4)

B1 = −5ω8
3 + 29ω6

3 − 40ω4
3 + 16ω2

3 + 16

B2 = 4(7ω8
3 − 23ω6

3 − 12ω4
3 + 28ω2

3 − 28)

B3 = −4(11ω8
3 + 2ω6

3 − 97ω4
3 + 84ω2

3 − 60)

B4 = 16(3ω8
3 + 8ω6

3 − 28ω4
3 + 17ω2

3 − 13)

B5 = −64(3ω6
3 − 4ω4

3 + ω2
3 − 1)

C1 = (4− ω2
3)2

C2 = −4(2ω4
3 − ω2

3 + 8)

C3 = 16(1− ω2
3)2

D1 = ω2
3(4− ω2

3)(ω4
3 − 2ω2

3 − 2)

D2 = 2ω2
3(3ω2

3 − 8)(ω6
3 − 2ω4

3 − 7ω2
3 − 1)

D3 = −2(25ω10
3 − 130ω8

3 + 123ω6
3 + 16ω4

3 + 192ω2
3 − 64)

D4 = 8(11ω10
3 − 28ω8

3 − 77ω6
3 + 165ω4

3 + 33ω2
3 − 32)

D5 = −8(ω10
3 + 45ω8

3 − 201ω6
3 + 323ω4

3 − 80ω2
3 − 16)

D6 = −128ω2
3(1− ω2

3)(ω4
3 − ω2

3 + 3)

E1 = −(4− ω2
3)2(2ω8

3 − 8ω6
3 + 7ω4

3 − ω2
3 + 32)

E2 = −2(4− ω2
3)(5ω10

3 − 15ω8
3 − 26ω6

3 + 116ω4
3 − 352ω2

3 − 160)

E3 = −4(2ω12
3 + 7ω10

3 − 159ω8
3 + 307ω6

3 − 37ω4
3 + 1416ω2

3 + 192)

E4 = 8(3ω12
3 − 47ω10

3 + 137ω8
3 − 135ω6

3 + 336ω4
3 + 314ω2

3 − 32)

E5 = 32(1− ω2
3)(3ω10

3 − 33ω8
3 + 85ω6

3 − 71ω4
3 + 68ω2

3 + 8)

E6 = −1536ω2
3(1− ω2

3)2

F1 = −(4− ω2
3)3(4− ω4

3)

F2 = (4− ω2
3)(ω10

3 − 13ω8
3 + 73ω6

3 − 164ω4
3 + 160ω2

3 + 192)

F3 = −ω2
3(4− ω2

3)(5ω8
3 + 16ω6

3 + 57ω4
3 + 16ω2

3 + 608)

F4 = −4(2ω12
3 + 71ω10

3 − 305ω8
3 + 76ω6

3 − 516ω4
3 − 80ω2

3 + 320)

F5 = 4(17ω12
3 + 69ω10

3 − 337ω8
3 − 1141ω6

3 + 904ω4
3 + 224ω2

3 + 192)

F6 = 16ω2
3(1− ω2

3)(13ω8
3 − 23ω6

3 − 129ω4
3 + 23ω2

3 + 8)

F7 = −256ω2
3(1− ω2

3)2(ω4
3 − 5ω2

3 + 5)

T1 = (4− ω2
3)2(5ω4

3 + 3ω2
3 + 16)

T2 = −4(ω10
3 − 3ω8

3 − 48ω4
3 + 64ω2

3 + 256)

T3 = 4(5ω10
3 − 27ω8

3 + 51ω6
3 − 77ω4

3 − 120ω2
3 + 384)

T4 = −16(ω10
3 − 4ω8

3 + 2ω6
3 + 20ω4

3 − 83ω2
3 + 64)

T5 = 256(1− ω2
3)2

Table 13 Resonance associated to k12. Part II: Terms appearing in Table 12, which contain
the coefficients of H4(I) given in (18).
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Tables 14 and 15 contain the resonant cases of orders 3 and 4 corresponding
to dimS = 0 and dimS = 1, respectively, in the absence of further resonances.
The generic normal form (11) is not valid in these cases and then, a specific
normal form is calculated in each situation.

ki F1 F2 σ = (σ1, σ2)

k4 = (1,−1,−1) I1 + I3 I1 + I2 (ω3,−ω2)

k6 = (1, 1,−1) I1 + I3 I2 − I1 (ω3,−ω2)

k7 = (2, 0,−1) I1 + 2I3 I2
(ω3

2
,−ω2

)
k14 = (1,−1,−2) 2I1 + I3 I1 + I2 (ω3,−ω2)

k16 = (1, 1,−2) 2I1 + I3 I2 − I1 (ω3,−ω2)

k21 = (2, 0,−2) I1 + I3 I2 (ω3,−ω2)

Table 14 Cases of dimS = 0 (in the absence of other resonances): resonance vectors ki of
orders 3 and 4 where the normal form (11) is not defined. The second and third columns
contain the corresponding first integrals Fi and the last column accounts for σ such that
H2 = σ1F1 + σ2F2.

ki F1 F2 σ = (σ1, σ2)

k2 = (0, 2, 1) I1 I2 − 2I3 (ω1,−ω2)

k11 = (1, 3, 0) I3 I2 − 3I1 (ω3,−ω2)

k12 = (0, 2, 2) I3 − I2 I1 (ω3, ω1)

?

Table 15 Cases of dimS = 1 (in the absence of other resonances): resonance vectors ki of
orders 3 and 4. The second and third columns contain the corresponding first integrals Fi

and the last column accounts for σ such that H2 = σ1F1 + σ2F2.

In Tables 16 and 17 we list the coefficients of the normalised Hamiltonian
for two examples where KAM tori have been obtained in Sect. 5. The coef-
ficients are represented in floating-point arithmetic but they have to be con-
sidered as approximations of the rational arithmetic computations performed
with Mathematica.

c200 0.20358793 c110 −0.38139098
c020 0.09722169 c101 −1.43131143
c011 0.39138989 c002 −0.25200856

Table 16 KAM tori: Coefficients of the truncated normalised Hamiltonian function in the
case of Remark 9.
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c200 0.14408762 c110 0.09681382
c020 0.06550810 c101 0.64750232
c011 −0.19670504 c002 −0.2613095
d −0.60105529

Table 17 KAM tori: Coefficients of the truncated normalised Hamiltonian function (22).

9 Appendix: Nekhoroshev stability

In the next paragraphs we apply Nekhoroshev stability results [28] to Hamil-
tonian (10) in the generic (non-resonant) case, i.e. with H4 given in (11). In
this way we will be able to establish a comparison of the results obtained both
by the Lie stability analysis and Nekhoroshev approach. For the verification of
the steepness of H4(I) we apply the algorithm given by Schirinzi and Guzzo
in [29].

Denote by Λ the 2-dimensional linear space orthogonal to the linear space
generated by the frequency vector ω. Notice that the space Λ plays the role of
the set S when dimS = 2.

Perform a rotation of I in order to carry ω to the first coordinate axis. The
corresponding rotation matrix is

R =
1

|ω|


ω1 −ω2 ω3

ω2
ω1ω

2
2+ω

2
3 |ω|

ω2
2+ω

2
3

(|ω|−ω1)ω2ω3

ω2
2+ω

2
3

−ω3
(|ω|−ω1)ω2ω3

ω2
2+ω

2
3

ω2
2 |ω|+ω1ω

2
3

ω2
2+ω

2
3

 . (26)

Denote by A the Hessian matrix associated to H4(I), that is,

A =


2c200 c110 c101

c110 2c020 c011

c101 c011 2c002


and by AΛ the restriction of the Hessian matrix to the space Λ, which is a
2 × 2-submatrix of RART . Precisely, AΛ is the first second-order principal
submatrix of RART , i.e. the matrix that results from eliminating the first row
and the first column in matrix RART . Denote by λ1 ≡ λ1(C,A), λ2 ≡ λ2(C,A)
the eigenvalues of AΛ. They have the same sign in the red region shown in
Fig. 9. Thus, H4(I) is quasi-convex at the origin in this region. Applying the
results in [5] and references therein, we conclude the following:

Theorem 8 Let W1 = {(C,A) : λ1 > 0, λ2 > 0} and W2 = {(C,A) : λ1 <
0, λ2 < 0}. Hamiltonian (10) truncated at order 2 is quasi-convex at the ori-
gin in region W = W1 ∪ W2. Then, for ε sufficiently small, any motion of
Hamiltonian system related to (3) with initial conditions |I(0)| ≤ ε satisfies

|I(t)| ≤ ε1/3, with |t| ≤ exp
(
ε−1/3

)
,
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as well as
|I(t)| ≤ ε1/2, with |t| ≤ exp

(
ε−1/6

)
.

Fig. 9 Regions where Hamiltonian (10) is quasi-convex (red region) and directionally quasi-
convex (dark blue region). Dashed colour lines account for the nine resonance curves of orders
three and four.

Now, consider Hamiltonian (10) is not quasi-convex at the origin. The
eigenvalues satisfy λ1 < 0 < λ2. Denote by v1,v2 the eigenvectors of matrix
AΛ associated to λ1 and λ2, respectively. Then, construct

v± ≡ (v±1 , v
±
2 , v

±
3 )

= RT
(

0,
√

λ2

λ2−λ1
x1 ±

√
−λ1

λ2−λ1
y1,
√

λ2

λ2−λ1
x2 ±

√
−λ1

λ2−λ1
y2

)
,

(27)

where x = (x1, x2) = v1

|v1| and y = (y1, y2) = v2

|v2| . Let

V ±1 = {(C,A) : v±1 > 0, v±2 > 0, v±3 < 0},

V ±2 = {(C,A) : v±1 > 0, v±2 < 0, v±3 > 0},

V ±3 = {(C,A) : v±1 < 0, v±2 > 0, v±3 > 0},

V ±4 = {(C,A) : v±1 < 0, v±2 < 0, v±3 > 0},

V ±5 = {(C,A) : v±1 < 0, v±2 > 0, v±3 < 0},

V ±6 = {(C,A) : v±1 > 0, v±2 < 0, v±3 < 0}.
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Hamiltonian H4(I) is directionally quasi-convex in the regions where the com-
ponents of both vectors v± change sign. This corresponds to the dark blue
regions in Fig. 9. Then, by applying Theorem 1 in [5] we achieve the following:

Theorem 9 Let V =
⋃6
i=1 V

+
i ∩

⋃6
i=1 V

−
i . Hamiltonian (10) truncated at

order 2 is directionally quasi-convex at the origin. Then, for ε sufficiently
small, any motion of Hamiltonian system related to (3) with initial conditions
such that |I(0)| ≤ ε satisfies the estimates

|I(t)| ≤ ε1/3, |t| ≤ exp
(
ε−1/3

)
, (28)

as well as
|I(t)| ≤ ε1/2, |t| ≤ exp

(
ε−1/6

)
. (29)

In summary, in II we obtain quasi-convexity regions (i.e.W ) and directional
quasi-convexity ones (i.e. V ). To get insight in the light-blue region of Fig. 9,
the 3-jet non-degeneracy should be studied. We stress that the quasi-convexity
region (red area in Fig. 9), together with the directional quasi-convexity region
(dark-blue region in Fig. 9), correspond to the Lie stability region (dark-blue
region in Fig. 4) for any ω1 and ω2.
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