Explainable Classification Methods for Fish Species Detection using Hydroacoustic Data

Lucas Tubino Bonifácio Costa
Computational Modeling PhD Program
Federal University of Rio Grande, Campus Carreiros
Rio Grande RS, Brazil
email: tubinobcosta@gmail.com

Eduardo Nunes Borges
Centro de Ciências Computacionais
Federal University of Rio Grande, Campus Carreiros
Rio Grande RS, Brazil
email: enborges@gmail.com

Leonardo R. Emmendorfer
Centro de Ciências Computacionais
Federal University of Rio Grande, Campus Carreiros
Rio Grande RS, Brazil
email: leonardo.emmendorfer@gmail.com

Graçaíliz Pereira Dimuro
Centro de Ciências Computacionais
Federal University of Rio Grande, Campus Carreiros
Rio Grande RS, Brazil
Departamento de Estatística, Informática y Matemáticas
Universidad Pública de Navarra, Campus Arrosadia
Pamplona, Spain
email: gracaliz@gmail.com

Giancarlo Lucca
Computational Modeling PhD Program
Federal University of Rio Grande, Campus Carreiros
Rio Grande RS, Brazil
email: giancarlo.lucca88@gmail.com

Stefan Cruz Weigert
Oceanography Department
Federal University of Rio Grande, Campus Carreiros
Rio Grande RS, Brazil
email: stefanweigert@gmail.com

Abstract—This work aims to evaluate explainable classification methods for the detection of fish species from hydroacoustic data acquired by echo sounders at a region near the coastline of south and southeastern Brazil. Decision trees and fuzzy rule-based methods were adopted. The fitted models were evaluated by quality measures based on the performance of the classifiers and also by an expert which analyzes the usefulness of the rules on describing the schools. The models learned by the algorithms performed well for the available data and were able to represent the documented behavior of the species considered in the studied region, according to the literature.

Index Terms—hydroacoustics, fish classification, explanability, fuzzy rule-based classification systems

I. INTRODUCTION

The automatic identification of the prevailing species in a fish school allows a non-invasive approach for the analysis of marine life. The approach is also useful for increasing the capture of fish from economically relevant species as well as reducing the fishery of organisms that would be discarded, therefore contributing to the preservation of several species [1]. Catches of the most important pelagic fish along the coast of Brazil represent hundreds of thousands of tons per year.

Modern fishing boats equipped with echo sounders can move freely around fishing grounds and digital echograms can be checked online from the boats or from the fleet headquarters [1], [2]. An echo sounder is an instrument that transmits and receives sound vertically through the water column [2]. This equipment typically works attached to the underside of a vessel, sending acoustic signals to detect fish, mollusks, zooplankton, or other objects in the water column, generating acoustic records that appear on echograms. Modern hydroacoustic systems allow the detection, quantification, and identification of fish species [3].

In the context of fisheries research, the classification and identification of acoustic targets traditionally combine knowledge about the distribution and behavior patterns of constituent species, which includes the analysis of acoustic and catch data [2]. Currently, the method most widely adopted to classify acoustic records is the characterization of echotypes, where certain patterns in acoustic records are visually identified by a specialist who, based on information called descriptors, determines a class for the echo-record. Thus, a key question related to this topic is that the estimate’s precision is highly related to the quality of the interpretation of the echo-records by fishermen and researchers.

The application of those techniques has been limited by an inability to objectively discriminate among taxonomic groups of sound scatterers [4]. To date, although echo-sound software programs are used onboard or remotely to process echograms, most workers in commercial fishery adopt subjective identi-
Hauls trawl depth must be monitored to be related to echo-records found in the same depth. Net sampling must occur at the same time the echogram is obtained, which allows the species identification and weighing of fishes onboard.

Some descriptors might present high inconsistency or a wide variability, notably the morphological and biological ones. This results from variations on the conditions for sound wave propagation due to changes in the water temperature and/or vertical migration of fish, its prey, or other organisms present in the water column. Those features motivated the adoption of fuzzy logic as a suitable alternative for the classification of echo-records since this approach is recognized as being more robust to imprecise, ambiguous data.
III. EXPLAINABLE CLASSIFICATION METHODS

Explainable Artificial Intelligence (XAI) is a research field that aims to make AI systems results more understandable to humans. While the term is relatively new, the problem of explainability has existed since the mid-1970s when researchers studied explanation for expert systems [10]. An explainable intelligent system would be able to provide auditable and provable ways to defend algorithmic decisions, which leads to building trust. Additionally, a model that can be explained and understood is one that can be more easily improved [10].

A. C4.5

Among the XAI methods available from the literature, the inference of decision trees represents a simple rather effective approach. C4.5 [13] is a recursive decision tree learning algorithm that adopts the information gain ration to choose the attribute which better explains the class at each stage. The algorithm builds a decision tree following a top-down approach.

A base case for the recursion occurs when all the objects at a given node belong to the same class. Also, a parameter regulates the minimum number of instances per leaf. The method is widely adopted for object classification on several domains [14]. C4.5 adopts a crispy approach for the split over each attribute selected therefore the rules generates from the algorithm represent abrupt transitions between classes. Those sharp decision boundaries are questionable and often unnatural [15].

B. FARC-HD

According to [16], classification methods based on fuzzy rules better encompass the whole information available, even though it comes from expert knowledge, empirical measures, or mathematical models. A fuzzy association rule can be considered to be a classification rule if the antecedent contains fuzzy item sets and the consequent part contains only one class label [17].

FARC-HD (Fuzzy Association Rule-based Classification method for High-Dimensional problems) [17] is a computationally efficient fuzzy-based algorithm based on association discovery. Figure 3 illustrates the general scheme of the FARC-HD method.

![Fig. 3. Scheme of the FARC-HD method. Adapted from [17].](image)

At the first stage, the fuzzy association rule extraction generates an initial set of rules comprising all classes in the dataset from an input set of predefined triangular membership functions which could be uniformly distributed, for instance. Candidate rule prescreening stage performs a selection from the best rules generated previously. Finally, a genetic approach is adopted for the tuning of the rules selected. The authors adopted a fixed number of five linguistic variables for the fuzzy representation of each attribute in the evaluation of the method [17]. Figure 4 illustrates five triangular linguistic variables and the respective membership functions for an arbitrary attribute.

![Fig. 4. Linguistic variables and their respective triangular membership functions for an arbitrary attribute.](image)

C. FURIA

FURIA [15] extends the rule learning algorithm RIPPER [18] on allowing the adoption of fuzzy and non-ordered rules. Essentially, a fuzzy rule is obtained through replacing intervals by fuzzy intervals, namely fuzzy sets with trapezoidal membership function. The fuzzy antecedents successively learned by FURIA are open fuzzy half intervals.

At the building stage, an initial ruleset is obtained. Rules are grown by the inclusion of antecedents. Each rule can raise one or more “optimizations”, which are variations from it. During the optimization phase, in each iteration, rules are fuzzified greedily. The fuzzification is evaluated for every antecedent \(A_i \) in terms of its purity \(\rho_i \), which is defined as:

\[
\rho_i = \frac{p_i}{p_i + n_i}
\]

where \(p_i = \sum_{x \in D_i^+} \mu_{A_i}(x) \) and \(n_i = \sum_{x \in D_i^-} \mu_{A_i}(x) \). Each \(\mu_{A_i}(x) \) is the degree to which the antecedent \(A_i \) covers each \(x \), where \(x \) is an instance. \(D_i^+ \) and \(D_i^- \) are the subsets of positive and negative instances respectively, with respect to antecedent \(A_i \). The fuzzification is then performed for the antecedent with the greatest purity. The process is repeated until all antecedents have been fuzzified [15].

The model is built following a k-fold approach, where one fold is used for pruning. The user must inform the number of optimizations for each rule and the number folds, among other parameters. The algorithm has been successfully applied to classification problems from several fields including medicine [19], urban traffic prediction [20], and climate [15].

IV. METHODOLOGY

Fish hydroacoustic data for this study\(^1\) were collected using a Simrad EK500 scientific split-beam echo sounder\(^2\) operating at 38 kHz. Data were obtained from two cruises

\(^1\)Data provided by the Fisheries Technology and Hydroacoustics Laboratory at the Federal University of Rio Grande, Brazil (http://www.io.furg.br/)

\(^2\)Simrad Fisheries; Lynnwood, USA
which occurred between 2009 and 2010 [1] at a region near coastline of south and southeastern Brazil, between the Santa Marta cape (28° 36′ S) and São Tomé cape (22° 02′ S) (Figure 5).

The cruises were carried out along pre-established grids during day and night, at a speed of 10 knots. The coverage of the cruises, calculated as the ratio of the number of miles prospected to the total area, was more than 20%. Mid-water trawl net sampling was performed whenever schools were detected. The net, designed to catch small pelagic fish, had wings and square with a mesh of 400 mm between knots, gradually decreasing to 50 mm in the tunnel and 20 mm in the bag, plus an internal 12 mm mesh bag. The net was kept open by the use of two doors with 4 m² each. The hauls were performed at speeds between 3 and 4 knots for a period that depended on the size of the schools [21].

![Fig. 5. Catch positions of the cruises in the study area. Isobaths refer to local depth. Reproduced under permission of the Fisheries Technology and Hydroacoustics Laboratory (FURG, Brazil).](image)

Through the analysis of morphological, spatial, and temporal descriptors, the echo-records detected were characterized into echotypes, according to common characteristics and consistent standards, according to the works carried out by [21] and also by [1].

Each entry in the fishery dataset represents the description of a fishing haul and its respective fish schools, containing the following data: South Latitude (SL) and West Longitude (WL) in decimal degrees of the coordinates of the school; Location Depth (LD) in meters which refers to the depth of the local where each school was detected; Superior and Inferior depth in meters (SD and ID respectively), which refer to the upper and lower depth of the school; School Height and Width in meters (SH and SW respectively). Those fields are metadata obtained from the echogram. Additionally, a class represents the prevailing species as recognized by the crew after the school is hauled.

```plaintext
1. if LD ≤ 64.2 and SL ≤ 22.96 then
class = Dactylopterus volitans (CF = 0.9363)
2. if LD ≤ 64.2 and SL > 22.96 then
class = Engraulis anchoita (CF = 0.4459)
3. if LD ≤ 64.2 and LD > 24.61 then
class = Engraulis anchoita (CF = 1.0)
4. if LD > 64.2 and SL ≤ 23.34 and SD ≤ 16.2 then
class = Dactylopterus volitans (CF = 0.8822)
5. if LD ≤ 34.8 and 24.61 < SL ≤ 24.62 then
class = manjuba
6. if LD > 64.2 and LD ≤ 70.5 then
class = Tetrachaerus lepturus
7. if LD > 70.5 and SL ≤ 6.5 then
class = Tetrachaetus lepturus (CF = 1.0)
8. if SL is RoughlyToSouth then
class = Engraulis anchoita (CF = 0.9811)
9. if LD is RoughlyToWest and LD is RoughlyShallow and SD is RoughlyShallow then
class = Dactylopterus volitans (CF = 0.9995)
10. if SL is MuchToNorth and WL is MuchToWest then
class = manjuba (CF = 0.7430)
11. if WL is RoughlyToWest and LD is RoughlyShallow and SD is RoughlyShallow then
class = manjuba (CF = 0.0963)
12. if SL is RoughlyToNorth and WL is RoughlyToWest and LD is VeryDeep then
class = others (CF = 1.0)
13. if LD is RoughlyToNorth and LD is RoughlyToShallow and SD is VeryDeep then
class = others (CF = 0.9546)
14. if WL is RoughlyToWest and LD is VeryDeep then
class = others (CF = 0.9742)
15. if SD is RoughlyToWest then
class = Tetrachaetus lepturus (CF = 1.0)
16. if SL is MuchToNorth and LD is VeryDeep then
class = Tetrachaetus lepturus (CF = 0.9949)
```

Fig. 6. The set of rules generated from FARC-HD.

Fig. 7. The set of rules generated from C4.5.

TABLE I

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Average</th>
<th>s.d.</th>
<th>Median</th>
<th>Max.</th>
<th>Min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL (°)</td>
<td>24.8768</td>
<td>1.2979</td>
<td>24.6123</td>
<td>28.1939</td>
<td>22.5632</td>
</tr>
<tr>
<td>WL (°)</td>
<td>46.3506</td>
<td>1.6991</td>
<td>46.7773</td>
<td>48.3383</td>
<td>41.6664</td>
</tr>
<tr>
<td>LD (m)</td>
<td>42.5569</td>
<td>1.6523</td>
<td>34.0000</td>
<td>86.0000</td>
<td>19.4000</td>
</tr>
<tr>
<td>SD (m)</td>
<td>25.0027</td>
<td>1.3578</td>
<td>21.8000</td>
<td>58.0000</td>
<td>3.8000</td>
</tr>
<tr>
<td>ID (m)</td>
<td>25.1025</td>
<td>1.3570</td>
<td>24.3500</td>
<td>62.4000</td>
<td>6.3000</td>
</tr>
<tr>
<td>SH (m)</td>
<td>3.1713</td>
<td>2.5047</td>
<td>2.3000</td>
<td>15.9000</td>
<td>0.5000</td>
</tr>
<tr>
<td>SW (m)</td>
<td>10.9206</td>
<td>11.905</td>
<td>7.6000</td>
<td>129.2000</td>
<td>0.9000</td>
</tr>
</tbody>
</table>

AVERAGE, STANDARD DEVIATION (S.D.), MEDIAN, MAXIMUM AND MINIMUM VALUES FOR EACH ATTRIBUTE OF THE DATASET.

Hydroacoustic data were digitally stored as raw acoustic data, which can be viewed in the form of echogram images using the MOVIES+ version 3.4b (IFREMER) software. The crew prepared data sheets of quantity (number and biomass) and percentage of the total biomass of the species present in each fishing haul with an echogram record and, from these data, the predominant species of fish in the haul was identified.
Results from fishing hauls revealed schools composed majorly by pelagic fish from four species: *Engraulis anchoita* (Argentine anchovy), *Dactylopterus volitans* (flying gurnard), *Trachurus lathami* (rough scad) and *Trichiurus lepturus* (large-head hairtail). The class *manjuba* refers to fish from the family *Engraulidae*, other than *E. anchoita* which were aggregated under this name. The class “others” refers to schools without a predominant species, where the species with the higher frequency represents under 50% of the total of individuals. Also, schools of other species were categorized under this class.

Table I describes the attributes that represent the descriptors in the dataset. Average values of each attribute for each class are shown in Table II. P-values resulting from Kruskal-Wallis [22] tests for the difference on the means for each attribute are also shown. Significative differences between classes were detected for all attributes considered. Table II illustrates the pERTINENCY of each class to each group at a significance level \(\alpha=0.05 \).

Table I

<table>
<thead>
<tr>
<th>Attribute</th>
<th>SL</th>
<th>WL</th>
<th>LD</th>
<th>SD</th>
<th>ID</th>
<th>SH</th>
<th>SW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dactylopterus volitans</td>
<td>23.53</td>
<td>44.46</td>
<td>47.09</td>
<td>10.43</td>
<td>17.34</td>
<td>6.91</td>
<td>29.02</td>
</tr>
<tr>
<td>Engraulis anchoita</td>
<td>25.27</td>
<td>46.71</td>
<td>39.17</td>
<td>24.59</td>
<td>27.53</td>
<td>2.96</td>
<td>9.03</td>
</tr>
<tr>
<td>Trachurus lathami</td>
<td>23.80</td>
<td>44.51</td>
<td>77.87</td>
<td>14.77</td>
<td>17.82</td>
<td>3.05</td>
<td>4.35</td>
</tr>
<tr>
<td>Trichiurus lepturus</td>
<td>27.03</td>
<td>47.99</td>
<td>65.90</td>
<td>51.44</td>
<td>55.08</td>
<td>3.67</td>
<td>15.55</td>
</tr>
<tr>
<td>manjuba</td>
<td>24.35</td>
<td>46.46</td>
<td>28.33</td>
<td>20.80</td>
<td>23.15</td>
<td>2.36</td>
<td>8.61</td>
</tr>
<tr>
<td>others</td>
<td>24.07</td>
<td>45.56</td>
<td>44.12</td>
<td>27.76</td>
<td>30.32</td>
<td>2.55</td>
<td>8.39</td>
</tr>
<tr>
<td>p-value (K-W)</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Table II

<table>
<thead>
<tr>
<th>Class</th>
<th>C4.5</th>
<th>FARC-HD</th>
<th>FURIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dactylopterus volitans</td>
<td>0.710</td>
<td>0.979</td>
<td>0.988</td>
</tr>
<tr>
<td>Engraulis anchoita</td>
<td>0.820</td>
<td>0.981</td>
<td>1.000</td>
</tr>
<tr>
<td>Trachurus lathami</td>
<td>0.977</td>
<td>0.988</td>
<td>0.977</td>
</tr>
<tr>
<td>Trichiurus lepturus</td>
<td>0.962</td>
<td>0.971</td>
<td>0.980</td>
</tr>
<tr>
<td>manjuba</td>
<td>0.708</td>
<td>0.907</td>
<td>0.916</td>
</tr>
</tbody>
</table>

Table III

<table>
<thead>
<tr>
<th>Class</th>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dactylopterus volitans</td>
<td>C4.5</td>
</tr>
<tr>
<td>Engraulis anchoita</td>
<td>FARC-HD</td>
</tr>
<tr>
<td>Trachurus lathami</td>
<td>FURIA</td>
</tr>
<tr>
<td>Trichiurus lepturus</td>
<td>FARC-HD</td>
</tr>
<tr>
<td>manjuba</td>
<td>FURIA</td>
</tr>
<tr>
<td>others</td>
<td>FURIA</td>
</tr>
</tbody>
</table>

The average accuracies from cross-validation computed for C4.5, FURIA FARC-HD and FURIA are 92.2\%, 96.1\%, and 97.8\% respectively. Table III shows the average F-mesures by class for the three algorithms considered. The higher values were obtained from the FURIA algorithm for all classes, except for *Trichiurus lepturus*.

Figure 6 shows the 9 rules generated by C4.5. The attributes LD (which is the root of the tree) and SL were the most frequent, appearing in 9 and 6 of the rules, respectively.

From the 16 rules generated by FARC-HD (Figure 7), the most relevant attributes are SL, WL, and LD, which are related to the description of the location where the school was detected. Triangular membership functions are generated.

V. Results
A nominal representation is proposed for each variable as follows. The linguistic variables for the WL attribute are: MuchToWest, RoughlyToWest, CenterToWest, CenterToEast, RoughlyToEast, MuchToEast. The linguistic variables for the SD attribute are: VeryShallow, RoughlyShallow, AvgToShallow, AvgToDeep, RoughlyDeep, VeryDeep. The other variables are represented similarly.

The rules were analyzed by specialists, which pointed out that results from FURIA are especially coherent with the actual behavior, noticeably with respect to the spatial distribution shown by the corresponding species. The classes “manjuba” and “others” were harder to be correctly classified by the FURIA algorithm. The statistical analysis of those two classes indicated that they differed only in terms of LD (lower in “manjuba”) and WL (lower in “others”). This might result from the composition of both classes, which are formed by mixed schools (with more than one species), whose biological needs and ecological interactions can generate greater variability in their spatiotemporal distributions and in the morphology of schools in the water column.

The attributes SL and LD were revealed as very important for the composition of the rules. Those descriptors are directly related to other abiotic (eg, temperature and water salinity) and biotic (food availability) factors that influence the places where these marine beings inhabit [26], [27]. According to [27], depth is the main structuring factor of marine megafauna communities (macroscopic animals).

Morphological descriptors SH and SW were not relevant for the rule’s composition. This results from a relatively small variability of the way fish schools are formed in this region, which do not vary much between species. In general the schools had an average height of 2.4 to 3.1 meters and average width between 4.4 to 8 meters, except the schools of Dactylopterus volitans and Trachurus lepturus which presented greater sizes.

VI. CONCLUSION

The adoption of fuzzy rules was revealed as an efficient approach for the classification of hydroacoustic records of fishing hauls. All F-measure values obtained from the FURIA algorithm in the classification of the records are above 0.91. The superiority of FURIA over other fuzzy classifiers has been reported in the literature [15], [28], notably under the case of unbalanced classes. This can be noticed from our case since FURIA was able to deliver the highest overall F-measure from the class which has the lowest number of instances (Trachurus lathami). According to [28] this behavior results from the fact that the accuracy of FURIA is not restricted by the choice of a linguistic partition, and the antecedents of the rules change dynamically when an instance appears that is not covered by the rule. The replacement of rules is performed by its minimal generalizations [29].

Future work should consider higher number of species, other locations, and the differentiation on the periods of the year. The methodology could be applied to other types of hydroacoustic data. Also, fuzzy rule-based classification systems based on the generalization of the Choquet integral can also be applied, as in [30]–[33]
REFERENCES

