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Abstract

In this paper we focus on the classical dynamics of a neutral atom trapped in a double-wire

waveguide in the presence of two uniform bias fields. Because the trapping region takes place in a

plane perpendicular to the (parallel) wires, the dynamics is governed by a two-degrees of freedom

Hamiltonian where, besides the energy, the two bias fields are the relevant system’s parameters. An

exhaustive study of the critical points of the potential energy surface, their stability and bifurcations

is carried out, so that, two different trapping regions are characterized. The dynamics in each

of these regions is studied by applying classical perturbation theory, which provides an integrable

approximation of the original Hamiltonian. The dynamics arising from this normalized Hamiltonian

(stability of the equilibrium points, their bifurcations and the phase flow evolution) is then analyzed

in a convenient set of phase variables. Poincaré surfaces of section to describe the structure and

evolution of the phase space governed by the full Hamiltonian are also used. A complete agreement

between the descriptions of the dynamics provided by the perturbation theory and the numerical

studies is obtained.
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I. INTRODUCTION

Experimental magnetic trapping of neutral atoms was reported for the first time in 1985

[1]. Since then, the magnetic confinement of neutral atoms has become a well-known and

widespread technique that, among other things, has contributed to the experimental achieve-

ment and manipulation of Bose-Einstein condensates [2–7]. The key point that makes atom

trapping possible is the interaction of its magnetic moment with a non-uniform magnetic

field. Because this interaction is very weak, the atoms to be trapped have to be previously

cooled at microkelvin temperatures and below.

Two significant examples of magnetic traps are the quadrupole and the Ioffe traps [1, 8–

10]. The quadrupole trap consists of two Helmholtz coils with currents in opposite directions,

while the Ioffe trap consists of four straight currents plus two Helmholtz coils. In any case,

conventional magnetic traps are always macroscopic devices made of coils and/or current

conductors. A detailed theoretical study of several confining magnetic field configurations

for neutral atoms can be found in [8].

A different perspective for neutral atom trapping is provided by microtraps, which are

magnetic traps on a microscopic scale. Based on the same physics, these microtraps are

made of electric conductors integrated on a substrate, i.e., they are magnetic traps on mi-

crochips. For more information about microtraps for neutral atoms, we refer the reader to

[11, 12]. The first purpose of microtraps was the achievement of strong three-dimensional

confinement. However, the great versatility of the lithographic methods used for the fabrica-

tion of these microtraps made possible to use them as atom waveguides. Roughly speaking,

atom waveguides are miniaturized current carrying structures that only provide strong atom

confining in the transverse plane of the currents. In particular, a single straight current is

the simplest magnetic waveguide because, due to the atoms are trapped in the plane radial

to the current, an effective guiding is obtained along the longitudinal direction defined by

the wire [13–17]. In general, the ability to design magnetic waveguides with a wide variety

of geometries allows in turns to manipulate matter in very different ways. For example,

Bose-Einstein condensates and degenerate Fermi gases can be loaded and manipulated in

magnetic waveguides [18–21]. Interestingly, submicron magnetic lattices are a nice alterna-

tive to optical lattices for trapping ultracold atoms [22, 23].

Even in the simplest magnetic trap, the trapping potential is highly non-linear, which
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makes the classical dynamics of these systems very attractive. In this sense, although clas-

sical studies are very scarce, the different trapping designs described previously have been

considered in the literature. Indeed, Bergeman [6, 24? ] and Gomer et al. [25] found that,

for high energy, the motion of an atom trapped in a quadrupolar trap is chaotic. For the

same trap configuration, Salas and Iñarrea [26] carried out an exhaustive numerical study

of the evolution and structure of the phase space. Surkov et al. [27] studied analytical and

numerically the motion of a neutral particle in a Ioffe trap. Signatures of chaotic dynam-

ics of a Bose-Einstein condensate loaded in a magnetic waveguide have been found in [19].

More recently, the dynamical tunneling of ultracold atoms in a magnetic microtrap has been

investigated in [28], and the existence of guiding stability domains in a magnetic waveguide

was showed by Alzar [29].

In order for classical dynamics to have a more relevant role in this subject, the main

goal of this paper is to get further insight about the dynamics of a neutral atom confined

in a magnetic waveguide. More specifically, we focus on a double-wire waveguide in the

presence of two uniform bias fields. We choose a double-wire geometry because the trapping

potential of this configuration is, at the same time, complex enough to offer different trapping

configurations [30] and simple enough to be mathematically manageable.

The paper is organized as follows. In Sec. II, we assume the adiabatic approximation

to state the trapping potential created by the double-wire waveguide in the presence of

two uniform bias fields. Assuming the wires are parallel, and that they are located on

the x-z plane, the external bias fields bx and bz are added along the x and the z axes,

respectively. The corresponding two-degrees of freedom Hamiltonian governing the dynamics

of the atom is then established. After introducing a convenient set of units, besides the

energy, we get that the relevant parameters in the Hamiltonian controlling the dynamics are

the dimensionless versions of the two bias fields. In Sec. III we carry out a comprehensive

study of the critical points (equilibrium points) of the system’s potential, their stability

and bifurcations. From this study, we find that, depending on whether bx < 1 or bx > 1,

two different trapping regions are possible. In Sec. IV we focus on the dynamics when

bx < 1. This study is carried out in two different and complementary ways. On the one

side, we apply classical perturbation theory to compute an integrable approximation to the

original Hamiltonian. We use this normalised Hamiltonian to analyze the stability of the
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equilibrium points, their bifurcations and the phase flow evolution. On the other side, we

compute Poincaré surfaces of section to describe the structure and evolution of the phase

space governed by the original Hamiltonian. We obtain a complete agreement between both

descriptions of the dynamics. In Sec. V we carry out the same investigation as in Sec. IV

but for bx > 1. Finally, the conclusions are provided in Sec. VI.

II. THE CONFINING POTENTIAL AND THE HAMILTONIAN

Let us consider a neutral atom in the vicinity of a given waveguide. Under the adiabatic

approximation, the atom will remain in a fixed Zeeman sublevel mF and the potential V (r)

responsible for the interaction between the atom and the magnetic field ~B of the waveguide

is given by [5]:

V (r) ≈ µef | ~B(r)|, µef = µB g mF , (1)

where g is the g-factor and µB is the Bohr magneton. From Eq. (1) we observe that trappable

states are those such that mF > 0 (low-field seeking states) [5].

y

x

d/2 d/2

Bias field  bx

Bias field  bz

I IO

FIG. 1. Atom waveguide using two wires carrying equal currents I and two bias magnetic fields.

In particular, we consider a double-wire waveguide [12–17] made of two parallel wires sepa-

rated by a distance d and carrying co-propagating equal currents I (see Fig.1), so that the

x-z plane contains the wires, which are located along the z axis. If just this two wires con-

figuration is considered, magnetic confinement takes place around the origin O and, because

the total magnetic field at the center of the trap O is zero, the minimum of the potential

in this trap is zero. Thence, atoms near the center of the trap may undergo Majorana spin
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flips [31, 32] and leave the trap. In order to avoid these Majorana losses, a bias magnetic

field ~bz = bz ẑ, parallel to the z axis, is added (see Fig.1). Furthermore, for technical reasons

in the design of the trap, it is convenient to maintain the potential minimum of the system

away from the y = 0 plane defined by the wires. In this way, a bias magnetic field ~bx = bxx̂,

parallel to the x axis is also added (see Fig.1), so that the center of the trap is now off the

y = 0 plane [12].

For the configuration depicted in Fig.1, and using Cartesian coordinates, the total mag-

netic field ~B created by the waveguide is given by:

~B = (Bx, By, Bz), (2)

Bx = bx −
Iµoy

2π[(x− d/2)2 + y2]
− Iµoy

2π[(x+ d/2)2 + y2]
, (3)

By =
Iµo(x− d/2)

2π[(x− d/2)2 + y2]
+

Iµo(x+ d/2)

2π[(x+ d/2)2 + y2]
, (4)

Bz = bz, (5)

where µo is the magnetic permeability of the vacuum. In Cartesian variables, for an atom

of mass m, the Hamiltonian of the system reads as:

H =
p2x + p2y + p2z

2m
+ V, (6)

where, using the above expressions for ~B = (Bx, By, Bz), the total interaction potential V

is given by:

V ≡ V (x, y) = µef | ~B(r)| = µef

√
B2

x +B2
y +B2

z . (7)

As the z-coordinate is cyclic in Hamiltonian (6), the relevant dynamics of the system takes

place in the x-y plane perpendicular to the wires. If we reduce to that plane, the Hamiltonian

becomes

H =
p2x + p2y

2m
+ V (x, y), (8)

and we are dealing with a two-degrees of freedom Hamiltonian system. Besides the energy

H = E, the dynamics depends on the external parameters m, µef , I, d, bx and bz, that is

to say, on the kind of atom and on the geometry of the waveguide. Following Ref. [30], it is

possible to reduce the number of the external parameters by using the dimensionless lengths

(x′, y′) = (2x/d, 2y/d) and the dimensionless time t′ = t ν, with ν being the frequency

ν =

√
4µefBo

md2
, Bo =

µo I

π d
.
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Applying these transformations to (8), and after dropping primes, we arrive at the following

dimensionless Hamiltonian:

E = H ≡ H
µef Bo

=
p2x + p2y

2
+ V (x, y), (9)

where the energy of the system is measured in units of Eo = µefBo, and V (x, y) is converted

into

V (x, y) =

√(
bx −

y

f1(x, y)
− y

f2(x, y)

)2

+ b2z +

(
x+ 1

f1(x, y)
+

x− 1

f2(x, y)

)2

, (10)

with f1(x, y) = [(x + 1)2 + y2], f2(x, y) = [(x − 1)2 + y2], and where the bias fields bx and

bz are measured in units of Bo. Then, besides the (dimensionless) energy E, the system

depends on the external parameters bx,z. At this point we note that it is easy to check that

the potential V (x, y) given by (10) enjoys the symmetry x→ −x, i.e., it is symmetric with

respect the y axis.

The Hamiltonian equations of motion arising from (9) are:

ẋ = px, ẏ = py,

ṗx = −∂V (x, y)

∂x
, ṗy = −∂V (x, y)

∂y
. (11)

It is straightforward to check that rectilinear orbits along the y axis are particular solutions

of (11). We name these rectilinear orbits as Iy. Note that the equilibrium points of the

Hamiltonian flow (11) are the critical points of the potential V (x, y) together with the

conditions px = py = 0.

III. THE CRITICAL POINTS OF THE POTENTIAL

Most of the trapping features of this magnetic guide can be obtained from the landscape

of the potential energy surface (10), which is mainly determined by the critical points. The

landscape of the potential V (x, y) has been studied in [30] when only the bias field bx along

the x axis is present. Here, we revisit and complete that study considering the additional

bias field bz along the z axis. The critical points of V (x, y) are the roots of the following

equations:
∂V (x, y)

∂x
= 0,

∂V (x, y)

∂y
= 0. (12)
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FIG. 2. Equipotential curves of the potential energy surface V (x, y) when there are no bias magnetic

fields, i.e., when bx = bz = 0.

It is easy to see that critical points only depend on the value of bx, while their energies

depend also on bz. We consider two cases:

When there are no bias magnetic fields, although at the origin P1 = (0, 0) the derivatives

of the potential are not defined, there is a potential well of energy E1 = 0. Besides this

potential well, there are two equilibrium points P2 = (0, 1) and P3 = (0,−1) located on

the y axis and with equal energy E2 = E3 = 1. It is straightforward to show that P2,3 are

saddle points, and thence, the potential energy surface V (x, y) for bx = bz = 0 shows the

landscape depicted in Fig. 2. Note that the depth of the potential well is ∆E = 1 and the

only trapping region is around the origin.

When the two bias magnetic fields are present, Eqs. (12) admit six possible solutions, that

include those for bx = bz = 0. These equilibria, as well as their existence conditions, stability

and energies, are detailed in Table I. Note that, due to the symmetry of the potential V (x, y)

with respect to the y axis, the critical points always appear in symmetric pairs with respect

to that axis. The position and stability of the equilibria only depend on the value of bx,

while the energy also depends on bz. This is not a surprising result because, as we noted in

Sec.II, the bias field bx was added in order to move the potential minimum of the trap away

from the y = 0 plane, while the role of the field bz is to prevent a zero magnetic field at the

center of the trap. Therefore, it is expected that the positions of the critical points depend
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Equilibrium Existence Stability Energy

P1 = (0, (1−
√

1− b2x)/bx) 0 ≤ bx ≤ 1 Minimum E1 = bz

P2 = (0, 1) Always S.P. E2 =
√

(1− bx)2 + b2z

P3 = (0,−1) Always S.P. E3 =
√

(1 + bx)2 + b2z

P4 = (0, (1 +
√

1− b2x)/bx) 0 < bx ≤ 1 Minimum E4 = bz

P5,6 = (±
√

1− 1/b2x, 1/bx) bx ≥ 1 Minima E5,6 = bz

Table I. Conditions of existence, stability and energy of the critical points of V (x, y). The saddle points are

denoted by S.P.

only on bx, while their energies depend on both bx and bz.

In the interval 0 < bx < 1, only the equilibria P1,2,3,4 along the y axis exist, in such a way

that the minima P1 and P4 determine two trapping regions along the y axis. Although of

equal depth ∆E = E2−E1,4, the potential well associated to P4 is wider than the potential

well associated to P1, so that a tighter binding is provided by the potential well associated

to P1. Furthermore, for a constant value of bx(bz), the depth ∆E of the potential wells

decreases for increasing bz(bx). As an example, the left panel of Fig. 3 shows the potential

energy surface V (x, y) along the x = 0 direction for four representative values of bx and bz.

In the right panel of Fig. 3 the landscape of V (x, y) for bx = 0.5 and bz = 0.1 is depicted,

where the main features above described can be observed.

When bx = 1, the equilibria P1, P2 and P4 collide and, for bx > 1, only the saddle point

P2 survives and the minima P5,6, located along the unit circle x2 + y2 = 1, appear. As an

example, in Fig. 4 the equipotential curves of V (x, y) for bx = 1.25 and bz = 0.1 are shown.

We remark here that the potential landscape for bx > 1 opens the nice possibility to get a

twofold guide whose position along the unit circle can be tuned by varying the bias field bx

[30].

8



y

V(
x=

0,
y)

y

x
0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

0.3
0.5
0.7
0.9
1.1
1.3
1.5
1.7

0.1
I I

-2 -1 0 1 2-2

0

2

4

6

FIG. 3. Left panel: Potential V (x, y) along the x = 0 direction for bx = 0.25 and bz = 0.1 (red

curve), for bx = 0.5 and bz = 0.1 (green curve), for bx = 0.25 and bz = 0.25 (blue curve) and for

bx = 0.5 and bz = 0.25 (black curve). Right panel: Equipotential curves of the potential energy

surface V (x, y) for bx = 0.5 and bz = 0.1.
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FIG. 4. Equipotential curves of the potential energy surface V (x, y) for bx = 1.25 and bz = 0.1.

IV. DYNAMICS FOR THE CASE 0 < bx < 1

For 0 < bx < 1, the landscape of the potential V (x, y) is characterized by the presence of

two potential wells around the minima P1 and P4, which are separated by the the saddle point

P2. Because both equilibria are located along the x = 0 axis with coordinates y1,4 = (1 ∓√
1− b2x)/bx the perturbative study of this section can be formally carried out simultaneously

for both potential wells. Then, we start the study of this section moving the equilibria P1,4
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to the origin by means of the canonical transformation

x→ x′, y → y′ + yo, px → p′x, py → p′y,

where yo = y1,4 is the y-coordinate of P1 or P4 (see Table I). After dropping primes in the

new variables (x′, y′, p′x, p
′
y), Hamiltonian (9) becomes

H =
p2x + p2y

2
+

√(
bx −

y + yo
g1(x, y)

− y + yo
g2(x, y)

)2

+ b2z +

(
x+ 1

g1(x, y)
+

x− 1

g2(x, y)

)2

, (13)

where g1(x, y) = [(x + 1)2 + (y + yo)
2], g2(x, y) = [(x − 1)2 + (y + yo)

2]. Now, and when

the atom is trapped in either of the potential wells located around P1 or P4 (i.e., when the

energy is below the energy E2 of the saddle point P2), we can expand Hamiltonian (13) in

a Taylor series around the minimum P1 or P4:

H = bz +
p2x + p2y

2
+
ω2

2
(x2 + y2) + α y(x2 + y2) + (x2 + y2)(β1x

2 + β2y
2) + · · ·, (14)

where the constant term bz is the energy of the minima P1,4. We observe that the quadratic

part of the expansion corresponds to a two dimensional elliptic (isotropic) harmonic oscillator

of frequency ω given by

ω =
2|1− y2o |

(y2o + 1)2
√
bz
, (15)

which provides the linear approximation of the frequency and period τ = 2π/ω of the two

linear modes, namely the oscillations along the x and y axis, respectively.

A. The Linear Approximation

The linear approximation is the lowest order of any perturbation theory. Thence, we

briefly focus on the behavior of our system when just the quadratic part of the expansion

(14) is considered. In particular, it is very interesting to compare the frequencies around

both potential wells. From (15), the ratio η = ω1/ω4 between the frequencies ω1 and ω4

around the inner and the outer potential wells (i.e., when yo = y1 = (1 −
√

1− b2x)/bx and

yo = y4 = (1 +
√

1− b2x)/bx respectively) does only depend on the value of bx. When this

ratio η is plotted for 0 < bx < 1 (see Fig.5), we find that, up to bx . 0.5750, the value of ω1

is much larger than 10 times the value of ω4, and that only for values of 0.9428 . bx . 1

both frequencies take similar values. Indeed, we have that the dynamics is, in general,
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FIG. 5. Frequency ratio η = ω1/ω4 between the frequencies ω1 and ω4 around the inner and the

outer potential wells (i.e., when yo = y1 = (1 −
√

1− b2x)/bx and yo = y4 = (1 +
√

1− b2x)/bx

respectively). The dashed blue lines mark the value of bx ≈ 0.5750 for which the frequency ratio

is η = 10. Note that a logarithmic scale is used in the vertical axis.

much faster around the minimum P1 than around the minimum P4, which is the expected

behavior because, as we found in Sec. III, a tighter confinement is provided by the potential

well associated to P1.

B. Classical Perturbation Theory beyond the Linear Approximation

Hamiltonian (14) can be written as the sum

H = bz +H0 +H1, (16)

H1 =
∑
n≥3

Pn = α y(x2 + y2) + (x2 + y2)(β1x
2 + β2y

2) + · · · , (17)

where H0 stands for the elliptic oscillator,

H0 =
p2x + p2y

2
+
ω2

2
(x2 + y2), (18)
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and Pn are homogeneous polynomials of degree n resulting from the Taylor expansion, where

α =
4yo (y2o − 3) (1− y2o)

bz (y2o + 1)5
,

β1 =
2b2z (y2o + 1)

2
(−y6o + 8y4o − 5y2o + 2)− 2 (y2o − 1)

4

b3z (y2o + 1)8
, (19)

β2 =
2b2z (y2o + 1)

2
(3y6o − 20y4o + 23y2o − 2)− 2 (y2o − 1)

4

b3z (y2o + 1)8
.

For each (positive) value ofH0, the possible trajectories of the Hamiltonian system defined by

(18) belong to a family of ellipses with semimajor and semiminor axes a and b respectively.

Thus, H0 = ω2(a2 + b2)/2, and the angular momentum G = xpy − ypx is expressed as

G = a b ω. Some of these ellipses become rectilinear orbits when G = 0. When H1 is taken

into account, the system behaves as a perturbed harmonic oscillator and the trajectories

can be described as ellipses whose orbital parameters evolve under the influence of the

perturbation defined by H1. In this way, a normalization procedure allows us to reduce the

problem to an integrable one-degree of freedom dynamical system [33].

For the normalization process, we follow the same scheme given in [34–36], which is

accomplished as follows. In a first step, we express the Hamiltonian in Lissajous variables

(l, g, L,G) by means of the Lissajous transformation (see [37])

M : (l, g, L,G) −→ (x, y, px, py),

defined in the domain

D = {0 ≤ l < 2π} × {0 ≤ g < 2π} × {L > 0} × {|G| ≤ L},

by the equations

x = s cos(g + l)− d cos(g − l),

y = s sin(g + l) + d sin(g − l), (20)

px = −ω[s sin(g + l) + d sin(g − l)],

py = ω[s cos(g + l) + d cos(g − l)],

where ωs2 = (L + G)/2 and ωd2 = (L−G)/2. In the Lissajous variables, the Hamiltonian

12
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FIG. 6. Geometric meaning of the Lissajous angles (l, g). Adaptation of Fig.1 in [37]. The red

ellipse of semiaxes a and b is the unperturbed trajectory of the particle, while vector r stands for

its instantaneous position on the ellipse.

H = bz +H0 +H1, up to polynomials of degree four, reads as

H0 = ωL, (21)

H1 = −α
(
d2 − 2ds cos(2l) + s2

)
(d sin(g − l)− s sin(g + l)) + (22)(

d2 − 2ds cos(2l) + s2
) (
β1(d cos(g − l)− s cos(g + l))2+ (23)

β2(d sin(g − l)− s sin(g + l))2
)
. (24)

It is worth noting that this transformation is very convenient to handle elliptic oscillators,

because H0 reduces to the simple form ωL, being L = (a2 + b2)ω/2. The geometric meaning

of the Lissajous angles (l, g) is depicted in Fig.6. In particular, l is a fast angular variable

that reckons the motion along the ellipses, and we can assume that the perturbation causes

a distortion in the elliptic orbits, in such a way that their size and orientation slowly change

through the variables (L, g,G). Thus, the angle l, the so-called elliptic anomaly, can be

eliminated by means of an averaging process. After that, the problem gets reduced to

a one-degree of freedom integrable dynamical system, where the new Hamiltonian admits

the action L as a new formal integral. We carry out this reduction by means of a Lie
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transformation [38] up to order 2, so that the normalized Hamiltonian K is given by

K = bz +K0 +K1 = bz + ωL− 25α2L2

12ω4
+

3L2(β1 + β2)

4ω2
+

(α2 − ω2(β1 + β2))

4ω4
G2

−L
2 (20α2 + 9ω2(β1 − β2))

12ω4
e cos 2g, (25)

where e =
√

1−G2/L2, K0 = H0 = ωL and K1 stands for the second order truncated

normalized Hamiltonian, which is obtained from the Taylor series expansion up to fourth

degree. Because K corresponds to a one-degree of freedom system, the contour lines of K

onto the plane (actually the cylinder) (g,G) are the phase trajectories of the normalized

system. However, this representation on the cylinder (g,G) does not cover the entire phase

space, because the angle g is not defined for the case of the circular orbits, that appears

when |G| = L. This singularity is overcome [35, 39] when the system is expressed in the

Hopf variables

ξ1 = e cos 2g, ξ2 = e sin 2g, ξ3 =
G

L
. (26)

It is easy to check that ξ21 + ξ22 + ξ23 = 1 and the phase space consists of a unit radius sphere.

In these coordinates, the points such that ξ3 > 0 (G > 0) stand for ellipses traveled in

a prograde sense, while if ξ3 < 0 (G < 0) the ellipses are traveled in a retrograde sense.

Furthermore, any point on the equatorial circle ξ3 = 0 (G = 0) corresponds to a rectilinear

orbit passing through the origin. Finally, the north (south) pole corresponds to circular

orbits (e = 0) traveled in direct (retrograde) sense.

In the Hopf variables (ξ1, ξ2, ξ3), Hamiltonian (25) can be written in this simple form:

K = a1ξ1 + a2ξ
2
3 , (27)

where the coefficients a1 and a2 are given by

a1 = −L
2 (20α2 + 9ω2(β1 − β2))

12ω4
=
L2 (y6o + 3y4o + 27y2o + 9)

6 (y4o − 1)2
, (28)

a2 =
L2 (α2 − ω2(β1 + β2))

4ω4
=
L2 (y2o − 1)

2

4b2z (y2o + 1)4
, (29)

being a1 < 0 and a2 > 0, and where the constant terms appearing in (25) have been dropped.

It is worth noticing that (27) belongs to the so-called Quadratic Hamiltonian family which

has been extensively studied by Lanchares and Elipe [40–42]. Taking into account the

Poisson brackets between the variables (ξ1, ξ2, ξ3),

[ξ1, ξ2] = ξ3, [ξ2, ξ3] = ξ1, [ξ3, ξ1] = ξ2,
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the Hamiltonian equations of motion arising from (27) are

ξ̇1 = [ξ1,K] = −2a2ξ2ξ3,

ξ̇2 = [ξ2,K] = (2a2 ξ1 − a1)ξ3, (30)

ξ̇3 = [ξ3,K] = a1ξ2.

The equilibria of the reduced system are the solutions of the system of equations formed

by (30) equated to zero. It is straightforward to see that there are just the four following

isolated equilibria:

ε1,2 = (±1, 0, 0), ε3,4 = (a1/2a2, 0,±
√

1− (a1/2a2)2). (31)

The equilibrium ε1 = (1, 0, 0) corresponds to rectilinear orbits (i.e., orbits with G = 0) along

the y axis, whereas the equilibrium ε2 = (−1, 0, 0) corresponds to rectilinear orbits along

the x axis. We note that, in the (g,G/L) variables, each equilibrium unfolds into the two

points: (0, 0) and (π, 0) for ε1; (π/2, 0) and (3π/2, 0) for ε2. Because the quotient a1/(2a2) is

always negative, the equilibria ε3,4 correspond to elliptical orbits with g = π/2 and g = 3π/2

traveled in direct and retrograde senses, respectively. Because the phase space trajectories

are living on the unit sphere, the equilibria ε3,4 only exist when |a1|/(2a2) ≤ 1. When

|a1|/(2a2) passes through the value 1, a bifurcation is expected and from that bifurcation

only the equilibria ε1,2 will survive. See [40–42] for more information about bifurcations in

biparametric quadratic Hamiltonians.

The critical value |a1|/(2a2) defines a curve that divides the parameter plane (bx, bz) into

different regions, where the number of equilibrium points changes. Using the expressions

(28) and (29), for a1 and a2, the bifurcations curves are:

γ1 ≡ −3b6x + b4x
(
4b2z + 6

)
+ b2x

(
4
(√

1− b2x + 1
)
b2z − 3

)
− 2

(√
1− b2x − 1

)
b2z = 0, (32)

γ2 ≡ 2
(

2
(
b2x −

√
1− b2x + 1

)
b2x +

√
1− b2x + 1

)
b2z − 3b2x

(
b2x − 1

)2
= 0, (33)

where γ1 (the red curve in Fig.7) is the bifurcation curve for the inner potential well, when

yo = y1 = (1−
√

1− b2x)/bx, whereas γ2 (the blue dashed curve in Fig.7) is the bifurcation

curve for the outer potential well, when yo = y4 = (1 +
√

1− b2x)/bx. It follows that, below

the curves γ1,2 (|a1|/(2a2) < 1) the number of equilibria is four (ε1,2,3,4) and, when γ1,2 are

crossed, above those curves (|a1|/(2a2) > 1) the number of equilibria changes to two (ε1,2).
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FIG. 7. Bifurcations curves |a1|/(2a2) = 1 in the (bx, bz) plane for the inner (red curve γ1) and for

the outer (blue dashed curve γ2) potential wells that appear when bx ≤ 1. The green dashed line

indicates the path in the parameter plane (bx, bz) used for the investigation of the phase flow.

From the shape and the expression (32) of the bifurcation curve γ1, we find that just one

bifurcation is possible when bz < 1/
√

3. Above the value bz = 1/
√

3, the number of equilibria

is always two (ε1,2). However, from the shape and the expression (33) of γ2, we obtain that,

for bz . 0.322991, two bifurcations may occur, when bx varies from 0 to 1, while, above

that value, bifurcations are not possible and the number of equilibria is always two (ε1,2).

Finally, a simultaneous bifurcation takes place in both potential wells when γ1 and γ2 are

crossed at the common intersection point bx = 1/
√

2 and bz =
√

3/40.

We perform the linear stability analysis of the equilibria by studying the roots of the

characteristic equation resulting from the variational equations of motion [43, 44]. After

some calculations, we find that the characteristic equation is given by

4a1a
2
2ξ2ξ3 − (2a1a2ξ1 − a21 − 4a22ξ

2
3)λ+ λ2 = 0. (34)

By substituiting in (34) the coordinates of the equilibria (31), we obtain the following sta-
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bility properties:

• ε1 is always stable because the roots of its characteristic equation,

λ2 + 2|a1|a2 + a21 = 0,

are always imaginary.

• The characteristic equation for ε2 is

λ2 − (2|a1|a2 − a21) = 0.

On the one hand, when |a1|/(2a2) < 1 (i.e., below the γ1,2 curves), the roots λ are

real, so that ε2 is unstable. On the other hand, when |a1|/(2a2) > 1 (above the γ1,2

curves), they are imaginary, and ε2 is stable.

• The characteristic equation for ε3,4 is

λ2 − (a21 − 4a22) = 0.

Because these equilibria only exist when |a1|/(2a2) < 1 (below the γ1,2 curves), the

roots corresponding to ε3,4 are always imaginary, and, when they exist, they are stable.

The stability analysis confirms again that when the γ1,2 curves are crossed (i.e., when

|a1|/(2a2) = 1) a bifurcation occurs. The existence of this bifurcation can also be detected

by studying the evolution of the energy of the equilibria. The energies of the equilibria are

respectively,

K1 = −|a1|, K2 = |a1|, K3,4 =
a21 + 4a22

4a2
.

The energy K1 of ε1 is the minimum energy of the system and, as a consequence of Lyapunov

Theorem [45], ε1 is always stable. When |a1|/(2a2) < 1, the energy reaches its absolute

maximum at the equilibria ε3,4 with value K3,4. Again, by virtue of Lyapunov Theorem,

these equilibria are stable. As |a1|/(2a2) approaches the critical value, the energy K3,4 of

ε3,4 tends to the energy K2 of ε2, so that at |a1|/(2a2) = 1, K3,4 = K2 and ε3,4 disappear.

Then, when |a1|/(2a2) > 1, K2 becomes the absolute maximum of the energy and for that

reason ε2 becomes stable.

A more detailed visualization of the normalized dynamics provided by the Hamiltonian

K is obtained from the phase flow evolution as a function of the parameters a1 and a2. To
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carry out this study, we fix the value of the bias field bz = 0.1 and we vary the value of the

field bx. In other words, we follow the straight path in the parameter plane (bx, bz) depicted

by the green dashed line in Fig.7.

In the inner potential well around the minimum P1 = (0, (1−
√

1− b2x)/bx), the bifurca-

tion curve γ1 ≡ |a1|/(2a2) = 1 is crossed for bz = 0.1 at the critical value bx ≈ 0.9022. In

Figure 8 the phase flow evolution on the Hopf sphere corresponding to Hamiltonian (27) for

five values of bx along the straight path bz = 0.1 is shown. When bx is far below the critical

value bx ≈ 0.9022 (see the first and second rows in Fig. 8 for bx = 0.1 and bx = 0.5), the

stable equilibria ε3,4 appear close to the north and south poles respectively, and the sepa-

ratrix passing through ε2 = (−1, 0, 0) establishes two regions of motion. On the one side,

the levels around the stable equilibrium ε1 = (1, 0, 0), which correspond to quasiperiodic

orbits with the same symmetry pattern as ε1, i.e., mainly aligned along the y axis. On the

other side, the levels around ε3,4, which correspond to quasiperiodic trajectories around the

elliptic orbits ε3,4. Examples of these two kinds of orbits are shown in Fig.9 for bx = bz = 0.1

and energy E = 0.12. These orbits are represented in the x-y plane and they have been

obtained from the numerical integration of the equations of motion (30) associated to the

normalized Hamiltonian K given by Eq.(27). Then, transformations (26) and (20) were

applied. As bx approaches the critical value bx ≈ 0.9022 (see the third and fourth rows in

Fig. 8 for bx = 0.85 and bx = 0.89) the equilibria ε3,4 approach the equilibrium ε2. As a

consequence, the phase space region of trajectories around ε3,4 shrinks, and at the critical

value bx ≈ 0.9022, a pitchfork bifurcation occurs: The three equilibria collide, and from this

bifurcation only the equilibrium ε2 survives, becoming stable. Then, for bx > 0.9022 (see

the fifth row in Figure 8 for bx = 0.92), the phase flow is made of levels around ε1 and ε2.

In other words, after the bifurcation only trajectories around the rectilinear orbits ε1,2 exist:

The nearer an orbit is to ε1 (ε2), the greater its orientation is along the y (x) axis.

In the outer potential well, the coordinate of the corresponding minimum is P4 = (0, (1 +√
1− b2x)/bx), and for bz = 0.1 the critical values of bx take place when the bifurcation

curve γ2 ≡ |a1|/2a2 = 1 is crossed at bx ≈ 0.1169 and at bx ≈ 0.9089. We note that γ2

takes a maximum value at bx ≈ 0.5410 and bz ≈ 0.322991, so that, above this maximum

the number of equilibria is always two. Thence, we expect two bifurcations and different

dynamics in the three regions defined by the intervals 0 ≤ bx . 0.1169, 0.1169 . bx . 0.9089
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FIG. 9. The blue lines are the periodic orbits corresponding to the equilibrium points ε1,2,3,4.

The red and the green orbits are characteristic orbits around the equilibrium points ε1 and ε3,4,

respectively. All trajectories have been calculated for bx = bz = 0.1 and energy E = 0.12, and

they were obtained from the numerical integration of the equations of motion (30) arising from

the normalized Hamiltonian K given by Eq.(27). The black dotted curve is the equipotential curve

E = 0.12 = V (x, y).

and 0.9089 . bx < 1 (see Fig.7). The phase flow evolution corresponding to Hamiltonian

(27) across these three regions, is depicted in Figure 10 for bz = 0.1. In the first row of

Fig.10, for bx = 0.1, the phase flow is made of trajectories around the stable equilibria ε1,2.

At bx ≈ 0.1169 a pitchfork bifurcation occurs and from ε2, which becomes unstable, the

stable equilibria ε3,4 are born (see the second row of Fig.10 for bx = 0.15). As bx increases

in the interval 0.1169 . bx . 0.5410, the equilibria ε3,4 move towards the north and south

poles and the phase space around them grows (see the third row of Fig.10 for bx = 0.25).

Then, when bx increases in the interval 0.5410 . bx . 0.9089, the equilibria ε3,4 describe

the reverse way (see the fourth row of Fig.10 for bx = 0.9) so that, at bx ≈ 0.9089 they

collide with ε2 and a second pitchfork bifurcation takes place. From this bifurcation, only ε2

survives, becoming stable. In the interval 0.9089 . bx < 1 we recover the same phase flow

structure as in the first region (see the fifth row of Fig.10 for bx = 0.92). As in the previous

case where the normalized phase flow was studied in the inner potential well, in all cases
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the symmetry pattern of a given trajectory is determined by the nature of the equilibrium

point (periodic orbit) around which such a trajectory is living.

The normalized Hamiltonian (27) is expected to be useful in describing the dynamics

when the energy of the system is close enough to the energy E1,4 = bz of the minima P1,4,

i.e. close to its integrable limit. Therefore, a comparison between the phase flow of the

reduced system and the phase flow of the original one would be appropriate and it will be

carried on in the next section.

C. Phase Flow Structure

In this subsection we focus on the structure and evolution of the phase flow as a function

of the parameters of the system, namely bx, bz and the energy E. Because the system at

hand has two degrees of freedom, the Poincaré sections are the most convenient tool for this

purpose.

To begin with, we fix bz = 0.1 and also the energy of the system, E = 0.12, close enough

to the energy of the critical points P1,4, and vary bx from 0 to 1, that is to say, we follow

again the straight path in the parameter plane (bx, bz) depicted by the green dashed line in

Fig.7. In this way, both bifurcations curves γ1,2 are crossed for increasing values of bx, and

most of the possible relevant dynamical situations described in Subsec. IV B are expected

to be found.

A convenient Poincaré map is px = 0 with ṗx ≥ 0, so that the sections appear in the plane

(y, py). Under these conditions, the available region of the surfaces of section is limited by

the curves

py = ±

√√√√√2

E −
√(

bx −
2y

y2 + 1

)2

+ b2z

. (35)

It is worth noting that rectilinear orbits Iy are tangent to the flux in this Poincaré map, and

they correspond to the curves (35). For values of the energy below the saddle point energy

E2 =
√

(1− bx)2 + b2z, the Poincaré sections are made of two disjoint regions encircling the

two minima P1 and P4. For bz = 0.1, the energy of the minima P1,4 is E1,4 = bz = 0.1 and, if

the total energy E of the system is close to that energy, the dynamics is expected to be near

integrable. This situation is depicted in Fig.11, where the Poincaré sections for E = 0.12,

bz = 0.1 and bx = 0.1, bx = 0.5, bx = 0.85 and bx = 0.92 are shown. The left and right
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FIG. 11. Poincaré sections px = 0 with ṗx ≥ 0 for bx = 0.1, bx = 0.5, bx = 0.85 and bx = 0.92, and

for the energy E = 0.12 and bz = 0.1. Because the energy E = 0.12 is in all cases below the saddle

point energy E2 =
√

(1− bx)2 + b2z, the Poincaré sections are made of two disjoint regions shown

in the left and in the right panels, respectively.

hand panels of Fig.11 correspond to the surfaces of section around the minimum P1 and P4,

respectively.

For bz = 0.1 and bx = 0.1, the system is below the bifurcation curve γ1 and above the

bifurcation curve γ2 (see Fig.7), and the corresponding surface of section (Fig.11(a)-(b))
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indicates that the phase flow shows different structure around the minimum P1 than around

the minimum P4. From Fig.11(a), the surface of section around the minimum P1, we account

for the following well defined structures:

i) Two stable fixed points symmetrically located above and below the y axis, named

C, corresponding to almost circular orbits traveled in opposite directions. The levels

around these points are quasiperiodic orbits with the same symmetry patterns as C.

For the energy E = 0.12, in Fig.12(a), the periodic orbit C and a representative

quasiperiodic orbit around it are shown.

ii) A homoclinic orbit (separatrix) passing through the hyperbolic (unstable) fixed point

located at the py = 0 axis, which separates the motion around the orbits C. We name

this point as H and corresponds to an almost rectilinear orbit parallel to the x axis.

For E = 0.12, the periodic orbit H is depicted in Fig.12(a).

iii) Finally, taking into account that the limit of the surface of section is the rectilinear

orbit Iy, the levels above the separatrix passing through H are quasiperiodic orbits

mainly oriented along the y axis. The periodic orbit Iy and a representative quasiperi-

odic orbit around it are shown in Fig.12(a). While the stability of C and H can be

established at a glance, the stability of Iy (i.e., the limit of the Poincaré map) must be

determined by using the Index Theorem. Indeed, because the domain D of the surface

of section is homeomorphic to a two-dimensional sphere, the sum of the indexes of the

fixed points is 2. Because Fig.11(a) shows one unstable critical point (with index -1)

and two stable fixed points (with index 1), the index of the periodic orbit Iy must be 1

in order to keep fixed the Euler characteristic to 2. Then, Iy is a stable periodic orbit.

However, in the surface of section of Fig.11(b) around the minimum P4 there is just a

single stable fixed point (periodic orbit). We also name H this periodic orbit, because it

corresponds to an arch-like orbit oriented along the x axis. Due to the fact that the limit of

the surface of section in Fig.11(b) is the rectilinear orbit Iy, this periodic orbit, Iy, is stable

because the Euler characteristic of the surface of section must be 2. The circulations around

H indicate that the phase space is made of quasiperiodic orbits that show a smooth evolution

in their orientation: The nearer a circulation is to H (Iy), the greater the orientation of the

corresponding quasiperiodic orbits is along H (Iy). In Fig.12(b) the periodic orbits H and

C and two representative quasiperiodic orbits are depicted.
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FIG. 12. Periodic orbits C (stable), H (unstable) and Iy (stable) appearing in the surfaces of

section of Fig.11(a)-(c) (left panels) and Fig.11-(b)-(d) (right panels). The blue, green and pink

orbits are representative quasiperiodic orbits around C, Iy and H, respectively. The black dotted

lines are the corresponding equipotential curves E = V (x, y) = 0.12. All figures are made for

bz = 0.1 and E = 0.12.

For bx = 0.5 and bz = 0.1, the system is below both γ1,2. As we observe in the surface

of section in Fig.11(c)-(d), while the structure of the phase flow is qualitatively the same

around P1, the phase flow structure around P4 has changed. Indeed, Fig.11(d) shows that

the unstable fixed point H becomes unstable and a separatrix passing through it encloses

two stable fixed points denoted by C. In other words, the periodic orbit H living in the

outer potential well experiences a pitchfork bifurcation. In Fig.12(c)-(d), the periodic orbits

H, C and Iy, as well as representative quasiperiodic orbits around them, are shown.

When the value of bx increases below the bifurcation curves γ1,2 (i.e., for bx below the

critical values bx ≈ 0.9022 and bx ≈ 0.9089 for γ1 and γ2 respectively, for bz = 0.1), although
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the structure of the phase flow remains qualitatively unchanged (see Fig.11(e)-(f) for bx =

0.85), we observe that the fixed points C approach the unstable fixed point H. Then, the

size of the phase space region with C-shaped quasiperiodic orbits shrinks, while the phase

space region above the separatrix grows in size. Finally, when both γ1,2 are crossed, at

the above critical values of bx, the stable fixed points C collapse into H, which becomes

stable (see the Poincaré map for bx = 0.92 of Fig.11(g)-(h)). That is to say, two consecutive

pitchfork bifurcations between the stable periodic orbits C and the unstable periodic orbit

H, living, respectively, around P1 and P4, take place, so that, from these bifurcations, only

the corresponding periodic orbit H survives, becoming stable.

When we compare the left and the right panels in Fig.11, we observe that tight trapping

is in general attained in the phase space region around the minimum P1 because the size of

the inner phase space region is always smaller than the size of the phase space in the outer

region. Furthermore, the smaller the value of bx is, the larger the size difference. This fact

is related with the frequency ratio η = ω1/ω4 between the harmonic frequencies around the

inner and the outer potential wells (see Fig.5). Indeed, the fast increase of η, for decreasing

values of bx, indicates that the width of the outer potential well grows very fast, almost

exponentially.

It is worth noticing the good agreement between the structure of the phase flow predicted

by perturbation methods (see Fig.8 and Fig.10) and the real structure shown in the Poincaré

maps of Fig.11. In this way, the equilibrium points ε1, ε2 and ε3,4 in the reduced dynamics

correspond, respectively, to the periodic orbits Iy, H and C that occur in the Poincaré

sections of Fig.11. Furthermore, the examples of orbits obtained using the Lissajous normal

form that are depicted in Fig.9 show the same pattern as the examples of quasiperiodic orbits

presented in Fig.12(a). In fact, this is a consequence of Reeb’s Theorem, which ensures the

matching between non degenerate critical points of the averaged system and periodic orbits

of the original one, if the energy is close enough to E1,4 [46].

Now, we study the evolution of the phase flow as a function of the energy of the system.

Then, we fix the values bx = 0.5 and bz = 0.1, and we vary the energy E. Because the

energy of the saddle point P2 is E2 =
√

(1− bx)2 + b2z ≈ 0.5385, the motion is still confined

within either of the potential wells around the minima P1 or P4, whenever E < E2. For

E = 0.2, the corresponding twofold Poincaré section is shown in Fig.13. It is observed again
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FIG. 13. Poincaré section px = 0 with ṗx ≥ 0 for bx = 0.5, bz = 0.1 and for the energy E = 0.25.

Because the energy E = 0.25 is below the saddle point energy E2 ≈ 0.5099, the Poincaré section

is made of two disjointed regions shown in the left and in the right panels.

the difference between the phase space size around the inner and the outer potential wells,

which can be explained by the large value of the frequency ratio η = ω1/ω4 ≈ 13.9282 for

bx = 0.5, that confirms the tight trapping around the minimum P1. Closely related to this

issue, but not apparent in the Poincaré section of Fig.13 nor in the sections of Fig.11, are

the time scales of the dynamics, depending on whether a given orbit is living in the inner

or in the outer potential well. A first glimpse can be obtained from the periods τC , τIy and

τH of the periodic orbits C, Iy and H, appearing in Fig.13. Indeed, in Table II, we observe

that the dynamics is rather slow in the outer region of the phase space located around the

minimum P4 than in the region around the inner minimum P1. Furthermore, the ratios ηC ,

ηIy and ηH between the periods of C, Iy and H in the outer and in the inner potential wells

(see the third row of Table II) are, in particular for Iy and H, very close to the value 13.9282

predicted by the frequency ratio η for bx = 0.5.

For E = 0.5, an energy close enough but below the saddle energy E2 ≈ 0.5385, the

Poincaré map is still made of two disjoint regions. However, the dynamics is different in

each region. While in the outer region, represented in Fig.14(b), the dynamics remains

regular, in Fig.14(a) we observe that the inner region of the phase space underwent a drastic

change in its structure. Indeed, the former separatrix passing through the hyperbolic orbit

H has been replaced by a stochastic layer. Inside this stochastic layer, a rather large region
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I.P.W. τC = 0.9807 τIy = 1.3108 τH = 1.3261

O.P.W. τC = 18.3939 τIy = 18.6078 τH = 18.6384

ηC = 18.7559 ηIy = 14.1958 ηH = 14.0550

Table II. Periods τC ,τIy and τH of the periodic orbits C, Iy and H appearing in Fig.13 for bx = 0.5, bz = 0.1

and for the energy E = 0.25. The acronyms I.P.W. and O.P.W. stand for inner and outer potential wells,

respectively. ηC , ηIy and ηH are the ratios between the periods τC , τIy and τH in the outer and in the inner

potential wells.
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FIG. 14. Poincaré section px = 0 with ṗx ≥ 0 for bx = 0.5, bz = 0.1 and for the energy E = 0.5.

Although the energy E = 0.5 is close but still below the saddle point energy E2 ≈ 0.5385, the

Poincaré section is made of two close but disjoint regions shown in the left and in the right panels,

respectively.

of regular motion around the elliptic points C persists. Outside the stochastic layer, there

are many structures of regular islands that are embedded in a chaotic sea that fills large

regions of the map. Note that the difference between the size of the inner and the outer

phase space regions observed for small energy values is now much larger.

When E is above the trap energy, E2 ≈ 0.5385, the surface of section is unbounded, and

orbits may leave the trap. As we can observe in the surface of section for E = 0.55, shown in

Fig.15, most of the orbits are unbounded and only the region around and inside the former

separatrix passing through H, in the inner potential well, is able to keep bounded orbits.
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FIG. 15. Poincaré section px = 0 with ṗx ≥ 0 for bx = 0.5, bz = 0.1 and for the energy E = 0.55.

The energy E = 0.55 is slightly above the saddle point energy E2 ≈ 0.5385, and the Poincaré

section is unbounded.

V. DYNAMICS FOR THE CASE bx > 1

A. Classical perturbation theory

When bx > 1, there are two potential wells centered on the critical points P5,6, symmet-

rically located along the unit circle. Our goal is to study the dynamics in the vicinity of

these points, as we did in the case 0 < bx < 1. The first step is to perform a translation in

order to move the critical point to the origin. Thus, we introduce the canonical change of

variables

x→ x′ + xo, y → y′ + yo, px → p′x, py → p′y

where

xo = ±
√
b2x − 1

bx
, yo =

1

bx
,

are the coordinates of the minima P5,6. Now, a Taylor series expansion around the origin,

and after dropping primes, allows us to write the Hamiltonian as

H = bz+
1

2
(p2x+p2y)+

1

2
ω2(x2+y2)+(α1x+α2y)(x2+y2)+(β1x

2+β2xy+β3y
2)(x2+y2)+· · · ,

(36)
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being

ω =bx

√
b2x − 1

bz
,

α1 =±
b3x
√
b2x − 1

2bz
,

α2 =
b3x(b2x − 1)

bz
, (37)

β1 =− b2x(b6x + 4b2z + b2x(1− 9b2z) + b4x(4b2z − 2))

8b3z
,

β2 =±
b2x(1− 2b2x)

√
b2x − 1

bz
,

β3 =− b2x(b6x − 4b2z − 2b4x(1 + 6b2z) + b2x(1 + 15b5z))

8b3z
,

where the plus and minus signs in α1 and β2 correspond to P5 and P6 respectively. Note

that the presence of different signs in α1 and β2 preserves the symmetry of the expansion

(36) with respect to the y axis. It can be seen that the linear approximation corresponds

to an isotropic harmonic oscillator with frequency ω, which vanishes at bx = 1 and grows

monotonically for increasing bx.

Now, we can proceed in the same way as in the previous case, obtaining an averaged

Hamiltonian retaining most of the main features of the original system. However, looking

at the coefficients in (37), we observe that the smallness of each order in the Taylor series

expansion can be altered if bx is great enough. In this way, the perturbation approach will

be only valid in a small neighborhood around the critical points, namely in a ball Br of

radius r, centered at (0, 0, 0, 0) ∈ R4, with r a function of bx, where it is guaranteed that

the terms in the Taylor expansion are properly ordered. With this restriction in mind, the

normalization, or averaging process, is accomplished in the same way as previously, up to

second order. By doing so, in Lissajous variables, the normalized Hamiltonian is given by:

K = bz + ωoL+
9(β1 + β3)ω

2
o − 25(α2

1 + α2
2)

12ω4
o

L2 +
α2
1 + α2

2 − (β1 + β3)ω
2
o

4ω4
o

G2+

20(α2
1 + α2

2)− 9(β1 − β3)ω2
o

12ω4
o

L2e cos 2g +
40α1α2 − 9β2ω

2
o

12ω4
o

L2e sin 2g.

(38)

Due to the fact that g is not defined for |G| = L, we introduce the Hopf variables (26) and

the phase space turns to be a unit radius sphere. In these variables, and after dropping the

constant terms, the Hamiltonian becomes

K = a1ξ1 + a2ξ2 + a3ξ
2
3 ,
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where

a1 =
9− 2b2x − 2b4x

12(b2x − 1)
L2, a2 = ∓ 9 + 2b2x

12
√
b2x − 1

L2, a3 =
b2x(b2x − 1)

16b2z
L2. (39)

The upper sign in a2 stands for P5 and the lower one for P6. Taking into account that

a3 > 0, if bx > 1, we can divide by this coefficient and consider the biparametric quadratic

Hamiltonian

K = ξ23 + c1ξ1 + c2ξ2, (40)

being c1 = a1/a3 and c2 = a2/a3. It is worth noting that an equivalent transformation, a

suitable rotation around the ξ3 axis, converts (40) into (27), so we expect a very similar

behavior. Indeed, from the equations of the motion arising from Hamiltonian (40) the

following equilibria result:

ε1 =

(
c1√
c21 + c22

,
c2√
c21 + c22

, 0

)
,

ε2 =

(
−c1√
c21 + c22

,
−c2√
c21 + c22

, 0

)
,

ε3,4 =

(
c2
2
,
c1
2
,±
√

4− c21 − c22
2

)
.

While ε1,2 always exist, ε3,4 exist if the condition

γ = 4− c21 − c22 > 0

is fulfilled. Therefore, when γ = 0, equilibria ε3,4 and ε1 coincide, and a pitchfork bifurcation

is expected, provided that for γ < 0 only ε1 survives. The equilibria ε1,2 correspond to

rectilinear orbits which coordinates in the (g,G/L) variables are ε1 = (1/2 arctan(c2/c1), 0) ≡

(π + 1/2 arctan(c2/c1), 0) and ε2 = ((π + arctan(c2/c1))/2, 0) ≡ ((3π + arctan(c2/c1))/2, 0).

These rectilinear orbits are perpendicular each other. When they exist, the equilibria ε3,4

correspond to elliptical orbits with g = 1/2 arctan(c1/c2) ≡ π + 1/2 arctan(c1/c2) traveled

in direct and retrograde senses, respectively. Finally, it is important noticing that ε1,2,3,4 for

c2 < 0 and for c2 > 0 (i.e., when they are considered located at the potential well around P4

and at the potential well around P5, respectively) are symmetric with respect to the y axis.

Regarding the linear stability of the equilibrium points, from the characteristic equation

λ2 + c21 + c22 + ξ23 − 2c1ξ1 − 2c2ξ2 = 0,
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Point Eigenvalues Stability

ε1 ±
√

2
√
c21 + c22 − c21 − c22 Stable if γ = 4− c21 − c22 < 0

ε2 ±i
√

2
√
c21 + c22 + c21 + c22 Always stable

ε3,4 ±i
√

4− c21 − c22 Stable when they exist for γ = 4− c21 − c22 > 0

Table III. Linear stability of the equilibrium points for the normalized Hamiltonian K, when bx > 1.

it is straightforward to obtain the eigenvalues associated to each point, which are given in

Table III. We can observe that, as we said, there is a pitchfork bifurcation when γ = 0.

In fact, if γ > 0, the points ε2,3,4 are stable while ε1 is a saddle. When γ = 0, the points

ε3,4 and ε1 collide and the bifurcation takes place. After that, only ε1 and ε2 exist as stable

equilibrium points of center type. Thus, γ = 0 defines a bifurcation curve in the parameter

plane (bx, bz), delimiting the regions where two or four equilibrium points exist. These

regions are depicted in Fig. 16, being the blue area the region where four equilibrium points

exist.

In order to show the evolution of the phase flow, as we did in the case 0 < bx < 1, we

fix bz = 0.1 and we vary bx. In other words, we follow the black dashed line that appears

in Fig.16. Due to the symmetry of the system around the y axis, the phase flow around P4

and around P5 is qualitatively the same and, for simplicity, we reduce to the case around

the minimum P5. For bz = 0.1 the pitchfork bifurcation takes place when γ = 0 at the

critical value bx ≈ 1.0894. Then, we vary bx from 1 up to 1.25. In Fig.17 the phase flow

evolution of the normalized Hamiltonian K (40) on the Hopf sphere for bx =1.05, 1.1 and

1.25 is shown. When bx is below the critical value bx ≈ 1.0894 (see the first row of Fig.17 for

bx = 1.05), the phase flow is made of quasiperiodic orbits around the stable equilibria ε1,2

that, we remind, they correspond to rectilinear orbits. Furthermore, the nearer an orbit is

to ε1 (ε2), the greater its orientation is along ε1 (ε2). At bx = 1.1, the pitchfork bifurcation

occurred, so that ε1 becomes unstable, and from it, the stable equilibria ε3,4 born (see the

second row of Fig.17). The new kind of levels around ε3,4 and inside the separatrix passing

through ε1 correspond to quasiperiodic orbits with the same symmetry pattern as ε3,4, that

we remind are elliptical orbits. For increasing values of bx (see the third row of Fig.17 for
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FIG. 16. Bifurcation curve γ = 4− c21 − c22 = 0 in the (bx, bz) plane. The blue region corresponds

to the existence of four equilibrium points. The black dashed line indicates the path used for the

numerical investigation of the phase flow structure.

bx = 1.25), equilibria ε3,4 move towards the north and the south poles and the phase space

around them grows in size.

B. Phase Flow Structure: bx > 1

In this subsection we focus on the structure and evolution of the phase flow when bx > 1.

For this case, the section given by py = 0 with ṗy ≥ 0 is a more convenient Poincaré map

because, for bx > 1, trapped motion takes place in the symmetric potential wells around the

minima P5,6.

We start this study fixing the energy E = 0.105 and the value bz = 0.1, while we vary

the value of bx. The result of this study is illustrated in Fig.18 for the particular values

bx = 1.05, 1.1 and 1.25. Because for these values of bx the energy E = 0.105 is below the

energy E2 =
√

(1− bx)2 + b2z ≈ 0.1414 of the saddle point P2, in all cases the Poincaré

section is made of two (symmetric) disjoint regions.

For bz = 0.1 and bx = 1.05, the system is below the critical value bx ≈ 1.0894 predicted

by the bifurcation curve γ = 0 shown in Fig.16. The corresponding surface of section (see
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FIG. 17. Phase flow evolution of the of the normalized system corresponding to the dynamics in

the symmetric potential wells when bx > 1.

Fig.18(a)) shows that the phase space in each region is ordered around two stable fixed points

named as IS and IU . These fixed points correspond to two linear periodic orbits which are

depicted in Fig.19(a)-(b). For bx = 1.1, the system crossed the critical value bx ≈ 1.0894,

and a pitchfork bifurcation is expected. Indeed, in the second row of Fig.18, we observe

that the phase space shows a different structure due to such a bifurcation: From IU , which

has become unstable, two stable fixed points, named as IC , born. Periodic orbits IC are

illustrated in Fig.19(c)-(d). For increasing values of bx (see the Fig.18(c) for bx = 1.25), we

observe that, although the phase space structure remains qualitatively the same, there is a

significant increase in size of the regions around IS and IC . Because the energy E = 0.105
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is close to the energy E5,6 = bz = 0.1 of the minima P5,6, we remark the perfect matching

between the number and stability of the (non-degenerate) equilibria in the averaged system

(see Fig.17) and the number and stability of the periodic orbits in the original one.

Now, we study the impact of the energy in the phase flow. In this way, using the Poincaré

map py = 0 with ṗy ≥ 0, we fix the values bx = 1.25 and bz = 0.1 while we increase the

energy. For E = 0.2 the system is below the energy E2 =
√

(1− bx)2 + b2z ≈ 0.2693 of

the saddle P2, and the corresponding Poincaré section shown in Fig.20(a) is made of two

disjoint regions with the same structure as we found in Fig.18(b)-(c),with all the orbits

ordered around the fixed points IC,S,U .

When the energy approaches the saddle point energy E2 ≈ 0.2693 (see Fig.20(b)-(c) for

E = 0.25 and for E = 0.265), the system begins to lose its regular behavior, so that there

appear large regions of chaotic motion that embed number chains of island of regular motion.

When the energy is above E2 =
√

(1− bx)2 + b2z ≈ 0.2693, the surface of section is made

of only one region (see Fig.20(d) for E = 0.28) and a significant region of phase space is

dominated by chaotic motion. It is worth noticing that the orbits in the phase space regions

around the periodic orbits IC show a very robust regular motion.

VI. CONCLUSIONS

We have analyzed the behavior of a neutral atom in a trap induced by a two-wire waveg-

uide in the presence of two bias magnetic fields, bx and bz. Assuming that the wires and the

external fields are located according to Fig.1, the trapping region appears in the x-y plane.

Because most of the atom trapping features are determined by the landscape of the

potential energy surface, we start our study by analyzing its critical points. When the two

bias fields are zero, there is only one trapping region around the origin (see Fig. 2). When

the bias fields are non-zero, the number of critical points increases and so do the trapping

regions.

When bz > 0 and 0 < bx < 1, two trapping regions (potential wells) appear on the

y axis (see Fig. 3). Because the outer potential well (around the minimum P4) is much

wider than the inner one (around the minimum P1), a tighter binding is associated to

the latter. We have used perturbation theory to describe the dynamics when the atom

is trapped in these potential wells. More precisely, the Taylor expansion of the potential
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FIG. 18. Poincaré section py = 0 with ṗy ≥ 0 for bx = 1.05, bx = 1.1 and bx = 1.25, and for the

energy E = 1.05 and bz = 0.1. Because the energy E = 1.05 is below the energy E2 ≈ 0.1414 of

saddle point P2, the Poincaré section is made of two (symmetric) disjoint regions.
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FIG. 19. Periodic orbits IS , IU and IC . All orbits for bz = 0.1 and for the energy E = 0.105. The

black dotted lines are the corresponding equipotential curves E = V (x, y) = 0.105.

around the P1,4 shows that the system behaves as a perturbed two-dimensional isotropic

oscillator. The linear approximation confirms that the dynamics is, in general, much faster

in the inner potential well (i.e., around P1) than in the outer one (i.e., around P4), see

Fig. 5. For the perturbation process, we use the Lissajous transformation which provides us

an integrable (normalized) Hamiltonian truncated at order 2. Expressed in Hopf variables,

the phase space consists of a unit radius sphere, and the normalized Hamiltonian appears as

a quadratic polynomial depending on two parameters, a1 and a2, which are functions of bx,

bz. We find that the critical value |a1| = (2a2), see Fig. 7, determines the dynamics because

it defines a bifurcation curve that divides the parameter plane (bx, bz) into different regions

where the number of equilibrium points (and their stability character) changes from two to

four. Although the bifurcation curve |a1| = (2a2) is different for the inner well than for the

outer one, bifurcations are always of pitchfork-type, see Fig. 7 and Fig. 8. The evolution

of the phase flow on the Hopf spheres perfectly agrees with the Poincaré surfaces of section
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FIG. 20. Poincaré section py = 0 with ṗy ≥ 0 for bx = 1.25, bz = 0.1 and for energy values

E = 0.2, E = 0.25, E = 0.265 and E = 0.28. When the energy E of the system is above the energy

E2 ≈ 0.2693 of the saddle point P2, the Poincaré section is made of only one region (see panel (d)).

accounting for the evolution of the original system (see Fig. 8, Fig. 10 and Fig. 11).

When bx = 1 the equilibria P1, P2 and P4 collide, there is a bifurcation and for bx > 1

two symmetric trapping regions appear on the unit circle, see Fig. 4. They are associated to

the new-born equilibria P5 and P6. The dynamics around these (symmetric and equivalent)

equilibria is studied following the same scheme as for 0 < bx < 1. Because, the linear approx-

imation corresponds to an isotropic oscillator, we follow the same perturbation procedure as

for bx < 1. Indeed, we obtain again that the averaged Hamiltonian expressed in Hopf vari-

ables is a quadratic polynomial depending on two parameters, c1 and c2, that are functions

of bx, bz. The bifurcation curve 4 − c21 − c22 = 0 divides the parameter plane (bx, bz) into
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different regions where the number of equilibrium points changes from two to four through

bifurcations of pitchfork-type, see Fig. 16. We find a perfect agreement between the evolu-

tion of the phase flow on the Hopf spheres and the Poincaré surfaces of section accounting

for the evolution of the original system (see Fig. 17 and Fig. 18). As expected, when the

energy of the system increases and gets closer to the one of the saddle points that determine

the potential wells, the Poincaré sections show that chaos appears and begins to dominate.

Although it is beyond the scope of this paper, the results of our study can be a guideline to

carry out investigations concerning the frontier between classical and quantum dynamics in

a realistic system. For example, the low dimensionality of Hamiltonian (9) makes our model

very suitable for studying dynamical tunneling effects [49]. We also note that the normalized

Hamiltonians (25) and (38) obtained after the Lissajous transformation are amenable to

semiclassical quantization (see e.g. [47, 48]) using the well-known Einstein–Brillouin–Keller

quantization conditions. Finally, due to our system shows a transition from regular to

chaotic behavior, the fundamental question of the quantum signatures of classical chaos can

be investigated using this model. Work along these lines is now in progress.
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