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Abstract

In this paper we provide a specific contruction method of ordered directionally monotone functions. We
show that the functions obtained with this construction method can be used to build edge detectors for
grayscale images. We compare the results of these detectors to those obtained with some other ones that
are widely used in the literature. Finally, we show how a consensus edge detector can be built improving
the results obtained both by our proposal and by those in the literature when applied individually.
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Consensus image.

1. Introduction

In recent years, the analysis of functions which fulfill monotonicity conditions weaker than those required
to aggregations is attracting a growing interest. The study of monotonicity has led to the development of
new concepts as, for instance, weak monotonicity (where monotonicity is required only along the ray defined
by the vector (1, . . . , 1) [42]) or directional monotonicity (where monotonicity is required along some ray
defined by a vector in the first quadrant [11]). These extensions have shown to be very useful in different
application fields, as in classification problems [31].

A common feature shared by all these extensions is that the monotonicity direction is the same for every
considered input. But, in some applied problems, this can be too restrictive.

Let us consider the problem of automatic object identification on images [3, 17, 24, 25, 32]. One of
the most important steps for object identification consists in extracting the object edges in the image [10].
Recall that the contours of the visible objects are denoted as edges if there exists a big enough jump between
the intensity of a pixel and those of its neighbours. Clearly, this is an imprecise definition, but this is due
to the inherent uncertainty of the border concept itself. [28].

Many edge detection methods use, among other techniques, the gradient vector to represent intensity
jumps between pixels [37, 41], as for example the well-known approaches by Sobel and Feldman [40], Prewitt
[38] and Canny [15], being the latter still considered as one of the most important references for comparison
in order to determine the quality of a given method. In recent years, different methods which use Machine
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Learning techniques have appeared, as the ones based on Random Forest [16], or Newton’s Gravitational
Law, as for instance, [28], etc. Furthermore, deep learning methods [43, 44, 45] have recently become
the most widely used ones due to their high performance, which improves all the previously mentioned
algorithms. Nevertheless, deep learning techniques have a high computational cost and require a previous
training, so in some cases it is enough to use simpler, less costly methods.

In order to tackle our problem, we stick to the Bezdek Breakdown Structure for edge detection [4], a
framework that considers four phases for edge detection tasks:

(S1) Conditioning: Applying a Gaussian filter (with σG = 2 ) to the image I obtaining a new smoothed
image, IG.

(S2) Feature extraction: Obtaining a new image IM from IG, where each pixel in IM represents information
about the intensity jump between the corresponding pixel and its neighbours in IG.

(S3) Blending: Using the non-maximum suppression procedure [15], computing prior orientations by Kovesis’
function [27], obtaining a thinned image, IH .

(S4) Scaling: Applying an hysteresis method [36] to obtain the binary edge image IB . Such representations
are commonly demanded to every edge detection approach fulfilling the restrictions imposed by Canny
[14, 15].

Focusing our attention on the feature extraction phase (S2), we observe that the information provided
by a pixel and its neighbours is to be considered simultaneously. But, in order not to loose information
all the intensity differences have to be considered and not only the difference between the maximal and
the minimal intensities [6] Furthermore, the relevant information must consider all the intensity jumps in
the neighbourhood and their mutual relation based on their relative size. The nature of edges implies that
the intensity jumps must be ordered in a decreasing way, as the bigger an intensity jump is, the larger its
influence is in the possible existence of an edge. In this sense, it is straightforward to consider the directions
defined by the increasingness or decreasingness of the intensity, but such directions may vary from one pixel
to another one. For this reason, we consider the use of ordered directionally monotone functions as a way
of issuing this problem.

Bearing in mind all the previous considerations, we aim at the following goals in this work:

1. Develop a new mathematical method to build ordered directionally monotone (ODM) functions.

2. Show that the new building method for ODM functions can be useful to build a feature image extractor
for phase (S2) of the edge detection breakdown structure.

Besides, as we have already commented previously, there exists many different methods to get the feature
image in phase (S2). For this reason, we consider the following goal to complete our experimental study:

3. Build, using penalty functions [13, 8, 9], a consensus feature image extractor from the different
algorithms used in the experimental setup of phase (S2).

The structure of this work is as follows. In Section 2 some of the basic notation and concepts needed
for our proposal are exposed. Section 3 is devoted to expose a specific case of OD monotone function
and Section 4 develops the previous section ideas in the context of image feature extraction along with
two alternative constructions (Section 5). Section 6 presents a consensus edge detector build upon the
combination of the different considered methods. The experimental framework is exposed in Section 7. Then,
Section 8 shows the quantitative evaluation of the proposed methods compared with different alternatives
of the literature. Finally in Section 9 some conclusions and future works are presented.
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2. Preliminaries

2.1. Basic notations and concepts

In this subsection we fix some notations and concepts which will be useful for the remainder of the work.
Let n > 1. We use bold letters to denote points in the hypercube [0, 1]n, i.e., x = (x1, . . . , xn) ∈ [0, 1]n.

In particular, we write 0 = (0, . . . , 0) and 1 = (1, . . . , 1). Given x,y ∈ [0, 1]n we write x ≤ y if xi ≤ yi for
every i ∈ {1, . . . , n}. Note that this relation is a partial order which extends the usual linear order between
real numbers.

For n > 1, we denote by Pn the set of permutations of {1, . . . , n}. That is,

Pn = {σ : {1, . . . , n} → {1, . . . , n} | σ is bijective}.

Given σ ∈ Pn, x ∈ [0, 1]n and ~r ∈ Rn, we define:

xσ = (xσ(1), . . . , xσ(n))

and

~rσ = (rσ(1), . . . , rσ(n)).

For simplicity, in this work we refer as fusion function (of dimension n) to any function F : [0, 1]n → [0, 1].
A distinguished class of fusion functions, mainly used in applied tasks, is that of aggregation functions

[20, 2].

Definition 1. [1, 12] A mapping M : [0, 1]n → [0, 1] is an aggregation function if it is monotone non-
decreasing in each of its components and satisfies M(0) = M(0, 0, . . . , 0) = 0 and M(1) = M(1, 1, . . . , 1) = 1.

2.2. Ordered directional monotonicity

Imposing monotonicity might be too restrictive for some specific applications (e.g., the mode is not
increasing with respect to all its arguments but it is a valid function for certain applications). This consid-
eration led Wilkin and Beliakov [42] to introduce the notion of weak monotonicity.

This concept of weak monotonicity can be further extended by the notion of directional monotonicity,
that we define now.

Definition 2. [11] Let ~r = (r1, . . . , rn) be a real n-dimensional vector, ~r 6= ~0. A fusion function F : [0, 1]n →
[0, 1] is ~r-increasing if for all points (x1, . . . , xn) ∈ [0, 1]n and for all c > 0 such that (x1+cr1, . . . , xn+crn) ∈
[0, 1]n it holds

F (x1 + cr1, . . . , xn + crn) ≥ F (x1, . . . , xn) .

That is, an ~r-increasing function is a function which is increasing along the oriented segments determined
by the vector ~r. For this reason, we say that F is directionally monotone, or, more specifically, directionally
~r-increasing. For an in-depth study of the concept of directional monotonicity see [11]. Nevertheless, it is
worth to mention that directional monotonicity combined with appropriate boundary conditions leads to
the notion of pre-aggregation function, see [31].

In [7] the notion of ordered directionally monotone function (ODM) is presented. To motivate its
introduction, note that by means of directional monotonicity, usual monotonicity may be relaxed, just
requiring increasingness along some fixed ray. However, the direction along which monotonicity is demanded
is the same for every point in the domain [0, 1]n, and it is independent of the particular point which is being
considered.

For ODM functions, on the contrary, the direction along which monotonicity is required varies depending
on the relative size of the coordinates of the considered input. The formal definition reads as follows.
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Definition 3. [7] Let F : [0, 1]n → [0, 1] be a fusion function and let ~r 6= ~0 be a n-dimensional vector.
F is said to be ordered directionally (OD) ~r-increasing if for any x ∈ [0, 1]n, for any c > 0 and for any
permutation σ ∈ Pn with xσ(1) ≥ · · · ≥ xσ(n) and such that

1 ≥ xσ(1) + cr1 ≥ · · · ≥ xσ(n) + crn ≥ 0,

it holds that

F (x + c~rσ−1) ≥ F (x),

where ~rσ−1 = (rσ−1(1), . . . , rσ−1(n)).
Analogously, F is said to be OD ~r-decreasing if for any x ∈ [0, 1]n, for any c > 0 and for any permutation

σ ∈ Pn with xσ(1) ≥ · · · ≥ xσ(n) and such that

1 ≥ xσ(1) + cr1 ≥ · · · ≥ xσ(n) + crn ≥ 0,

it holds that

F (x + c~rσ−1) ≤ F (x),

where ~rσ−1 = (rσ−1(1), . . . , rσ−1(n)).

By an OD ~r-monotone function we mean a function which is OD ~r-increasing or ordered directionally
~r-decreasing.

Note that that for symmetric fusion functions, both concepts of directional monotonicity and ordered
directional monotonicity coincide, and then, in particular, such fusion functions are weakly increasing in the
sense of Wilkin and Beliakov.

Example 4. The weighted Lehmer mean

Lλ(x, y) =
λx2 + (1− λ)y2

λx+ (1− λ)y
,

with the convention 0/0 = 0, is (1− λ, λ)-increasing. It follows that the function

Gλ(x, y) =
λ(∨(x, y))2 + (1− λ)(∧(x, y))2

λ ∨ (x, y) + (1− λ) ∧ (x, y)

is OD (λ, 1 − λ)-increasing. Note that, if λ ∈]0, 1[, then Lλ is a pre-aggregation function which is not an
aggregation function, see [31].

3. A particular case of OD monotone functions

In this section we discuss an affine construction method for ODM functions.

Theorem 5. Let G : [0, 1]n → [0, 1] be defined, for x ∈ [0, 1]n and σ ∈ Pn such that xσ(1) ≥ . . . ≥ xσ(n), by

G(x) = a+

n∑
i=1

bixσ(i),

for some a ∈ [0, 1] and ~b = (b1, . . . , bn) ∈ Rn such that 0 ≤ a+ b1 + · · ·+ bj ≤ 1 for all j ∈ {1, . . . , n}. Then

G is OD ~r-increasing for every non-null vector ~r such that ~b ·~r ≥ 0. In particular, for every non-null vector
~r which is orthogonal to ~b.
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Proof.
Take σ ∈ Pn such that xσ(1) ≥ xσ(2) ≥ · · · ≥ xσ(n). Take also c > 0 such that (xσ(1) + cr1, . . . , xσ(n) +

crn) ∈ [0, 1]n. Then we have that

G(x + c~rσ−1) = a+

n∑
i=1

bi(xσ(i) + cri)

= a+

n∑
i=1

bixσ(i) + c

n∑
i=1

biri

≥ G(x),

as we wanted to show.
Theorem 5 can be generalized taking into account the following lemma.

Lemma 6. Let ϕ : [0, 1]→ [0, 1] be an automorphism (i.e., an increasing bijection). Then, if G : [0, 1]n →
[0, 1] is an ordered directionally increasing function, the function ϕ ◦ G is also an ordered directionally
increasing function.

Proof.
It follows straightforwardly from the definition of ordered directionally increasing functions and the fact

that ϕ is increasing.
From Lemma 6, we have the following corollary of Theorem 5, which is very relevant for our edge

detectors, since the value of p allows us to darken or lighten the considered image.

Corollary 7. Let p > 0. Let G : [0, 1]n → [0, 1] be defined, for x ∈ [0, 1]n and σ ∈ Pn such that xσ(1) ≥
. . . ≥ xσ(n), by

G(x) =

(
a+

n∑
i=1

bixσ(i)

) 1
p

, (1)

for some a ∈ [0, 1] and ~b = (b1, . . . , bn) ∈ Rn such that 0 ≤ a+ b1 + · · ·+ bj ≤ 1 for all j ∈ {1, . . . , n}. Then

G is OD ~r-increasing for every non-null vector ~r such that ~b · ~r ≥ 0.

Proof.
It follows from Lemma 6 taking into account that the function ϕ(x) = x

1
p is an automorphism.

The following result is very relevant from the point of view of applications in image processing, since it
can be straightforwardly applied to the cases in which an edge exists or not.

Corollary 8. Let p > 0 and let G : [0, 1]n → [0, 1] be defined as in Corollary 7. Then

(i) G(0) = 0 if and only if a = 0.

(ii) Assume that a = 0. Then, G(1) = 1 if and only if b1 + · · ·+ bn = 1.

Proof. To see (i), observe that G(0) = a
1
p , so the result is straightforward. Regarding (ii), G(1) =

(
∑n
i=1 bi · 1)

1
p , and the result follows.

4. A new algorithm to construct a feature image using Ordered Directionally Monotone func-
tions

In Algorithm 1 we present the process to obtain a feature image by means of ODM functions, phase (S2),
which by definition consider both the intensity jumps between a pixel and its neighbours and the direction
along which such jumps vary, in a decreasing way.
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Algorithm 1 Algorithm to construct a feature image using ODM functions

Input: A normalized greyscale image IG and a parameter p > 0 to build an ODM function G as in
Corollary 7.

Output: A feature image IM .
1: for each pixel (x, y) of IG do
2: Compute the 8 values obtained by applying the absolute value of the difference between Ig(x, y) and

its 8-neighbourhood;
3: Order the eight values of step 2 in a decreasing way;
4: Fix the parameters a, ~r y ~b according to the vector obtained in step 3.
5: Build the ODM function G as in Corollary 7 with the parameters obtained in step 4.
6: Apply the ODM function G to the values obtained in step 3;
7: Assign as intensity of the pixel (x, y) of IM the value obtained in step 6.
8: end for

Next, let us expose how to carry out the execution of the Algorithm 1. Firstly, let us consider that the
pixel (x, y) of IG is the pixel a22 of Fig. 1 and then compute the 8 values indicated in step 2, obtaining the
following outcome:

x1 = |a22 − a11|, x2 = |a22 − a12|,
x3 = |a22 − a13|, x4 = |a22 − a23|,
x5 = |a22 − a33|, x6 = |a22 − a32|,
x7 = |a22 − a31|, x8 = |a22 − a21|.

Figure 1: Pixel a22 and its 8-neighbourhood.

In step 3, these differences are ordered in a decreasing way; that is,

xσ(1)
≥ xσ(2)

≥ . . . ≥ xσ(7)
≥ xσ(8)

.

Note that, as we have already said, there exists an edge if there is a big enough intensity jump between
a pixel and its neighbours. So the greatest intensity differences are the most relevant ones in order to
determine if there is an edge or not.

In step 4 we should fix the parameters a, ~r y ~b, further explained in Section 5. It does not exist a precise
procedure to obtain these parameters, but nevertheless in Section 5 we discuss two possible choices of such
parameters. Both of them are based on the expected properties of edges. These parameters are necessary
to get in step 5 an ODM function G as in Corollary 7. Finally, in step 6, the ODM function G is applied to
get the feature image.

5. Two alternative sets of parameters for the ODM function construction

In this section we discuss two expressions for ODM functions for Algorithm 1. These expressions are
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obtained from Corollary 7 using Eq. (1) and giving specific values to the parameters a, p, vector ~r and ~b. It
is important to remark that these expressions are a first approach and they have not been optimized. On
the contrary, we discuss them due to their simplicity. In a future work, we intend to optimize the value of
the different parameters depending on the specific type of images that we consider.

Observing the expression given in Eq. (1) for step 6 in Algorithm 1, the parameter p allows us to darken
or lighten the resulting feature image. It is enough to observe that if p > 1, then we get a lighter feature
image, and if 0 < p < 1, then we get a darker one (see [18]).

5.1. Case 1

We consider:

~r = (xσ(1)
, xσ(2)

, xσ(3)
, xσ(4)

, xσ(5)
, xσ(6)

, xσ(7)
, xσ(8)

);

~b =


 xσ(1)

8∑
i=1

xσ(i)

, . . . ,
xσ(7)
8∑
i=1

xσ(i)

,
xσ(8)
8∑
i=1

xσ(i)

 if
8∑
i=1

xσ(i)
6= 0

(0, . . . , 0) otherwise.

a = 0 and 1
p = 0.30.

Regarding ~r, the highest value , xσ(1), is the most relevant for the possible edge, since it corresponds to
the biggest intensity jump between the central pixel and its neighbours. With respect to the value of a, we
take a = 0 because if all the values to be aggregated are null, i.e., if xσ(1) = · · · = xσ(8) = 0, this means that
in the considered 8-neighbourhood all the pixels have the same intensity and hence there is no edge. So, in
this case, we should have G(0, . . . , 0) = 0, and from Corollary 8, this is so if and only if a = 0. Besides, if
xσ(1) = · · · = xσ(8) = 1, the intensity jump between the pixels in the 8-neighbourhood and the central pixel
is as large as possible. So G(1, . . . , 1) must be equal to 1 and, again from Corollary 8, since a = 0, we should
require that b1 + · · ·+ bn = 1.

Regarding the computation of the parameter 1/p for constructing the ODM functions, according to
Corollary 7, we do as follows: We consider the points 1/p11 = 0.1, 1/p21 = 0.2, 1/p31 = 0.3,. . . , 1/p91 = 0.9 (i.e.,
a uniform partition of the interval [0, 1]). We apply Algorithm 1 with each of these nine values and we evaluate
the quality of the resulting edge images (in terms of the average of the values of F0.5 on the considered training
images). Let i1 be the index such that, if we apply Algorithm 1 with 1/p = 1/pi11 , we get the best result among

the nine considered values. Denote 1/pfix1 = pi11 . Next, consider the interval [1/pfix1 −0.05, 1/pfix1 +0.05]. We

take again a uniform partition of this interval with nine points, 1/p12 = 1/pfix1 −0.04, 1/p22 = 1/pfix1 −0.03, . . .

,1/p92 = 1/pfix1 + 0.04 and we repeat again the procedure of running and evaluating the results of Algorithm

1 for each of these 9 values of the parameter 1/p to get a new point 1/pfix2 . We repeat the procedure n

times, where the new interval around the point 1/pfixi is [1/pfixi − 5× 10−i, 1/pfixi + 5× 10−i] (i = 2, . . . , n)
and we finish when the variation of the average value of the measure F0.5 between the images obtained after
applying Algorithm 1 with 1/p = 1/pfixn and those obtained with 1/p = 1/pfixn+1 is smaller than a given
tolerance, in our case 0.001.

Following this procedure with the training images in the considered dataset, we get the cited value
1/p = 0.30. Finally, observe that the expression that we are actually recovering in this situation is G(x) =
8∑
i=1

x2
i

8∑
i=1

xi

. However, this simple expression is justified by the previous considerations.

5.2. Case 2

In this case we consider:
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(a) Original (b) Case 1 (c) Case 2

Figure 2: Original image from BSDS [33] (100007) along with feature images obtained after applying Algorithm 1 with Case 1
and case 2.

Figure 3: Example of a 3 × 3 neighbourhood near an edge. White pixels get value 0 and black pixels 1.

~r = (xσ(1)
, xσ(2)

, xσ(3)
, xσ(4)

, xσ(5)
, xσ(6)

, xσ(7)
, xσ(8)

);

~b =

(
1

8

(
1−

∣∣∣∣xσ(1)
− median
i∈{1,...,8}

{xi}
∣∣∣∣) , . . .

. . . ,
1

8

(
1−

∣∣∣∣xσ(8)
− median
i∈{1,...,8}

{xi}
∣∣∣∣)) ;

a = 0 and 1
p = 0.30. The justification for the choice of these parameters is analogous to that in Case 1.

Note that in this case necessarily a = 0. Indeed, it suffices to consider the case x1 = . . . = x8.
In Fig. 2 we show the results obtained by applying Algorithm 1 with the two ODM functions, Case 1

and Case 2, to an original image, Fig. 2a.
As an example of a simple case where pixels are one of the possible extremes of the set (white pixels as

0 and black pixels as 1) we take the 3× 3 neighbourhood in red of Figure 3 and show the results obtained
with each one of the proposed alternatives. Considering the previous explanations we have:

~r = (1, 1, 1, 1, 1, 0, 0, 0);

Case 1 ~b =

(
1

5
,

1

5
,

1

5
,

1

5
,

1

5
,

1

5
, 0, 0, 0

)
;

Case 2 ~b =

(
1

8
,

1

8
,

1

8
,

1

8
,

1

8
,

1

8
, 0, 0, 0

)
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~r = (1, 1, 1, 1, 1, 0, 0, 0);

Case 1 ~b =

(
1

5
,

1

5
,

1

5
,

1

5
,

1

5
,

1

5
, 0, 0, 0

)
;

Case 2 ~b =

(
1

8
,

1

8
,

1

8
,

1

8
,

1

8
,

1

8
, 0, 0, 0

)

Case 1 G(x) =

(
a+

n∑
i=1

bixσ(i)

) 1
p

= (0 + 1)
1
p = 1;

Case 2 G(x) =

(
a+

n∑
i=1

bixσ(i)

) 1
p

= (0 + 1)
1
p = 1

As we can see both of the alternatives permit to extract the features of an image and hence be used in
edge extraction.

6. Consensus feature images

We have seen in the previous sections that, from a given image, we can build different feature images
in phase (S2). In this section we discuss a method to build a consensus feature image from the different
feature images. This consensus image can be built using aggregation function pixel by pixel, and there are
several ways of doing it. Given a set of aggregation functions M1, . . . ,Ms, we may:

1. fFx one of this aggregation functions, Mi, and apply it to the intensities of the first pixel in every
feature image to get the intensity of the first pixel in the consensus image. Then we can apply it again
to the intensities of the second pixel in every feature image to get the intensity of the second pixel in
the feature image, and we can repeat the process, always with the same Mi, for the intensities of all
the other pixels; or we may

2. Use the notion of penalty function [5], which allows us to choose the best aggregation (among the s
considered ones) for each pixel. In this case, it may happen that, in order to build the intensity of the
first pixel in the consensus image, we use an aggregation function Mj , whereas to build the intensity
of the second pixel we use an aggregation function Mk different from Mj , and so on.

The advantage of using penalty functions is that the aggregation used to build the intensity of each
pixel in the consensus image is the one which provides the least dissimilar result from the intensities of
the corresponding pixels in the feature images. So it seems logical to use penalty functions to build the
consensus feature image. But the main problem with this method is the choice of the best penalty function.
In our experimentation we will use the following expression (see [5]):

P∇(X,y) =

m∑
q=1

n∑
p=1

|xqp − yq|2 (2)

where we have n feature images to aggregate, each of them with m pixels. In this way, xqp denotes the
intensity of the pixel q in image p and yq is the result of aggregating xq1, . . . , x

q
n by means of some of

the considered aggregation functions. Finally, we denote X = ((x11, x
1
2, . . . , x

1
n), . . . , (xm1 , x

m
2 , . . . , x

m
n )) and

y = (y1, . . . , ym).
We use Eq. 2 since it is among the most used ones in image comparison, as it is based on the mean

squared error; and, moreover, due to the following property.
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If the arithmetic mean is among the considered aggregation functions M1, . . . ,Ms set then the least
dissimilar result is obtained applying in every case the arithmetic mean.

To analyse, this property, let us recall the concept of penalty function in a Cartesian product of lattices,
that was deeply studied in [5]. Consider the following goal: given a set of n numerical values x1, . . . , xn
and q averaging aggregation (i.e., between the minimum and the maximum, see [2]) functions M1, . . . ,Mq

penalty functions (see [13, 8, 9]) allow us to select, between the q functions, the one that provides the output
least dissimilar to all the inputs. That is, we choose the aggregation functions using a consensus procedure
based on testing several functions until we find the one providing the least dissimilar result with respect to
the values of the inputs.

The definition of penalty function in a Cartesian product of lattices reads as follows [8]:

Definition 9. For any closed interval I ⊆ R, the function P : In+1 → R+ is a penalty function if and only
if there exists c ∈ R+ such that:

1. P (x, y) ≥ c, for all x ∈ In, y ∈ I;
2. P (x, y) = c if and only xi = y, for all i = 1 . . . n, and

3. P is quasi-convex lower semi-continuous in y for each x ∈ In.

To understand how the penalty function works, let us consider the following example:

Let us assume that we have three feature images A,B,C, obtained with three different methods in phase
(S2).

Figure 4: Consensus image.

We want to choose, among a set of aggregation functions M1, . . . ,Ms, the combinations of three aggre-
gation functions Mi,Mj y Mk which provide the smallest value of the considered penalty function.

Looking at Fig. 4, where Mi,Mj and Mk are three aggregation functions, it is clear that inputs can be
seen as vectors, so we should use penalty functions defined over a Cartesian product of lattices. That is,
functions defined as in Fig. 5, where it is clear that each combination of three aggregation functions Mi,Mj

y Mk gives us a value Pijk. so the idea is to determine which combination of three aggregation functions
provides the smallest value of Pijk for the considered pixels.
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Figure 5: Penalty function

As we have said, for the experimentation we use the following specific expression:

P∇(X,y) =

m∑
q=1

n∑
p=1

|xqp − yq|2. (3)

In the literature, the notion of penalty based function [13] or P -function [8] (for short) is used to refer to
the function which selects the value y which minimizes the value of the penalty function for any (x1, . . . , xn),
i.e.,

f(x1, . . . , xn) = argmin
y

P (x1, . . . , xn, y)

if y is the unique minimizer and y = (a+b)
2 if the set of minimizers is the interval (a, b) (open or closed). It

is also known that in some cases the penalty based function can be expressed analytically, while in other
cases it is not possible. For the proposed penalty function of the experimentation given in Eq. (2), we have
the following result.

Theorem 10. Let P be the penalty function given in Eq. (2). The penalty based function of P can be
expressed analytically and its expression is the arithmetic mean, i.e., the value of y which minimizes the
penalty function is

f(x1, . . . , xn) = P (x1, . . . , xn,
x1 + . . .+ xn

n
)

Proof. It is straight taking into account that the arithmetic mean is the P -function of a given P (x1, . . . , xn, y) =
n∑
i=1

(xi − y)2 (see for example [8]).

So, with the considered expression, the least dissimilar result is obtained using in every case the arithmetic
mean, i.e., for y = ( 1

n

∑n
i=1 x

1
i , . . . ,

1
n

∑n
i=1 x

m
i ).

Taking into account this property and the results in the Annex, in this work we use the arithmetic mean
to build the consensus feature image.
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We leave for future works the analysis of other possible expressions for the penalty functions, and hence,
of different aggregation functions.

7. Experimental framework

In this section, we present the set-up of the experimental framework used to develop the empirical
comparison in this work. Given a grayscale image I, we consider it as a matrix of elements (pixels)
arranged in rows and columns, where each pixel takes an intensity value in {0, 1, . . . , L − 1}. A prior step
is to normalize the intensities to values belonging to [0, 1]. As we have said, our proposal to perform the
experiments for a given grayscale image I, considering Bezdek et al. [4] includes phases (S1)-(S4) described
in the introduction. Moreover, we also need to evaluate the quality of the edges that we obtain, so we also
consider the following fifth step to compare to ground truth images, i.e,.
(S5) Edge image evaluation. Compare the binary edge image IB with hand-labeled segmentations, getting

measurements in terms of Precision (PREC), Recall (REC) and F0.5 measure [29].

7.0.1. The dataset

For our experiments we have used the images of Berkeley Segmentation Dataset (BSDS500) [33], specif-
ically 200 test natural images in grayscale with dimensions of 321 × 481 or 481 × 321. Associated to each
original image there exist several hand-labeled segmentations (done by humans), which, as we have already
said, are denoted as ground truth images; usually there are between 4 and 9 ground truth images associated
to each original image (see Fig. 6). In this sense, the ground truth images are considered as ideal images
and they serve to test if the results obtained by an edge detection method are similar, or not, to the ones
segmented by a human.

Figure 6: The original image and its five ground truth images (BSDS500).

7.0.2. Edge detection approaches and parameter configuration

Firstly, in step (S1) all the approaches perform a Gaussian filter with standard deviation σG = 2.
Secondly, to obtain a feature image, (S2), we consider the following edge detection approaches: the Canny
method [15], gravitational approach [28, 30], fuzzy morphology approach [21], Structured Forests method [16]
and the one based on ODM functions (Algorithm 1); all these methods have different configurations to be
executed, which are listed below:

• The Canny method [15]. We obtain the magnitude of the gradient estimation with the convolution
operator proposed by Canny, with σC = 2.25 which is a common value considering the size of the
images [23, 30, 35]. This σC is different from that required for calculating the Gaussian filter, i.e.,

12



σG. Note that the unsupervised calculation of an optimal value of σC has not been solved so far. We
denote this approach by C.

• Gravitational [28, 30]. This approach is based on gravitational forces using relief functions where,
as particular cases, t-norms and t-conorms are used. In our experiments, we denote by GSP and
GSM , when the probabilistic sum (SP (x, y) = x+ y − xy) and the maximum (SM (x, y) = ∨(x, y)) are
considered as t-conorms, respectively.

• Fuzzy Morphology [21, 22]. The authors proposed a generalization of the morphological operators
based on considering general t-conorms and t-norms in erosion and dilation definitions. We have
carried out in our experiments the best configurations claimed in [21, 22]: for erosion the Kleene-
Dienes implication operator (Eq. (4)) and for dilation, the nilpotent minimum as t-norm (Eq. (5)).

IKD(x, y) = ∨(1− x, y); (4)

TnM (x, y) =

{
0, if x+ y ≤ 1,
∧(x, y) otherwise.

(5)

Considering the pair (IKD, TnM ) we use the best two parameterizations given in [21, 22]:

– FMSS . The Schweizer-Sklar t-norm (TSSλ ) [39] is applied to Eq. (4) to get the fuzzy erosion and
for fuzzy dilation the Schweizer-Sklar t-conorm (defined as the dual of Schweizer-Sklar t-norm)
is applied to Eq. (5).

TSSλ (x, y) =


∧(x, y), if λ = −∞,
xy if λ = 0,
TD(x, y) if λ = +∞,
(∨(xλ + yλ − 1, 0))

1
λ otherwise.

where TD(x, y) =

{
0, if x, y ∈ [0, 1),
∧(x, y) otherwise.

.

We have taken the value of λ = −5 given in [22] as best result.

• Structured Forests [16]. In this approach the authors propose an edge detector learned from information
of local image patches, using Random Decision Forests. Originally the method works with RGB
color images, so we have trained the model for computing edges in grayscale with the configuration
parameters exposed in [16]. We denote this approach by SF.

• The two edge detector introduced in the next Section, Case 1 (C1) and Case 2 (C2), built from ODM
functions.

Anew for all methods, to thin the feature image, (S3), we compute prior orientations and subsequently
NMS process, both by Kovesis’ functions [27]. We finish binarizing the thinned image, (S4), [15, 36].

7.0.3. Comparison method

It is well-known that the procedure to evaluate the performance of an edge detector is an open problem
[29]. In this paper, to make the comparison, (S5), we have applied the approach given by Martin et al.
[34]. This approximation considers that we are dealing with a binary classification problem (each pixel is
classified as an element of the edge or is not classified as an element of the edge) and compares the output
image given by an edge detector method with the ones generated by humans (ground truth images). To do
so, a confusion matrix is performed.

Thereupon, bearing in mind all previous indications, for each image in BSDS500, the measures PREC,
REC and F0.5 of a given edge detection method are those produced in the comparison with the ground
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Method PREC REC F0.5

C1 0.579 0.794 0.653
C2 0.602 0.765 0.654
FMSS 0.572 0.719 0.615
C 0.687 0.618 0.631
GSP 0.649 0.649 0.650
GSM 0.661 0.665 0.641
SF 0.753 0.645 0.682

Table 1: Comparison of ODM functions approach with other edge detection methods as Gravitational, Fuzzy Morphology,
Structured Forest and Canny in terms of PREC, REC and F0.5.

truth images for which F0.5 is maximal. As we have previously stated, there exist a number of ground truth
images for each original image, so in our experiments (see also [30]) we compare the solution given by any
edge detection method with all of the ground truth images. Then, the triplet (PREC,REC,F0.5) having
the greatest F0.5 is considered as the evaluation of the detection method for that image, i.e., for us, the
highest F0.5 value means that the solution obtained by the edge detection method is the closest to a human,
so, in this sense, is the best solution.

Moreover, we have also used a one-to-one pixel matching algorithm to map the edge pixels in the output
image and the ground truth ones. This matching allows some spatial tolerance (in our case, as much as
2.5% of the diagonal of the image), so that an edge pixel can be slightly displaced from its true position,
yet being considered as correctly classified.

In order to do the pixel-to-pixel matching, we use the method presented by Estrada and Jepson [19] (its
implementation can be found in [26]).

8. Experimental results

In this section we provide the results obtained by our new proposal, as an individual feature extractor
and as a consensus feature image, combined with other feature extraction techniques.

8.1. Case 1 and Case 2 vs. the other methods

In Table 1 the results of each edge detection method are indicated displaying the average of PREC,
REC and F0.5 for the 200 test set images. In terms of REC we can deduce that we have obtained better
results than the Canny method with all of our two methods (Case 1, Case 2 ), i.e., not including a lot of false
positives. On the other hand we may observe that FMSS combines a medium precision with a very high
recall, therefore the majority of edges are detected at the cost of including a high number of false positives.
In general, the best results are when PREC and REC have similar values, that is, considering F0.5 as an
overall quality measure. In this case, the results achieved with Case 1 and Case 2 are competitive with
the ones obtained with Canny and gravitational forces. Particularly, we obtain better results than the ones
with Canny and similar to those using the gravitational edge detector. If we focus on the results obtained
by the Structured Forest method, it obtains the highest values in terms of F0.5, this is due to the high
value of PREC as it detects more edges than the rest of the methods although having a lowest REC.
So, the results obtained with Case 1 and with Case 2 are better than those obtained with Canny, Fuzzy
Morphology, Gravitational with the maximum and Gravitational with the probabilistic sum, but worse than
those obtained with SF.

Next, in Table 2 we show the number of images in the dataset for which it is the best or worst performer
(in terms of F0.5).

We observe that C1 and C2 have the lowest values in terms of worst images. Moreover, the number
of images where we are the best result outperforms the ones obtained by all the other methods except
Structured Forest, which remains the best performer.
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Method
* FMSS C GSP GSM SF

3 7 3 7 3 7 3 7 3 7 3 7
C1 44 17 14 86 6 39 29 16 21 19 86 23
C2 50 9 16 89 6 39 27 20 16 16 86 27

Table 2: Comparison of best (3) and worst (7) approaches for 200 images of (BSDS500) in terms of F0.5.

8.2. Consensus edge detector vs. the other methods

In this subsection we are going to build combinations without repetition of the feature images obtained
with the seven edge detection methods that we have considered in this work (Case 1, Case 2, Canny,
Gravitational with the probabilistic sum, Gravitational with the maximum, Fuzzy Morphology and SF).
Specifically, we are going to consider combinations of two (21 combinations), three (35 combinations), four
(35 combinations) and five (21 combinations) feature images. For each of the considered combinations, we
calculate the value of the measures PREC, REC and F0.5 (Tables 4- 7).

8.2.1. Combinations of two feature images

First, in Table 4 we consider combinations of two feature images obtained with two different edge
detectors. Since in this work we consider 7 edge detectors, we have 21 possible combinations, which appear
in the first column of the Table. For each of these combinations, we calculate the values of the PREC, REC
and F0.5 measures. we observe that the combination of Case 1 with SF provides the best result (in terms
of the measure F0.5). Moreover, the F0.5 value that we get for this combination of Case 1 and SF is better
than the F0.5 value obtained for SF individually (see Table 1).

8.2.2. Combinations of three feature images

Next, we consider combinations of three feature images obtained with three different edge detectors. The
35 possible combinations appear in the first column of Table 5 and for each of them we make the same study
for the PREC, REC and F0.5 values. In this case, we observe that the best result in terms of the measure
F0.5 is the combination of Case 1 with SF and the detector based on fuzzy morphology. But the F0.5 value
that we obtain, although better that the corresponding one for SF in Table 1, is worse than the one for the
combination of Case 1 and SF considered in Table 4.

8.2.3. Combinations of more than three feature images

Finally we study combinations of four (Table 6) and five (Table 7) feature images. In both cases, we
see that the best result according to F0.5 is obtained from the combination of our cases, SF and some of
the other methods, but the resulting F0.5 value, although bigger than the one of SF in Table 1, does not
overcome neither the combination of Case 1 with SF nor the combination of Case 1 with SF and the detector
based on fuzzy morphology. Even more, the best combination in Table 7 gets a worst result (according to
F0.5) than the best combination in Table 6.

8.3. Experimental results in terms of the best and worst performance

In Tables VII-X we compare the different combinations of methods with the individual methods. We
study for how many images from the set of 200 each method provides the best and the worst results. The
first column contains the different combinations of methods. In the row corresponding to each of these
methods the 200 studied images are considered. In the column marked with * it is displayed in how many of
the 200 images the method to which the row corresponds provides the best (tick) and the worst (x) results.
In the other columns it is displayed the number of images among the 200 in which the method at the heading
of the column provides the best and the worst results.
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Table 3: Complexity comparison of the S2 phase of each of the alternatives used in the experiments. We consider N the
number of pixels, p the number of features and ntrees the number of trees.

Approach Training Extraction

Canny O(NlogN)
Gravitational O(N)

Fuzzy Morphology O(N)
Structured Forest O(N2pntrees) O(pntrees)

ODM-functions (C1, C2) O(N2) O(N)

8.3.1. Combinations of two feature images

In Table VII we observe that the combination of Case 1 with SF and the combination of Case 2 with
SF provide extremely competitive results, much better than those obtained with each method individually,
including SF.

8.3.2. Combinations of three feature images

Regarding the number of images in which the best and the worst results are obtained by combinations
of three methods, the result is even more relevant in Table VIII than in VII, since the combination of Cases
1 and 2 with SF provides the best result in 94 images and the worst in just 1.

8.3.3. Combinations of more than three feature images

In Tables IX and X we see that the best results are obtained by combination in which Cases 1 and 2
always appear, and moreover, such results are always very competitive. Furthermore, in all the cases the
combination of methods provides the worst result in a very small number of cases.

8.4. Note about the time complexity

As we followed the Bezdek Breakdown Structure all the phases are common in the experiments, except
for the feature extraction (S2), and hence is the complexity. To measure complexity we consider N the
number of pixels in an image. Phase S1, as done by a convolutional approach can be done in O(NlogN).
Phases S3 and S4 are a post-processing over the feature image that can be done in O(N). For phase S2
we have different time complexities as we can see in Table 3. As it can be observed for our approach and
Structured Forest there is an additional complexity for the training step, but this extra phase is done once.

When analysing our consensus edge detector, as we only use the arithmetic mean to fuse the different
feature images, depending on the number of images we have a complexity of O(kN), being k the number of
images.

8.5. Conclusions from the experimental study

From the experimental study that we have done, we arrive at the following conclusions:

• The combination of methods improves the results obtained by each method separately.

• As more methods are combined, the results for the best combination (according to the F0.5 measure)
worsen.

• The best results correspond always to combinations in which Case1 or Case 2 (or both) and SF appear.

As an overall conclusion we remark that when compared individually Case1, Case 2 and SF methods
shed good results and using penalty functions for the consensus method make the results overcome the ones
obtained with each one of the methods compared individually. This behaviour is due to the power of penalty
functions that permit to choose the best element of each one of the feature image alternative.
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Method PREC REC F0.5

C1-C2 0.586 0.785 0.654
C1-Canny 0.661 0.682 0.652
C1-FMSS 0.582 0.784 0.651
C1-GSP 0.620 0.749 0.660
C1-GSM 0.625 0.731 0.654
C1-SF 0.715 0.724 0.705
C2-Canny 0.668 0.669 0.650
C2-FMSS 0.602 0.754 0.649
C2-GSP 0.628 0.731 0.657
C2-GSM 0.635 0.715 0.653
C2-SF 0.720 0.710 0.701
Canny-FMSS 0.675 0.650 0.644
Canny-GSP 0.677 0.666 0.651
Canny-GSM 0.674 0.648 0.641
Canny-SF 0.728 0.671 0.683
FMSS-GSP 0.624 0.734 0.655
FMSS-GSM 0.631 0.711 0.649
FMSS-SF 0.722 0.708 0.701
GSP -GSM 0.654 0.687 0.650
GSP -SF 0.722 0.688 0.687
GSM -SF 0.725 0.673 0.681

Table 4: Comparison of penalty functions combining two feature images in terms of PREC, REC and F0.5.

These results justify the introduction and the study of Case 1 and Case 2. So we propose to use always
combinations of two methods. We leave for a future work the analysis of the causes of this improvement in
the performance when different methods are combined.

9. Conclusions and Future Research

As a conclusion for this paper, we can make the following remarks. The goal of evaluating the validity
of ODM functions, used to measure the changes of intensity between a pixel and its neighbours taking into
account the direction defined by the vector obtained by ordering in a decreasing way such intensity changes,
has been achieved, so such functions can be used to determine the existence of an edge. Furthermore, using
different ODM functions in phase (S2) and bearing in mind F0.5 measure,we can conclude that, among the
considered cases, Case 1 and Case 2 individually are only surpassed by SF. This justifies the consideration
of the new method to build ODM functions and the introduction of both Case 1 and Case 2.

Furthermore, if we consider combinations of methods, the combinations of Case 1, Case 2 or both with
SF overcome the results obtained by any of the methods individually. But the more combined methods, the
worse the results are as the consensus approach tries to be the closest to every alternative to be combined.
So we consider that the best option is to combine Case 1 or Case 2 with SF.

With respect to future research lines, we consider that it is necessary to make a study for optimizing the
parameters in Eq. 1, both in a general way and with specific types of images.

As we have already mentioned in the introduction, our proposal is outperformed by deep learning meth-
ods. But we would like to insist once more on the simplicity and interpretability of our method, in particular
when the feature image is built using the expression in Eq. (1). Note that, opposed to deep neural networks,
no training is needed in our case, and furthermore, the computational cost of our algorithms is very low
compared to that of deep learning procedures. Nevertheless, in future works we intend to study the possible
combination of our algorithms and those based in deep learning techniques.
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Method PREC REC F0.5

C1-C2-Canny 0.648 0.704 0.656
C1-C2-FMSS 0.591 0.779 0.654
C1-C2-GSP 0.614 0.758 0.661
C1-C2-GSM 0.620 0.741 0.656
C1-C2-SF 0.699 0.738 0.702
C1-Canny-FMSS 0.654 0.693 0.655
C1-Canny-GSP 0.656 0.701 0.659
C1-Canny-GSM 0.656 0.686 0.652
C1-Canny-SF 0.710 0.700 0.689
C1-FMSS-GSP 0.615 0.757 0.660
C1-FMSS-GSM 0.620 0.737 0.654
C1-FMSS-SF 0.701 0.737 0.704
C1-GSP -GSM 0.638 0.723 0.658
C1-GSP -SF 0.695 0.725 0.693
C1-GSM -SF 0.701 0.706 0.687
C2-Canny-FMSS 0.660 0.683 0.653
C2-Canny-GSP 0.660 0.692 0.656
C2-Canny-GSM 0.664 0.674 0.649
C2-Canny-SF 0.713 0.692 0.687
C2-FMSS-GSP 0.621 0.746 0.659
C2-FMSS-GSM 0.626 0.728 0.653
C2-FMSS-SF 0.704 0.726 0.700
C2-GSP -GSM 0.643 0.713 0.656
C2-GSP -SF 0.700 0.717 0.691
C2-GSM -SF 0.707 0.700 0.686
Canny-FMSS-GSP 0.664 0.689 0.657
Canny-FMSS-GSM 0.665 0.670 0.648
Canny-FMSS-SF 0.719 0.691 0.689
Canny-GSP -GSM 0.673 0.668 0.650
Canny-GSP -SF 0.714 0.680 0.679
Canny-GSM -SF 0.719 0.663 0.672
FMSS-GSP -GSM 0.640 0.714 0.655
FMSS-GSP -SF 0.704 0.716 0.693
FMSS-GSM -SF 0.712 0.696 0.688
GSP -GSM -SF 0.711 0.682 0.678

Table 5: Comparison of penalty functions combining three feature images in terms of PREC, REC and F0.5.
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Method PREC REC F0.5

C1-C2-Canny-FMSS 0.644 0.711 0.657
C1-C2-Canny-GSP 0.647 0.719 0.662
C1-C2-Canny-GSM 0.650 0.699 0.654
C1-C2-Canny-SF 0.702 0.709 0.690
C1-C2-FMSS-GSP 0.611 0.763 0.661
C1-C2-FMSS-GSM 0.617 0.744 0.655
C1-C2-FMSS-SF 0.694 0.739 0.700
C1-C2-GSP -GSM 0.629 0.738 0.660
C1-C2-GSP -SF 0.684 0.738 0.693
C1-C2-GSM -SF 0.685 0.724 0.688
C1-Canny-FMSS-GSP 0.649 0.714 0.661
C1-Canny-FMSS-GSM 0.651 0.698 0.654
C1-Canny-FMSS-SF 0.705 0.709 0.691
C1-Canny-GSP -GSM 0.656 0.698 0.657
C1-Canny-GSP -SF 0.697 0.707 0.685
C1-Canny-GSM -SF 0.704 0.687 0.678
C1-FMSS-GSP -GSM 0.629 0.737 0.659
C1-FMSS-GSP -SF 0.683 0.738 0.694
C1-FMSS-GSM -SF 0.688 0.721 0.687
C1-GSP -GSM -SF 0.688 0.715 0.683
C2-Canny-FMSS-GSP 0.654 0.706 0.660
C2-Canny-FMSS-GSM 0.655 0.688 0.652
C2-Canny-FMSS-SF 0.707 0.703 0.689
C2-Canny-GSP -GSM 0.662 0.689 0.655
C2-Canny-GSP -SF 0.703 0.698 0.683
C2-Canny-GSM -SF 0.709 0.680 0.676
C2-FMSS-GSP -GSM 0.631 0.731 0.658
C2-FMSS-GSP -SF 0.690 0.729 0.693
C2-FMSS-GSM -SF 0.697 0.711 0.687
C2-GSP -GSM -SF 0.693 0.708 0.682
Canny-FMSS-GSP -GSM 0.662 0.687 0.654
Canny-FMSS-GSP -SF 0.707 0.696 0.685
Canny-FMSS-GSM -SF 0.709 0.678 0.676
Canny-GSP -GSM -SF 0.705 0.678 0.673
FMSS-GSP -GSM -SF 0.696 0.707 0.683

Table 6: Comparison of penalty functions combining four feature images in terms of PREC, REC and F0.5.
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Method PREC REC F0.5

C1-C2-Canny-FMSS-GSP 0.642 0.726 0.663
C1-C2-Canny-FMSS-GSM 0.645 0.706 0.655
C1-C2-Canny-FMSS-SF 0.695 0.715 0.689
C1-C2-Canny-GSP -GSM 0.651 0.707 0.658
C1-C2-Canny-GSP -SF 0.688 0.718 0.685
C1-C2-Canny-GSM -SF 0.690 0.702 0.678
C1-C2-FMSS-GSP -GSM 0.625 0.742 0.660
C1-C2-FMSS-GSP -SF 0.675 0.744 0.692
C1-C2-FMSS-GSM -SF 0.678 0.733 0.687
C1-C2-GSP -GSM -SF 0.676 0.724 0.682
C1-Canny-FMSS-GSP -GSM 0.650 0.709 0.659
C1-Canny-FMSS-GSP -SF 0.689 0.718 0.686
C1-Canny-FMSS-GSM -SF 0.694 0.699 0.679
C1-Canny-GSP -GSM -SF 0.692 0.698 0.676
C1-FMSS-GSP -GSM -SF 0.679 0.726 0.685
C2-Canny-FMSS-GSP -GSM 0.654 0.701 0.658
C2-Canny-FMSS-GSP -SF 0.694 0.710 0.685
C2-Canny-FMSS-GSM -SF 0.699 0.692 0.678
C2-Canny-GSP -GSM -SF 0.697 0.691 0.675
C2-FMSS-GSP -GSM -SF 0.685 0.717 0.684
Canny-FMSS-GSP -GSM -SF 0.700 0.691 0.677

Table 7: Comparison of penalty functions combining five feature images in terms of PREC, REC and F0.5.

Acknowledgements

This work was supported by the the Slovak Research and Development Agency through grant APVV-
18-0052 and the Grant Agency of the Czech Republic, through grant GACR 18-06915S.

References

[1] G. Beliakov, A. Pradera and T. Calvo, Aggregation Functions: A Guide for Practitioners, ser. Studies In Fuzziness and
Soft Computing, Berlin, Germany: Springer-Verlag, 2007.

[2] G. Beliakov, H. Bustince, T. Calvo, A practical Guide to Averaging Functions, Springer, Heidelberg, 2016.
[3] H. Benninghoff, H. Garcke, “Image Segmentation Using Parametric Contours With Free Endpoints”, IEEE Transactions

on Image Processing, vol. 25, no. 4, pp. 1639–1648, 2016.
[4] J. Bezdek, R. Chandrasekhar, Y. Attikouzel, “A geometric approach to edge detection,” IEEE Transactions on Fuzzy

Systems, vol. 6, no. 1, pp. 52–75, 1998.
[5] H. Bustince, E. Barrenechea, T. Calvo, S. James, G. Beliakov, “Consensus in multi-expert decision making problems using

penalty functions defined over a Cartesian product of lattices,” Information Fusion, vol. 17, pp. 56–64, 2014.
[6] H. Bustince, E. Barrenechea, M. Pagola, J. Fernandez , “Interval-valued fuzzy sets constructed from matrices: Application

to edge detection,” Fuzzy Sets and Systems , vol. 160, no. 13, pp. 1819–1840, 2009.
[7] H. Bustince, E. Barrenechea, M. Sesma-Sara, J. Lafuente, R. Mesiar, A. Kolesárová, “Ordered directionally monotone
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Method
* FMSS C GSP GSM SF

3 7 3 7 3 7 3 7 3 7 3 7
C1-C2 42 11 16 88 6 39 31 20 18 16 87 26
C1-Canny 18 2 26 94 6 39 41 21 18 16 91 28
C1-FMSS 43 15 11 87 6 39 34 19 20 16 86 24
C1-GSP 43 6 22 93 7 39 18 18 19 16 91 28
C1-GSM 30 4 22 93 6 39 33 21 17 15 92 28
C1-SF 97 1 20 96 4 39 26 21 15 16 38 27
C2-Canny 15 1 28 95 6 39 42 21 18 16 91 28
C2-FMSS 38 11 14 88 6 39 37 19 17 15 88 28
C2-GSP 38 3 25 95 7 39 22 19 18 16 90 28
C2-GSM 26 2 24 94 6 39 36 21 15 16 93 28
C2-SF 96 1 20 96 4 39 29 21 15 16 36 27
Canny-FMSS 16 1 29 96 3 38 42 21 20 16 90 28
Canny-GSP 15 3 28 96 7 38 37 20 19 15 94 28
Canny-GSM 9 5 28 96 7 37 43 21 19 13 94 28
Canny-SF 52 2 27 95 5 39 36 20 16 16 64 28
FMSS-GSP 42 9 23 91 6 38 19 18 19 16 91 28
FMSS-GSM 24 4 22 93 6 39 39 21 17 15 92 28
FMSS-SF 98 1 20 96 4 39 28 21 16 16 34 27
GSP -GSM 18 6 26 95 7 38 37 19 17 14 95 28
GSP -SF 61 6 28 95 5 38 28 18 16 16 62 27
GSM -SF 48 3 29 95 5 39 36 20 15 16 67 27

Table 8: Comparison of best (3) and worst (7) approaches in terms of F0.5 considering penalty approaches with two feature
images.
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Method
* FMSS C GSP GSM SF

3 7 3 7 3 7 3 7 3 7 3 7
C1-C2-Canny 30 1 21 95 6 39 38 21 16 16 89 28
C1-C2-FMSS 41 10 14 90 6 39 33 19 18 16 88 26
C1-C2-GSP 44 2 22 95 6 39 22 20 17 16 89 28
C1-C2-GSM 34 4 22 92 6 39 34 21 17 16 87 28
C1-C2-SF 93 2 19 96 5 39 25 21 11 16 47 26
C1-Canny-FMSS 22 1 24 95 6 39 40 21 17 16 91 28
C1-Canny-GSP 28 3 27 95 6 38 30 20 17 16 92 28
C1-Canny-GSM 22 1 26 96 6 39 37 21 17 15 92 28
C1-Canny-SF 63 1 26 95 5 39 30 21 13 16 63 28
C1-FMSS-GSP 46 11 22 90 7 38 19 18 20 16 86 27
C1-FMSS-GSM 33 6 20 92 6 39 32 21 18 14 91 28
C1-FMSS-SF 95 1 19 96 3 39 23 21 13 16 47 27
C1-GSP -GSM 34 3 25 95 7 38 25 21 17 15 92 28
C1-GSP -SF 85 0 24 96 5 39 13 21 15 16 58 28
C1-GSM -SF 67 1 22 95 6 39 29 21 11 16 65 28
C2-Canny-FMSS 20 1 25 95 5 39 41 21 18 16 91 28
C2-Canny-GSP 21 2 27 95 6 38 31 21 20 16 95 28
C2-Canny-GSM 15 1 28 95 7 39 41 21 18 16 91 28
C2-Canny-SF 52 3 27 94 6 39 36 20 16 16 63 28
C2-FMSS-GSP 39 6 23 93 7 38 22 19 19 16 90 28
C2-FMSS-GSM 25 4 21 94 6 39 38 21 18 14 92 28
C2-FMSS-SF 88 1 16 96 3 39 29 21 15 16 49 27
C2-GSP -GSM 30 3 24 96 7 38 30 21 17 14 92 28
C2-GSP -SF 81 0 24 96 5 39 20 21 15 16 55 28
C2-GSM -SF 62 1 24 95 6 39 31 21 12 16 65 28
Canny-FMSS-GSP 25 2 27 95 6 39 29 20 21 16 92 28
Canny-FMSS-GSM 18 3 28 94 6 39 40 21 17 15 91 28
Canny-FMSS-SF 60 2 26 95 5 39 33 21 16 16 60 27
Canny-GSP -GSM 16 5 27 94 7 38 39 20 17 15 94 28
Canny-GSP -SF 44 3 28 95 4 38 34 20 14 16 76 28
Canny-GSM -SF 37 5 28 93 4 39 39 20 12 16 80 27
FMSS-GSP -GSM 28 5 25 95 7 38 30 21 16 13 94 28
FMSS-GSP -SF 85 2 25 95 5 39 17 20 15 16 53 28
FMSS-GSM -SF 62 1 23 95 5 39 34 21 13 16 63 28
GSP -GSM -SF 43 2 29 95 6 38 31 21 15 16 76 28

Table 9: Comparison of best (3) and worst (7) approaches in terms of F0.5 considering penalty approaches with three feature
images.
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Method
* FMSS C GSP GSM SF

3 7 3 7 3 7 3 7 3 7 3 7
C1-C2-Canny-FMSS 29 0 22 96 6 39 36 21 18 16 89 28
C1-C2-Canny-GSP 34 1 24 96 6 38 31 21 16 16 89 28
C1-C2-Canny-GSM 26 2 25 94 6 39 35 21 16 16 92 28
C1-C2-Canny-SF 71 1 23 95 4 39 28 21 13 16 61 28
C1-C2-FMSS-GSP 46 6 19 93 7 38 22 19 18 16 88 28
C1-C2-FMSS-GSM 36 3 18 94 6 39 34 21 17 15 89 28
C1-C2-FMSS-SF 97 3 14 95 3 39 22 21 12 16 52 26
C1-C2-GSP -GSM 33 2 25 95 7 38 26 21 18 16 91 28
C1-C2-GSP -SF 88 1 20 96 5 39 11 21 16 16 60 27
C1-C2-GSM -SF 68 0 18 96 6 39 27 21 11 16 70 28
C1-Canny-FMSS-GSP 35 3 23 95 7 38 27 20 17 16 91 28
C1-Canny-FMSS-GSM 27 1 23 96 7 39 37 21 16 15 90 28
C1-Canny-FMSS-SF 70 1 22 95 5 39 27 21 16 16 60 28
C1-Canny-GSP -GSM 24 3 25 95 7 38 32 20 19 16 93 28
C1-Canny-GSP -SF 65 1 25 95 5 39 22 21 15 16 68 28
C1-Canny-GSM -SF 47 1 25 95 6 39 35 21 14 16 73 28
C1-FMSS-GSP -GSM 37 2 24 95 7 38 26 21 18 16 88 28
C1-FMSS-GSP -SF 86 1 18 96 5 39 14 21 15 16 62 27
C1-FMSS-GSM -SF 70 1 17 95 6 39 29 21 10 16 68 28
C1-GSP -GSM -SF 62 0 25 96 6 39 21 21 13 16 73 28
C2-Canny-FMSS-GSP 24 2 25 95 6 38 33 21 19 16 93 28
C2-Canny-FMSS-GSM 22 2 26 95 6 39 39 21 16 15 91 28
C2-Canny-FMSS-SF 68 2 22 94 5 39 30 21 16 16 59 28
C2-Canny-GSP -GSM 22 3 25 95 7 38 35 20 17 16 94 28
C2-Canny-GSP -SF 63 2 27 95 5 38 20 21 14 16 71 28
C2-Canny-GSM -SF 40 1 26 95 5 39 34 21 14 16 81 28
C2-FMSS-GSP -GSM 31 3 23 95 7 38 30 20 17 16 92 28
C2-FMSS-GSP -SF 87 1 22 95 5 39 14 21 13 16 59 28
C2-FMSS-GSM -SF 67 1 19 95 6 39 29 21 11 16 68 28
C2-GSP -GSM -SF 62 1 25 96 6 38 23 21 13 16 71 28
Canny-FMSS-GSP -GSM 22 3 26 94 7 38 33 21 18 16 94 28
Canny-FMSS-GSP -SF 65 1 25 96 4 38 24 21 13 16 69 28
Canny-FMSS-GSM -SF 41 3 28 94 5 39 34 21 14 16 78 27
Canny-GSP -GSM -SF 37 3 29 95 4 38 34 20 16 16 80 28
FMSS-GSP -GSM -SF 65 2 24 95 5 38 23 21 13 16 70 28

Table 10: Comparison of best (3) and worst (7) approaches in terms of F0.5 considering penalty approaches with four feature
images.
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Method
* FMSS C GSP GSM SF

3 7 3 7 3 7 3 7 3 7 3 7
C1-C2-Canny-FMSS-GSP 34 2 22 95 7 38 30 21 17 16 90 28
C1-C2-Canny-FMSS-GSM 26 0 24 96 6 39 37 21 16 16 91 28
C1-C2-Canny-FMSS-SF 69 1 21 95 5 39 29 21 13 16 63 28
C1-C2-Canny-GSP -GSM 28 3 25 94 7 38 31 21 17 16 92 28
C1-C2-Canny-GSP -SF 69 1 24 95 5 39 19 21 13 16 70 28
C1-C2-Canny-GSM -SF 48 1 24 95 5 39 32 21 15 16 76 28
C1-C2-FMSS-GSP -GSM 36 3 22 94 7 38 28 21 17 16 90 28
C1-C2-FMSS-GSP -SF 86 1 17 95 6 39 14 21 15 16 62 28
C1-C2-FMSS-GSM -SF 72 1 16 95 6 39 26 21 11 16 69 28
C1-C2-GSP -GSM -SF 66 1 23 95 6 39 19 21 13 16 73 28
C1-Canny-FMSS-GSP -GSM 25 3 25 94 7 38 31 21 19 16 93 28
C1-Canny-FMSS-GSP -SF 70 1 23 95 5 39 22 21 15 16 65 28
C1-Canny-FMSS-GSM -SF 53 1 24 95 6 39 32 21 12 16 73 28
C1-Canny-GSP -GSM -SF 52 1 24 95 5 39 27 21 12 16 80 28
C1-FMSS-GSP -GSM -SF 66 1 20 95 6 39 22 21 14 16 72 28
C2-Canny-FMSS-GSP -GSM 27 4 25 94 6 38 33 20 16 16 93 28
C2-Canny-FMSS-GSP -SF 64 2 25 95 5 38 24 21 15 16 67 28
C2-Canny-FMSS-GSM -SF 48 1 26 95 5 39 33 21 12 16 76 28
C2-Canny-GSP -GSM -SF 46 1 27 95 5 39 30 21 15 16 77 28
C2-FMSS-GSP -GSM -SF 63 2 24 95 6 38 23 21 14 16 70 28
Canny-FMSS-GSP -GSM -SF 48 2 26 95 5 38 28 21 15 16 78 28

Table 11: Comparison of best (3) and worst (7) approaches in terms of F0.5 considering penalty approaches with five feature
images.
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