
Interactivity for a 3D audio controller Fernando Merino Pinedo

1

Trabajo Fin de Grado

Nombre y apellidos del autor

Nombre y apellidos del director/es

Pamplona, fecha de defensa

Trabajo Fin de Grado

Nombre y apellidos del autor

Nombre y apellidos del director/es

Pamplona, fecha de defensa

Trabajo Fin de Grado

Fernando Merino Pinedo

Supervisores: Asier Marzo Pérez, Rubén Eguinoa

Pamplona, 7 de enero de 2022

E.T.S. de Ingeniería Industrial,

Informática y de Telecomunicación

Comparing tangible and mid-air

interfaces for interacting with and 3D

audio controller.

Grado en Ingeniería Informática

Interactivity for a 3D audio controller Fernando Merino Pinedo

2

Content
ACKNOWLEDGEMENTS... 3

ABSTRACT ... 4

KEY WORDS ... 4

INTRODUCTION AND MOTIVATION.. 5

OBJECTIVES ... 7

DEVELOPMENT ... 8

TWO INTERFACES ... 8

JAULAB .. 10

Tangible interface ... 12

Camera calibration ... 13

Tokens detection .. 14

Coordinates processing .. 17

Workspace setup .. 20

Communication with the sphere .. 21

Mid-air interface ... 22

Hand tracking .. 24

Unity environment ... 25

Coordinates processing .. 26

OSC sending .. 27

Additional features ... 27

USER STUDY .. 30

RESULTS AND DISCUSSION ... 36

ADDITIONAL NOTES AND FUTURE WORK .. 43

CONCLUSION .. 44

BIBLIOGRAPHY AND REFERENCES .. 45

Interactivity for a 3D audio controller Fernando Merino Pinedo

3

ACKNOWLEDGEMENTS

This report sums up a 2-year work not only full of efforts and dedication but also full of

collaboration with many different people that have made possible to me to carry with

the development of this project.

I would like to thank all of them, starting with the director of this project, the professor

Asier Marzo Pérez, who has been there to help me whenever I needed it, provide me

with all the stuff I’ve needed, share all his knowledge and propose me his crazy ideas

that in the end we have carried out.

I would like to express my gratitude too to all the three engineers from the Acoustics

Lab of Upna: Ricardo, Asier and Ruben, for helping and collaborating with me in such a

wonderful way that has allowed to develop an incredible product which combines

acoustics and informatics.

Finally, I would like to thank of course my family and friends who helped me both making

the journey more enjoyable and resolving with me some problems I encountered in the

development.

Interactivity for a 3D audio controller Fernando Merino Pinedo

4

ABSTRACT

3D Audio is becoming a new standard in society for music listening and general audio.

New applications emerge every day trying to build each time more immersive

experiences: videogames, environments simulations, virtual reality… where audio is a

crucial part to reach this immersion.

The department of Acoustics developed a 24-speakers metal sphere called JAULAB

where users can go in and experiment real 3D audio. But we wanted more. Nowadays

applications highlight by its user-machine interaction and freedom of action. That’s why,

in a collaboration between the Acoustics Lab and UpnaLab, we would like to give users

the opportunity to play and interact with the sphere to offer a much more immersive

experience that could be used in the future for a great variety of applications

(environment simulations, virtual reality, music production, music exhibition…)

For this purpose, an implementation of two different interactive interfaces has been

developed to be integrated in the sphere. The project has been divided in four different

parts: the tangible interface implementation, the mid-air interface implementation, the

sphere integration and finally the user study. We will be seeing all this parts during this

report.

KEY WORDS

• Spatial sound/3D sound

• Interactivity

• Aruco markers

• Camera world coordinates

• Leap Motion / Ultraleap

• Focal amplitude

• Docking task

Interactivity for a 3D audio controller Fernando Merino Pinedo

5

INTRODUCTION AND MOTIVATION

After vision, hearing is probably the most important human sense, and modern software

applications know this and make use of it. Till the date, the most immersive applications

interact through the eyes, ears and they are starting now with touch, but is clear that

hearing is a crucial part. That’s why that, when trying to imagine future virtual reality,

we imagine something much better and futuristic than just current normal headphones.

JAULAB was conceived with this idea, to develop a new way of hearing sounds, of

hearing 3D audio, regardless of its application. And I say regardless of its application

cause JAULAB can be used for multiple applications.

 JAULAB was initially designed for creativity and learning purposes. The idea was for it

to be an environment where producers and artists can reproduce their 3D music

compositions, in a spatial sound prepared environment, enjoying a true 3D experience

and getting rid of the 2D headphones which offer a poor 3D spatial sound simulation. At

the same time, it would serve as a learning resource for new acoustic engineers, that

would use the sphere as a tool to practice with spatial sound.

Image 1: Image of the JAULAB sphere

already assembled with the 24 speakers.

Interactivity for a 3D audio controller Fernando Merino Pinedo

6

This is how the Acoustic Lab presented me the project. Although it was in an early

version, thanks to my passion for music, for which I even produce my own music as a

hobby, I really loved the project and decided to take it.

The main problem was the poor interactivity of the sphere. For the initial purposes it

was created, it was enough with that, you just create your compositions in some

software and then try them inside the sphere and enjoy the results. But the lack of

interactivity closes the door to any other kind of application. This is where the need to

implement an interactive interface arises.

Interactivity allows the development of a lot of new different applications. By

introducing this concept in the sphere, we can develop several new functionalities like

in-runtime music producing, dynamic nature environments, videogames… So, it seems

crucial to introduce it to the sphere.

The main idea was to implement an interface as an initial test for the interactivity we

can reach with the sphere. It would be an interface that would power up the basic

functionalities of the sphere and an interface that would made the sphere much more

attractive and family-friendly to use for non-specialized users nor with acoustics nor

with the sphere.

We thought of a single and simple-to-use interface, where people would play with some

tangible physical tokens representing the sound sources played inside the sphere. But

then Covid-19 came, and non-touch interfaces became a new standard in society.

Therefore, we started thinking of developing a new complementary interface totally

Covid free where users could be able to have the total control over the sphere without

touching anything.

We will be seeing these two interfaces and its development along this report.

Interactivity for a 3D audio controller Fernando Merino Pinedo

7

OBJECTIVES

The main objective of this project is to implement two different interfaces capable of

interacting with the sphere and giving us total control over the spatial sound sources

reproduced inside the sphere.

Once the two interfaces are finished and fully operative, a user study will be carried in

order to determine which one of them two is easier to use and likes most to users.

For these purposes, the following objectives must be achieved:

1. Design the two different interfaces and its functioning.

2. Analyze and understand the necessary technologies for the interface’s

implementation.

3. Implement the first interface, the tangible one.

4. Implement the second interface, the mid-air one.

5. Integrate the two interfaces with the sphere software

6. Carry out the user study with volunteers

7. Analyze user study results and make conclusions

Interactivity for a 3D audio controller Fernando Merino Pinedo

8

DEVELOPMENT

TWO INTERFACES

As mentioned before, there will be two interfaces different from each other.

The first one will be a tangible interface where there will be some physical tokens

representing the sound sources that will be played inside the sphere and with which the

user will be allowed to play and move them, having total control over the sphere.

Images 2 & 3: Image showing volunteers

using the tangible interface.

Interactivity for a 3D audio controller Fernando Merino Pinedo

9

The second interface will be the mid-air one. The user will use only his hands and without

touching and just by doing some gestures and movements in the air, he will be able to

control the sound sources and move them all over the sphere.

Both interfaces will have visual guidance for the user to better orientate. The tangible

version will have a limited workspace where the user can move the tokens and inside

this workspace there will be a mock-up representing the sphere so that the user is better

oriented. The mid-air version will count with a virtual simulation made in Unity so that

the user can see in a screen the scene, his hands and where the sound sources are.

These two interfaces will be further explained within its corresponding sections, but

before we have to understand how the sphere works.

Images 4 & 5: Image showing volunteers

using the mid-air interface.

Interactivity for a 3D audio controller Fernando Merino Pinedo

10

JAULAB

Before starting with the interfaces’ implementation, it’s good to understand well what

JAULAB is.

JAULAB is a metal sphere built with 24-speakers covering uniformly the whole spherical

area. These 24-speakers work coordinately thanks to the Spherical Wavelet Format

(SWF) a newly developed spatial audio format which replaces the Ambisonics’ spherical

harmonics by an alternative set of functions with compact support (spherical wavelets).

It also covers all the steps of audio production, with a complete audio chain from

encoding to decoding based on the discrete spherical wavelets built on a multiresolution

mesh.

For no acoustics experts, what makes this technology is to discretize the space in such a

way that the coordinated speakers can reproduce sounds in any point. The sound can

be reproduced in points where there is a speaker, but also virtual sounds can be

generated in points in the middle of the empty air where no speaker is placed. This is

thanks to this discretization of the space where the 24 speakers emit sound in a

coordinate way such that virtual sounds can be generated anywhere in the workspace.

The bigger the discretization is, virtual sound can be generated in a bigger number of

points and with more precision.

An important fact to note before continuing is that JAULAB is designed to simulate

sounds that seem to be played outside the sphere. This means the following:

Image 6: One of the 24

speakers that are part of the

sphere.

Image 7: Representation of JAULAB’s

working

User

Inner part of the sphere, no sound reproduction area

Sound reproduction area

Interactivity for a 3D audio controller Fernando Merino Pinedo

11

The inner red circle represents the sphere, the green circle is the user, and the blue circle

is the area where virtual sounds can be simulated. The user is inside the sphere and the

speakers are oriented towards the center of the sphere. However, only sounds that

simulate to be playing outside the sphere, in the blue zone, can be generated.

This is because the sphere is supposed to generate sounds that surround us, giving a

spatial sound experience and generating sounds inside the sphere would lead to some

bad functioning due to technical reasons that would ruin the experience.

This is important to take into account as it will affect later our interfaces.

Interactivity for a 3D audio controller Fernando Merino Pinedo

12

Tangible interface

The tangible interface will consist of a sphere mock-up representing the real sphere and

a set of physical tokens that will represent the sound sources. With this and limiting a

workspace to work, the user will be able to place the tokens around the sphere mockup

in such a way that each of these tokens will represent a real sound source that will be

played on the sphere on real time.

For this interface to work, multiple technologies are involved. The process is complex as

explained briefly below.

A camera focusing on the workspace will be used to detect the tokens and capture its

position in real world. This camera must be calibrated before starting with the detection.

The tokens will have some special markers called Arucos on the top of them to facilitate

its detection and position estimation. Once the position is captured, several matrixial

transformations must be carried out in order to get the appropriate coordinates. Finally,

with the coordinates correctly processed, they can be sent to the sphere using some

specific way of communication and once there the sphere software will be able to

reproduce the sounds in the correct position inside the sphere.

*NOTE: The Unity process showed in the diagram above refers to a 3D Unity simulation

whose need is explained later in the report.

All this process must be carried out on real time, so that we offer the user a fluid

experience where as soon as he moves a token on the workspace that same move is

represented in the corresponding sound source moving around the sphere.

Now we will get on detail on all these points the process has.

Image 8: Diagram showing the process

flow for the tangible interface

Interactivity for a 3D audio controller Fernando Merino Pinedo

13

Camera calibration

The cameras used in the tokens’ detection introduce distortion to the images captured,

especially radial and tangential distortion.

Radial distortion curves the image as we move away from the center, making straight

lines no longer be so straight. Tangential distortion occurs because the camera lenses

are not aligned perfectly parallel to the plane of the object to be captured.

These two problems together produce distortions that, in the subsequent processing of

the images and obtaining of the estimated positions of the tokens, these will differ from

the real position where the user has placed the token.

Therefore, camera calibration is necessary and almost mandatory to try to counteract

and reduce as much as possible the distortions.

To calibrate the camera, the OpenCV library has been used, which offers us a series of

functions and methods capable of easily constructing an algorithm with which to obtain

the parameters of the camera used and perform the necessary operations to calibrate

it.

This algorithm consists of taking with a well-fixed camera a series of images of a

chessboard and observe how distortion affects the chessboard in different positions and

orientations as we can see in the images below.

Image 9 & 10: Images showing the radian

and tangential distortion problem

Interactivity for a 3D audio controller Fernando Merino Pinedo

14

I don’t want to explain further how this algorithm works, as it is all done by the functions

of the OpenCV library, but in summary, by drawing distortion lines on the chessboard

and seeing how they change between the different images we get the necessary

parameters with which later will be performed a series of operations used to calibrate

the camera. For more detailed information on how this process works, see at OpenCV

“Camera Calibration Tutorials”[1].

Tokens detection

With the camera well calibrated, next step is to detect tokens in the real world for in

further steps estimate its virtual position that we will pass to the sphere.

Tokens detection process is also carried out using the OpenCV library plus the addition

of an auxiliary module called Aruco.

Aruco is a module developed for OpenCV which consist of a series of operations capable

of detecting its Arucos markers in a very easy and efficient way.

The Aruco markers are a series of binary square markers (white and black) with the main

benefit that its detection is very simple and fast. Therefore, they are a perfect option to

estimate the position of the tokens in real time.

Image 11: Chessboard calibration

algorithm images

Interactivity for a 3D audio controller Fernando Merino Pinedo

15

The functions the library offers are very powerful and just by using a couple of them we

can already not only detect the markers but also get its camera world coordinates.

However, before doing this, an initial setup has to be made.

First, we must indicate which Arucos dictionary we are using. There are a lot of Arucos

dictionaries that can be used, all of them differing in two things: the number of bits of

each marker and the number of markers the dictionary contains. The maximum number

of sounds source the sphere can reproduce at the same time is 24, so for this project, as

we will need as much 24 tokens, the best idea is to select a dictionary close this number.

The smallest dictionary is DICT_4x4_50 (4x4 bits and 50 markers). With 50 markers is

enough to cover all our sound sources, so it’s logic to take the simplest dictionary to gain

in efficiency. This is the dictionary I’m using.

After that, the marker size has to be setup too. The marker size is a really important

parameter. We are using only one camera to detect the markers that will be placed

above the workspace. With only one camera, we are only able to measure two

dimensions, height and width, but we are not able to measure the depth. For measuring

the depth, another camera should be placed tracking this dimension. But this would

make the process really complex and slow. By indicating the markers size (length of one

side) we are now able to detect how much the size change when moving it in the third

dimension, the depth, so with this variation of the size, we are capable of estimating its

variation in the depth. This depth variation will be later calculated in the coordinates

processing.

Image 12 & 13: Some examples of Aruco

markers.

Interactivity for a 3D audio controller Fernando Merino Pinedo

16

At the end, the sized chosen for our Aruco markers was 50mm long, a square 5x5cm.

Coming back to the Aruco’s functions, they return us the camera world coordinates of

the markers through the main functions of detectMarkers() and

estimatePoseSingleMarkers(), functions that I don’t want to explain here cause it would

take too much but that you can see at “Aruco Marker Detection”[2] and “Detection of

Aruco Markers”[3] tutorials for further information. Apart from the coordinates, the

functions also return a unique identifier which identifies each marker.

The OpenCV libraries return us a set of coordinates for each marker, but these

coordinates are nothing more than just numbers without the correct post-processing.

Image 14: Set of Arucos used during the

development with different sizes.

Image 15: Tokens detection during a test

with real users.

Interactivity for a 3D audio controller Fernando Merino Pinedo

17

Coordinates processing

Once the camera detects the Arucos, the detection functions return a series of

coordinates that without the correct processing have no value at all. They must pass

through different transformations processes.

The first problem with the coordinates has already been commented. The coordinates

returned are relative to the camera world in a 2-axis coordinates system (x, y), they are

not world absolute coordinates with the three cartesian axis (x, y, z). This must be

changed as we need also the third axis, the depth. We already know the solution. The

idea is simple, if the marker approaches to the camera, it will become bigger. If the

marker moves away from the camera, it will become each time smaller and smaller.

Consequently, by controlling how much the size of each marker variates, through some

complex mathematical operations, we are able to calculate the coordinates in the third

axis z.

After resolving the camera world coordinates, we get a three-axis (x, y, z) coordinates

for each corner of detected markers. This means that for each marker we get a 4x3

matrix with the cartesian coordinates for each corner of the marker. As we are working

with the idea of moving one unit of sound source it is not logic to work with 4

coordinates for each marker. The sound source must be played at a specific point with

just one measure, so it does make sense to transform these four coordinates to one

single one. Thus, the four coordinates are transformed using a mean to one single

coordinate. As we are using a mean, the coordinates we get are the corresponding one

Image 16: Code showing the process to

transform 2D coordinates to 3D.

https://stackoverflow.com/questions/46363618/aruco-markers-with-opencv-get-the-3d-corner-coordinates

Interactivity for a 3D audio controller Fernando Merino Pinedo

18

to the center of the Aruco Marker. This is really good for us because these coordinates

of the center of the marker will represent the exact point where the sound source will

be reproduced inside the sphere. Such that we get a single point that will facilitate the

work in great way rather than having four different measures for each corner.

After applying the first two transformations, we obtain a series of coordinates that are

correctly correlated with the positions of our tokens in the real world, but that are not

adjusted to the coordinate range of our workspace. Therefore, one more transformation

is necessary to map the coordinates to the workspace coordinates we want to work

with. For this, it is necessary to calculate a matrix M that will serve as a change of basis

matrix. This matrix is calculated with the function from the OpenCV library

estimateAffine3D(), which requires the initial workspace, the target workspace and

some other inputs, and returns different parameters among them the change of basis

matrix M. So, this matrix is obtained by mapping the points of the initial workspace to

the points of the new workspace we have defined. The matrix must be saved as it will

be needed later to map the coordinates of all markers detected on run time.

Image 17 & 18: Representation of the

reduction to only one point by the mean

and its code.

Image 19 & 20: Code to transform

coordinates to the range of our

workspace.

Interactivity for a 3D audio controller Fernando Merino Pinedo

19

Finally, one last transformation is necessary. JAULAB sphere software works with polar

coordinates (, ,) and the coordinates we have at this point are cartesian (x, y, z),

thus, it is necessary to perform this last transformation of cartesian coordinates to polar

coordinates so that our control program and the sphere program understand between

each other. Through a series of mathematical operations this transformation takes

place.

With all these transformations performed, the coordinates are ready to be sent to the

sphere. But before that a process necessary for the coordinates processing must be

pointed out, the workspace setup.

Interactivity for a 3D audio controller Fernando Merino Pinedo

20

Workspace setup

As mentioned before, one of the necessary transformations we have to apply to the

coordinates is the mapping to the desired workspace using a change of basis matrix M.

To obtain this matrix we need to have the target workspace, that could be whatever we

want, and the initial workspace, that can change depending on where we are physically

working: a bigger or smaller table, on the ground, in a stand… Is because of this that we

need a system to set up and configure the workspace we are working in. And a very

simple system was created for this.

The system consists of setting up only the ground of the workspace. Using an Aruco

marker, the use will define the four corners of its workspace. The user has to place the

marker on each of the four corners of the workspace and capture the image by pressing

“e” as shown on the image below.

*NOTE: The chessboard paper is not necessary for workspace setup, it was there just as

guide to limit my workspace in that moment.

Images 21: Images showing the process

to calibrate the workspace.

Interactivity for a 3D audio controller Fernando Merino Pinedo

21

By doing this the user is setting up the ground of its workspace, the x and y axis. The z

axis is automatically set by replicating these four points but adding to them a specific

height previously determined in the code. This predetermine height can be changed in

the code, but the one by default is supposed to work fine for a standard workspace.

With these 8 points calculated (the four set by the user and the four set automatically

by adding a height) a 3D cube is defined that will be the target workspace. This new

workspace is the one that will be used later as input to estimate the change of basis

matrix.

Communication with the sphere

To conclude the interface, it remains to communicate to the sphere the coordinates

where it has to emit each sound source.

For this purpose, the communications with the sphere will be carried out through OSC

packages using the PythonOSC library.

The functioning of OSC packages is very simple and effective. They are packages

containing string-only data from a client to a specific IP and port where the server will

be hearing.

Our interface acts as the client sending for each frame captured by the camera the OSC

packages to a previously specified IP address and port. For each marker detected, it will

send a package containing a string with the coordinates and identifier information.

Then the sphere acts as the server. Hearing in the corresponding IP and port it will

receive the packages sent by the interface. From them, the sphere will extract the

coordinates of each Aruco and its ID. The ID will be associated with a sound source and

the coordinates will be used to broadcast the sound in the right place inside the sphere.

Interactivity for a 3D audio controller Fernando Merino Pinedo

22

Mid-air interface

This second mid-air interface is much simple than the first one.

The mid-air interface consists of a Leap Motion camera who will be tracking all our

movements and gestures we do with our hands and will perform some operations over

the sphere depending on these gestures.

This interface involves much less technologies than the tangible one, only three: a Leap

Motion camera, a Unity simulation and the sending of OSC packages. These three

technologies are combined to work as following:

The Leap Motion camera will be focusing on an empty air space. We must consider that

the Leap Motion camera it’s not a normal camera, as the ones we used in the tangible

interface, but it is an infrared camera. This camera will be working and tracking all our

hand movements inside this empty space which will be our workspace.

Parallel, a Unity simulation is developed containing an environment representing the

sphere and the sound sources, the equivalent to the mock-up of the first interface but

this time it is a virtual mock-up. This Unity will contain some components and visualizer

which allows to draw the hands tracked by the Leap Motion camera inside the Unity

simulation, as shown below.

This Unity simulation will serve as a visual guide, where the user will see how his

movements are tracked and will also see the sound sources we can take and move. With

Image 22: Image showing the hand

tracked inside the Unity simulation

Interactivity for a 3D audio controller Fernando Merino Pinedo

23

some code and scripts, the user will be able to grab the virtual sound sources doing some

specific gestures and then move them all around the environment. The sphere will be

on the center of the simulation and we will be moving the sound sources around it. At

the same time, OSC packages are being constantly sent with the updated positions of

each virtual sound source to the sphere.

Some other later explained functionalities will be added to expand this interface

functioning.

Image 24: Image showing a user

grabbing sound sources and moving

them.

Image 23: Diagram showing the process

flow for the mid-air interface

Interactivity for a 3D audio controller Fernando Merino Pinedo

24

Hand tracking

Hand tracking functionality inside our environment is divide in two parts: movement

tracking and pinching.

The hands movement is just the tracking of the user’s hands and arms along the whole

workspace. It is automatically done by the Leap Motion camera, we just have to install

the necessary Leap Motion packages, connect it to the computer and the camera will

automatically start tracking our hands.

With the hands’ movement tracked, we now need gestures to interact with the

environment. Our interface consists of grabbing the virtual sound sources represented

inside the Unity scene and move them all around the sphere. Thus, we need a gesture

to grab the sound sources, move them and release them. The most logical thing is to

configure a gesture to grab the objects as similar as possible to the gestures we do when

grabbing things in normal life. Hence, I decided to configure a pinch as the gesture to

grab the sound sources.

Pinching is quite simple to control with Leap Motion. As shown in the code above, we

just initialize a new controller that, frame by frame, will check how near the index finger

and the thumb are. The closer they are, the stronger the pinch. The pinch gets a value

between 0 and 1 depending on this, 0 if the hand is fully open and 1 if the two fingers

Image 25: Code to grab

and move the sounds

sources by pinching.

Interactivity for a 3D audio controller Fernando Merino Pinedo

25

are touching. This way, stablishing a threshold, in my case of 0.9, we can determine

whether the user is pinching or not.

The user will get visual guidance of all this process of pinching and sounds source

movement through the unity environment as we will see now.

*Important note: The pinching only works for the right hand.

Unity environment

In this interface, the user plays mid-air in a totally empty space area without anything to

touch or to use to get some guidance. This can lead to great difficulty to use the interface

due to a lack of orientation producing a sense of frustration on the user. Thus, a visual

guidance is necessary. Additionally, we need some 3D environment which receives the

Leap Motion tracking inputs and process them.

As we have said before, Unity fits perfectly for this. Unity already has its own

components and packages to implement all the Leap Motion functionalities and, also

very important, visualization.

Representing the sphere environment inside Unity gives the user a great visual guidance

with which he can orientate perfectly. Unity allows us to draw the sphere, the sound

sources and the hands tracked movement in real time, so we can build a complete virtual

environment to be used as our workspace. The hand movements the user makes are

represented in the scene and this includes pinching too. So, when the user pinches, he

sees how the two fingers move exactly as he has pinched, and he knows that what he is

doing is working.

Images 26 & 27: Images showing a player pinching (> 0.9) and

not pinching (< 0.9).

Interactivity for a 3D audio controller Fernando Merino Pinedo

26

Only one thing left. The user must see also how the sound sources get attached to his

hands when he is pinching, and they move with him. So, when we detect the pinch, the

closest sound source to the hand gets automatically attached to the point of union

between the thumb and index finger and doesn’t detach until the pinch ends. Like this,

the user sees how the sound sources move with him when he pinches, getting all the

visual guidance he needs.

Coordinates processing

At this point, we have the hand tracking and the unity environment, but the most

important part lefts, the coordinates processing.

Somehow, we need to know how the movements we are doing inside Unity must be

reproduced inside the sphere. For this, a simple solution was found.

The Unity virtual sphere would work exactly as the JAULAB sphere. The center of the

sphere will represent the point where the user seats inside the sphere. This center will

be exactly set at the point 0,0,0.

Then we will have the sound sources, that will be floating around the sphere. The user

will be able to move them around the scene and its position relative to the center of the

sphere, the 0,0,0 point, will represent the coordinates that we will be sending later to

the sphere.

Better explained, if inside the Unity environment we move a sound source to a position

2 units away from the center of the sphere, in the JAULAB sphere we will reproduce this

same movement by playing the sound 2 units away from the user multiplied by a factor

of adjustment. This factor of adjustment it’s just because the range in which the JAULAB

works it’s different from the range in which the Unity environment is designed.

So, the coordinates processing is carried out by constantly sending to the sphere the

virtual positions of sound sources. A last transformation is needed because the

coordinates we get from Unity are in cartesian coordinates and the JAULAB needs polar

coordinates. For this transformation, the exact same process as in the tangible interface

is done.

Interactivity for a 3D audio controller Fernando Merino Pinedo

27

OSC sending

The communication between the Unity environment and the JAULAB is also the same as

the tangible interface one. The only difference is the library used. Previously we used

the PythonsOSC library and here now we use a OSC package developed for Unity.

For the rest, it works exactly the same as the communication in the tangible interface.

Additional features

This mid-air interface has to limitations that the tangible one doesn’t what requires to

implement two additional features.

The first limitations is the possibility to place sound sources inside the sphere. As

explained before, JAULAB only plays sounds that simulate to be outside the sphere, no

sounds can be reproduced inside it. With the first interface we had a sphere mock-up

that couldn’t be physically trespassed by the Aruco tokens. Here in the mid-air interface

we have a virtual environment where everything can happens.

We have to possible solutions to this: placing a collider to the sphere that doesn’t allow

the virtual sound sources to enter the sphere when the user moves them or letting

sound sources going in inside the sphere, but not sending the updated position to the

JAULAB.

I opted for the second solution, as placing a collider would lead to some collision’s

problems with objects crazy bouncing that would frustrate the user. By choosing not to

update the sound sources position when they are inside the sphere we resolve the

problem, but we a little inconvenient. If we introduce one sound source by one side of

the sphere and it exits by the opposite side, in JAULAB the sound will directly jump from

one point to the other, not doing a continuous movement. But this is a little issue

without major importance.

The second limitation is due to the Leap Motion. A Leap Motion is an infrared camera

with a great focal amplitude, but it is not infinite, so if we move away the hand too far,

the camera will lose it and will stop moving the sound source.

This directly affects the sounds mute. This is one aspect that I haven’t commented yet

cause is a natural event in the mid-air interface.

If you move away the sound sources far enough from the sphere, the sound will become

each time lower and lower until one point that will mute. The problem in the tangible

interface is that the focal amplitude of the Leap Motion is not enough to lower the

Interactivity for a 3D audio controller Fernando Merino Pinedo

28

volume enough to mute it. Thus, we must find another way to mute the sound sources

when we want.

This problem doesn’t appear in the first interface, as the camera here can be much

further than the Leap Motion camera, covering a wider workspace and having enough

space to lower the volume until mute it.

The solution I’ve proposed for the mid-air interface is to include a transparent box inside

the Unity environment that will serve as mute box. All the tokens introduced inside this

box will be automatically muted. And once they exit the box, they will start again playing.

The box is close enough to the sphere to be reachable without getting out of the focal

radio and at the same time is far enough from the sphere to let a wide range where the

volume can be lowered progressively without muting it abruptly.

To finish with the additional features, once the interface was finished I realized that

sometimes the user doesn’t orientates really well on the third axis-z, the depth.

 This is mainly because the Unity environment is saw by the user from one unique

perspective, having a good perception of the movement in two axis but harming the

perception in the third cause with only one view, only 2 axis can be covered.

There are two possible solutions to this. The first one is to add one more view of the

Unity environment giving the user two different points of view of the scene, like having

two screens. This is a good approach because we give the user more information that

he can use on his behalf to improve the visual guidance.

The problem here is that after some test with volunteers they all agreed that the two

perspectives shown at the same time was more harmful than beneficial. To look at the

two perspectives at the same time confused a lot. This way this solution was discarded.

Image 28: Image of the mute box.

Interactivity for a 3D audio controller Fernando Merino Pinedo

29

Then I came up with a new solution. Instead of giving a second perspective, the Unity

environment would have more visual guidance by having some shadows that indicate

where each sound source is.

As we see above, now each virtual sound source projects his shadow to the ground. Like

these, looking to all the shadows from all the sources that are in the scene, we can

orientate ourselves much better where each source is.

Volunteers agreed that this was a better solution, so this was the one finally chosen.

Image 29: Image showing the new

shadows projected on the ground.

Interactivity for a 3D audio controller Fernando Merino Pinedo

30

USER STUDY

At this point, two interfaces have been developed for JAULAB. Two different versions

with their advantages and disadvantages.

During the development of the interfaces, some people passing around the lab got

curiosity about the project and tested it. Some of them, advised me about some aspects

to improve that they disliked, like the two cameras perspective mentioned before. Other

ones told me about some aspects of the interfaces that they really loved. But they really

didn’t know which of the two interfaces they prefer.

Having developed two interfaces for the same software, it makes sense to try to know

which of them two is better, both in terms of ease of use and in terms of user appeal.

For this purpose, the most logic process is to carry out a user study where real users

make us of the interfaces and different data is collected. Then this data can be analyzed,

and a lot of conclusions can be extracted from it concerning which interface is better in

certain aspects.

In this case, the user study is divided in two parts.

One first part where the user will realize an exercise to measure the user’s performance

with that interface. The exercise consists of a docking test.

A docking test is a task where the user must follow a determined set of steps until the

end. For example, in the case of a robot, a docking test would be the robot to follow a

sequence of points until the finish. In our case, the docking test consists of the user

moving one token to a determined sequence of points until the end. The time he takes

to complete the task will be measured and used to get to conclusions.

Images 30: Images showing a user

performing a docking test.

Interactivity for a 3D audio controller Fernando Merino Pinedo

31

The docking task needs a 3D environment to be performed. Unity perfectly fits this

requirement as its designed for videogames developing and a docking task is essentially

a very simple game. That’s why here raise a new necessity.

The tangible interface needs a Unity simulation just as the mid-air one in order to

dispose of a 3D environment to perform the docking task. However, this simulation must

not be exactly the same one as the one from the Leap Motion version.

In the Arucos version, all the logic is developed in Python with the camera detection,

coordinates processing… So, the Unity simulation must not to have no more code than

the necessary to perform the docking test. Therefore, this simulation is much simpler

than the Unity simulation from the Leap Motion version, where almost all the logic is

located at the simulation.

Thus, a Unity environment was developed for the Arucos version.

We realized that it could not only be used for the docking test, but also it serves as a

great visual guidance. So now on, when using the tangible interface, there is always the

option to open the Unity simulation just as an extra resource to visually see how your

movements are being processed.

With the two Unity environments developed, the next step is to implement the docking

test in both.

Obviously, the test must be the same in both versions for the results to be comparable.

Image 31: Unity simulation of

Arucos’ version.

Interactivity for a 3D audio controller Fernando Merino Pinedo

32

As said before, the test consists of a set of points that the user has to reach by moving

one token to those points. Depending on the version, he will have to do the test with

tangible tokens from the first interface or with the mid-air interaction of the second

interface.

Apart from the test itself, a little user interface has been developed too to guide the

user. This UI consist of a set of buttons to start the docking test and a chronometer

showing at the top of the screen to see the user’s performance.

The second part of the user study will consist of a questionnaire with a set of subjective

questions which users will rate from 1 to 7 depending on how much they agree with the

question, 1 totally disagreeing and 7 fully agreeing.

Below in the next page we can see an example of the questionnaire:

Images 32: Images showing different

elements of the UI for the docking

test.

Interactivity for a 3D audio controller Fernando Merino Pinedo

33

Interactivity for a 3D audio controller Fernando Merino Pinedo

34

Interactivity for a 3D audio controller Fernando Merino Pinedo

35

Combining the docking task and the answers of the users to this questionnaire we have

sufficient information to analyze and compare both interfaces.

The process to carry out the user study was always the same one for every user:

- The volunteer enters the sphere and I give him a little explanation of 2-3

minutes about JAULAB and the two interfaces developed.

- After the explanation, we start with the first interface. I give the user around

1 minute to familiarize with the interface, giving him little advises to get used

to.

- After 1 minute playing a bit, I interrupt him and we start the docking test. The

user does the docking test for this first interface (around 2-3 minutes) and I

write down the time he lasts and some other things I may see, like problems,

recurrent gestures…

- After the docking test, the user has 3 minutes to freely use the sphere with

this first interface.

- Finished the 3 minutes, we change to the second interface and we repeat the

same process.

- Once the user finishes with the second interface, he goes out of the sphere

and I give him the questionnaire to fill all the questions and give a score to

each interface. (5 – 10 mins)

- At the end, I ask them if they have any observation or additional comment

about the interfaces they would like to share with me-

Depending on the user performance on the docking tasks taking more or less time, the

whole process lasts around 20-25 minutes for each user.

To ensure the equality of conditions between the two interfaces, each time a new user

performs the study, the order of the interfaces within the study is changed. This means,

one time the user starts with the LeapMotion version and then the Aruco markers

version, and next user will start the other way around, first the Aruco markers and then

the LeapMotion.

With this, we avoid the users to perform much better in one version. Both interfaces are

similar and making the study always in the same order would lead to the users getting

used to in the first interface and then better performing in the second one as they have

some experience. By changing the order we avoid this.

Interactivity for a 3D audio controller Fernando Merino Pinedo

36

RESULTS AND DISCUSSION

The user study was done by a total of 14 volunteers, male and females from different

ages. Specifically, a total of 11 males and 3 females of an average age of 30.9 ± 11.2

years old.

The mean docking task completion time was 151.6 seconds (2 minutes and 31 seconds)

for the LeapMotion interface and 111.5 seconds (1 minute and 51 seconds) for the Aruco

markers interface.

The mean task completion time from the Aruco markers interface is considerably less

than the LeapMotion interface. Considering the equality of conditions during the user

studies, this big difference between the two interfaces leads us to the conclusion that

the Aruco markers interfaces is much easier to use.

However, this conclusion is a bit biased from the reality. During the realization of the

studies there were 3 users who had a lot of problems using the LeapMotion interface.

The LeapMotion camera wasn’t tracking well the users’ hands and gestures, resulting on

really bad performance at the docking task.

Chart 1: Chart showing the average

task completion time for both

interfaces.

Interactivity for a 3D audio controller Fernando Merino Pinedo

37

These 3 users made 3:59 mins, 5:33 mins and 7:00 mins at the LeapMotion docking test,

times much greater than the average time of 2:31 mins, so these 3 users are rising

considerably the average time leading us to a biased conclusion.

In fact, if we remove these 3 samples from the volunteers’ pool, the average times

change in a very interesting way.

Now we can see how the average task completion time is very similar between the two

interfaces, only 4 seconds of difference. The average time for the Aruco markers lowers

only 5 seconds, to the 106.6 seconds, while the average time for the LeapMotion version

is greatly reduced to the 102.8 seconds, almost 50 seconds less. The LeapMotion

average time is less than the one from the Aruco markers version.

Thus, we can get a different conclusion from the previous one which is that, if the hand

tracking goes well, in average, the LeapMotion interfaces is a little easier and faster than

the Arucos one.

This was something I wrote down in my notes during the studies, for users that the

LeapMotion tracking goes well it’s easier to use this version than the other one. But if

the hand tracking goes bad, the difficulties increases and thus the task completion time

increases as well.

Chart 2: Chart showing the average task

completion time for both interfaces after

removing the 3 problematic samples.

Interactivity for a 3D audio controller Fernando Merino Pinedo

38

However, the hand tracking is intrinsic to the LeapMotion interface, so we can not

remove the samples where the tracking has gone wrong, letting us the first conclusion:

in general, the Aruco markers version is easier to use.

Looking at the scores the users gave to each interface we come to a similar conclusion.

Without excluding the 3 problematic samples, users give in average half a point more to

the Aruco markers version, 8.36 points against the 7.79 points from the LeapMotion

version. But excluding the 3 problematic samples we see two interesting details.

The first one is that the LeapMotion version increases its score almost one point, telling

us that when the hand tracking goes bad it leads to a great frustration of the user who

obviously gives worse scores.

The second interesting thing is that the average score from the Aruco markers version

lowers when we exclude the 3 problematic samples. This means that the problematic

users are giving to the Aruco markers versions in average higher scores to this version

compared to the rest of users. This is somehow telling us that they score better the

Aruco version not really because they think is better but because their bad experience

with the LeapMotion one is leading them to score and appreciate higher the Aruco’s one

Chart 3: Chart showing the average scores

for both interfaces.

Chart 4: Chart showing the average scores

for both interfaces after removing the 3

problematic samples.

Interactivity for a 3D audio controller Fernando Merino Pinedo

39

Thus, we come to the same conclusion as before. If the hand tracking goes well users

take less time to complete the task and rate better the LeapMotion interface. However,

the hand tracking is intrinsic to this version and is something that must be revised and

fixed.

At the following chart we can see a similar conclusion.

This chart shows the task completion time (X-axis) against the score the users gave (Y-

axis).

In the chart, we can see a clear tendence where the less time it takes the user to

complete the docking test, the higher score he gives to the interface and vice versa.

Users prefer the interface easiest to use, being in this case the Aruco markers one and

the harder the interface is, the less they will like it.

Chart 5: Chart showing the average score

against the task completion time for each

user.

Interactivity for a 3D audio controller Fernando Merino Pinedo

40

Not only the completion time and the scores have valuable info, but also the subjective

questions from the questionnaire have info interesting to analyze.

Chart 6: Chart showing the average score

of each question from the questionnaire

for each interface.

Interactivity for a 3D audio controller Fernando Merino Pinedo

41

The chart above shows the average score users gave to each of questions from the

questionnaire.

Looking at the results we can extract some powerful conclusions.

*NOTE: It’s important to remember users rated from 1 to 7 depending on how much

they agree with the question, 1 totally disagreeing and 7 fully agreeing

Looking at question 1 we see how users consider they don’t need too much to start

knowing how the interfaces works, this means that the functioning of them is easy to

understand same the may find later some complications or not. Not a significative

difference between the interfaces in this question (1.5 vs 1.9). Question 4 is similar to 1.

Users almost completely agree for both interfaces that most people could learn how to

use the interfaces quickly. Here again there is not a significative difference between

interfaces.

The first great difference between interfaces comes with the question 7, asking if the

user would need the help of an expert to use the interface. The scores users gave to this

question are relatively low (1.5 and 2.4), but there is a great difference of almost 1 point

between the Aruco and the LeapMotion version, leading to the conclusion that users

generally think that the LeapMotion version is more prompt to generate the need of

help from an expert, meaning that they consider this version harder to use.

Similar to this one we have the questions 12, 15 and 16, all of them asking about the

mental and physical effort needed to use the interface. And in all of them users agreed

that the LeapMotion version needs a greater effort, both mental and physical to use it.

This leads to the question 11, where users were asked whether they felt any frustration

using the interface, agreeing again that the LeapMotion version frustrated them the

most (2.2 points Arucos vs 3.6 points LeapMotion).

One outstanding fact is that, despite the answers to these questions, when asked at

question 10 about with which frequency they would like to use one interface or the

other one, the Aruco version only wins by 0.1 points.

However, it’s logical to suppose that this analysis is also biased by the problematic hand

tracking samples so would be nice to do the same analysis excluding these sample as

before.

Interactivity for a 3D audio controller Fernando Merino Pinedo

42

Chart 7: Chart showing the average score

of each question from the questionnaire

for each interface after removing the 3

problematic samples.

Interactivity for a 3D audio controller Fernando Merino Pinedo

43

Looking to the chart above we observe the same conclusions as before. By removing the

3 problematic hand tracking samples the general opinion about the LeapMotion version

improves considerably.

All the questions about the effort needed to use the interface (12, 15 and 16) lower its

score more than half a point (0.7, 0.6, 0.6 points less respectively).

At question 10 users are asked about with which frequency they would like to use one

interface over the other one. Before the Aruco interface won by 0.1 points and now the

LeapMotion version wins by half a point (5.3 vs 5.8). Even the Aruco version has lost 0.1

points compared to his previous score of 5.4 points.

Also, at question 11 the frustration users feel using the LeapMotion lowers half a point

and another questions concerning how easy is to use the interface, like question 7 or 8,

improve compared to its previous score.

Therefore, all this leads us to the same conclusion we have been seeing this whole time.

In general terms, the Aruco markers interface is easier to use due to the possibility that

in the LeapMotion interface some hand tracking problems can arise for specific users,

deteriorating the experience. However, if the hand tracking goes well, as it goes for most

people, users handle them shelves better and prefer the LeapMotion interface.

ADDITIONAL NOTES AND FUTURE WORK

Before finishing with the conclusion, I want to portray here some notes I wrote down

about the users during the studies. Some of them are interesting points that could be

expanded as future work:

- LeapMotion interface:

o Some users tend to try to grab the tokens by clenching their fists or

grasping the tokens with all their fingers rather than pinching with the

index and the thumb as explained to them. Seems these gestures are

more intuitive for them rather than the pinching established. Could

be interesting in the future to analyze this and maybe implement

additional gestures to grab the tokens and move them.

o It seemed to me that people who had the problem with the hand

tracking were people with not thin and short hands. This is a personal

observation but could be interesting in the future to see if the shape

of the hands is affecting to the LeapMotion, making it to perform

worse at the hand tracking.

Interactivity for a 3D audio controller Fernando Merino Pinedo

44

o When moving the token in the LeapMotion interface, moving them to

the right works better than moving them to the left. An interesting

point to fix also in the future.

- Aruco interface:

o A lot of users tended to join the four tokens and move them at the

same time. With only two hands it’s difficult to move the four, the

only way is pushing some tokens with the other ones you are moving.

Additional functionalities could be implemented to facilitate these

movements.

o There was a little delay of around half a second between the

movement of the token and the reproduction of the movement at the

Unity simulation and at the sphere. This could be due to the camera

image processing. Would be interesting to work on this in order to

reduce that little delay.

o When moving too fast the tokens, the image the camera is capturing

gets blurred and the camera don’t track the tokens for few frames.

This problem is harder to solve than the previous one cause is

something intrinsic to the camera quality. Maybe a better camera

which is able to track the tokens when moving too fast could be used.

CONCLUSION

Along this report we have seen the development and functioning of two interfaces, at

the same time similar but different at some aspects.

The development of each interface has had its various drawbacks throughout the

project. Each interface has its advantages and disadvantages. The user studies have

given us valuable info about them, showing us that, in general terms, the Aruco version

is easier to use due to the well-functioning with every user, but if the hand tracking from

the LeapMotion version goes well, as for most people, users handle them shelves better

and prefer the LeapMotion interface.

As seen in the previous section, there is some issues and functionalities that could be

improved as future work concerning the actual interfaces.

However, these two interfaces are just an introduction of interactivity, a little taste of

the potential of interactivity inside the JAULAB. A new door has been opened where,

from now on, a lot of new applications and interfaces can be designed and developed,

especially concerning the area of virtual reality and immersion, as explained in the

introduction of this report. This is the real future work.

Interactivity for a 3D audio controller Fernando Merino Pinedo

45

BIBLIOGRAPHY AND REFERENCES

[1] “Java documentation / OpenCV-Python Tutorials / Camera Calibration and 3D

reconstruction / Camera Calibration”, OpenCV Open-Source Computer Vision. [Online]

Available: https://docs.opencv.org/3.4/dc/dbb/tutorial_py_calibration.html

[2] “Java documentation / Aruco Marker Detection”, OpenCV Open-Source Computer

Vision. [Online]. Available: https://docs.opencv.org/4.x/d9/d6a/group__aruco.html

[3] “Java documentation / Tutorials for contrib modules / Aruco Marker detection (aruco

module) / Detection of Aruco Markers”, OpenCV Open-Source Computer Vision.

[Online]. Available: https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html

[4] Bouguet, J. Y. “Camera Calibration Toolbox for MATLAB.” Computational Vision at

the California Institute of Technology. [Online]. Available:

http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/example.html

[5] “Documentation / What is Camera Calibration?” MathWorks. [Online]. Available:

https://es.mathworks.com/help/vision/ug/camera-calibration.html

[6] Goosebumps, “3D Camera coordinates to world coordinates (change of basis?)”,

June 20, 2013. [Entry at Stack Overflow]. Available:

https://stackoverflow.com/questions/17210424/3d-camera-coordinates-to-world-

coordinates-change-of-basis

[7] “Calculate X, Y, Z Real World Coordinates from Image Coordinates using OpenCV”,

April 11, 2019, FDXLabs. [Online]. Available: https://www.fdxlabs.com/author/fdxlabs/

[8] Anti, “Aruco markers with OpenCV, get the 3D corner coordinates?”, September 22,

2017. [Entry at Stack Overflow]. Available:

https://stackoverflow.com/questions/46363618/aruco-markers-with-opencv-get-the-

3d-corner-coordinates

[9] A. Herrera Escudero, “Sistemas de Coordenadas en 3D”, Universidad Veracruzana,

2014. [Online]. Available:

https://www2.unavarra.es/gesadj/servicioBiblioteca/tutoriales/Citar_referenciar_(IEE

E).pdf

[10] Biblioteca de la Universidad Pública de Navarra. Oficina de Referencia. “Guía para

citar y referenciar. IEEE Style”, 2016. [En línea]. Disponible en: https://goo.gl/LaUj46

https://docs.opencv.org/3.4/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/4.x/d9/d6a/group__aruco.html
https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html
http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/example.html
https://es.mathworks.com/help/vision/ug/camera-calibration.html
https://stackoverflow.com/questions/17210424/3d-camera-coordinates-to-world-coordinates-change-of-basis
https://stackoverflow.com/questions/17210424/3d-camera-coordinates-to-world-coordinates-change-of-basis
https://www.fdxlabs.com/author/fdxlabs/
https://stackoverflow.com/questions/46363618/aruco-markers-with-opencv-get-the-3d-corner-coordinates
https://stackoverflow.com/questions/46363618/aruco-markers-with-opencv-get-the-3d-corner-coordinates
https://www2.unavarra.es/gesadj/servicioBiblioteca/tutoriales/Citar_referenciar_(IEEE).pdf
https://www2.unavarra.es/gesadj/servicioBiblioteca/tutoriales/Citar_referenciar_(IEEE).pdf
https://goo.gl/LaUj46

