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Abstract

Information fusion is the process of combining several numerical values into a single representative

one. In problems with some sort of fuzzy modeling, this process is usually computed by means of

fusion functions or, their most important subclass, aggregation functions. They have been widely

applied in several techniques to deal with classification problems, particularly, in Fuzzy Rule-Based

Classification Systems (FRBCSs). In those types of classifiers, overlap functions (which are bivariate

aggregation functions with desirable properties) and their n-dimensional generalizations have been

successfully applied. When there is uncertainty regarding the modeling of membership functions in

FRBCSs, usually associated with linguistic terms, one can apply interval-valued fuzzy sets. The mo-

deling of linguistic labels via interval-valued fuzzy sets in FRBCSs gave birth to Interval-Valued Rule-

Based Classification Systems (IV-FRBCSs). In those systems, the fusion processes are computed by

means of aggregation functions defined in the interval context, while the widths of the assigned inter-

val membership degrees are intrinsically related to the uncertainty with respect to the values they are

approximating and, then, with the quality of the information they are carrying. However, there is not

a guideline in the literature showing how to define and construct interval-valued fusion functions that

takes the information quality control into consideration.

Thus, in this thesis, we develop a constructive framework to define generalized n-dimensional interval-

valued fusion functions considering admissible orders and the information quality control. We apply

the developed concepts in a state-of-the-art IV-FRBCS (namely, IVTURS), developing our own ver-

sion of it based on overlap operators with information quality control, showing that the classification

accuracy is improved by our approach. Finally, we develop a constructive framework to define n-

dimensional fusion functions acting on an arbitrary closed real interval as counterparts of known

classes of fusion functions acting on the unit interval, to expand the applicability of fusion functions

with desirable properties to problems that do not involve fuzzy modeling.
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Resumen

La fusión de información es el proceso de combinar varios valores numéricos en uno solo que los

represente. En problemas con algún tipo de modelado difuso, este proceso generalmente se realiza

mediante funciones de fusión o, su subclase más importante, las funciones de agregación. Estas fun-

ciones se han aplicado ampliamente en varias técnicas para resolver problemas de clasificación, en

particular, en los Sistemas de Clasificación Basados en Reglas Difusas (SCBRDs). En este tipo de

clasificador, se han aplicado de forma exitosa las funciones de solapamiento (que son funciones de

agregación bivariadas con propiedades deseables) y sus generalizaciones n-dimensionales. Cuando

hay incertidumbre con respecto al modelado de las funciones de pertenencia en los SCBRDs, general-

mente asociados con términos lingüı́sticos, se pueden aplicar conjuntos difusos intervalo-valorados.

El modelado de etiquetas lingüı́sticas a través de conjuntos difusos intervalo-valorados en los SCBRDs

originó a los Sistemas de Clasificación Basados en Reglas Difusas Intervalo-valorados (IV-SCBRDs).

En estos sistemas, los procesos de fusión se calculan mediante funciones de agregación definidas en

el contexto intervalar, mientras que las amplitudes de los intervalos de pertenencia asignados están

intrı́nsecamente relacionadas con la incertidumbre con respecto a los valores que están aproximando

y, luego, con la calidad de la información que representan. Sin embargo, no existe una guı́a en la

literatura que muestre cómo definir y construir funciones de fusión con valores intervalares que tomen

en consideración el control de la calidad de la información.

Por todo ello, en esta tesis, desarrollamos un marco para definir funciones de fusión intervalo-valoradas

n-dimensionales generalizadas considerando los órdenes admisibles y el control de la calidad de la

información. Aplicamos los conceptos desarrollados en un IV-SCBRD considerado como estado del

arte (es decir, IVTURS), desarrollando nuestra propia versión basada en operadores de solapamiento

con control de la calidad de la información, demostrando que nuestro enfoque mejora el rendimiento

del clasificador. Finalmente, desarrollamos un marco para definir funciones de fusión n-dimensionales

que actúan en un intervalo real cerrado arbitrario como homólogas de clases conocidas de funciones
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de fusión que actúan sobre el intervalo unitario, para expandir la aplicabilidad de las funciones de

fusión con propiedades deseables a problemas que no involucren un modelado difuso.

A framework for general fusion processes under uncertainty modeling control, with an application in interval-valued fuzzy

rule-based classification systems
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4.3 Conclusión (versión en español) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 PUBLICATIONS 81

5.1 Main publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1.1 General interval-valued overlap functions and interval-valued overlap indices 82

5.1.2 N-dimensional admissibly ordered interval-valued overlap functions and its

influence in interval-valued fuzzy rule-based classification systems . . . . . . 107

5.1.3 Towards interval uncertainty propagation control in bivariate aggregation pro-

cesses and the introduction of width-limited interval-valued overlap functions 123

5.1.4 A methodology for controlling the information quality in interval-valued fu-

sion processes: theory and application . . . . . . . . . . . . . . . . . . . . . 164

Tiago da Cruz Asmus



xiv Contents

5.1.5 A constructive framework to define fusion functions with floating domains in

arbitrary closed real intervals . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.2 Complementary publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

5.2.1 General grouping functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

5.2.2 General interval-valued grouping functions . . . . . . . . . . . . . . . . . . 235

5.2.3 General admissibly ordered interval-valued overlap functions . . . . . . . . . 244

5.2.4 Enhancing the efficiency of the interval-valued fuzzy rule-based classifier

with tuning and rule selection . . . . . . . . . . . . . . . . . . . . . . . . . 260

References 275

A framework for general fusion processes under uncertainty modeling control, with an application in interval-valued fuzzy

rule-based classification systems



Chapter 1

INTRODUCTION

1.1 Motivation

Information fusion is the process of combining several numerical values into a single representative

one, which can be modeled through fusion functions (MKB+16) or, their most important subclass,

aggregation functions (GMMP09). Among the many features of aggregation functions, in both theo-

retical and applied fields (GMMP09; BBC16; BPC07), one can highlight their capacity to model fuzzy

logic operations and, in this case, appropriately fuse values from the unit interval [0, 1] according to

some criteria. For example, t-norms and t-conorms (KM00) are associative bivariate aggregation

functions that are suitable to model, respectively, fuzzy conjunction and fuzzy disjunction operations,

while uninorms (YR96) generalize both concepts. Possibly non-associative aggregation functions

may be used as alternatives to t-norms, t-conorms and uninorms, such as t-seminorms or semi-copulas

(Spi10), weak t-norms (Fod91), pseudo-t-norms (WY02), semi-uninorms (ZWL18), MICA operators

(Yag94), and micanorms (Yan15), and, in particular, overlap functions (BFM+10).

Overlap functions have captured the attention of many researchers due to their desirable properties

besides not necessarily being associative. They were originally defined to measure the overlapping

degree between classes in image processing problems (BPM+12; JBP+13; BMD+21) and, since

then, they have been extensively studied in the literature (BDBB13; DB15; QH18b; QH17; QH19;

DBB+16; WH21; CHQ18; ZWY19; hZQ20). Among their good properties, we can point out that

the class of overlap functions is closed with respect to the convex sum and the aggregation by inter-

nal generalized composition. One can find clear discussions on the advantages that overlap functions

have over the popular t-norms in the works of Dimuro et al. (DB15; DBF+19). Furthermore, over-
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2 1.1. Motivation

lap functions showed good results when applied in problems where the associativity of the employed

aggregation operator is not required, as in image processing (JBP+13; MDLLM+21), decision mak-

ing (DBB+17a; EGS+18; GBH+15), wavelet-fuzzy power quality diagnosis system (NCP+19), and,

of our particular interest, classification problems (EGSB16; EGS+15; LSD+17; LDM+15; LSD+20;

LSD+18; LDF+19).

Another concept related to overlap functions is that of overlap indices (DOP00; PP99; YB94), which

is a generalization of the Zadeh’s consistency index (Zad78), defined to measure the degree of overlap-

ping between two fuzzy sets in image processing (BFM+09). Overlap indices can be built by means

of overlap functions (GBH+15; BFM+09).

However, overlap functions, as originally defined, were restricted to be applied in problems where

only two classes are taken into account. Since those functions may not be associative, this becomes

a drawback when one needs to deal with n-dimensional problems. To address this limitation, the

concept of n-dimensional overlap functions was introduced by Gómez et al. (GRM+16), and a more

flexible definition, that of general overlap functions, was presented by De Miguel et al. (DGR+19),

by relaxing their boundary conditions.

A classification problem (which is usually of the n-dimensional nature) consists in predicting the un-

known class of an object, based on the values of the input attributes characterizing such object. From

the many known techniques to deal with such task, like Support Vector Networks (SVN) (CV95),

decisions trees (Qui93) and neural networks (Gra12), one stands out for its high interpretability,

while also obtaining accurate results: that of Fuzzy Rule-Based Classification Systems (FRBCSs)

(INN04; GAH11).

FRBCSs are considered interpretable classifiers because the knowledge that is learned from the data

is reflected in the form of classification rules, which are composed by an antecedent, containing an

intersection of linguistic variables modeled by fuzzy sets, and a consequent that specifies the class and

the weight to the rule. The intersection of linguistic variables on the antecedents of the fuzzy rules

have been successfully modeled by t-norms (AFAH11), n-dimensional overlap functions (GRM+16)

and general overlap functions (DGR+19). In (EGS+18), the computation of the rule weight, which is

a metric of the quality of the rule, was done using fuzzy confidence values defined by overlap indices.

An important aspect of FRBCSs is the appropriate definition of the membership functions (CHV00).

This may be a complex problem whenever there is uncertainty related to the modeling of such mem-

bership functions, usually associated with linguistic terms (Men07; NKZ97). One way to deal with

A framework for general fusion processes under uncertainty modeling control, with an application in interval-valued fuzzy
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1.1. Motivation 3

this problem is through Interval-Valued Fuzzy Sets (IVFSs) (Zad75; Sam75; GG76; Jah75; BBP+16),

which have proven to be an appropriate tool to model not only vagueness (lack of sharp class bound-

aries), but also uncertainty (lack of information about the membership function), as in (SFBH11;

SFBH10; BB00; SFBH12; DBSR11; BBP+17). For that reason, IVFSs have been successfully ap-

plied in various problems with imperfect information (Zad08; Zad05), such as image processing

(GFBB11), game theory (ADB17), multicriteria decision making (KK19), pest control (RDFF03),

irrigation systems (HTZW20) and collaborative clustering (NDP18).

The modeling of linguistic labels via IVFSs in FRBCSs gave birth to Interval-Valued Rule-Based

Classification Systems (IV-FRBCSs) (SFBH11; SFBH12; SFBH13; SBH+15; SFBH10; SGJ+14). In

those systems, intervals are used in the whole inference process, where one has to predict the class

of a new example accordingly to the learned interval-valued (iv) fuzzy rules. Thus, in the literature,

intersection of linguistic variables (now represented by IVFS) is modeled by means of an iv-t-norm

(BT05; BT06; DBRS08), which is a t-norm defined in the interval context.

Qiao and Hu (QH17) and Bedregal et al. (BBP+17) introduced, independently, the concept of iv-

overlap functions, based on the original definition of overlap functions, which are bivariate functions.

However, unlike the iv-t-norms, iv-overlap functions, as defined until this moment, cannot be ap-

plied in the n-dimensional context of IV-FRBCSs, since they are not associative. For this reason,

when starting the development of this thesis, we looked for the definitions in the interval context

of n-dimensional overlap functions, general overlap functions and overlap indices, since those func-

tions have been providing good results when applied in FRBCSs. The lack of such definitions in the

interval-valued context motivated the first research question faced in this thesis:

(RQ1) Is it feasible to define generalized n-dimensional overlap functions and overlap indices in the

interval context so that they are suitable to be applied in n-dimensional problems, such as the

ones tackled by IV-FRBCSs?

Another characteristic of iv-overlap functions is that they are increasing with respect to the usual

partial order for intervals (product order (MKC09)). However, in IV-FRBCSs, the final step of the

inference process consists of ranking intervals and, in this case, a partial order could lead to an unde-

sirable stalemate (SFBH13). One possible solution is the adoption of admissible orders (BFKM13)

for comparing intervals, since they are total orders that refine the usual product order. Since their

introduction, several works taking into account admissible orders have appeared in the literature

(ZBM+17; BBJ+15; TFF+19; BMDF+20; TUG+21; MMB+21). This leads to the second research

Tiago da Cruz Asmus



4 1.1. Motivation

question approached by this thesis:

(RQ2) Considering IV-FRBCSs, do admissible orders - to be used for ranking possible classification

outcomes - and iv-overlap operators (which may or may not be increasing for such orders) - to

be applied in the inference process of the classifier - have an impact on the whole classification

process?

Now, observe that a key aspect of engineering/data science problems involving interval-valued fuzzy

systems is that the widths of the assigned interval membership degrees are intrinsically related to the

uncertainty/ignorance with respect to the values they are approximating (BDSR10; DBSR11) and also

with the quality of the information they are carrying (DCC00; AJ94). Most iv-aggregation functions

(KM11), such as the aforementioned iv-overlap functions, have no mechanism to control the informa-

tion quality of the outputs, accordingly to the widths of the inputs. However, the information quality

in systems with uncertainty modeling is a strong requirement claimed by scientists and engineers

interested in interval-based tools (MKC09).

A first attempt in this direction was presented by Bustince et al. (BMDF+20), with the concept of

width-preserving interval-valued functions, which are functions whose interval outputs’ width coin-

cide with the widths of all the aggregated interval inputs, when those widths are all equal. The main

drawback of this definition is that it is based on the very restrictive instance where all the interval

inputs have the same width, in order to preserve the information quality.

Based on the discussion above, we arrive at our third research question:

(RQ3) Since the widths of the intervals are intrinsically related to both the uncertainty towards the

value they represent and the quality of the information that they are expressing, how can one

define interval-valued overlap operations in which the width of the output is controlled accord-

ingly to a desirable threshold that depends on the widths of the inputs?

It is noteworthy that the control of the information quality in IV-FRBCSs is yet to be considered in the

literature. Moreover, there is an absence in the literature of both a general approach for the control of

the information quality in n-dimensional interval valued fusion processes and a theoretical framework

to define classes of width controlled iv-fusion functions, based on known classes of fusion functions.

From these assessments, we pose the fourth research question:

A framework for general fusion processes under uncertainty modeling control, with an application in interval-valued fuzzy
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1.1. Motivation 5

(RQ4) Is it possible to develop a general framework to define classes of width controlled n-dimensional

interval fusion functions, as counterparts of known classes of fusion functions so that they can

improve the accuracy of classification systems, in particular IV-FRBCSs, by the influence of

the information quality control?

Finally, envisaging the enlargement of the scope of this work towards beyond the fuzzy context, it is

necessary to analyze the linkage between the actual context of the developments on fusion functions

and the world of current practical information fusion processes. One may observe that most of the the-

ory on aggregation functions was developed in the context of the unit interval and applied in problems

that involve some sort of fuzzy modeling. Nevertheless, there are several practical problems where

the data to be aggregated are neither modeling membership degrees, nor truth values, nor some exten-

sion of them considering uncertainty modeling. Those problems could benefit from the application of

fusion functions currently defined only to operate in the fuzzy context, as overlap functions and their

generalizations. That is the case, for example, of the pooling process in convolutional neural networks

(LBH15), which are widely applied in image processing (DBB+18; PRMFI+21), and recurrent neu-

ral networks (Gra12), such as Long Short-Term Memory (HS97), which are used in several machine

learning problems with sequential information (GSK+17).

Aggregation functions, in fact, can be defined on any closed real interval, such as the ordered weighted

averaging (OWA) (Yag88) operator and the Choquet integral (Cho54; DFB+20). Also, many classes

of aggregation functions defined on arbitrary lattices have been studied in the literature, such as t-

norms and t-conorms (EKM15; Sam06; SL21), uninorms (DHQ19; KM15), overlap and grouping

functions (PSBP21; Qia21; WH21). Although some of those defined functions could operate with

inputs that are not from the unit interval, there is not a guideline in the literature showing how to

define and construct fusion functions beyond the unit interval, in a manner that their fundamental

constitutive properties are preserved in the new context. For that reason, we raise the fifth, and last,

research question to be addressed by this thesis:

(RQ5) Is it possible to develop a general framework to define classes of fusion functions acting on an

arbitrary closed real interval as counterparts of known classes of fusion functions acting on the

unit interval, without sacrificing their fundamental properties, so that they can be constructed

and applied in practical problems that are not fuzzy in nature?

Tiago da Cruz Asmus



6 1.2. Objectives

1.2 Objectives

With the aim to provide answers to each of the proposed research questions, this thesis has a two-fold

general objective:

1) To develop a constructive framework to define generalized n-dimensional interval-valued fusion

functions considering admissible orders and the information quality control, in order to enhance

the accuracy of IV-FRBCS;

2) To develop a constructive framework to define n-dimensional fusion functions acting on an arbi-

trary closed real interval as counterparts of known classes of fusion functions acting on the unit

interval.

From this general objective, we can discriminate the following specific objectives:

1) To define, study and introduce construction methods for n-dimensional iv-overlap functions, gen-

eral iv-overlap functions and iv-overlap indices;

2) To develop a new classifier, which we call IVTURS-OV, by applying the developed theoretical

concepts on crucial steps of the IVTURS algorithm (SFBH13), a state-of-the art IV-FRBCS;

3) To define, study and introduce construction methods for n-dimensional admissibly ordered iv-

overlap functions, which are n-dimensional iv-overlap functions that are increasing with respect

to an admissible order;

4) To analyze the effect of admissible orders and n-dimensional admissibly ordered iv-overlap func-

tions in the classification accuracy of IV-FRBCSs, through experimentation with IVTURS-OV;

5) To introduce the concepts of width-limited interval-valued functions and width-limiting functions,

which are theoretical tools to study the relation between the widths of the inputs with the width

of the output of interval-valued functions, necessary for the construction of interval-valued func-

tions with controlled information quality;

6) To define, study and introduce construction methods for width-limited interval-valued overlap

functions, taking into account a width-limiting function and a pair of partial orders, which

allows the definition of interval-valued overlap operations that provide output intervals that do

not exceed a desirable width threshold;
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7) To introduce a general framework for defining classes of iv-fusion functions with controlled in-

formation quality on the interval outputs, which we call w-iv-fusion functions, based on the

extension of a set of properties from a core fusion function, presenting examples and construc-

tion methods of functions defined through the framework;

8) To apply n-dimensional w-iv-overlap functions (defined via the introduced general framework to

control the information quality) in the IVTURS-OV classifier, in order to analyze if, and to

which extent, such functions improve its classification accuracy;

9) To introduce a general framework for defining classes of fusion functions acting on an arbitrary

closed real interval [a, b] as counterparts of known classes of fusion functions acting on the unit

interval [0, 1], based on the proper transposition (from [0, 1] to [a, b]) of the set of properties

from such fusion functions, presenting examples and construction methods of functions defined

through the framework.

1.3 Methodology

To achieve our objectives, we address each of the five proposed research questions following an in-

cremental methodology, in which each development stage of the thesis is dedicated to a full paper

(published, accepted or submitted to different prestigious journals with high impact factor) related to

each one of those questions. Each stage, and its respective publication, provides a number of contri-

butions towards each specific objective, both in theoretical and applied aspects. Although our general

objective is posed in a more general framework of fusion processes, we had to chose appropriate spe-

cific fusion functions, namely, overlap functions and their generalizations/extensions, to be applied in

the experiments on IV-FRBCSs.

The incremental development of the thesis follows the subsequent stages:

Stage 1: Publication to address question (RQ1) and achieve the specific objectives 1 and 2;

Stage 2: Publication to address question (RQ2) and achieve the specific objectives 3 and 4;

Stage 3: Publication to address question (RQ3) and achieve the specific objectives 5 and 6;

Stage 4: Publication to address question (RQ4) and achieve the specific objectives 7 and 8;

Stage 5: Publication to address question (RQ5) and achieve the specific objective 9.
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8 1.4. Structure

We point out that specific objectives 2, 4 and 8 are all part of the process of designing the IVTURS-

OV classifier, a new IV-FRBCS based on a state-of-the-art classifier (IVTURS), where we check the

practical application of the introduced theoretical concepts in classification problems, and the effect

of such concepts in the classification accuracy.

1.4 Structure

This thesis is organized as follows:

Chapter 2: BACKGROUND - In this chapter, we provide a background divided in two parts: i)

a theoretical one, focused on aggregation functions (mainly overlap functions and their gen-

eralizations), interval mathematics, admissible orders and interval-valued aggregation func-

tions, and ii) a practical one, dedicated to classification problems, with special attention to

IV-FRBCSs.

Chapter 3: DEVELOPMENT OF THE THESIS - In this chapter, we present the main points of

the development of the thesis. In Section 3.1 we discuss each of the five publications related to

the research questions, highlighting their main contributions. Following that, in Section 3.2, we

present a discussion around four complementary works that were derived from the development

of the thesis. In Section 3.3, we analyze how each of the five main publications are connected,

presenting an overview of both the theoretical and applied advancements achieved by our work,

followed the representation of the relation between each complementary work with the stages

of development of the thesis.

Chapter 4: CONCLUSION- In this chapter, we state our concluding remarks. First, in Section

4.1, we review the main contributions of the thesis. Finally, in Section 4.2, we discuss some

possibilities for future works.

Chapter 5: PUBLICATIONS - This final chapter constitutes the collection of all the papers devel-

oped as part of this thesis, discussed in Chapter 3. Those papers are divided in two categories:

i) main publications (associated with the five research questions and constituting the main body

of work of this thesis) and ii) complementary contributions. In Section 5.1, we present the full

manuscript of the five main publications, detailing, for each one, the journal where it was pub-

lished or submitted, the impact factor of the journal and the current status of the publication.

The five main publications are:

A framework for general fusion processes under uncertainty modeling control, with an application in interval-valued fuzzy
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1.4. Structure 9

1) General interval-valued overlap functions and interval-valued overlap indices;

2) N-dimensional admissibly ordered interval-valued overlap functions and its influence in

interval-valued fuzzy rule-based classification systems;

3) Towards interval uncertainty propagation control in bivariate aggregation processes and the

introduction of width-limited interval-valued overlap functions;

4) A methodology for controlling the information quality in interval-valued fusion processes:

theory and application;

5) A constructive framework to define fusion functions with floating domains in arbitrary

closed real intervals.

In Section 5.2, we present the full manuscript of the four complementary contributions, also

informing their respective publication details. The four complementary contributions are:

1) General grouping functions;

2) General interval-valued grouping functions;

3) General admissibly ordered interval-valued overlap functions;

4) Enhancing the efficiency of the interval-valued fuzzy rule-based classifier with tuning and

rule selection.
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Chapter 2

BACKGROUND

In this chapter, we present some preliminary concepts necessary to the development of the thesis.

From the theoretical standpoint, we focus on aggregation functions, mainly overlap functions, interval

mathematics and how they are combined in the field of iv-aggregation functions. On the application

side, we present the basic structure of fuzzy rule-based classification systems along with their interval-

valued counterpart, in which the developed theoretical concepts were applied to produce a new type

of IV-FRBCS.

2.1 Fuzzy sets and aggregation functions

Fuzzy set theory was introduced by Zadeh (Zad65; Zad75) as a tool to model imprecision and repre-

sent linguistic variables. The core concept of this theory is that of membership function, which is an

extension of the characteristic function from the classical set theory. We recall that, given an universe

U , the characteristic function χFC
: U → {0, 1} of a subset FC ⊆ U , is given by

χFC
(x) =

 1, if x ∈ F

0, if x /∈ F,
(2.1)

meaning that x ∈ FC when χFC
(x) = 1 and x ̸∈ FC when χFC

(x) = 0.

If one admits that an element z ∈ U may belong gradually to a set F ⊆ U , then F is said to be a fuzzy

set. The function µF : U → [0, 1] that measures the degree in which each element z ∈ U belongs to

F is called the membership function of F , where µF (z) = 0 signifies that the element z is completely

disassociated from F , µF (z) = 1 means that x is completely belongs to F , and other values of µF

indicate a partial belonging of z to F .

11



12 2.1. Fuzzy sets and aggregation functions

A fuzzy set F ⊆ U may be represented by a set of ordered pairs (z, µF (z)), with z ∈ U , where we

assign a membership degree with respect to F to every element z of the universe U :

F = {(z, µF (z)) | z ∈ U}.

We denote by FS(U) the space of all fuzzy sets defined over U . A fuzzy set F ∈ FS(U) is called

normal if there exists z ∈ U such that F (z) = 1.

Example 1. i) Given a, b, c ∈ U , such that a < b < c, a triangular shaped fuzzy set FT has its

membership function µFT
: U → [0, 1] defined, for all z ∈ U , as follows:

µFT
(z) =



0, if z ≤ a

z−a
b−a , if a ≤ z ≤ b

c−z
c−b , if b ≤ z ≤ c

0, if z ≥ c.

A graphical representation of µFT
is shown in Figure 2.1.

Figure 2.1: Membership function of a triangular shaped fuzzy set.

ii) A classical (or crisp) set FC is a particular case of a fuzzy set, when its membership function µFC

coincides with the characteristic function χFC
, given by Equation (2.1).

In the following, we recall some important definitions of operations that are applied in fuzzy modeling,

usually having membership degrees as their inputs.

Let us denote x⃗ = (x1, . . . , xn) ∈ [0, 1]n, where n > 1.
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2.1. Fuzzy sets and aggregation functions 13

Definition 1. (KMP00) A function N : [0, 1] → [0, 1] is a fuzzy negation if it respects the following

conditions:

(N1) N(0) = 1 and N(1) = 0;

(N2) If x ≤ y then N(y) ≤ N(x), for all x, y ∈ [0, 1].

If the involutive property, given by

(N3) N(N(x)) = x, for all x ∈ [0, 1],

is also satisfied, then N is said to be a strong fuzzy negation.

Example 2. The Zadeh negation given, for all x ∈ [0, 1], by

NZ(x) = 1 − x, (2.2)

is a strong fuzzy negation.

A function F : [0, 1]n → [0, 1] that merges n values from the unit interval into one value in the same

interval is a fusion function (MKB+16).

Definition 2. (KMP00) Given a strong fuzzy negation N : [0, 1] → [0, 1] and a fusion function

F : [0, 1]n → [0, 1], then the fusion function F N : [0, 1]n → [0, 1] defined, for all x⃗ ∈ [0, 1]n, by

F N (x⃗) = N(F (N(x1), . . . , N(xn))), (2.3)

is the N -dual of F .

When it is clear by the context, the NZ-dual function (dual with respect to the Zadeh negation) of F

will be just called dual of F , and will be denoted by F d. Observe that (F N )N = F , since N is a

strong negation.

A particularly important class of fusion function is that of aggregation functions (BBC16), defined as

follows.

Definition 3. (BBC16) An aggregation function is any fusion function A : [0, 1]n → [0, 1] that

respects the following conditions:

(A1) A is increasing;
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14 2.1. Fuzzy sets and aggregation functions

(A2) A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.

An extension of one-dimensional convexity was presented in (KMM11), in the context of aggregation

functions:

Definition 4. (KMM11) An aggregation function A : [0, 1]n → [0, 1] is called ultramodular if, for all

x⃗, y⃗, ϵ⃗ ∈ [0, 1]n, such that y⃗ + ϵ⃗ ∈ [0, 1]n and x⃗ ≤ y⃗, it holds that:

A(x⃗ + ϵ⃗) − A(x⃗) ≤ A(y⃗ + ϵ⃗) − A(y⃗). (2.4)

Example 3. The function AM : [0, 1]n → [0, 1] (arithmetic mean), given, for all x⃗ ∈ [0, 1]n, by

AM(x⃗) =
∑n

i=1 xi

n
, (2.5)

is an aggregation function that is ultramodular.

There are many classes of aggregation functions defined in the literature. Here we highlight some of

them that are going to be of importance on this work.

Definition 5. (KMP00) A t-norm is any bivariate fusion function T : [0, 1]2 → [0, 1], that satisfies the

following conditions, for all x, y ∈ [0, 1]:

(T1) T is symmetric;

(T2) T is associative;

(T3) T has 1 as its neutral element;

(T4) T is increasing.

Definition 6. (KMP00) A t-conorm is any bivariate fusion function S : [0, 1]2 → [0, 1], that satisfies

the following conditions, for all x, y ∈ [0, 1]:

(S1) S is symmetric;

(S2) S is associative;

(S3) S has 0 as its neutral element;

(S4) S is increasing.
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2.1. Fuzzy sets and aggregation functions 15

T-norms and t-conorms are the usually applied to model, respectively, fuzzy conjunction (generalized

logic “AND”) and fuzzy disjunction (generalized logic “OR”) operations (KMP00). Observe that

neither t-norms nor t-conorms are self-closed to the generalized composition. By duality, one can

obtain t-conorms from t-norms, and vice-versa. The properties of t-norms and t-conorms have been

extensively studied in the literature, such as idempotency, migrativity and homogeneity (KMP00;

FR07; SBD+21).

Uninorms were introduced by Yager and Rybalov (YR96) as a generalization of t-norms and t-

conorms, defined as follows:

Definition 7. (YR96) An uninorm is any bivariate fusion function U : [0, 1]2 → [0, 1], that satisfies

the following conditions, for all x, y ∈ [0, 1]:

(U1) U is symmetric;

(U2) U is associative;

(U3) U has a neutral element;

(U4) U is increasing.

Example 4. i) The function TP : [0, 1]2 → [0, 1], given, for all x, y ∈ [0, 1], by

TP (x, y) = x · y,

is a t-norm (product t-norm). Its dual function SP : [0, 1]2 → [0, 1], given, for all x, y ∈ [0, 1],

by

SP (x, y) = x + y − x · y,

is a t-conorm (probabilistic sum);

ii) The function TM : [0, 1]2 → [0, 1], given, for all x, y ∈ [0, 1], by

TM (x, y) = min{z, y},

is a t-norm (minimum t-norm). Its dual function SM : [0, 1]2 → [0, 1], given, for all x, y ∈

[0, 1], by

SM (x, y) = max{z, y},

is a t-conorm (maximum t-conorm);
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16 2.1. Fuzzy sets and aggregation functions

iii) Consider e ∈ [0, 1]. Then, the function UC : [0, 1]2 → [0, 1], given, for all x, y ∈ [0, 1], by

UC(x, y) =

 max{x, y} if (x, y) ∈ [e, 1]2,

min{x, y} otherwise,
(2.6)

is an uninorm with e as its neutral element.

The definition of n-dimensional overlap functions is a key concept in this work:

Definition 8. (GRM+16; EGS+15) A fusion function On : [0, 1]n → [0, 1] is an n-dimensional

overlap function if, for all x⃗ ∈ [0, 1]n, the following conditions hold:

(On1) On is symmetric;

(On2) On(x⃗) = 0 ⇔
∏n

i=1 xi = 0;

(On3) On(x⃗) = 1 ⇔
∏n

i=1 xi = 1;

(On4) On is increasing;

(On5) On is continuous.

A 2-dimensional overlap function is just called overlap function (BFM+10; BDBB13).

Example 5. i) The product and minimum t-norms are also overlap functions;

ii) The function GM : [0, 1]n → [0, 1] (geometric mean), given, for all x⃗ ∈ [0, 1]n, by

GM(x⃗) = n

√√√√ n∏
i=1

xi, (2.7)

is an n-dimensional overlap function, but not a t-norm.

Theorem 1. (GRM+16) Consider a continuous aggregation function A : [0, 1]m → [0, 1], such that

(PA) A(x⃗) = 0 if and only if xi = 0, for some i ∈ {1, . . . , m};

(PB) A(x⃗) = 1 if and only if xi = 1, for all i ∈ {1, . . . , m};

and a tuple of n-dimensional overlap functions
−→
On = (On1, . . . , Onm). Then, the mapping A−→

On
:

[0, 1]n → [0, 1], defined, for all x⃗ ∈ [0, 1]n, by

A−→
On

(x⃗) = A(On1(x⃗), . . . , Onm(x⃗)), (2.8)

is an n-dimensional overlap function.
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Corollary 1. (GRM+16) Consider an m-dimensional overlap function OnC : [0, 1]m → [0, 1] and

the tuple
−→
On = (On1, . . . , Onm) of n-dimensional overlap functions. Then, the mapping OnC−→

On
:

[0, 1]n → [0, 1], defined for all x⃗ ∈ [0, 1]n, by

OnC−→
On

(x⃗) = OnC(On1(x⃗), . . . , Onm(x⃗)), (2.9)

is an n-dimensional overlap function.

By Corollary 1, one can observe that the class of overlap functions is self closed with respect to the

generalized composition.

Example 6. The function OnB : [0, 1]n → [0, 1], given, for all x⃗ ∈ [0, 1]n, by

OnB(x⃗) =

√√√√(
n∏

i=1
xi) · (min{x1, . . . , xn}) (2.10)

is an n-dimensional overlap function, constructed through the composition of the minimum and the

product by the geometric mean.

Definition 9. (GRM+16) A fusion function Gn : [0, 1]n → [0, 1] is said to be an n-dimensional

grouping function if, for all x⃗ ∈ [0, 1]n, the following conditions hold:

(Gn1) Gn is symmetric;

(Gn2) Gn(x⃗) = 0 ⇔ xi = 0 for all i ∈ {1, . . . , n};

(Gn3) Gn(x⃗) = 1 ⇔ there exists i ∈ {1, . . . , n} such that xi = 1;

(Gn4) Gn is increasing;

(Gn5) Gn is continuous.

A 2-dimensional grouping function is just called grouping function (BFM+10; BDBB13). Analogous

to the relation between t-norms and t-conorms, by duality one can obtain n-dimensional grouping

functions from n-dimensional overlap functions, and vice-versa.

Example 7. i) The probabilistic sum and maximum t-conorms are also grouping functions;

ii) The function GMd : [0, 1]n → [0, 1] (dual of the geometric mean), given, for all x⃗ ∈ [0, 1]n, by

GMd(x⃗) = 1 − n

√√√√ n∏
i=1

1 − xi, (2.11)

is an n-dimensional grouping function, but not a t-conorm.
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18 2.1. Fuzzy sets and aggregation functions

Overlap and grouping functions are particular classes of aggregation functions that do not need to be

associative and can also be applied to model fuzzy connectives (BDBB13). They have some clear

advantages over t-norms and t-conorms, since they are closed to the convex sum and the aggregation

by internal generalized composition (see Theorem 1), whereas t-norms and t-conorms are not.

The theoretical development of both overlap and grouping functions was summarized by Bustince et

al. in (BMD+21). Additionally, some examples of studies on overlap and grouping functions are

described in the sequence. The basic properties of overlap functions and grouping functions, like

homogeneity, migrativity and idempotency, were studied by Bedregal et al. in (BDBB13). Archime-

dian overlap functions were introduced by Dimuro et al. in (DB14). Additive generators of overlap

functions and grouping functions were introduced by Dimuro et al. in (DBB+16; DBB+14), and their

multiplicative generators by Qiao et al. in (QH18b). Further studies on the migrativity property of

overlap functions were presented in (QH18c; QH19). Dimuro et al. developed the concept of fuzzy

implication functions derived overlap and grouping functions in (DB15; DBB+17b; DBS14). The

properties of such fuzzy implications were studied in (DBF+19; QH18a).

The good properties of overlap and grouping functions allowed these functions to be applied in se-

veral practical problems, in particular when associativity of the employed aggregation operator is

not required, as in fuzzy rule-based classification (DFB+20; DLB+20; LSD+18), decision making

(EGS+18), wavelet-fuzzy power quality diagnosis system (NCP+19) or forest fire detection (GJJP+17),

among others (QH18a; Qia19; QH18c; ZY19; ZQL21; QH19; QH18b; DGR+19; DBB+16; DB14;

DBB+17b).

In this thesis, we focus our attention on overlap functions and some of their generalizations, which we

recall in the following.

By altering the boundary conditions of overlap functions for less restrictive ones, broader classes of

aggregation functions can be defined. As introduced in (QH17) for n = 2, a function O : [0, 1]n →

[0, 1] is said to be an 0-overlap function if we loose the condition (O2) in Definition 8 to

(On2’)
n∏

i=1
xi = 0 ⇒ O(x⃗) = 0

without modifying any other condition.

In the same manner, a function O : [0, 1]n → [0, 1] is said to be an 1-overlap function if we downgrade

the condition (O3) in Definition 8 to

(On3’)
n∏

i=1
xi = 1 ⇒ O(x⃗) = 1

A framework for general fusion processes under uncertainty modeling control, with an application in interval-valued fuzzy

rule-based classification systems



2.1. Fuzzy sets and aggregation functions 19

without changing the remaining conditions.

By considering both conditions (On2’) and (On3’) when defining a new kind of n-dimensional over-

lap function, De Miguel et al. (DGR+19) introduced the concept of general overlap functions, as

follows:

Definition 10. (DGR+19) A general overlap function is any mapping GO : [0, 1]n → [0, 1] that

satisfies the following conditions, for all x1, . . . , xn ∈ [0, 1]:

(GO1) GO is symmetric;

(GO2) If
∏n

i=1 xi = 0 then GO(x1, . . . , xn) = 0;

(GO3) If
∏n

i=1 xi = 1 then GO(x1, . . . , xn) = 1;

(GO4) GO is increasing;

(GO5) GO is continuous.

Proposition 1. (DGR+19) If O : L([0, 1])n → [0, 1] is an n-dimensional overlap function, 0-overlap

or 1-overlap function, then O is also a general overlap function, but the converse may not hold.

In Table 2.1, we show some examples of general overlap functions. For more properties of general

overlap functions, see (DGR+19).

Another topic related to overlap functions is that of overlap indices, which are used to measure the

overlapping degree between fuzzy sets, defined as follows:

Definition 11. (GBH+15) A mapping O : FS(U) × FS(U) → [0, 1] is said to be an overlap index if

it satisfies the following conditions, for all A, B, C ∈ FS(U):

(O1) O(A, B) = 0 if and only if, for all z ∈ U, A(z) · B(z) = 0;

(O2) O(A, B) = O(B, A);

(O3) If B ≤ C, meaning that B(z) ≤ C(z) for all z ∈ U , then O(A, B) ≤ O(A, C).

For an overlap index to be called normal, it also has to satisfy the following condition:

(O4) If there exists z ∈ U such that A(z) · B(z) = 1, then O(A, B) = 1.
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20 2.1. Fuzzy sets and aggregation functions

Table 2.1: Examples of General Overlap Functions

Definition Type

OnMIN (x1, . . . , xn) = min(x1, . . . , xn) overlap

OnP (x1, . . . , xn) =
∏n

i=1 xi overlap

OnmM (x1, . . . , xn) = min(x1, . . . , xn) · max(x2
1, . . . , x2

n) overlap

OnGM (x1, . . . , xn) = n
√∏n

i=1 xi overlap

OnHM (x1, . . . , xn) =


n

1
x1

+...+ 1
xn

if xi > 0, for all i ∈ {1, . . . , n}

0 otherwise.
overlap

GOL(x1, . . . , xn) = max ((
∑n

i=1 xi) − (n − 1), 0) 0-overlap

GOU (x1, . . . , xn) =

 n ·
∏n

i=1 xi if
∏n

i=1 xi ≤ 1/n,

1 otherwise.
1-overlap

GOG(x1, . . . , xn) =

 n · GOL(x1, . . . , xn) if GOL(x1, . . . , xn) ≤ 1/n,

1, otherwise.
general overlap

In the following, we present some examples of overlap indices.

Example 8. Considering the Definition 11, it holds that:

(1) The function OZ : FS(U) × FS(U) → [0, 1] defined, for all A, B ∈ FS(U), by:

OZ(A, B) = max
z∈U

min(A(z), B(z)),

is a normal overlap index, which is known as the Zadeh’s consistency index (Zad78).

(2) The function Oπ : FS(U) × FS(U) → [0, 1] given, for all A, B ∈ FS(U), by:

Oπ(A, B) = 1
n

n∑
i=1

A(zi) · B(zi), (2.12)

for U = {z1, . . . , zn}, is an overlap index.

(3) The function Ox : FS(U) × FS(U) → [0, 1] defined, for all A, B ∈ FS(U), by:

Ox(A, B) =

 0 if ∀z ∈ U : A(z) · B(z) = 0,

x otherwise,

for a given z ∈ (0, 1], is an overlap index.

A framework for general fusion processes under uncertainty modeling control, with an application in interval-valued fuzzy

rule-based classification systems



2.2. Interval-valued fuzzy sets and admissible orders 21

The following theorem shows a construction method for overlap indices:

Theorem 2. (GBH+15) Consider an aggregation function M : [0, 1]n → [0, 1] such that

M(x1, . . . , xn) = 0 ⇔ x1 = . . . = xn = 0,

and an overlap function O : [0, 1]2 → [0, 1]. Then, the function OO
M : FS(U) × FS(U) → [0, 1],

given, for all A, B ∈ FS(U), U = {z1, . . . , zn}, by

OO
M (A, B) = M(O(A(z1), B(z1)), . . . , O(A(zn), B(zn))),

is an overlap index.

2.2 Interval-valued fuzzy sets and admissible orders

When facing problems with imperfect information (Zad08; Zad05), there may be uncertainty regard-

ing the values of the membership degrees or even in the definition of the membership functions to be

used in a fuzzy modeling (Men07; Lod04; NKZ97). A viable and popular solution is the adoption of

Interval-Valued Fuzzy Sets (IVFSs) (BBP+16; GG76; Zad75; DP05), where the membership degrees

are represented by intervals. In the following, we recall their definition and related concepts.

Denote by L([0, 1]) the set of all closed subintervals of the unit interval [0, 1] and X⃗ = (X1, . . . , Xn) ∈

L([0, 1])n. For any X = [x1, x2] ∈ L([0, 1]), the left and right projections of X are denoted, respec-

tively, by X = x1 and X = x2. The width of X is denoted w(X), which is given by w(X) = X −X .

Definition 12. (Zad75) Given an universe U , an interval-valued fuzzy set on U is a function IF :

U → L([0, 1]) such that IF (z) = [Fl(z), Fu(z)], for all z ∈ U ̸= ∅, where Fl(z) = IF (z), Fu(z) =

IF (z), Fl ≤ Fu and Fl, Fu ∈ FS(U).

We denote by IFS(U) the space of all interval-valued fuzzy sets defined over U .

Clearly, IF (z) ∈ L([0, 1]), and it is the interval membership degree of an element z ∈ U . One key as-

pect of IVFS is informed by the width of the assigned intervals, given by w(IF (z)) = Fu(z)−Fl(z),

since they represent the uncertainty/ignorance in the modeling of fuzzy sets (BDSR10; DBSR11;

SFBH11). The width of an interval can also be a measure of the quality of information (DCC00; AJ94)

carried by it. In a general sense, the larger the width of an interval, the higher the difficulty in estimat-

ing the exact value it is approximating and, thus, the lesser the information quality.

Tiago da Cruz Asmus



22 2.2. Interval-valued fuzzy sets and admissible orders

By Definition 12, one can observe that an IVFS F can be represented by a pair of fuzzy sets: the

lower fuzzy set Fl and the upper fuzzy set Fu. If Fl(z) = Fu(z), for every z ∈ U , then F is a fuzzy

set, which means that fuzzy sets are particular cases of interval-valued fuzzy sets.

An graphical representation of an IVFS can be seen in Figure 2.2.

Figure 2.2: Membership function of an IVFS.

In practical problems that involve interval-valued fuzzy modeling, it is expected that the calculations

have intervals as inputs and/or outputs. So, here, we recall some basic concepts on interval mathema-

tics.

We call by iv-fusion function any interval-valued function IF : L([0, 1])n → L([0, 1]) that merges n

intervals from L([0, 1]) into a single interval in L([0, 1]).

Definition 13. (BMDF+20) An iv-fusion function IF : L([0, 1])n → L([0, 1]) is called width-

preserving if, for any X⃗ ∈ L([0, 1])n such that w(X1) = . . . = w(Xn), it holds that w(IF (X⃗)) =

w(X1).

An iv-fusion function IF : L([0, 1])n → L([0, 1]) is said to be increasing with respect to a partial

order ≤ on L([0, 1]) (or, simply, ≤-increasing) if, for all X⃗, Y⃗ ∈ L([0, 1])n, the following condition

holds:

Xi ≤ Yi for all i ∈ {1, . . . , n} ⇒ IF (X⃗) ≤ IF (Y⃗ ).

The product order (MKC09), denoted by ≤P r, is a partial order relation, defined, for all X, Y ∈

L([0, 1]), by:

X ≤P r Y ⇔ X ≤ Y ∧ X ≤ Y .
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The projections F −, F + : [0, 1]n → [0, 1] of F : L([0, 1])n → L([0, 1]) are defined, respectively, by:

F −(x1, . . . , xn) = F ([x1, x1], . . . , [xn, xn]);

F +(x1, . . . , xn) = F ([x1, x1], . . . , [xn, xn]).

Let f, g : [0, 1]n → [0, 1] be two fusion functions such that f ≤ g. Then, the iv-fusion function

f̂, g : L([0, 1])n → L([0, 1]) is given by:

f̂, g(X⃗) = [f(X1, . . . , Xn), g(X1, . . . , Xn)]. (2.13)

Definition 14. (DBSR11) Let IF : L([0, 1])n → L([0, 1]) be a ≤P r-increasing iv-fusion function.

Then, IF is said to be representable if there exist increasing fusion functions f, g : [0, 1]n → [0, 1]

such that f ≤ g and IF = f̂, g.

The fusion functions f and g are called the representatives of IF . When IF = f̂, f , we denote simply

as f̂ , and, in this case, IF is said to be the best interval representation of f (DBSR11).

An iv-fusion function IF is said to be Moore-continuous if it is continuous with respect to the Moore

metric (MKC09) dM : L([0, 1])2 → R, defined, for all X, Y ∈ L([0, 1]), by:

dM (X, Y ) = max(|X − Y |, |X − Y |).

The Moore-metric can be extended to L([0, 1])n as follows:

dn
M (X⃗, Y⃗ ) =

√
dM (X1, Y1)2 + . . . + dM (Xn, Yn)2.

Here, we show some interval operations that are used throughout our work, considering X, Y ∈

L([0, 1]): (MKC09; Ste10)

Sum: X + Y = [X + Y , X + Y ], with X + Y ≤ 1;

Limited Sum X+̇Y = [min(1, X + Y ), min(1, X + Y )];

Product: X · Y = [X · Y , X · Y ];

Exponential: Xp = [Xp, X
p], for any p ∈ R;

Division: X/Y = [X/Y , X/Y ] with Y ̸= 0.

Generalized Hukuhara Division:

X ÷H Y = [min{X/Y , X/Y }, max{X/Y , X/Y }]

with Y ̸= 0 and X ≤P r Y.
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In the following, we recall an important concept for the development of the thesis, that of admissible

orders:

Definition 15. (BFKM13) Let (L([0, 1]), ≤AD) be a partially ordered set. The order ≤AD is an

admissible order if

(i) ≤AD is a total order on (L([0, 1]), ≤AD);

(ii) X ≤P r Y ⇒ X ≤AD Y , for all X, Y ∈ L([0, 1]).

Thus, an order ≤AD on L([0, 1]) is said to be admissible if it is a total order that refines the product

order ≤P r (BFKM13).

Remark 1. Since every admissible order ≤AD refines ≤P r, it is immediate that every ≤AD-increasing

function is also ≤P r-increasing.

Example 9. The following relations on L([0, 1]) are examples of admissible orders:

(i) The lexicographical orders with respect to the first and second coordinate, defined, respectively,

by:

X ≤Lex1 Y ⇔ X < Y ∨ (X = Y ∧ X ≤ Y );

X ≤Lex2 Y ⇔ X < Y ∨ (X = Y ∧ X ≤ Y ).

(ii) The order ≤XY introduced by Xu and Yager in (XY06), defined by:

X ≤XY Y ⇔ X + X < Y + Y or (X + X = Y + Y and X − X ≤ Y − Y ).

(iii) Whenever one considers the comparison of the information quality provided by the intervals X

and Y in the order of Xu and Yager, it is possible to define it as in (SFBH13):

X ≤IQ Y ⇔ X + X < Y + Y or (X + X = Y + Y and Y − Y ≤ X − X). (2.14)

Next, we recall the definition of the admissible order ≤α,β:

Definition 16. (BFKM13) For α, β ∈ [0, 1] such that α ̸= β, the relation ≤α,β is defined, for all

X, Y ∈ L([0, 1]), by

X ≤α,β Y ⇔ Kα(X, X) < Kα(Y , Y ) or

(Kα(X, X) = Kα(Y , Y ) and Kβ(X, X) ≤ Kβ(Y , Y )),
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where Kα, Kβ : [0, 1]2 → [0, 1] are aggregation functions defined, for all x, y ∈ [0, 1], respectively,

by

Kα(x, y) = x + α · (y − x), (2.15)

Kβ(x, y) = x + β · (y − x).

Observe that the operator Kα corresponds to Hurwicz’s criterion (Hur51) for adjusting pessimism and

optimism under uncertainty, when working in contexts of imperfect information.

Remark 2. By varying the values of α and β one can recover some of the defined admissible or-

ders, e.g., the lexicographical orders ≤Lex1 and ≤Lex2, and the orders ≤XY and ≤IQ are recovered,

respectively, by ≤0,1, ≤1,0, ≤0.5,1 and ≤0.5,0.

Whenever we apply the mapping Kα on the endpoints of an interval X ∈ [0, 1], we denote Kα(X, X)

simply as Kα(X).

Proposition 2. (BFKM13) For any α, β ∈ [0, 1], α ̸= β, it holds that:

i) β > α ⇒≤α,β=≤α,1;

ii) β < α ⇒≤α,β=≤α,0.

2.3 Interval-valued aggregation functions

Here, we recall some important interval-valued operations that are used throughout the development

of the thesis.

Definition 17. (Bed10) A function IN : L([0, 1]) → L([0, 1]) is called an iv-fuzzy negation if it is

≤P r-decreasing and respects the following conditions:

(IN1) IN([1, 1]) = [0, 0];

(IN2) IN([0, 0]) = [1, 1].

If IN(IN(X)) = X , for all X ∈ L([0, 1]), then N is said to be a strong iv-fuzzy negation.

Definition 18. (JPP+09) A bivariate iv-fusion function IRIN : L([0, 1])2 → L([0, 1]) is called an

Interval-Valued Restricted Equivalence Function (IV-REF) associated with a strong iv-fuzzy negation

IN : L([0, 1]) → L([0, 1]) is it satisfies the following conditions, for all X, Y, Z ∈ L([0, 1]):
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(IR1) IRIN is symmetric;

(IR2) IRIN (X, Y ) = [1, 1] ⇔ X = Y ;

(IR3) IRIN = [0, 0] ⇔ X = [0, 0] and Y = [1, 1], or X = [1, 1] and Y = [0, 0];

(IR4) IRIN (X, Y ) = IRIN (IN(X), IN(Y ));

(IR5) ∀X, Y, Z ∈ L([0, 1]), X ≤P r Y ≤P r Z ⇒ IRIN (X, Y ) ≥P r IRIN (X, Z) and IRIN (Y, Z) ≥P r

IRIN (X, Z).

A construction method for IV-REFs (Proposition 3) based on automorphisms (see Definition 19) was

introduced in (SFBH13), as follows:

Definition 19. An automorphism of the unit interval is any continuous and strictly increasing function

φ : [0, 1] → [0, 1] so that φ(0) = 0 and φ(1) = 1.

Proposition 3. Let φ1 and φ2 be two automorphisms of the unit interval, T : [0, 1]2 → [0, 1] be a

t-norm and S : [0, 1]2 → [0, 1] be a t-conorm. Then, the function IR : L([0, 1])2 → L([0, 1]), given,

for all X, Y ∈ L([0, 1]), by

IR(X, Y ) = [T (φ−1
1 (1 − |φ2(X) − φ2(Y )|), φ−1

1 (1 − |φ2(X) − φ2(Y )|)), (2.16)

S(φ−1
1 (1 − |φ2(X) − φ2(Y )|), φ−1

1 (1 − |φ2(X) − φ2(Y )|))].

is an IV-REF.

Example 10. Consider the a, b ∈ (0, +∞) and a fuzzy negation IN b : L([0, 1]) → L([0, 1]), defined,

for all X ∈ L([0, 1]), by

IN b(X) =
[
(1 − X

b)
1
b , (1 − Xb)

1
b

]
. (2.17)

Then, the iv-fusion function IRINb : L([0, 1])2 → L([0, 1]), given, for all X, Y ∈ L([0, 1]), by

IRINb

(X, Y ) =
[
min{(1 − |Xb − Y b|) 1

a , (1 − |Xb − Y
b|) 1

a }, max{(1 − |Xb − Y b|) 1
a , (1 − |Xb − Y

b|) 1
a }

]
(2.18)

is an IV-REF associated with IN b. One may observe that Equation (2.18) was obtained by applying the

construction method in Proposition 3, by taking the automorphisms φ1, φ2 : [0, 1] → [0, 1], defined, for all

x ∈ [0, 1], respectively, by φ1(x) = xa and φ2(x) = xb, and considering the minimum t-norm and the

maximum t-conorm.

IV-REFs are interval operators that are suitable to model the similarity between intervals (JPP+09).

In particular, the IV-REF IRINb
, defined in Example 10, was applied in IV-FRBCSs (SFBH13).
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Definition 20. (KM11) An iv-fusion function IA : L([0, 1])n → L([0, 1]) is called an iv-aggregation

function if the following conditions are satisfied:

(IA1) IA is ≤P r-increasing;

(IA2) IA([0, 0], . . . , [0, 0]) = [0, 0] and IA([1, 1], . . . , [1, 1]) = [1, 1].

Besides the usual way of representing an interval X by its endpoints, X = [X, X], in (BMDF+20),

Bustince et al. introduced a new form of representation for intervals based on Kα points (see Equation

(2.16)) and the concept of maximal possible width, which we recall in the following:

Definition 21. (BMDF+20) Consider c ∈ [0, 1] and α ∈ [0, 1]. Then, the maximal possible width

of an interval Z ∈ L([0, 1]) is denoted by dα(c), such that Kα(Z) = c. Also, define, for any X ∈

L([0, 1]),

λα(X) = w(X)
dα(Kα(X)) , (2.19)

where we set 0
0 = 1.

Proposition 4. (BMDF+20) For all α ∈ [0, 1] and X ∈ L([0, 1]), it one has that

dα(Kα(X)) = min
{

Kα(X)
α

,
1 − Kα(X)

1 − α

}
, (2.20)

where we set r
0 = 1, for all r ∈ [0, 1].

Thus, an interval X can be represented by X = (Kα(X), λα(X)). A construction method for iv-

aggregation functions, based on this representation, was also introduced:

Theorem 3. (BMDF+20) Let α, β ∈ [0, 1] be such that α ̸= β. Let A1, A2 : [0, 1]n → [0, 1] be two

aggregation functions where A1 is strictly increasing. Then IF α : L([0, 1])n → L([0, 1]) defined by:

IF α
A1,A2(X⃗) = R, where,

 Kα(R) = A1(Kα(X1), . . . , Kα(Xn)),

λα(R) = A2(λα(X1), . . . , λα(Xn)),

for all X⃗ ∈ L([0, 1])n, is an ≤α,β-increasing iv-aggregation function.

Since one of the main interests in our work is to apply interval-valued overlap operations in practical

problems, here we recall the concept of iv-overlap functions, which was defined, independently, by

Qiao and Hu (QH17) and Bedregal et al. (BBP+17), as an extension of overlap functions to the

interval-valued context:
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Definition 22. (BBP+17; QH17) An iv-overlap function is a mapping IO : L([0, 1])2 → L([0, 1])

that respects the following conditions:

(IO1) IO is symmetric;

(IO2) IO(X, Y ) = [0, 0] if and only if X · Y = [0, 0];

(IO3) IO(X, Y ) = [1, 1] if and only if X · Y = [1, 1];

(IO4) IO is ≤P r-increasing;

(IO5) IO is Moore continuous.

In the following, we recall the definition of iv-t-norms:

Definition 23. (DBRS08) An interval-valued (iv) t-norm is a mapping IT : L([0, 1])2 → L([0, 1])

that respects the following conditions:

(IT1) IT is symmetric;

(IT2) IT is associative;

(IT3) IT has [1, 1] as its neutral element;

(IT4) IT is increasing.

2.4 Classification Problems

Until this point, we presented some preliminary concepts from which our theoretical contributions

in the thesis were based on or inspired by. Now, we review the main characteristics of classification

problems and some specific methods for tackling these types of problems, since one of our objectives

is to improve the classification accuracy of those methods by applying our developed concepts.

A classification problem, under the supervised point of view, is characterized by the task of predicting

the unknown class of some object, which we call example, by applying a model learned using other

examples whose classes are previously known. This set of correctly classified examples is called

training set, denoted by E. In this set, each example e ∈ E is described by the values of N features

(also called variables, characteristics or attributes) X(e) = (e1, . . . , eN ), and belongs to one of M

classes in C={C1, . . . , CM }.
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Thus, the objective is to build a model D : X(e) → C that can predict the class of new examples

with the minimal cost possible. The performance of the model can be measured based on a ratio of

correctly classified examples from a testing set that is not part of the learning process of the system.

So, the prediction of the test data is performed by the learned classifier, which can be also used to

classify the training data to verify if the model has a good generalization capability. The steps of a

supervised classification problem can be seen in Figure 2.3.

Figure 2.3: Representation of the supervised learned method for classification.

There are several methods to deal with classification problems, such as Support Vector Networks

(SVN) (CV95), decisions trees (Qui93) and neural networks (Gra12). In particular, when the objective

is to design a robust classifier that is both accurate and interpretable, a viable alternative is the use of

Fuzzy Rule-Based Classification Systems (FRBCSs) (INN04).
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2.5 Fuzzy rule-based classification systems

In classical rule-based classification systems (Tun09), the rules that compose the system are of the

following type:

IF condition THEN decision.

The IF part is known as the antecedent of the rule, where one or more features (attributes) are linked

by logical connectives, such as conjunctions (AND) or disjunctions (OR). The THEN part is known

as the consequent of the rule and it shows one of the classes from C.

The antecedents of the rules in a rule-based system are usually categorical or numerical, and have only

TRUE of FALSE as a result, since they are based on boolean logic. That is, the rules only take into

account two possible scenarios: either the example completely has a given feature or such feature is

completely absent from the example. This rigid approach does not consider cases in which a example

may have a degree of a given feature, like when using linguistic labels to represent the states of a

variable (e.g., HEIGHT is TALL or AGE is YOUNG).

Thus, FRBCSs were developed as an extension of the rule-based classification systems, with the

main difference between them being that the FRBCSs allows for the modeling of linguistic variables

through fuzzy sets, while its rules are composed by propositions based on fuzzy logic. For that reason,

some of the advantages of FRBCSs are their flexibility and high level of interpretability (SBH+15).

The most known FRBCSs are the ones defined by Takagi-Sugeno-Kang (TSK) (TS85) and Mamdani

(Mam74), which is the one used in this thesis and whose generic structure can be seen in Figure 2.4.

Figure 2.4: A structure of FRBCS of the Mamdani type.
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The Knowledge Base (KB) stores the available information about the problem at hand. There are two

levels of information stored in the KB: the semantics of the fuzzy rules (based on fuzzy sets) and the

linguistic rules that represent the expert knowledge. This conceptual distinction is made clear by the

two components that constitutes the KB:

i) The Data Base (DB) - It stores the definition of the membership functions associated with the

linguistic labels whose features are considered in the fuzzy rules;

ii) The Rule Base (RB) - It is composed by a collection of linguistic fuzzy rules that are linked by a

connective (operator “OR”). This configuration enables that multiple rules may be activated by

the same input. In this thesis, we consider that the fuzzy rules have the following structure:

Rule Rj : If x1 is Aj1 and . . . and xn is Ajn then Class = C ′
j with RWj , (2.21)

where j ∈ {1, . . . , L}, L is the number of rules in the RB, Rj is the label of the j-th rule,

x = (x1, . . . , xn) is a feature vector (input variables), Aji is the fuzzy set representing the

linguistic term of the j-th rule in the i-th antecedent, C ′
j ∈ C is a class label, and RWj ∈ [0, 1]

is the rule weight, which measures the importance/relevance of the rule for the classification

task.

The fuzzyfication interface transforms the numerical input data into fuzzy values. Once such con-

version is complete, the inference system parse the stored information in the KB to predict the class

of any data pattern that is admitted by the system, in a process known as Fuzzy Reasoning Method

(FRM).

Here, we discuss each step of the FRM, considering P training examples x⃗p = (xp1, . . . , xpn), p ∈

{1, . . . , P} where xpi is the value of the i-th variable of the p-th example:

1) Matching degree (Aj(xp)) - It measures the strength of the IF-part of a rule Rj for the example

xp to be classified, calculated through a fuzzy conjunction operator c (generalized AND), as

follows:

Aj(xp) = c(Aj1(xp1), · · · , Ajn(xpn)). (2.22)

Usually, c is represented by either an extended t-norm or an n-dimensional overlap function.

2) Association degree (bk
j ) - It weights the matching degree Aj(xp) by the rule weight RWj , through

a product operation:

bk
j = Aj(xp) · RWj , (2.23)
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where k ∈ {1, . . . , M} corresponds to the class Ck in the consequent of the Rule Rj . Specif-

ically, we consider the computation of the rule weight using the fuzzy confidence value or

certainty factor (CdJH99), given by:

RWj =

∑
xp∈C′

j
Aj(xp)∑P

p=1 Aj(xp)
. (2.24)

3) Example classification soundness degree for all classes (Yk) - For each class Ck ∈ C, we aggregate

all the positive association degrees bk
j that were obtained in the previous step with respect to Ck,

through an aggregation function A:

Yk = A(bk
j , j = 1, . . . , L, and bk

j > 0). (2.25)

Some of the functions that are usually considered in this step are the maximum and the nor-

malized sum, which define, respectively, the wining rule and the additive combination FRMs

(CdJH99). The Choquet integral and its generalizations has also been successfully applied as

the aggregation operator in this stage (LDF+19).

4) Classification - The final decision is made in this step. For that, a function F : [0, 1]M → C is

applied over all example classification soundness degrees calculated in the previous step:

F (Y1, . . . , YM ) = arg max
k=1,...,M

(Yk). (2.26)

2.6 Interval-valued fuzzy rule-based classification systems

An Interval-Valued Fuzzy Rule-Based Classification System (IV-FRBCS) is an extension of a FRBCS

when some of the linguistic labels (or all of them) are modelled using IVFSs. This means that the

fuzzy reasoning method must work with intervals instead of numbers, being called as Interval-Valued

Fuzzy Reasoning Method (IV-FRM), to take into account the interval widths (uncertainty) throughout

the whole inference process (SFBH12; SBH+15).

The IV-FRM with Tuning and Rule Selection (IVTURS) (SFBH13) is a state-of-the-art IV-FRBCS

based on the concept of minimum distance between the interval matching degrees and the ideal in-

terval [1, 1] (which symbolizes a “perfect match” between a pattern and the antecedent of a rule).

The motivation behind this approach is to strengthen the relevance of the rules with a higher equiva-

lence degree with respect to the new pattern to be classified. Those equivalence degrees are measured
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through IV-REFs (Definition 18) that are constructed in a parameterized manner, meaning that a ge-

netic tuning of such parameters may be employed to find the appropriate IV-REFs that better suit a

given problem.

A depiction of the IVTURS method can be seen in Figure 2.5.

Figure 2.5: A flowchart of the IVTURS method.

Here, we present an overview of each of its steps:

1) Initialization of the IV-FRBCS, involving three tasks:

i) Generation of an initial FRBCS by means of the FARCHD method (AFAH11);

ii) Modeling of the linguistic labels by means of IVFSs;

iii) Construction of the initial IV-REF for each variable of the problem.

2) Definition of the IV-FRM according to the DB composed by IVFSs.

3) Application of an optimization approach with two tasks:
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i) Genetic tuning to find best values for the IV-REFs’ parameters;

ii) Rule selection process in order to decrease the system’s complexity.

In Figure 2.5, we highlight in color the generation of the initial FRBCS (in red) and the extension of

the fuzzy reasoning method on IVFS (in blue), since those are the ones where most modifications took

place when developing our own IV-FRBCS. In the following, we review each step from the IVTURS

algorithm, since it served as a basis for the IV-FRBCS where most of the experimentations took place

in the development of the thesis.

2.6.1 Initialization of the interval-valued fuzzy rule-based classification system

There are two distinct approaches when designing an interval fuzzy model: one is a partial dependent

one, where an initial fuzzy model is learned and then used as a smart initialization of the parameters of

the interval fuzzy model (JFW+09) and the other is a totally independent method, where the interval

fuzzy model is learned without the help of a base fuzzy model (WW06). The IVTURS method is based

on the first approach, generating its base FRBCS by means of the FARC-HD algorithm (AFAH11)

(Fuzzy Association Rule-based Classification model for High Dimensional problems), which is based

on three steps:

1) Fuzzy association rule extraction for classification - An initial RB is generated, through the cons-

truction a search tree (AS94) for each class, with its maximal depth being limited by a param-

eter. For each variable, the system considers five linguistic labels modeled by triangular fuzzy

sets, by performing a linear partitioning of the input domain, as presented on Figure 2.6.

Figure 2.6: Modeling of the linguistic labels in FARCHD.
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2) Candidate rule prescreening - Since the number of rules in the initial RB is usually too large,

the algorithm preselects the most promising rules through subgroup discovery to reduce the

computational cost of the system (BLB+03). This selection is done through a pattern weighting

scheme, an iterative process in which, initially, each example is assigned the same the weight,

and then, examples that have been covered by one or more rules decrease their weights in each

iteration. Then, each rule is evaluated based on the values of the weights of all examples covered

by it.

3) Genetic rule selection and lateral tuning - The KB is optimized by means of a combination be-

tween the tuning of the lateral position of the membership functions and a rule selection pro-

cess (AAFH07). This stage is done differently in the IVTURS method, and it is not part of the

generation of the initial FRBCS.

Only the first two steps of the FARCHD algortithm are performed in order to generate the base FR-

BCS. From that, the linguistic labels are modeled by means of IVFSs. This process is done by fol-

lowing two steps:

1) The lower bound of each IVFS (lower fuzzy set) is defined based on the initial membership func-

tions that were generated by the FARCHD algorithm;

2) The upper bound of each IVFS (upper fuzzy set) is defined so that its support has a 50% larger

width than its lower bound counterpart;

An example of these constructed IVFS can be seen in Figure 2.7.

The expression of the initial IV-REF IR for each variable of the problem is given on Equation (2.18),

from Example 10. In this initial stage, we set a = b = 1, so Equation (2.18) can be rewritten as:

IR(X, Y ) = [min{1 − |X − Y |, 1 − |X − Y |}, max{1 − |X − Y |, 1 − |X − Y |}]. (2.27)

2.6.2 Definition of the IV-FRM

This stage is quite similar to the FRM described previously, but now its four steps are designed to

operate with the interval membership degrees obtained accordingly to the constructed IVFS. Here we

review each of those steps:
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Figure 2.7: Example of a constructed IVFS in the IVTURS method.

(1) Interval matching degree: The similarity between the interval membership degrees (of each

variable to the corresponding IVFS) and the ideal membership degree [1, 1] is measured, for

j ∈ {1, . . . , L}, and, then, those similarities are aggregated through a representable iv-t-norm

IT : L([0, 1])n → L([0, 1]) (see Definitions 14 and 23), as follows:[
Aj(xp), Aj(xp)

]
= IT

(
IR

([
Aj1(xp1), Aj1(xp1)

]
, [1, 1]

)
, . . . , IR

([
Ajn(xpn), Ajn(xpn)

]
, [1, 1]

))
.

The interval matching degree represents the strength of the activation of the if-part of the rules for each

xp.

(2) Interval association degree: For the class of each rule, the interval matching degree is weighted with the

corresponding interval-valued (iv) rule weight IRW k
j ∈ L([0, 1]), resulting in the following expression:[

bk
j , bk

j

]
=

[
Aj(xp), Aj(xp)

]
·
[
IRW k

j , IRW k
j

]
with k = 1, . . . , M and j = 1, . . . , L,

The iv-rule weight is defined by the iv-confidence value, which is the interval extension of the confidence

value introduced in (IY05), given by:

IRWj =
∑

xp∈C′
j

Aj(xp) ÷H

P∑
p=1

Aj(xp),

with ÷H being the generalized Hukuhara division, defined in Equation (2.14).

(3) Interval pattern classification soundness degree for all classes: The interval association degrees of each

class (obtained in the last step) with the upper bounds that are greater than 0 are aggregated, by applying

an iv-aggregation function IA, as follows:[
Yk, Yk

]
= IA

([
bk

j , bk
j

]
, j = 1, . . . , L and bk

j > 0
)

with k = 1, . . . , M.
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(4) Classification: A decision function F is applied over the interval soundness degree of the system for the

pattern classification for all classes, given by:

F
([

Y1, Y1
]

, . . . ,
[
YM , YM

])
= arg max

k=1,...,M

([
Yk, Yk

])
.

The last step of the IV-FRM consists of selecting the maximum interval soundness degree. To achieve

that, the system needs to compare the intervals with a total order relation (e.g. the order of Xu and Yager

(XY06)).

2.6.3 Tuning of the equivalence and rule selection

At this point, an evolutionary process is applied to: (i) tune the values of the parameters a and b used

in the construction of the IV-REFs (See Example 10) and (ii) perform a rule selection process with the

goal of removing redundant or contradictory rules from the RB.

Regarding the tuning of the parameters a and b, in order to cover as much search space as possi-

ble in the optimization problem, Sanz et al. (SFBH13) suggest varying these values in the interval

[0.01, 100]. In Figure 2.8, the shadow surface represents the space that is covered when using the

proposed variation interval, which is almost the entirety of the search space. This selection of suit-

able IV-REFs to measure the equivalence degrees in each variable has the capability of improving the

system reasoning accuracy.

From the many known strategies that deal with the rule reduction process (GAH11), the IVTURS

method applies a rule selection approach developed through a simple binary codification that expresses

whether or not the fuzzy rules should belong to the RB.

To accomplish both tasks, a CHC evolutionary model (Esh91) is applied, since it provides good results

in classification systems (AAFH07). In the particular case of the IVTURS method, the evolutionary

model has the following characteristics:

1) Coding scheme - Each chromosome is composed by two distinct parts, which implies a double

codification scheme: real codification for the tuning of the parameters a and b of the IV-REFs

(CE) and binary coding for the rule selection process (CR).

a) Tuning of the equivalence: Considering n as the number of features, the part of the chromo-

some to carry out the tuning of the IV-REFs is a vector CE with dimension 2×n, given by

CE = {a1, b1, . . . , an, bn}, where ai, bi ∈ [0.01, 1.99] for all i ∈ {1, . . . , n}. Each pair

(ai, bi) represents the values of the parameters a and b that are used in the construction of

the IV-REF associated with the i-th feature.
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Figure 2.8: Representation of the search space by varying the values of the parameter a.

To construct the IV-REF, the system has to adapt the gene values to the interval in which

the automorphisms φ1 and φ2 can vary ([0.01, 100]). This is done by adapting the value

of each parameter a according to the following expression:

a =

 a if 0 < a ≤ 1
1

2−a otherwise.
(2.28)

The same adaptation is considered for the parameter b.

b) Rule selection: The part of the chromosome that performs the rule selection is a vector CR

of dimension L (number of rules), given by CR = {r1, . . . , rL}, where ri ∈ {0, 1} and

i ∈ {1, . . . , L}. This vector determines the subset of fuzzy rules that compose the final

RB as follows: if ri = 1 then Ri ∈ RB, otherwise Ri /∈ RB.

Thus, the chromosome scheme is given by CE+R = {CE, CR};

2) Initial gene pool - An individual with all genes with value 1 is initialized, in order to include all the

fuzzy rules from the initial RB and set all the IV-REFs to the one expressed by Equation (2.27);

3) Chromosome evaluation - The quality of the chromosome is evaluated through the accuracy rate,
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that is, the ratio between the number of correctly classified examples by the total number of

examples;

4) Crossover operator - It depends on the considered chromosome part (CE or CR), due to the double

coding scheme. For CE, the Parent Centrix BLX operator (HLS03) is applied, which is based

on the concept of neighborhood, in the sense that it allows the offspring genes to be around the

genes of one parent or around a zone determined by both parents. For CR, the half uniform

crossover scheme (ES93) is considered, where the genes to be crossed are randomly selected

among those that are dissimilar in the parents, to further differentiate the offspring from the

parents;

5) Restart approach - To get away from local optima, a restarting approach is considered when no

offsprings are incorporated to the current population. To restart this population, the current

best global solution found is included the following population, with the remaining individuals

being generated randomly, which indicates an elitist scheme.

2.7 Aggregation in non-fuzzy classification systems

Although most of our application developments are focused on IV-FRBCSs, there are other classifi-

cation techniques with aggregation processes that could benefit from known (interval-valued) fusion

functions, but the aggregated values do not come from the unit interval. We highlight two of those

techniques, both from the field of Deep Learning (LBH15).

2.7.1 Convolutional neural networks

Convolutional Neural Networks (CNN) (LBH15) are a type of neural network designed for processing

data in which the local/neighboring information is relevant, such as in image classification (DBB+18;

PRMFI+21). The main stages that characterizes this type of system are:

1) Convolution: the local features of a given image are extracted;

2) Pooling: the extracted features are downsampled, sequentially, by aggregating the local data.

In most CNNs, the information fusion process in the pooling stage is carried out by the maximum or

the arithmetic mean. However, good classification results have been achieved by applying a convex

combination of those aggregation functions in the pooling process (LGT18).
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2.7.2 Long Short-term memory recurrent neural networks

Long Short-term Memory (LSTM) are a type of recurrent neural networks (Gra12) applied in several

classification problems with sequential information (GSK+17), such as speak recognition and ma-

chine translation. Its prominent feature is the capacity of storing knownledge/information to be used

in latter stages of its sequential architecture. This stored knowledge, constituted by a short-term mem-

ory and a long-term memory, influences the output of a time-step of the system, when aggregating the

short-term information of a previous step with the current one. This fusion process is usually carried

out by a summation, but, recently, the Choquet integral has been applied as the aggregation operator,

since it adequately captures the possible coalitions present in the data (FJTH+21).
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Chapter 3

DEVELOPMENT OF THE THESIS

In this chapter, we present a discussion on how we dealt with the five research questions proposed in

the Introduction, each one associated with a corresponding publication. Following that, we present

some the complementary contributions that derived from the development of the thesis. Finally, we

present a summary of all stages of the development of the thesis, both from the theoretical and practical

point of view.

3.1 Discussion

3.1.1 (RQ1) Is it feasible to define generalized overlap functions and overlap indices

in the interval context so that they are suitable to be applied in n-dimensional

problems, such as the ones tackled by IV-FRBCSs?

This question was addressed by the following paper (available in Chapter 5, Section 5.1.1):

◦ T. Asmus, G. Dimuro, B. Bedregal, J. Sanz, S. Pereira Jr, and H. Bustince, “General interval-

valued overlap functions and interval-valued overlap indices”, Information Sciences 527 (2020)

27–50.

Our initial interest was to explore if n-dimensional overlap functions, once properly defined in the

interval context, could benefit the performance of IV-FRBCSs, since this was the case when applying

n-dimensional and general overlap functions in FRBCSs. Although iv-overlap functions had already

been introduced, independently, by Qiao and Hu (QH17) and Bedregal et al. (BBP+17), they could

only be applied in problems with two classes, which is a severe limitation if one intend to use them in
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IV-FRBCSs. To overcome this drawback, in this paper, we introduced the definition of n-dimensional

iv-overlap functions:

Definition 24. A function IOn : L([0, 1])n → L([0, 1]) is called an n-dimensional interval-valued

(iv) overlap function if the following conditions are satisfied, for all X⃗ ∈ L([0, 1])n:

(IOn1) IOn is symmetric;

(IOn2) IOn(X⃗) = [0, 0] ⇔
∏n

i=1 Xi = [0, 0];

(IOn3) IOn(X⃗) = [1, 1] ⇔
∏n

i=1 Xi = [1, 1];

(IOn4) IOn is ≤P r-increasing;

(IOn5) IOn is Moore continuous.

One interesting studied aspect was the representation of n-dimensional iv-overlap functions. Here,

we highlight some contributions on this topic:

Theorem 4. Let On1, On2 : [0, 1]n → [0, 1] be n-dimensional overlap functions such that On1 ≤

On2. Then, the function ̂On1, On2 is an n-dimensional iv-overlap function.

We discussed that there may be representable n-dimensional iv-overlap functions in which some (or

neither) of their representatives are n-dimensional overlap functions. For that reason, we introduced

the following definition to denote representable n-dimensional iv-overlap functions which both repre-

sentatives are n-dimensional overlap functions:

Definition 25. An n-dimensional iv-overlap function IOn : L([0, 1])n → L([0, 1]) is said to be o-

representable if there exist n-dimensional overlap functions On1, On2 : [0, 1]n → [0, 1], On1 ≤ On2,

such that IOn = ̂On1, On2.

In particular, we showed the conditions in which n-dimensional iv-overlap functions have to satisfy in

order for them to be o-representable, that is, when they are representable functions with n-dimensional

overlap functions as their representatives, while also being inclusion monotonic:

Theorem 5. Let IOn : L([0, 1])n → L([0, 1]) be an n-dimensional iv-overlap function. Then, IOn is

o-representable if and only if IOn is inclusion monotonic and the following conditions are satisfied,

for all X1, . . . , Xn ∈ L([0, 1]):
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(i) IOn(X1, . . . , Xn) = 0 ⇔
∏n

i=1 Xi = 0;

(ii) IOn(X1, . . . , Xn) = 1 ⇔
∏n

i=1 Xi = 1.

Then, inspired by the work of De Miguel et al. (DGR+19), where general overlap functions were

defined with promising results in FRBCSs, we developed the concepts of n-dimensioanl iv-0-overlap

function, n-dimensioanl iv-1-overlap function and, by combining these two definitions, we introduced

general iv-overlap functions, as follows:

Definition 26. A general iv-overlap function is any mapping IGO : L([0, 1])n → L([0, 1]) that

satisfies the following conditions, for all X⃗ ∈ L([0, 1])n:

(IGO1) IGO is symmetric;

(IGO2) If
∏n

i=1 Xi = [0, 0] then IGO(X⃗) = [0, 0];

(IGO3) If
∏n

i=1 Xi = [1, 1] then IGO(X⃗) = [1, 1];

(IGO4) IGO is ≤P r-increasing;

(IGO5) IGO is Moore continuous.

We studied their characterization and presented three construction methods. One constitutes the char-

acterization of any general overlap function IGO, based on two iv-fusion functions F and G, with

some conditions:

Theorem 6. The mapping IGO : L([0, 1])n → L([0, 1]) is an general iv-overlap function if and only

if, for all X1, . . . , Xn ∈ L([0, 1]), it holds that:

IGO(X1, . . . , Xn) = F (X1, . . . , Xn) ÷H (F (X1, . . . , Xn)+̇G(X1, . . . , Xn)),

for some F, G : L([0, 1])n → L([0, 1]) such that

(i) F and G are symmetric;

(ii) If
∏n

i=1 Xi = [0, 0] then F (X1, . . . , Xn) = [0, 0];

(iii) If
∏n

i=1 Xi = [1, 1] then G(X1, . . . , Xn) = [0, 0];

(iv) F is ≤P r-increasing and G is ≤P r-decreasing;
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(v) F and G are Moore continuous;

(vi) F (X1, . . . , Xn)+̇G(X1, . . . , Xn) ̸= 0,

for any X1, . . . , Xn ∈ L([0, 1]).

The other two are based on composition of aggregation functions. Here, we highlight the construction

method, of the second type, that was applied in our illustrative example in IV-FRBCSs:

Proposition 5. Given a general iv-overlap function IGO : L([0, 1])n → L([0, 1]) and a symmetric,

Moore continuous n-dimensional interval-valued aggregation function IA : L([0, 1])n → L([0, 1]),

then the function IGOIA : L([0, 1])n → L([0, 1]), defined, for all X⃗ ∈ L([0, 1])n, by, IGOIA(X⃗) =

IGO(X⃗) · IA(X⃗) is a general iv-overlap function.

Proposition 5 indicates that general iv-overlap functions can be obtained by the composition of other

general iv-overlap functions by the product operation, which shows that general iv-overlap functions

are very flexible and adaptable to be applied in practical problems.

In the work of Elkano et al. (EGS+18), the rule weight, which measures the acuity of the classification

system rules, was defined by means of overlap indices. Inspired by this approach, we introduced the

concept of iv-overlap indices and presented some construction methods for them. Here, we show their

definition:

Definition 27. A mapping IO : IFS(U) × IFS(U) → L([0, 1]) is said to be an iv-overlap index if

it respects the following conditions, for all A, B, C ∈ IFS(U):

(IO1) IO(A, B) = [0, 0] if and only if for all z ∈ U, A(z) · B(z) = [0, 0];

(IO2) IO(A, B) = IO(B, A);

(IO3) If B ≤ C, meaning that B(z) ≤P r C(z) for every z ∈ U , then IO(A, B) ≤P r IO(A, C),

An iv-overlap index is said to be normal, whenever it also satisfies the following condition:

(IO4) If there exists z ∈ U such that A(z) · B(z) = [1, 1], then IO(A, B) = [1, 1].

Finally, we presented an illustrative example in IV-FRBCS, in which n-dimensional and general iv-

overlap functions were applied to model the conjunction operator on the first stage of the IV-FRM
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of the IVTURS algorithm (interval matching degree), while the iv-rule weight was defined based on

iv-overlap indices. The experiment showed that the newly defined IV-FRM produced competitive

results, statistically equivalent to the ones from the original IVTURS algorithm. This was the first

step in developing our own version of the IVTURS algorithm, which we call here as the IVTURS-OV,

since it is based on overlap operators.

3.1.2 (RQ2) Considering IV-FRBCSs, do admissible orders - to be used for ranking

possible classification outcomes - and iv-overlap operators (which may or may

not be increasing for such orders) - to be applied in the inference process of the

classifier - have an impact on the whole classification process?

This question was addressed by the following paper (available in Chapter 5, Section 5.1.2):

◦ T. Asmus, J. Sanz, G. Dimuro, B. Bedregal, J. Fernandez, and H. Bustince, “N-dimensional

admissibly ordered interval-valued overlap functions and its influence in interval-valued fuzzy

rule-based classification systems.”, IEEE Transactions on Fuzzy Systems (In press, early ac-

cess).

When further researching IV-FRBCSs, we observed that both the iv-aggregation function used to

compute the interval matching degree and the adopted total order in the final classification step play

a key role in the behaviour of the system. Moreover, there were neither previous studies concerning

the relation between those aspects in IV-FRBCSs, nor it was considered cases in which the chosen

iv-aggregation function was increasing with respect to the total order, and how this could impact the

whole classification process.

For that reason, in this work, we decided to explore this gap in the literature, by defining n-dimensional

iv-overlap functions that are increasing with respect to an admissible order (admissibly ordered) and

apply this new concept in IV-FRBCSs. Before delving into the classification problem, first, we pre-

sented some new results on admissible orders, in particular, ≤α,β orders (Definition 16), to aid the

study of n-dimensional admissibly ordered iv-overlap function. We summarize these results in the

following remark:

Remark 3. For all α1, α2, β1, β2 ∈ [0, 1] such that α1 ̸= β1 and α2 ̸= β2, one has that ≤α1,β1 ̸=≤α2,β2 ,

except when α1 = α2 = α, β1 < α and β2 < α or when α1 = α2 = α, α < β1 and α < β2.

Then, we presented the main concept of this work:

Definition 28. A function AOn : L([0, 1])n → L([0, 1]) is an n-dimensional admissibly ordered
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iv-overlap function for an admissible order ≤AD (n-dimensional ≤AD-overlap function) if it satisfies

the conditions (IOn1), (IOn2) and (IOn3) of Def. 24 and:

(AOn4) AOn ≤AD-increasing.

Condition (IOn5) from Def. 24 is not needed, since the continuity was only a requirement in the

original definition of overlap functions in order to enable them to be applied in image processing

(BFM+10), which is not the focus of our work. Henceforward, in the following developments of

the thesis, we disregard the continuity when introducing new definitions of interval-valued overlap

functions.

The most common way of defining interval-valued aggregation operations (such as iv-overlap func-

tions) is through representable functions (Definition 14), usually with both representatives being

the same aggregation function. For example, one can define an interval-valued geometric mean

IOGM : L([0, 1])n → L([0, 1]), given, for all X⃗ ∈ L([0, 1])n, by

IOGM (X⃗) = [GM(X1, . . . , Xn), GM(X1, . . . , Xn)],

with GM being the geometric mean, given by Equation (2.7). In this case, IOGM is an o-representable

n-dimensional iv-overlap function, and, thus, it is ≤P r increasing. However, it is not necessarily

increasing with respect to an admissible order ≤α,β . In the following result, we showed when an

o-representable n-dimensional iv-overlap function is ≤α,β-increasing:

Theorem 7. Let IOn : L([0, 1])n → L([0, 1]) be an o-representable n-dimensional iv-overlap func-

tion and α, β ∈ [0, 1], α ̸= β. Then, IOn is ≤α,β-increasing if and only if α = 1 and IOn+ (upper

projection) is a strict n-dimensional overlap function.

So, it is not trivial to obtain expressions for n-dimensional ≤α,β-overlap functions when α ̸= 1.

To address that, we presented a construction method for n-dimensional ≤α,β-overlap functions, as

follows:

Theorem 8. Let On be a strict n-dimensional overlap function, α ∈ (0, 1) and β ∈ [0, 1] such that

α ̸= β. Then AOnα : L([0, 1])n → L([0, 1]) defined, for all X⃗ ∈ L([0, 1])n, by

AOnα(X⃗) = [On(Kα(X1), . . . , Kα(Xn)) − αm, On(Kα(X1), . . . , Kα(Xn)) + (1 − α)m],

where

m = min{X1 − X1, . . . , Xn − Xn, On(Kα(X1), . . . , Kα(Xn)), 1 − On(Kα(X1), . . . , Kα(Xn))},
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is an n-dimensional ≤α,β-overlap function.

The construction method introduced in Theorem 8 allows us to obtain different n-dimensional ≤α,β-

overlap functions with respect to any ≤α,β order with α ∈ (0, 1), β ∈ [0, 1] and α ̸= β. Thus,

its adaptability allows for it to be employed in various applications with different approaches to the

ranking of intervals, determined by the choice of different α and β.

For the experiment in IV-FRBCSs, we analyzed the behaviour of different admissible orders ≤α,β

and n-dimensional (admissibly ordered) iv-overlap functions applied on a newly developed IV-FRM

based on the IVTURS algorithm, further developing our IVTURS-OV method, with the following key

modifications:

- When generating the initial FRBCS through the FARCHD method, we replace the product, which

is applied as the conjunction operator to calculate the matching degree, by an n-dimensional

overlap function;

- An n-dimensional (admissibly ordered) iv-overlap function is applied as the conjunction operator

when calculating the interval matching degree (first stage of the IV-FRM), based on the same

n-dimensional overlap function applied on the generation of the initial FRBCS;

- In the second step of the IV-FRM (interval association degree), the interval matching degree is

weighted by the corresponding iv-rule weight through either a representable interval product

or an admissibly ordered interval product obtained by the construction method in Theorem 8,

depending on the chosen conjunction operation applied in the previous step;

- The final classification task is carried accordingly to a chosen ≤α,β order.

Then, we proceeded to test different configurations of this new IV-FRBCS, experimenting with twelve

different n-dimensional (admissibly ordered) iv-overlap functions and three admissible orders - ≤Lex1,

≤Lex2 and ≤IQ (see Section 2.2) - comparing their classification accuracy when applied to 31 real

world data-sets from the KEEL repository (AFSG+09).

In first place, we studied if there were differences in the accuracy for a given method (associated

with an interval overlap operator) when we varied the chosen admissible order. In summary, we can

concluded that ≤Lex1 is not a suitable choice and ≤IQ provides a robust behaviour regardless of

the configuration. For these reasons, we decided to investigate the behaviour of our classifiers by

varying the n-dimensional (admissibly ordered) iv-overlap functions used in the IV-FRM, taking in

consideration the admissible order ≤IQ.
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We observed that the interval-valued conjunction operators based non-associative overlap functions

(such as the geometric mean) produced the best results, which allowed us to recommend them, along

with the order ≤IQ, to be applied in IV-FRBCSs, more so when they are n-dimensional admissibly

ordered iv-overlap functions constructed via Theorem 8. One particular property of this construction

method is that it produces functions that are width-preserving (Definition 13), a concept that we study

and expand in our following work.

3.1.3 (RQ3) Since the widths of the intervals are intrinsically related to both the uncer-

tainty towards the value they represent and the quality of the information that

they are expressing, how can one define interval-valued overlap operations in

which the widths of the outputs are controlled accordingly to a desirable thresh-

old that depends on the widths of the inputs?

This question was addressed by the following paper (available in Chapter 5, Section 5.1.3):

◦ T. Asmus, G. Dimuro, B. Bedregal, J. Sanz, R. Mesiar and H. Bustince, “Towards interval un-

certainty propagation control in bivariate aggregation processes and the introduction of width-

limited interval-valued overlap functions.”, Fuzzy Sets and Systems (In press, Corrected Proof).

In our works discussed in Sections 3.1.1 and 3.1.2, we studied different definitions of interval-valued

overlap functions, their representability and relation with different interval orders, analyzing the ef-

fect of them in IV-FRBCSs. However, there is one aspect that is intrinsically related to the modeling

of uncertainty when working with interval fuzzy systems, that being the widths of operated inter-

vals (BDSR10; DBSR11; SFBH11). We observed that most interval-valued aggregation operations

were defined and studied without taking into account the relation between the widths of the operated

intervals and the width of the output interval. Additionally, in many interval-valued processes, the

output intervals’ widths becomes larger than a desirable threshold, which may be imposed by applica-

tions constraints concerning the quality of the information required for the interval results (DCC00).

In those cases, the interval outputs may carry no meaningful information about the value they are

approximating, and we point out that the information quality of interval-valued results is a strong

requirement claimed by scientists and engineers interested in interval-based tools (MKC09).

Thus, the study of the relation between the width of the inputs and the output of interval-valued fuzzy

operations coupled with adaptable tools to conserve the information quality in the output of such

operations was still a challenge to overcome in the literature, especially regarding interval-valued

aggregation and interval-valued overlap functions. So, as an initial study in this direction, in this paper
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we developed a theoretical approach to aid the analysis of bivariate interval-valued operations with

respect to the width of the operated intervals in order to control the information quality deterioration,

with special attention to interval-valued overlap functions, admissibly ordered or not.

The main concepts introduced in this work are that of width-limited and width-limiting functions:

Definition 29. Consider an interval-valued function IF : L([0, 1])2 → L([0, 1]) and a mapping

B : [0, 1]2 → [0, 1]. Then, IF is said to be width-limited by B if w(IF (X, Y )) ≤ B(w(X), w(Y )),

for all X, Y ∈ L([0, 1]). B is called a width-limiting function of IF .

Based on that, we proceeded to analyze how to obtain the least width-limiting function for a given

iv-fusion function. First, let us clarify the notation:

IF = {IF : L([0, 1])2 → L([0, 1]) | IF is a binary interval-valued function}

and

F = {F : [0, 1]2 → [0, 1] | F is binary function}.

Then, our first contribution in this analysis came from the following result:

Theorem 9. The mapping L : IF → F defined for all IF ∈ IF and ϵ, δ ∈ [0, 1], by

L(IF )(ϵ, δ) = sup
u ∈ [0, 1 − ϵ]
v ∈ [0, 1 − δ]

{w(IF ([u, u + ϵ], [v, v + δ]))}

provides the least width-limiting function L(IF ) : [0, 1]2 → [0, 1] for IF .

In the case of the best interval representation of aggregation functions, we showed that the least width-

limiting function is also an aggregation function.

To further analyze the behaviour of representable iv-aggregation functions, we introduced a less re-

strictive extension of one-dimension convexity for bivariate aggregation functions:

Definition 30. Consider a, b ∈ [0, 1]. An aggregation function A : [0, 1]2 → [0, 1] is called (a, b)-

ultramodular if, for all x, y, ϵ, δ ∈ [0, 1] and x + ϵ, y + δ, a − ϵ, b − δ ∈ [0, 1], it holds that:

A(x + ϵ, y + δ) − A(x, y) ≤ A(a, b) − A(a − ϵ, b − δ). (3.1)

In particular, the best interval representation of an (1, 1)-ultramodular aggregation function (a = b =

1) have a predictable relation its least width-limiting function, as follows:
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Theorem 10. Let A : [0, 1]2 → [0, 1] be an aggregation function, L(Â), L(Âd) : [0, 1]2 → [0, 1] be

the least width-limiting functions for Â and Âd, respectively. Then, L(Â) = L(Âd) = Ad if and only

if A is an (1, 1)-ultramodular aggregation function.

For example, the product overlap OP : [0, 1]2 → [0, 1], given, for all x, y ∈ [0, 1], by OP (x, y) = x·y,

is an (1, 1)-ultramodular aggregation function, so, its best interval representation ÔP has the dual of

the product Od
P (the probabilistic sum) as its least width-limiting function. The same hold for the best

interval representation of Od
P .

To enable more flexible definitions of interval-valued functions, we introduced the concept of increa-

singness with respect to a pair of partial orders:

Definition 31. Let IF : L([0, 1])2 → L([0, 1]) be an interval-valued function and ≤1, ≤2 be two

partial order relations on L([0, 1]). Then, IF is said to be (≤1, ≤2)-increasing if the following

condition holds, for all X1, X2, Y1, Y2 ∈ L([0, 1]):

X1 ≤1 X2 ∧ Y1 ≤1 Y2 ⇒ IF (X1, Y1) ≤2 IF (X2, Y2).

Then, we presented the main definition of this work:

Definition 32. Let B : [0, 1]2 → [0, 1] be a symmetric and increasing function and ≤1, ≤2 be two

partial order relations on L([0, 1]). Then, the mapping IOw : L([0, 1])2 → L([0, 1]) is said to be a

width-limited interval-valued overlap function (w-iv-overlap function) with respect to the tuple (≤1,

≤2, B), if the following conditions hold for all X, Y ∈ L([0, 1]):

(IOw1) IOw is symmetric;

(IOw2) IOw(X, Y ) = [0, 0] ⇔ X · Y = [0, 0];

(IOw3) IOw(X, Y ) = [1, 1] ⇔ X · Y = [1, 1];

(IOw4) IOw is (≤1, ≤2)-increasing;

(IOw5) IOw is width-limited by B.

As an example, the best interval representation of the product overlap, ÔP , is a w-iv-overlap func-

tion with respect to the tuple (≤P r, ≤P r, Od
P ), since OP is (1, 1)-ultramodular and its best interval

representation is ≤P r-increasing.
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Even in our strictly theoretical papers, which is the case of this one, we always have an interest

in presenting construction methods for the newly defined functions to enable them to be easily ap-

plied in practical applications. Our aim, here, was to construct interval-valued overlap functions in

which the width of the interval output does not surpass a desirable threshold, according to the width-

limiting function applied to the widths of the interval inputs. This desirable maximal threshold may

be determined by the application requirement, concerning the extent of the necessity to conserve the

information quality of the results, with respect to the information quality of the inputs.

The following definition introduced a key concept to be applied in two of the construction methods

presented in this paper:

Definition 33. Consider a function B : [0, 1]2 → [0, 1] and let IF : L([0, 1])2 → L([0, 1]) be an

interval-valued function. Then, the function mIF,B : L([0, 1])2 → [0, 1], defined for all X, Y ∈

L([0, 1]) by:

mIF,B(X, Y ) = min{w(IF (X, Y )), w(IF (Y, X)), B(w(X), w(Y )), B(w(Y ), w(X))}, (3.2)

is called the maximal width threshold for the pair (IF, B). Whenever B and IF are both symmetric,

then Equation (3.2) can be reduced to:

mIF,B(X, Y ) = min{w(IF (X, Y )), B(w(X), w(Y ))}.

Then, we proceeded to introduce, study and compare three construction methods for w-iv-overlap

functions. The first one was based on constructing the best interval representation of an overlap

function and, then, “narrow” the output if it surpasses a given maximal threshold. This narrowing

occurs in the direction of a Kα point, determined by the same α that is chosen for the order ≤α,β that

is part of the construction method:

Theorem 11. Consider a symmetric and increasing function B : [0, 1]2 → [0, 1], a strict overlap

function O : [0, 1]2 → [0, 1] and take α ∈ (0, 1] and β ∈ [0, α). Then, the interval-valued function

IOwα
B : L([0, 1])2 → L([0, 1]) defined, for all X, Y ∈ L([0, 1]), by

IOwα
B(X, Y ) = [Kα(Ô(X, Y )) − α · m

Ô,B
(X, Y ), Kα(Ô(X, Y )) + (1 − α) · m

Ô,B
(X, Y )], (3.3)

is a w-iv-overlap function for the tuple (≤P r, ≤α,β, B).

The second method was based on applying an overlap function on the Kα points of the interval inputs

to generate the Kα point of the interval output, and then, apply a conjunctive operator between a series
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of parameters (among them are the widths of the interval inputs) to generate the width of the output

around the previously obtained Kα point:

Theorem 12. Let O : [0, 1]2 → [0, 1] be a strict overlap function, B : [0, 1]2 → [0, 1] be a symmetric,

increasing and conjunctive function and α ∈ (0, 1), β ∈ [0, 1] such that α ̸= β. Then IOwα
B :

L([0, 1])2 → L([0, 1]) defined, for all X, Y ∈ L([0, 1]), by

IOwα
B(X, Y ) = [O(Kα(X), Kα(Y )) − αθ, O(Kα(X), Kα(Y )) + (1 − α)θ],

where

θ = B(B(w(X), w(Y )), B(O(Kα(X), Kα(Y )), 1 − O(Kα(X), Kα(Y ))))

is a w-iv-overlap function for the tuple (≤α,β, ≤α,β, B).

The third method was a combination of the two previous approaches, with its own particularities.

The Kα point of the interval output is calculated similarly as in the second method, but the width

is generated by means of the “maximal possible width of an interval” dα (Definition 4). A similar

“narrowing” of the output as the one in the first method occurs, if the maximal width threshold is

surpassed:

Theorem 13. Consider a strict overlap function O : [0, 1]2 → [0, 1], a symmetric aggregation

function B : [0, 1]2 → [0, 1], an iv-aggregation function IF α
O,B : L([0, 1])2 → L([0, 1]) de-

fined as in Theorem 3, the maximal width threshold mIF α
O,B ,B : L([0, 1])2 → L([0, 1]) for the

pair (IF α
O,B, B), α ∈ (0, 1) and β ∈ [0, 1] with α ̸= β. Then, the interval-valued function

IOwα
B : L([0, 1])2 → L([0, 1]) defined by

IOwα
B(X, Y ) = R,

where:

(i) Kα(R) = O(Kα(X), Kα(Y ));

(ii) w(R) = mIF α
O,B ,B(X, Y ).

is a w-iv-overlap function for the tuple (≤α,β, ≤α,β, B).

By analyzing advantages and drawbacks from each method, we observed that the second method

presented itself as the most restrictive one, since the width-limiting function must be conjunctive,
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meaning that one degenerate interval input (w(X) = 0) is enough to cause the interval output to also

be degenerate, as it was the case with the construction method (see Theorem 8) that we introduced in

the work discussed in Section 3.1.2 .

As these construction methods are all based on choices of overlap functions, width-limiting functions

and admissible orders, it was made clear the adaptability of the developed concepts, as one can obtain

an interval-valued overlap operations that best satisfy the restrictions of the context regarding the

acceptable amount of width propagation and/or the ordering of intervals to be applied. Our next intent

was to generalize adequately the presented theoretical approach to encompass other classes of fusion

functions and apply the new concepts in IV-FRBCSs, which we reserved for our following paper.

3.1.4 (RQ4) Is it possible to develop a general framework to define classes of width

controlled n-dimensional interval fusion functions, as counterparts of known

classes of fusion functions so that they can improve the accuracy of classification

systems, in particular IV-FRBCSs, by the influence of the information quality

control?

This question was addressed by the following paper (available in Chapter 5, Section 5.1.4):

◦ T. Asmus, G. Dimuro, B. Bedregal, J. Sanz, R. Mesiar and H. Bustince, “A methodology for

controlling the information quality in interval-valued fusion processes: theory and application.”,

Knowledge Based Systems (submitted).

Motivated by the initial developments on w-iv-overlap functions, presented in our work discussed in

Section 3.1.3, we observed that (i) other fusion functions, including n-dimensional ones, could benefit

from a similar approach regarding the information quality control when defined in the interval-context,

and that (ii) IV-FRBCSs accuracy could improve from the application of adaptable width-limited

interval functions, since the best performing configurations of our IVTURS-OV method had functions

whose widths were limited by the minimum of the inputs’ widths (see Theorem 8, in Section 3.1.2),

which is a very strict width limitation.

Thus, in this paper, we extended the notion of width-limitation (and related concepts) to the n-

dimensional context, introduced a methodology for defining classes of n-dimensional width-limited

iv-fusion functions as counterparts of known classes of n-dimensional fusion functions, based on the

representation of classes of fusion functions through their set of constitutive properties. Also, we

presented some very flexible construction methods for functions from those classes (with choices

of width limiting functions and pair of admissible orders). Finally, we applied n-dimensional w-iv-
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overlap functions (defined by the new methodology) in IV-FRBCSs, showing that the classification

accuracy was improved by our approach.

Concepts such as width-limiting and width-limited functions (Definition 29) and maximal width-

threshold (Definition 33) were naturally extended to the n-dimensional context, so let us focus on

the new developed methodology for defining classes of width-limited iv-fusion functions (w-iv-fusion

functions). First, inspired by the approach of directional increasing fusion functions developed by

Bustince et al. (BMK+20), we presented a characterization of any subclass F of increasing n-

dimensional fusion functions through a set of properties PF such that: (i) includes boundary condi-

tions for any F ∈ F and (ii) possibly includes some other constraints not related to the monotonicity.

Such subclass of fusion functions is given by:

F = {F : [0, 1]n → [0, 1]| F is increasing and satisfies all the properties in PF}. (3.4)

Given the set PF of properties of a fusion function F ∈ F , denote by IPF the set of interval extensions

of the properties in PF . Usually, there are more than one way to extend a given property of a function

to the interval context, so IPF varies accordingly to how one extends such properties. This means

that from a set of properties PF one can obtain several sets of interval-context properties IPF . If we

define classes of functions based on their set of properties, as expressed by Equaqion (3.4), we can see

that from one class of function F (with its respective set PF ), we can define its interval counterpart

IF by associating an appropriate IPF to it.

Thus, the main idea of our methodology when defining a class IF of iv-fusion function as interval

counterpart of a class F of fusion functions that have controlled widths was to establish that, besides

being associated with a set of extended properties IPF , the functions from the defined class were

width-limited by an increasing fusion function (Definition 29) and increasing with respect to a pair of

partial orders (Definition 31).

Formally, consider the function B ∈ B, where a B is a subclass of increasing fusion functions (with

its corresponding set of properties PB) and let ≤1, ≤2 be partial orders on L([0, 1]). Then, denote the

class of w-iv-fusion functions for the tuple (≤1, ≤2, B) by IFWB
≤1,≤2 , which is given by:

IFwB
≤1,≤2 = {IF : L([0, 1])n → L([0, 1])| IF is (≤1, ≤2)-increasing, (3.5)

width-limited by B and satisfies all the properties in IPF}

Our framework for defining w-iv-fusion functions by Eq. (3.5) is general enough so that different

iv-aggregation functions defined in the literature may be retrieved, such as iv-t-norms (DBSR11) and
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iv-overlap functions (QH17; BBP+17), by restricting to the case where ≤1=≤2=≤P r and B(x⃗) = 1,

for all x⃗ ∈ [0, 1]n. However, those functions clearly have no limitation regarding their output widths

and may not be applicable in problems where admissible orders must be considered.

Concerning the development of the thesis, our previously defined n-dimensional iv-overlap func-

tions (Definition 24, in Section 3.1.1), general iv-overlap functions (Definition 26, in Section 3.1.1),

n-dimensional admissibly ordered iv-overlap functions (Definition 28, in Section 3.1.2) and w-iv-

overlap functions (Definition 32, in Section 3.1.3) could all be retrieved by our general framework.

We also applied this methodology to define new w-iv-fusion functions, but we highlight here the one

that was prominently featured in the experimentation part of this work, that of n-dimensional w-iv-

overlap functions:

Definition 34. Consider a function B ∈ B, where B is the subclass of increasing fusion functions,

such that PB = {simmetry}, and two partial orders ≤1, ≤2 on L([0, 1]). Then, IOnwB
≤1,≤2 is the

class of width-limited n-dimensional interval-valued overlap functions (w-iv-overlap functions) for

the tuple (≤1, ≤2, B), given by:

IOnwB
≤1,≤2 = {IOnw : L([0, 1])n → L([0, 1])| IOnw is width-limited by B, (3.6)

(≤1, ≤2)-increasing and satisfies all the properties in IPOn′}

where IPOn′ = {(IOn1), (IOn2), (IOn3)}. (see Definition 24, in Section 3.1.1).

One thing is to define a class of interval functions with interesting properties, another one is to pro-

vide examples of functions that respects those properties and are suitable to be applied in practical

problems. For that reason, inspired on the best construction methods for w-iv-overlap functions (The-

orems 11 and 13), presented in our work discussed in Section 3.1.3, we introduced new construction

methods for w-iv-fusion functions defined through our methodology. They were organized into two

main groups: construction methods based on representable functions (CMR) and construction me-

thods based on admissibly ordered functions (CMA). We showed examples of constructed w-iv-fusion

functions, based on different known aggregation functions (e.g., n-dimensional overlap and grouping

functions), for both CMR and CMA, and presented numerical examples to make clear the effect of

the width limitation on the outputs of the constructed functions.

The final part of this work was dedicated to apply the developed w-iv-fusion functions, in particular

n-dimensional w-iv-overlap functions, in our IV-FRBCS, IVTURS-OV, to check if the control of

the information quality can improve the classification acuity of the system. We followed a similar
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approach as done in our work discussed in Section 3.1.2, where we adapted the IVTURS algorithm

to take into account the chosen overlap operators from the start of the rules learning process. The

key difference now is that we considered a choice of width limiting function B, in which the user

can determine accordingly to how strict the width limitation must be when applying interval overlap

operators on the first two stages of the newly defined IV-FRM. To analyze the effect of the width

limitation on classification accuracy, we defined the function B, for all x⃗ ∈ [0, 1]n, by means of a

parameter ρ ∈ [0, 1], as follows:

Bρ(w(x1), . . . , w(xn)) = min{w(x1), . . . , w(xn)} + (3.7)

ρ · (max{w(x1), . . . , w(xn)} − min{w(x1), . . . , w(xn)}).

Specifically, we test each configuration with five possible values for ρ: ρ = 0 (B = min); ρ = 0.25;

ρ = 0.5; ρ = 0.75; ρ = 1 (B = max). In this manner, the parameter ρ indicates the amount of

width control that we are imposing on the system. When ρ = 0, the output’s width is limited by

the minimum of the inputs’ widths, representing the most strict width limitation. Conversely, when

ρ = 1, the output’s width is limited by the maximum of the inputs’ widths, representing the less width

control.

Since, in the work discussed in Section 3.1.2, we concluded that the order ≤IQ (Definition 2.14) was

a recommended choice of total order to be applied in IV-FRBCSs, we considered it as the ≤α,β order

needed to construct the employed n-dimensional w-iv-overlaps and as the total order used in the last

classification step of the IV-FRM. With all the discussed modifications, this is the final version of our

IVTURS-OV method.

The general goal of our experiment was to analyze the classification performance of the system when

applying different n-dimensional w-iv-overlap functions obtained by either the construction method

based on representable fusion functions (CMR) or the construction method based on ≤IQ-increasing

fusion functions (CMA). To conduct our experiment, we have selected the same 31 real-world data-

sets from the KEEL repository (AFSG+09) as the ones we tested on the works discussed on Sections

3.1.1 and 3.1.2. The selected n-dimensional overlap functions (On) to be used as the core of the cons-

truction methods were based on the best performing operations (as observed in our work, discussed in

Section 3.1.2) for this kind of classifier, namely, GM and OnB (Eq. (2.7) and (2.10), respectively),

as well as the product, since it was the operation used on the original IVTURS. To further analyze

the effect of information quality preservation on the classification performace, we also considered

configurations of the system based on the best interval representation of each of those n-dimensional

overlap functions, which do not have any width limitation.
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In total, there are 33 configurations of the system, which we organized in 3 groups:

1. Group REP, with one configuration for each best interval representation of the considered n-

dimensional overlap functions (3 in total);

2. Group CONR, with one configuration for each combination of considered n-dimensional w-iv-

overlap function (constructed via CMR) and ρ (15 in total);

3. Group CONA, with one configuration for each combination of considered n-dimensional w-iv-

overlap function (constructed via CMA) and ρ (15 in total).

Once we had the test result for all methods, we proceeded to compare the effect of the parameter ρ

in each configuration. Obviously, methods from the group REP were not considered in this stage,

since they are not affected by ρ (no width limitation). By fixing each considered n-dimensional w-iv-

overlap function and comparing the performance of each configuration with that function by varying

the values of ρ, we could observe that for some functions, such as the ones from Group CONR based

on the product and OnB, a rigid width limitation (ρ = 0) produced a significantly better performance

then a less strict width control (ρ = 1). On the other hand, methods based on the geometric mean

seemed to benefit from a less strict control on the information quality. In particular, methods from the

group CONA based on the n-dimensional overlap function OnB (Equation (2.10)) produced excellent

results for every considered ρ, with the best one being with ρ = 0.75.

From there, we decided to carry out 3 tests, to identify the best performing method from each group.

We observed that the configuration based on the n-dimensional overlap function OnB was the best

performing one in each and every group (with ρ = 0 in CONR and ρ = 0.75 in CONA). Then, we

proceed to statistically compare those three winning methods. The results showed that the method

based on the best interval representation of OnB with no width limitation does not achieve the same

level of performance of the other two compared methods, being significantly less accurate than the

control method. As those three methods are all based on the same core n-dimensional overlap func-

tion (OnB), which was used throughout all the components of those algorithms, the main difference

between them lies on the construction of the interval-valued operations that take place in the IV-FRM,

which may or may not control the widths of the outputs of such operations. Thus, we concluded that

controlling the width of the intervals, which implies having intervals with better information quality,

is beneficial for the system’s performance.

Finally, to further analyze the benefits of the new proposed methods, we carried out three pairwise

comparisons between the best performing method from each group with the original configuration of

Tiago da Cruz Asmus



58 3.1. Discussion

the IVTURS algorithm. These results showed, clearly, that the configurations of the best methods

from CONR and CONA improve significantly the performance of the IVTURS algorithm, whereas

the best method from REP does not improve the accuracy of IVTURS in the same manner. Therefore,

we concluded that the exchange from the product to the n-dimensional overlap function OnB was

not the sole reason for the better performance of those improved methods, indicating that these new

configuration benefited from a certain amount of width limitation. All in all, our IVTURS-OV method

with the aforementioned configurations surpassed the accuracy of the original IVTURS algorithm and

could be recommended as viable choice of IV-FRBCS for dealing with classification problems.

3.1.5 (RQ5) - Is it possible to develop a general framework to define classes of fusion

functions acting on an arbitrary closed real interval as counterparts of known

classes of fusion functions acting on the unit interval, without sacrificing their

fundamental properties, so that they can be constructed and applied in practical

problems that are not fuzzy in nature?

This question was addressed by the following paper (available in Chapter 5, Section 5.1.5):

◦ T. Asmus, G. Dimuro, B. Bedregal, J. Sanz, J. Fernandez, R. Mesiar and H. Bustince, “A

constructive framework to define fusion functions with floating domains in arbitrary closed real

intervals”, Information Sciences (submitted).

Since we obtained an improvement of the classification accuracy our IV-FRBCSs by applying novel

definitions of interval-valued overlap operations, we estimated that other classification techniques,

such as convolutional neural networks (LBH15), could benefit from the application of overlap or other

fusion operators. However, the data to be aggregated in such problems are not modeling membership

degrees, nor truth values, and, thus, are not from the unit interval.

So, inspired in our previously introduced methodology for defining w-iv-fusion functions based on

extended set of properties from a known fusion function (see Section 3.1.4), in this work we developed

a similar methodology to define fusion functions on arbitrary intervals [a, b], with a, b ∈ R and

a < b, which we called (a, b)-fusion functions. The fundamental aspect of this framework is that the

necessary and sufficient properties (constitutive properties) of the core fusion function, defined in the

context of the unit interval, are preserved in the context of an arbitrary interval [a, b] when defining an

analogous (a, b)-fusion function.

Before developing the framework, we had to introduce some concepts and to establish the terminol-

ogy:
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Definition 35. An (a, b)-fusion function is an arbitrary function F a,b : [a, b]n → [a, b].

It is clear that every fusion function is an (a, b)-fusion function for a = 0 and b = 1. Then, hencefor-

ward, every (0, 1)-fusion function is called here just as fusion function.

The action of shifting a property (P1) of a function F1 : [a1, b1]n → [a1, b1] from [a1, b1] to [a2, b2] is

to “rewrite” (P1) so that it conveys the same concept in the context of [a2, b2], resulting in a property

(P2) of a function F2 : [a2, b2]n → [a2, b2]. In other words, (P2) is the counterpart in [a2, b2] for the

property (P1). Some properties can be shifted without any rewriting (e.g., monotonicity, continuity,

associativity and idempotency). However, boundary conditions, in general, have to be rewritten when

shifted.

Definition 36. Let F be the subclass of fusion functions F : [0, 1]n → [0, 1] determined by the set

of constitutive properties PF . Then, a set of constitutive properties PFa,b of a class of (a, b)-fusion

functions Fa,b is said to be F-shiftable if PF coincides with the set composed of all the properties

obtained by shifting each property of PFa,b from [a, b] to [0, 1].

Definition 37. Let PF be the set of constitutive properties of a class of fusion functions F . Then,

Fa,b, given by

Fa,b = {F a,b : [a, b]n → [a, b]| F a,b satisfies all the properties in P a,b
F }, (3.8)

is said to be F-shifted if P a,b
F is F-shiftable.

Thus, a F-shifted class of (a, b)-fusion functions Fa,b is a counterpart (in [a, b]) of a class of fusion

function F (in [0, 1]).

In (GMMP09), aggregation functions were already defined in the context of a domain [a, b]n. But

here, to avoid confusion, we call them aggregation functions only when a = 0 and b = 1 (Definition

3). Otherwise, we call them (a, b)-aggregation functions, just to standardize the notation.

In the following, we showed how to define the class of n-dimensional (a, b)-overlap functions Oa,b,

based on the class O of n-dimensional overlap functions, through the framework. In other words,

we intended to define an O-shifted subclass Oa,b of (a, b)-aggregation functions as the counterpart in

[a, b] for the class of n-dimensional overlap functions O (Definition 8). For that, we had to define the

set of constitutive properties POa,b in a way for it to be O-shiftable, that is, so that POa,b = PO when

shifting the properties of POa,b from [a, b] to [0, 1].
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From Definition 8, we see that the set PO has three properties that can be shifted without rewriting

them: (On1), (On4) and (On5). So, these three properties can be part of the set POa,b . However,

properties (On2) and (On3) are the lower and upper boundary conditions, respectively, and, thus,

they depend on the values of such boundaries (0 and 1). Also, they are defined by means of the

product operation which, in the context of the interval [0, 1], has the lower boundary as its annihilator

element and the upper boundary as its neutral element. This characteristic is not carried when defining

such boundary conditions on a different interval [a, b].

So, it was clear that we could not simply exchange 0 for the left endpoint (a) on condition (On2) and

1 for right endpoint (b) on condition (On3) to obtain the analogous boundary conditions for POa,b .

There are more than one way to define such boundary conditions so that they are equivalent to (On2)

and (On3) when a = 0 and b = 1. Here we presented a viable alternative. Considering an (a, b)-

fusion function Ona,b : [a, b]n → [a, b], the following properties complete the set POa,b :

(OAB1) Ona,b is symmetric;

(OAB2) Ona,b(x1, . . . , xn) = a if and only if
∏n

i=1(xi − a) = 0;

(OAB3) Ona,b(x1, . . . , xn) = b if and only if
∏n

i=1(xi−a
b−a ) = 0;

(OAB4) Ona,b is increasing;

(OAB5) Ona,b is continuous.

One can observe that (OAB2) and (OAB3) are equivalent to (On2) and (On3), respectively, when

a = 0 and b = 1, since the relevant properties of the product operation are respected in [0, 1].

The other three properties were just relabelled to not mix the notation. Thus, the set of properties

POa,b = {(OAB1), (OAB2), (OAB3), (OAB4), (OAB5)} is O-shiftable.

Based on the set of properties POa,b , we defined the class of n-dimensional (a, b)-overlap functions:

Definition 38. The class Oa,b of n-dimensional (a, b)-overlap functions Ona,b is given by:

Oa,b = {Ona,b : [a, b]n → [a, b]| Ona,b satisfies all the properties in POa,b} (3.9)

where POa,b = {(OAB1), (OAB2),(OAB3), (OAB4), (OAB5)}.

Similar definitions were presented for (a, b)-t-norms and (a, b)-unimorms, to showcase how other

(a, b)-aggregation functions can also be defined through our general framework, by shifting the con-

stitutive properties of the core aggregation functions. Since the motivation came from an application
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standpoint, we presented some construction methods for these newly defined (a, b)-aggregation func-

tions, guaranteeing that the constructed function behaves in [a, b] in a similar manner as the core

function does in [0, 1].

Consider a fusion function F : [0, 1]n → [0, 1] and an increasing and bijective function ϕ : [a, b] →

[0, 1] and the (a, b)-fusion function F a,b
ϕ : [a, b]n → [a, b] given, for all x1, . . . , xn ∈ [a, b], by

F a,b
ϕ (x1, . . . , xn) = ϕ−1 (F (ϕ(x1), . . . , ϕ(xn))) . (3.10)

Then, F is said to be the core function of F a,b
ϕ . In the remainder of the paper, we denote F a,b

ϕ simply

by F a,b. Equation (3.10) place an important role in the following construction methods.

Theorem 14. Consider a fusion function A : [0, 1]n → [0, 1], an increasing and bijective function

ϕ : [a, b] → [0, 1] and an (a, b)-fusion function Aa,b : [a, b]n → [a, b] given, for all x1, . . . , xn ∈ [a, b],

by

Aa,b(x1, . . . , xn) = ϕ−1 (A (ϕ(x1), . . . , ϕ(xn))) . (3.11)

Then, Aa,b is an (a, b)-aggregation function if and only if A is an aggregation function.

Theorem 15. Consider a fusion function On : [0, 1]n → [0, 1], an increasing and bijective function

ϕ : [a, b] → [0, 1] and an (a, b)-fusion function Ona,b : [a, b]n → [a, b] given, for all x1, . . . , xn ∈

[a, b], by

Ona,b(x1, . . . , xn) = ϕ−1 (On (ϕ(x1), . . . , ϕ(xn))) , (3.12)

Then, Ona,b is an n-dimensional (a, b)-overlap function if and only if O is an n-dimensional overlap

function.

One may observe that the geometric mean GM , given by Equation (2.7), is only an n-dimensional

(a, b)-overlap function when a = 0 and b > 0. In the following, we applied the construction method

from Theorem 15 to obtain an n-dimensional (a, b)-overlap function GMa,b based on the geometric

mean GM , for any arbitrary a, b ∈ R, such that a < b.

Example 11. Consider increasing bijection ϕA : [b, a] → [0, 1], for all x ∈ [a, b], by

ϕA(x) =
(

x − a

b − a

)
. (3.13)

Then, let GM : [0, 1]n → [0, 1] be the geometric mean, given by Equation (2.7). Thus, the (a, b)-

fusion function GMa,b : [a, b]n → [a, b], given, for all x1, . . . , xn ∈ [a, b], by

GMa,b(x1, . . . , xn) = ϕA
−1 (GM (ϕA(x1), . . . , ϕA(xn))) , (3.14)
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is an n-dimensional (a, b)-overlap function. We can rewrite Equation (3.14) as follows:

GMa,b(x1, . . . , xn) = GM

(
x1 − a

b − a
, . . . ,

xn − a

b − a

)
· (b − a) + a.

Similar construction methods were presented for (a, b)-t-norms and (a, b)-uninorms. The presented

construction methods are based on the choice of core aggregation function and an increasing bijective

function, both able to be defined with parameters that can be manipulated/adapted/learned, accord-

ingly to the application at hand, without sacrificing the main properties of the desired constructed

function.

Then, we proceed to study some interesting properties of aggregation functions, namely, idempotency,

a kind of generalized migrativity (introduced in this work) and abstract homogeneity (SBD+21), and

showed that those properties are preserved when our construction methods for (a, b)-aggregation func-

tions are applied.

Finally, we presented the main concepts to develop a similar framework to define fusion functions

whose inputs come from an interval [a, b] but the output is mapped on a possibly different interval

[c, d]. This type of function was introduced as follows:

Definition 39. An (a, b, c, d)-fusion function is an arbitrary function F c,d
a,b : [a, b]n → [c, d].

It is immediate that every fusion function is an (a, b, c, d)-fusion function for a = c = 0 and b =

d = 1. Also, every (a, b)-fusion function is an (a, b, c, d)-fusion function when a = c and b = d. So,

every (0, 1, 0, 1)-fusion function is called just as fusion function and every (a, b, a, b)-fusion function

is called just as (a, b)-fusion function.

Properties from either fusion functions or (a, b)-fusion functions can be shifted to the context of

(a, b, c, d)-fusion functions, by taking into consideration the domain [a, b]n and codomain [c, d]. Thus,

one can define subclasses of (a, b, c, d)-fusion functions, by the same methodology presented for

(a, b)-fusion functions, that is, by appropriately shifting the constitutive properties of the core class of

functions.

Then, based on this framework, subclasses of (a, b, c, d)-fusion functions were defined and construc-

tion methods for them were presented. We showed that, under some constraints, when a constructed

(a, b, c, d)-aggregation function is based on an (a, b)-aggregation function, which, in turn, is based on

a core aggregation function defined on [0, 1]n, it is equivalent to the (a, b, c, d)-aggregation function

obtained directly from the same core aggregation function defined in [0, 1].
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In conclusion, the theoretical contributions of this paper can benefit applications with aggregation

processes where the data are not restricted to the unit interval, in particular with the assurance that the

advantageous properties of known aggregation functions can be preserved (shifted) when applying the

newly developed functions, even on problems that do not necessarily involve fuzzy modeling.

3.2 Complementary contributions

In this section, we present four works that, although they do not conform the main discussion around

our research questions, were directly related to the development of this thesis.

3.2.1 General grouping functions

The associated publication (available in Chapter 5, Section 5.2.1) related to this contribution is the

following:

◦ H. Santos, G. Dimuro, T. Asmus, G. Lucca, E. Bueno, B. Bedregal, J. Sanz and H. Bustince,

“General grouping functions”, Information Process- ing and Management of Uncertainty in

Knowledge-Based Systems 1238 (2020) 481–495.

Inspired by the work of De Miguel et al. (DGR+19) on general overlap functions, this work introduced

the concept of general grouping functions:

Definition 40. A general grouping function is any mapping GG : [0, 1]n → [0, 1] that satisfies the

following conditions, for all x1, . . . , xn ∈ [0, 1]:

(GG1) GG is symmetric;

(GG2) If
∑n

i=1 xi = 0 then GG(x1, . . . , xn) = 0;

(GG3) If there exist i ∈ {1, . . . , n} such that xi = 1 then GG(x1, . . . , xn) = 1;

(GG4) GG is increasing;

(GG5) GG is continuous.

General grouping functions generalize n-dimensional grouping functions (Definition 9), by having

less restrictive boundary conditions. This flexibility allowed us to present several construction me-

thods for this kind of function, which we summarize here (the numeration of each result corresponds

with the ones from the associated publication):
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Theorem 2 - Characterization of general grouping functions by two fusion functions with some con-

ditions;

Theorem 3 - Construction of a general grouping function as a truncated version of an n-dimensional

grouping functions;

Proposition 6 - Construction of a general grouping function through the product of an n-dimensional

grouping function by a symmetric and continuous aggregation function that respects (GG3);

Theorem 5 - Construction of a general grouping function by generalized composition of general

grouping functions by a continuous aggregation function;

Theorem 6 - Construction of a general grouping function by generalized composition of continuous,

symmetric and disjunctive aggregation functions by a general grouping function;

Proposition 7 - Construction of a general grouping function as the N -dual of a general overlap func-

tions, considering a fuzzy negation N .

The presented construction methods show the adaptability and applicability of the developed concepts.

Also, many of the developed theory for general overlap functions can be adapted for general grouping

functions, since the duality between them is verified.

3.2.2 General interval-valued grouping functions

The associated publication (available in Chapter 5, Section 5.2.2) related to this contribution is the

following:

◦ T. Asmus, G. Dimuro, H. Bustince, B. Bedregal, H. Santos and J. A. Sanz, “General interval-

valued grouping functions”, IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)

(2020) 1–8.

Our paper on general iv-overlap functions (Section 3.1.1) and the aforementioned related work on

general grouping functions (Section 3.2.1) lead to the development of the concepts of n-dimensional

iv-grouping functions and their generalization, namely, general iv-grouping functions:

Definition 41. A function IGn : L([0, 1])n → L([0, 1]) is called an n-dimensional interval-valued

(iv) grouping function if the following conditions are satisfied, for all X⃗ ∈ L([0, 1])n:

(IGn1) IGn is symmetric;
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(IGn2) IGn(X⃗) = [0, 0] ⇔
∑n

i=1 Xi = [0, 0];

(IGn3) IGn(X⃗) = [1, 1] ⇔ there exist i ∈ {1, . . . , n} such that Xi = [1, 1];

(IGn4) IGn is ≤P r-increasing;

(IGn5) IGn is Moore continuous.

We showed that an n-dimensional grouping function can be obtained, by duality, from a n-dimensional

iv-overlap function (and vice versa):

Proposition 6. Let IOn : L([0, 1])n → L([0, 1]) be an n-dimensional iv-overlap function. Then, the

mapping IGnIOn : L([0, 1])n → L([0, 1]) defined by

IGnIOn(X⃗) = [1, 1] − IOn([1, 1] − X1, . . . , [1, 1] − Xn)

is an n-dimensional iv-grouping function.

The concept of g-representable functions was also introduced, that is, representable interval functions

that have n-dimensional grouping functions as both their representatives, and the conditions for a

n-dimensional iv-grouping function to be g-representable were presented:

Theorem 16. Let IGn : L([0, 1])n → L([0, 1]) be an n-dimensional iv-grouping function. Then,

IGn is g-representable if and only if IGn is inclusion monotonic and the following conditions are

satisfied: (i) IGn(X⃗) = 0 ⇔ X1 = . . . = Xn = 0; (ii) IGn(X⃗) = 1 ⇔ max(X⃗) = 1.

By replacing conditions (IGn2) and (IGn3) on Definition 41 for less restrictive ones, we obtained the

following definition:

Definition 42. A general iv-grouping function is any mapping IGG : L([0, 1])n → L([0, 1]) that

satisfies the following conditions, for all X⃗ ∈ L([0, 1])n:

(IGG1) IGG is symmetric;

(IGG2) If
∑n

i=1 Xi = [0, 0] then IGG(X⃗) = [0, 0];

(IGG3) If there exist i ∈ {1, . . . , n} such that Xi = [1, 1] then IGG(X⃗) = [1, 1];

(IGG4) IGG is ≤P r-increasing;

(IGG5) IGG is Moore continuous.
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It is immediate that general iv-grouping functions generalize n-dimensional iv-grouping functions.

Then, construction methods for general iv-grouping functions were presented (the numeration of each

result corresponds with the ones from the associated publication):

Theorem 4.2 - Characterization of general iv-grouping functions by two iv-fusion functions with

some conditions;

Proposition 4.3 - Construction of a general iv-grouping function through the supremum of a general

iv-grouping function and a Moore continuous iv-aggregation function;

Theorem 4.3 - Construction of a general iv-grouping function by generalized composition of general

iv-grouping functions by a Moore continuous aggregation function.

The theoretical contributions presented in this paper allow for a more flexible approach when dealing

with decision making problems with multiple alternatives and interval-valued data, which we sug-

gested as a potential application for the introduced concepts.

3.2.3 General admissibly ordered interval-valued overlap functions

The associated publication (available in Chapter 5, Section 5.2.3) related to this contribution is the

following:

◦ T. Asmus, G. Dimuro, J. A. Sanz, J. Wieczynski, G. Lucca and H. Bustince, “General admis-

sibly ordered interval-valued overlap functions”, The 13th International Workshop on Fuzzy

Logic and Applications (WILF) (2021) (accepted).

In our work on n-dimensional admissibly ordered iv-overlap functions (Section 3.1.2), we presented

a construction method (Theorem 8) for this type of function considering ≤α,β orders, with α ∈ (0, 1).

This means that neither of the lexicographical orders can be considered when applying this method.

Although this is not a serious problem, with the initial motivation to overcome this drawback, in this

complementary work we combined the concepts of general iv-overlap functions (Definition 26, in

Section 3.1.1) and n-dimensional admissibly ordered iv-overlap functions (Definition 28, in Section

3.1.2) to introduce general admissibly ordered iv-overlap functions, as follows:

Definition 43. A function AGO : L([0, 1])n → L([0, 1]) is a general admissibly ordered iv-overlap

function for an admissible order ≤AD (general ≤AD-overlap function) if it satisfies the conditions

(IGO1), (IGO2) and (IGO3) of Definition 26 (see Section 3.1.1), and the following condition holds:
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(AGO4) AGO is ≤AD-increasing.

The following result is immediate:

Proposition 7. If AOn : L([0, 1])n → L([0, 1]) is an n-dimensional ≤AD-overlap function, then it is

also a general ≤AD-overlap function, but the converse may not hold.

In the sequence, we presented three construction methods for general ≤AD-overlap function (the

numeration of each result corresponds with the ones from the associated publication):

Theorem 7 - An adaptation of Theorem 8 (in Section 3.1.2), by considering α ∈ [0, 1], which pro-

duces a general ≤α,β-overlap function;

Theorem 9 - An adaptation of Theorem 3 (in Section 2.3) to obtain a general ≤α,β-overlap functions,

with α, β ∈ [0, 1], by applying a strict n-dimensional overlap function to aggregate the Kα

points of the inputs to generate the Kα point of the output of the constructed function;

Theorem 4.3 - Construction of general ≤AD-overlap functions by generalized composition of gen-

eral ≤AD-overlap functions by an ≤AD-increasing iv-aggregation function.

Thus, the introduced concept of general admissibly ordered iv-overlap functions proved to very flexi-

ble and adaptable, allowing for the development of different construction methods, and even the com-

position of functions constructed through those methods, which makes them suitable to be applied in

practical problems. In particular, we highlight that even the lexicographical orders are contemplated

by the presented construction methods.

3.2.4 Enhancing the efficiency of the interval-valued fuzzy rule-based classifier with

tuning and rule selection

The associated publication (available in Chapter 5, Section 5.2.4) related to this contribution is the

following:

◦ H. Santos, G. Dimuro, T. Asmus, G. Lucca, E. Bueno, B. Bedregal, J. Sanz and H. Bustince,

“Enhancing the efficiency of the interval-valued fuzzy rule-based classifier with tuning and

rule selection”, Information Processing and Management of Uncertainty in Knowledge-Based

Systems 1238 (2020) 463–478.

The first three complementary works, discussed in Sections 3.2.1, 3.2.2 and 3.2.3, were focused on the

theoretical developments of functions inspired by the works on generalized/extended (interval-valued)

Tiago da Cruz Asmus



68 3.2. Complementary contributions

overlap operations. Nevertheless, the following work was motivated entirely from an application

standpoint, in an attempt to enhance the efficiency of the IVTURS algorithm (the state-of-the-art IV-

FRBCS used as a basis throughout the development of this thesis) for it to be less time consuming and

maintaining the performance results.

The first strategy involved a simple mathematical simplification on the expressions of the IV-REFs

applied in step 1 of the IV-FRM. Since the IV-REF, given by Equation (2.18), is used to compute

the similarity between the interval membership degree X ∈ L([0, 1]) with the perfect membership

expressed by the interval [1, 1], and a, b ∈ (0, +∞), one has that:

IR(X, [1, 1]) =
[
(1 − |Xb − 1b|)

1
a , (1 − |Xb − 1b|)

1
a

]
=

[
X

b
a , X

b
a

]
(3.15)

This simplification results in an economy of computational cost, since the power operations, which

are very taxing on the system, are cut in half.

The second optimization was done when computing the interval matching degree (see Section 2.6.2)

and how the system manages “do not care” labels, that is, when some variables (attributes) have to be

disregarded on the rule at hand. On IVTURS’s original code, since the conjunction operation in this

step is calculated through an interval product, do not care labels are assigned the value [1, 1] (neutral

element of the interval product), so that they do not interfere in the final output of the matching degree.

Even so, a lot of calculations are carried out, even if the final result remains unaltered.

To avoid such trivial but costly operations with do not care labels, we proposed the addition of an

initial iteration where the system check whether the example is compatible with the rule or not. Then,

the interval matching degree is only computed when they are compatible, meaning that do not care

labels are disregarded in this process. This extra initial iteration may appear to incur in an extra charge

for the run time of the algorithm, but the fact is that it provided a great reduction on the run time, by

avoiding many calculations in the IV-FRM.

The experimentation that was executed in this work showed that these two modifications provides

a system that is about eight times faster than the original IVTURS algorithm. Thus, this modified

version of IVTURS can be applied in a wider range of classification problems, since its efficiency has

been notably enhanced.

Another aspect that was analyzed was the evolutionary process, since the parameters a and b applied

in Equation (3.15) can be exchanged by a single parameter c = b
a , reducing the search space. This

modification could affect the accuracy of the system, so the authors carried out an experimentation,

comparing the classification acuity of the system with other evolutionary approaches. The results
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showed that the configuration of the original IVTURS in this regard provided competitive results, so

the evolutionary process does not need to be modified.

3.3 Summary

Here, we present an overview of the development of the thesis, both from a theoretical and practical

point of view. Figure 3.1 shows a flowchart of such developments.

Each stage of development is associated with one of the main papers from the collection, as described

in the Methodology. In each of those stages, we have a row dedicated to the main theoretical concepts

(left nodes) and another row to the development of the new IV-FRBCS based on IVTURS, named

IVTURS-OV (right nodes).

Notice that each node is connected to another from a following stage and has a + symbol, indica-

ting that the concepts and features from past nodes are not disregarded in latter stages of develop-

ment, which characterizes the incremental methodology. For instance, the structure of the general

framework for w-iv-fusion functions introduced in stage 4 was heavily influential in the introduced

framework for (a, b)-fusion functions in stage 5.

The reason for some of the right nodes to have different colors is to match the color of the particular

step of the IVTURS algorithm (see Figure 2.5, in Section 2.6) in which the modification was made.

For example, in stage 2, both the generation of the initial FRBCS (red) and the IV-FRM (blue) were

affected by the introduced theoretical developments from this stage. In stage 4, the new concepts were

only applied in the IV-FRM, but we kept the red color on the top part of this node to reinforce that the

previous modifications on the generation of the initial FRBCS are still being considered.

In Figure 3.2, we present the relation between the complementary contributions (discussed in Section

3.2) with the stages of development of the thesis. The square nodes signify each stage (with its

respective publication, discussed in Section 3.1) and the circle nodes represent each complementary

work, as follows:

◦ CW1 - General grouping functions (Section 3.2.1);

◦ CW2 - General interval-valued grouping functions (Section 3.2.2);

◦ CW3 - General admissibly ordered interval-valued overlap functions (Section 3.2.3);

◦ CW4 - Enhancing the efficiency of the interval-valued fuzzy rule-based classifier with tuning

and rule selection (Section 3.2.4).

So, complementary works CW1 and CW2 are related to the first stage of development of the thesis
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Figure 3.1: A flowchart of development of the thesis.

(Section 3.1.1), while CW3 and CW4 derived from the first two stages (Sections 3.1.1 and 3.1.2). At

this point, we have no further published works related to the remaining stages of development, which

is why we omitted the last three stages on Figure 3.2.
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Figure 3.2: A flowchart for the complementary works.
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Chapter 4

CONCLUSION

4.1 Final remarks and contributions

Overlap functions and their generalizations have been successfully applied as fusion operators in

problems where associativity is not a requirement, such as FRBCSs. Despite their desirable properties,

the application of overlap operators in either IV-FRBCSs or other non-fuzzy classifiers could not

be found in the literature previous to this thesis. Most of this absence derives from how overlap

functions were originally defined (as aggregation functions acting on the unit interval), which limit

their application to fuzzy contexts, and how they were defined in the context of intervals (as bivariate

functions that are only increasing with respect to a partial order).

Generalizations on the concept of overlap functions have been successfully applied in FRBCSs,

namely, n-dimensional overlap functions and general overlap functions. Motivated by this fact,

we could introduce similarly defined functions in the interval context, in order to be applied in IV-

FRBCSs. To avoid stalemate situations in the classification task carried out by IV-FRBCSs, admissible

orders could be considered, since they refine the usual product order for intervals.

When operating with intervals in fusion processes, their widths are associated with the uncertainty

of the value they are approximating and the quality of the information they are carrying. So, by

controlling the widths of the interval outputs of such operations accordingly to the widths of the

interval inputs, one could prevent the deterioration of such information quality. However, this type of

width control has only been studied, in the literature previous to this thesis, based on a very restrictive

instance were all the interval inputs have the same width. Also, there was no framework to define
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and construct width controlled iv-fusion functions, based on known fusion functions with desirable

properties, like n-dimensional overlap functions. Furthermore, the effect any kind of information

quality control in IV-FRBCSs has also not being studied in the literature.

In the case of non-fuzzy classifiers, fusion processes are performed with data that are not limited

to the unit interval. Still, in the literature previous to this thesis, one cannot find a framework to

properly define and construct fusion functions acting on a closed real interval, based on known fusion

functions acting on the unit interval, such as n-dimensional overlap functions, in a manner that the

desirable properties of such functions are adequately transposed in this new arbitrary domain.

All the considerations above inspired the proposal of the five research questions posed in the Introduc-

tion. Following the incremental methodology, we dedicated a full article to address each one of those

questions, introducing new, general theoretical concepts, always with the intent that those concepts

could be applied in practical problems. That could be observed by our ongoing development of the

IVTURS-OV classifier throughout the thesis, in which we applied most of the developed concepts,

achieving fulfilling results.

Here, we review the main contributions of this thesis:

• The definition and introduction of construction methods of n-dimensional iv-overlap functions,

general interval valued overlap functions and iv-overlap indices, allowing for the construction

of generalized interval overlap operators that can be applied in n-dimensional problems, such

as the ones tackled by IV-FRBCSs;

• The definition and introduction of construction methods of n-dimensional admissibly ordered iv-

overlap functions, allowing for the construction of interval overlap operators that are increasing

with respect to an admissible order;

• The analysis of the effect of admissible orders and n-dimensional admissibly ordered iv-overlap

functions in the classification accuracy of IV-FRBCSs, showing that non-associative interval

overlap operators and the admissible order which favors the information quality are recom-

mended for such classification systems;

• The introduction of the concepts of width-limited interval-valued functions and width-limiting func-

tions, which, besides being broader than the concept of width-preservation, are the core of our

developments on the control of the information quality in interval fusion processes;
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• The definition and introduction of construction methods of w-iv-overlap functions, taking into ac-

count a width-limiting function and a pair of partial orders, which allows the construction of

interval overlap operators with controlled information quality;

• The introduction of a general framework for defining classes of w-iv-fusion functions, based on the

extension of a set of properties from a core fusion function, along with several construction me-

thods for w-iv-fusion functions defined through the framework, which allows the construction

of several fusion operators with controlled information quality;

• The analysis of the application of interval overlap operators with information quality control in IV-

FRBCSs, showing that their application can improve the classification accuracy of the system;

• The development of a new IV-FRBCS based on interval overlap operators that consider both the

admissible order applied in the system and has controlled information quality, named IVTURS-

OV, which surpasses the classification accuracy of the state-of-the-art classifier IVTURS;

• The introduction of a general framework for defining classes of (a, b)-fusion function as counter-

parts of known classes of fusion functions, based on the shifting of the constitutive properties of

such fusion functions. We also provide several construction methods for (a, b)-fusion functions,

which allows the construction of several operators that may fuse data that is not necessarily from

the unit interval and preserve the desirable properties of a given fusion function.

4.2 Future lines of work

In this section, we present some possible futures lines of work that could be motivated by our contri-

butions. One could observe that the last two stages of development of the thesis, dedicated to address

the research questions (RQ4) and (RQ5), were a culmination of all the previous development stages.

For that reason, we first discuss some works that could be motivated by our introduced general frame-

work for w-iv-fusion functions and their application in IV-FRBCSs. Following that, we point out

potential works that could benefit from the introduced general framework for (a, b)-fusion functions

that preserve the desirable properties of a given fusion function. Finally, we present a possible future

work derived from the combined contributions from these stages of development of the thesis.
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4.2.1 Motivated by our general framework for w-iv-fusion functions and their appli-

cation in IV-FRBCSs

In the works of Lucca et al. (LSD+17; LSD+18; LDF+19), several generalizations of the discrete

Choquet integral were introduced and successfully applied in FRBCSs to aggregate the information

given by the fired fuzzy rules. Such functions could be redefined in the interval context, by means

of our general framework with information quality control and admissible orders, and be similarly

applied on newly developed IV-FRBCSs based on IVTURS-OV.

Recently, other generalizations of the discrete Choquet integral based on dissimilarities were intro-

duced. First, Bustince et al. (BMF+21) presented the notion d-Choquet integral, by replacing the

difference operation in the definition of the Choquet integral by a restricted dissimilarity function

(BBP08). After that, Takáč et al. (TUG+21) further generalized this concept, introducing the dG-

Choquet integral. An analogous definition for interval-valued dG-Choquet integrals that are increas-

ing with respect to an admissible order was also presented, which allowed them to be applied to

combine the predictions of an ensemble of IVTURS classifiers. So, one possible development of such

concept would be to consider the construction of width-limited interval-valued dG-Choquet integrals,

through our general framework, and carry out similar experiments with an ensemble of IVTURS-OV

classifiers, possibly considering different levels of information quality control.

One could also consider the development of a general framework for w-iv-fusion functions that are

not monotonic. For example, interval-valued implications (ZBM+17) could be defined taking into

account the concept of width-limitation. More generally, R-implications-like functions (Ouy12) and

material implications (PBBD16), which can be defined by means of aggregation functions, could also

be defined in the interval context through this framework, that is, with control of the interval outputs’

widths.

Other interesting possibility is to develop a new IV-FRBCS where the width limitation is considered

even in the generation of the fuzzy rules and the modeling of the IVFS, accordingly to the application

at hand.

4.2.2 Motivated by our general framework for (a, b)-fusion functions and their appli-

cation in non fuzzy classification systems

Our general framework for (a, b)-fusion functions could provide the definitions of several (n-dimensional)

(a, b)-fusion functions (e.g., (a, b)-t-norms, (a, b)-t-conorms, (a, b)-uninorms, n-dimensional (a, b)-
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overlap functions and n-dimensional (a, b)-grouping functions) to be applied as the fusion operator

in non fuzzy systems, e.g., the aggregation of forces in image processing problems based on a gra-

vitational approach (LMBF+10), the pooling stage of convolutional neural networks (RLS+) and the

fusion processes on LSTM neural networks (MFJB).

In the theoretical space, several concepts could be developed based our general framework and the

notion of property shifting. For instance, counterparts for the notions of fuzzy negations and restric-

ted dissimilarity functions could be introduced in the form of (a, b)-negations and restricted (a, b)-

dissimilarity functions, which would be a first step in the development of several other concepts to be

applied beyond the unit interval.

4.2.3 General framework for width-limited interval-valued (a, b)-fusion functions and

their application in non-fuzzy classification systems with uncertainty modeling

An immediate possible theoretical development could arise from the amalgamation of the concepts

introduced by this thesis: a general constructive framework for defining w-iv-fusion functions on a set

L of closed real intervals [a, b], by appropriately shifting and extending the constitutive properties of

a core fusion function to the context of L. This would allow for the application of iv-fusion functions

with information quality control in problems with imperfect information and uncertainty modeling,

but that are not fuzzy in nature, such as in classification via deep learning.
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4.3 Conclusión (versión en español)

Las funciones de solapamiento y sus generalizaciones se han aplicado con éxito como operadores

de fusión en problemas donde la asociatividad no es un requisito, como los SCBRDs. A pesar de sus

buenas propiedades, la aplicación de operadores de solapamiento en IV-SCBRDs u otros clasificadores

no difusos no se pudo encontrar en la literatura previa a esta tesis. Las grades razones de esta ausencia

son la definición original de las funciones de solapamiento (como funciones de agregación que actúan

sobre el intervalo unitario), que limitan su aplicación a contextos difusos, y su definición en el contexto

de intervalos (como funciones bivariadas que solo son crecientes con respecto a un órden parcial).

Las generalizaciones sobre el concepto de funciones de solapamiento se han aplicado con éxito en los

SCBRDs, a saber, funciones de solapamiento n-dimensionales y funciones de solapamiento generales.

Motivados por este hecho, podrı́amos introducir funciones definidas de manera similar en el contexto

de intervalos, para poder aplicarlas en IV-SCBRDs. Para evitar situaciones en las que no se pueda

tomar una decisión sobre la clase a asignar a un ejemplo a la hora de realizar la clasificación realizada

por IV-SCBRDs, se podrı́an considerar los órdenes admisibles, ya que refinan el órden habitual del

producto para intervalos.

Cuando se opera con intervalos en procesos de fusión, sus amplitudes están asociadas con la incer-

tidumbre del valor que están aproximando y la calidad de la información que representan. El control

de las amplitudes de los intervalos de salida de tales operaciones de acuerdo con las amplitudes de los

intervalos de entrada podrı́a evitar el deterioro de la dicha calidad de la información. Sin embargo, este

tipo de control de la amplitud solo ha sido estudiado, en la literatura previa a esta tesis, a partir de una

situación muy restrictiva donde todos los intervalos de entrada tienen la misma amplitud. Además,

no habı́a un marco para definir y construir funciones de fusión intervalo-valoradas con amplitudes

controladas, basadas en funciones de fusión conocidas con propiedades deseables, como funciones

de solapamiento n-dimensionales. Además, el efecto de cualquier tipo de control de la calidad de la

información en IV-SCBRDs tampoco se habı́a estudiado en la literatura.

En el caso de clasificadores no difusos, los procesos de fusión se realizan con datos que no están

limitados al intervalo unitario. Sin embargo, en la literatura previa a esta tesis, no se podı́a encontrar

un marco para definir y construir correctamente funciones de fusión que actúen en un intervalo real

cerrado, basándose en funciones de fusión conocidas que actúen sobre el intervalo unitario, como

las funciones de solapamiento n-dimensionales, de manera que las propiedades deseables de tales

funciones se traspongan adecuadamente al nuevo dominio arbitrario.
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Todas las consideraciones anteriores inspiraron la propuesta de las cinco preguntas de investigación

planteadas en la Introducción. Siguiendo una metodologı́a incremental, dedicamos un artı́culo com-

pleto a abordar cada una de esas preguntas, introduciendo nuevos conceptos teóricos generales y

siempre con la intención de que pudieran aplicarse en problemas prácticos. Este hecho se puede ob-

servar en el continuo desarrollo del clasificador IVTURS-OV a lo largo de la tesis, en el que aplicamos

la mayorı́a de los conceptos desarrollados, logrando resultados satisfactorios.

A continuación, repasamos las principales aportaciones de esta tesis:

• La definición e introducción de métodos de construcción de funciones de solapamiento intervalo-

valoradas n-dimensionales, funciones de solapamiento intervalo-valoradas generales e ı́ndices

de solapamiento intervalo-valorados, permitiendo la construcción de operadores generalizados

de solapamiento de intervalos que se pueden aplicar en problemas n -dimensionales, como los

que abordan los IV-SCBRDs;

• La definición e introducción de métodos de construcción de funciones de solapamiento intervalo-

valoradas n-dimensionales ordenadas admisiblemente, lo que permite la construcción de oper-

adores de solapamiento de intervalos que son crecientes con respecto a un orden admisible;

• El análisis del efecto de los órdenes admisibles y las funciones de solapamiento intervalo-valoradas

n-dimensionales ordenadas admisiblemente en el rendimiento de clasificación de los IV-SCBRDs,

mostrando que los operadores de solapamiento de intervalos no asociativos y el orden admisi-

ble que favorece la calidad de la información son recomendables para tales sistemas de clasifi-

cación;

• La introducción de los conceptos de funciones de intervalo con amplitudes limitadas y funciones de

limitación de la amplitud, que además de ser más amplios que el concepto de preservación de la

amplitud, son el núcleo de nuestros desarrollos sobre el control de la calidad de la información

en los procesos de fusión de intervalos;

• La definición e introducción de métodos de construcción de funciones de solapamiento intervalo-

valoradas con amplitudes limitadas, teniendo en cuenta una de limitación de la amplitud y un

par de órdenes parciales, lo que permite la construcción de operadores de solapamiento de

intervalos con calidad de información controlada;

• La introducción de un marco general para definir clases de funciones de fusión intervalo-valoradas

con amplitudes limitadas, basado en la extensión de un conjunto de propiedades de una función
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de fusión base, junto con varios métodos de construcción para funciones de fusión intervalo-

valoradas con amplitudes limitadas definidas a través de dicho marco, que permite la con-

strucción de varios operadores de fusión con calidad de información controlada;

• El análisis de la aplicación de operadores de solapamiento de intervalos con control de calidad de

la información en IV-SCBRDs, mostrando que su aplicación puede mejorar el rendimiento de

clasificación del sistema;

• El desarrollo de un nuevo IV-SCBRD basado en operadores de solapamiento de intervalos que

consideran tanto el orden admisible aplicado en el sistema como la calidad de la información

controlada, denominado IVTURS-OV, que supera el rendimiento de clasificación del clasifi-

cador IVTURS, que es considerado como estado del arte;

• La introducción de un marco general para definir clases de funciones de (a, b)-fusión como homólogas

de clases conocidas de funciones de fusión, basado en el cambio de las propiedades constitutivas

de tales funciones de fusión. También proporcionamos varios métodos de construcción de fun-

ciones de (a, b)-fusión, lo que permite la construcción de varios operadores que pueden fusionar

datos que no son necesariamente del intervalo unitario y la preservación de las propiedades de-

seables de una función de fusión dada.
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PUBLICATIONS

This final chapter constitutes the collection of all the papers developed as part of this thesis, discussed

in Chapter 3. Those papers are divided in two categories: i) main publications (associated with the

five research questions and constituting the main body of work of this thesis) and ii) complementary

contributions.

5.1 Main publications

Here, we present the five papers discussed in Section 3.1. For each one, we inform the journal where

it was published or submitted, the impact factor of the journal and the current status of the publication.
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82 5.1. Main publications

5.1.1 General interval-valued overlap functions and interval-valued overlap indices

Related publication:

◦ T. Asmus, G. Dimuro, B. Bedregal, J. Sanz, S. Pereira Jr, and H. Bustince, “General interval-

valued overlap functions and interval-valued overlap indices”, Information Sciences 527 (2020)

27–50.

– Journal: Information Sciences

– Status: Published

* DOI: https://doi.org/10.1016/j.ins.2020.03.091

* Citations: 19 (2021)

– Impact Factor (JCR 2020): 6.795

– Knowledge Area:

* Artificial Intelligence: Ranking 15/227 (Q1)

* Computer Science: Ranking 33/693 (Q1)
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a b s t r a c t 

Overlap functions are aggregation functions that express the overlapping degree between 

two values. They have been used both as a conjunction in several practical problems (e.g., 

image processing and decision making), and to generate overlap indices between two fuzzy 

sets, which can be used to construct fuzzy confidence values to be applied in fuzzy rule 

based classification systems. Some generalizations of overlap functions were recently pro- 

posed, such as n-dimensional and general overlap functions, which allowed their appli- 

cation in n-dimensional problems. More recently, the concept of interval-valued overlap 

functions was presented, mainly to deal with uncertainty in providing membership func- 

tions. In this paper, we introduce: (i) the concept of n-dimensional interval-valued overlap 

functions, studying their representability, (ii) the definition of general interval-valued over- 

lap functions, providing their characterization and some construction methods. Moreover, 

we also define the concept of interval-valued overlap index, as well as some construct- 

ing methods. In addition, we show an illustrative example where those new concepts are 

applied. 

© 2020 Elsevier Inc. All rights reserved. 

1. Introduction 

The concept of overlap function, as a special type of aggregation function [9] that is not required to be associative, 

was introduced by Bustince et al. in [12] in order to measure the degree of overlapping between two different classes 

or objects. In the literature, one can find several works on overlap functions and related concepts, as, e.g., [6,18,19,42,43] . 

Overlap functions have been commonly used in different applications where the associative property is not required during 
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the information aggregation process, such as image processing [32] , decision making [20,24,27] , wavelet-fuzzy power quality 

diagnosis system [41] , and classification [22,23,34–37] . 

Notice that overlap functions are defined as bivariate functions, and, as such, can only be used in problems that consider 

just two classes or objects. This is a drawback when dealing with n-dimensional problems, as overlap functions are not 

required to be associative. To address this limitation, the concept of n-dimensional overlap functions was introduced by 

Gómez et al. [28] and, more recently, De Miguel et al. [15] defined general overlap functions by relaxing the boundary 

conditions of n-dimensional overlap functions. 

On the other hand, Fuzzy Rule Based Classification Systems (FRBCSs) have been largely used in classification problems, 

mainly because they are consisted of a linguistic model that may be easily interpretable by end users. In fact, FRBCSs are 

defined based on a set of rules composed by linguistic variables, which are qualified by linguistic terms modelled as fuzzy 

sets [25] . Weights are associated to those rules, according to their effectiveness in the classification task. 

In [24] , the computation of rule weights of FRBCSs was done using fuzzy confidence values or certainty factors defined by 

overlap indices, which are a generalization of the Zadeh’s consistency index [49] . The concept of overlap index was initially 

introduced to measure the overlapping degree between two fuzzy sets in image processing [11] . In [11,27] , overlap indices 

were built by means of overlap functions. 

Now, observe that one important aspect in the modelling of any kind of fuzzy system is the appropriate definition of the 

membership functions [14] . This is a complex problem due to the uncertainty related to the modeling of such membership 

functions, usually associated with linguistic terms [39] . One way to deal with such problem is through interval-valued fuzzy 

sets (IVFSs) [50] , which have proven to be an adequate tool to model both vagueness (soft class boundaries) and uncertainty 

(with respect to the membership function), as discussed in [4,21,45] . For that reason, IVFSs have been successfully applied 

in different kinds of problems such as game theory [2] , decision making [3] , pest control [44] and classification [45] . For 

example, by modeling the membership functions via IVFSs in a FRBCS, one can obtain an interval-valued FRBCSs (IV-FRBCSs), 

where the ignorance represented by the IVFSs is taken into account throughout the reasoning process, as proposed by Sanz 

et al. [46,47] . 

Interval-valued overlap functions (iv-overlap functions, for short) were introduced independently by Qiao and Hu 

[42] and Bedregal et al. [4] . However, both definitions can only be applied in problems with two classes. For several ap- 

plications dealing with n-dimensional problems (e.g., IV-FRBCSs), this is a limitation. To overcome this drawback, in this 

paper we have the following objectives: 

1. To define n-dimensional iv-overlap functions, and study some properties and their representation; 

2. To define general iv-overlap functions, study their characterization and introduce some construction methods; 

3. To define interval-valued (iv) overlap indices and introduce some construction methods; 

4. To show an illustrative example in IV-FRBCS, where we apply the new theoretical concepts. 

The paper is organized as follows. Section 2 presents some preliminary concepts necessary for the development of the pa- 

per. In Section 3 , we define n-dimensional iv-overlap functions, and study their representability. The introduction of general 

iv-overlap functions as well as their characterization, representation and construction methods are presented in Section 4 . In 

Section 5 , we introduce the definition of iv-overlap indices and provide some construction methods. An illustrative example 

of an application of general iv-overlap functions and iv-overlap indices is shown in Section 6 . In Section 7 we draw the main 

conclusions. 

2. Preliminary concepts 

In this section, we recall some concepts on interval mathematics [40] , overlap [6,12] , n -dimensional [28] and general 

[15] overlap functions, overlap indices [27] and interval-valued overlap functions [4,42] . 

2.1. Interval mathematics, interval-valued fuzzy sets and related concepts 

In this subsection, firstly we briefly present some important concepts about interval mathematics and related concepts. 

For that, let us denote as L ([0, 1]) the set of all closed subintervals of the unit interval [0,1], that is: 

L ([0 , 1]) = { [ x 1 , x 2 ] | 0 ≤ x 1 ≤ x 2 ≤ 1 } . 
For any X = [ x 1 , x 2 ] , the left and right endpoints of X are denoted, respectively, by X and X . Thus, one has that X = x 1 

and X = x 2 . 

In the literature, there are many different definitions of partial orders in L ([0, 1]). In this paper, we are going to use the 

product ≤ Pr and the inclusion ⊆ orders, defined for all X, Y ∈ L ([0, 1]), respectively, by: 

X ≤Pr Y ⇔ X ≤ Y ∧ X ≤ Y ;

X ⊆ Y ⇔ X ≥ Y ∧ X ≤ Y . 

We call as ≤ Pr -increasing ( ≤ Pr -decreasing) a function that is increasing (decreasing) with respect to the product order 

≤ Pr . 
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Given an interval-valued function F : L ([0, 1]) n → L ([0, 1]), we define the projections F −, F + : [0 , 1] n → [0 , 1] of F , for all 

x 1 , . . . , x n ∈ [0 , 1] , respectively, by: 

F −(x 1 , . . . , x n ) = F ([ x 1 , x 1 ] , . . . , [ x n , x n ]) ;

F + (x 1 , . . . , x n ) = F ([ x 1 , x 1 ] , . . . , [ x n , x n ]) . 

Given two functions f, g : [0, 1] n → [0, 1] such that f ≤ g , we define the function 

̂ f, g : L ([0 , 1]) n → L ([0 , 1]) , for all 

X 1 , . . . , X n ∈ L ([0 , 1]) , as ̂ f, g (X 1 , . . . , X n ) = [ f ( X 1 , . . . , X n ) , g( X 1 , . . . , X n )] . 

The concept of representability of interval-valued functions is important in the context of this work: 

Definition 2.1 [21] . An ≤ Pr -increasing interval-valued function F : L ([0, 1]) n → L ([0, 1]) is said to be representable if there 

exist increasing functions f, g : [0, 1] n → [0, 1] such that f ≤ g and F = ̂

 f, g . 

In the context of Definition 2.1 , f and g are the representatives of the interval-valued function F . When F = 

̂ f, f , we denote 

simply as ̂ f . 

Proposition 2.1 [42] . Let F : L ([0, 1]) n → L ([0, 1]) be an ≤ Pr -increasing interval-valued function. Then, F is inclusion monotonic 

if and only if F = 

̂ F −, F + . 

Definition 2.2 [16] . A mapping N : L ([0, 1]) → L ([0, 1]) is said to be an interval-valued fuzzy negation if the following condi- 

tions hold: 

(N1) N is ≤ Pr -decreasing; 

(N2) N satisfies the boundaries conditions: N([1 , 1]) = [0 , 0] and N([0 , 0]) = [1 , 1] . 

N is said to be involutive if N (N (X )) = X, for all X ∈ L ([0, 1]). 

Definition 2.3 [33] . A mapping IR : L ([0, 1]) 2 → L ([0, 1]) is an interval-valued restricted equivalence function (IV-REF) associ- 

ated with an interval-valued fuzzy negation N : L ([0, 1]) → L ([0, 1]) if it satisfies the following conditions, for all X, Y, Z ∈ L ([0, 

1]): 

(IR1) IR ( X, Y ) is commutative; 

(IR2) IR (X, Y ) = [1 , 1] if and only if X = Y ; 

(IR3) IR (X, Y ) = [0 , 0] if and only if X = [0 , 0] and Y = [1 , 1] or X = [1 , 1] and Y = [0 , 0] ; 

(IR4) IR (X, Y ) = IR (N(X ) , N(Y )) with N being an involutive interval-valued fuzzy negation; 

(IR5) If X ≤ Pr Y ≤ Pr Z , then IR ( X, Y ) ≥ Pr IR ( X, Z ) and IR ( Y, Z ) ≥ Pr IR ( X, Z ). 

Some interval operations used in this paper are defined, for all X, Y ∈ L ([0, 1]) as: 

Infimum: inf (X, Y ) = [ min ( X , Y ) , min ( X , Y )] ;
Supremum: sup (X, Y ) = [ max ( X , Y ) , max ( X , Y )] ;
Sum: X + Y = [ X + Y , X + Y ] ;
Limited Sum: X 

˙ + Y = [ min (1 , X + Y ) , min (1 , X + Y )] ;
Product: X · Y = [ X · Y , X · Y ] ;
Exponential: X 

p = [ X 

p 
, X 

p 
] , for any p ∈ R ;

Division: X/Y = [ X / Y , X / Y ] with Y 
 = 0 ;
Generalized Hukuhara Division: X ÷H Y = [ min ( X / Y , X / Y ) , max ( X / Y , X / Y )] with Y 
 = 0 . 

Remark 2.1. For any X, Y ∈ L ([0, 1]) such that X ≤ Pr Y one has that X ÷H Y ∈ L ([0, 1]). 

For more details on these interval operations on a more general framework, see [7,40,48] . 

Now, we recall some concepts on continuity and metric spaces that are important for some developments in this paper. 

Observe that the notion of continuity of a function in mathematical analysis intends to capture, in a rigorous way, the 

common sense of a function that varies without jumps or abrupt breaks. Continuity of functions, in real analysis, can be 

defined in term of either limits, topology or metrics. Here we adopt the latter approach. 

A function d : A × A → R is said to be a metric if, for each a, b, c ∈ A , we have that: 

(i) d(a, a ) = 0 ; 

(ii) If a 
 = b , then d ( a, b ) > 0; 

(iii) d(a, b) = d(b, a ) ; 
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(iv) d(a, c) ≤ d(a, b) + d(b, c) . 

Now, let d A and d B be metrics on the sets A and B , respectively. A function f : A → B is said to be ( d A , d B )-continuous if, for 

each x ∈ A and ε > 0, there exists δ > 0 such that for, each y ∈ A with d A ( x, y ) ≤ δ, we have that d B ( f ( x ), f ( y )) ≤ ε. In particular, 

when A, B ⊆ R , d A (x, y ) = | x − y | and d B (u, v ) = | u − v | , f is a continuous function. 

Example 2.1. Consider a ∈ (0, 1] and A = [ a, 1] . The function Div a : A → A defined by Di v a (x ) = 

a 
x is well defined and contin- 

uous. In fact, given x ∈ A and ε > 0, take δ = xε. Thus, if y ∈ A is such that | x − y | ≤ δ, then it holds that a 
xy | x − y | ≤ a 

y ε. But, 

since a 
y ∈ [ a, 1] , one has that | Di v a (x ) − Di v a (y ) | ≤ ε, because a 

y ε ≤ ε and | Di v a (x ) − Di v a (y ) | = 

a 
xy | x − y | . 

Taking A ⊆L ([0, 1]) and d M 

: A × A → R defined, for all [ x 1 , y 1 ], [ x 2 , y 2 ] ∈ A , by: 

d M 

([ x 1 , y 1 ] , [ x 2 , y 2 ]) = max (| x 1 − x 2 | , | y 1 − y 2 | ) , 
it holds that ( A, d M 

) is a metric space, where d M 

is a Moore metric (in fact, it is a restriction to A of Moore metrics [40] ). 

The ( d M 

, d M 

)-continuous functions in this context are called Moore-continuous. 

The Moore-metric can be extended to A 

n as follows: 

d n M 

((X 1 , . . . , X n ) , (Y 1 , . . . , Y n )) = 

√ 

d M 

(X 1 , Y 1 ) 2 + . . . + d M 

(X n , Y n ) 2 . 

In what follows, we recall the concept of interval-valued fuzzy sets. For that, for a given universe U , we denote by FS ( U ) 

the space of all fuzzy sets defined over U . A fuzzy set F ∈ FS ( U ) is called normal if there exists z ∈ U such that F (z) = 1 . 

Definition 2.4 [50] . Given an universe U , an interval-valued fuzzy set (IVFS) on U is a function F : U → L ([0 , 1]) such that 

F(z) = [ F l (z) , F u (z)] , for all z ∈ U 
 = ∅ , where F l (z) = F(z) , F u (z) = F(z) , F l ≤ F u and F l , F u ∈ FS ( U ). 

By Definition 2.4 , one can observe that an IVFS F can be represented by a pair of fuzzy sets: the lower fuzzy set F l and 

the upper fuzzy set F u . If F l (z) = F u (z) , for every z ∈ U , then F is a fuzzy set, which means that fuzzy sets are particular cases 

of interval-valued fuzzy sets. 

We denote by IFS ( U ) the space of all interval-valued fuzzy sets defined over U . 

2.2. Overlap, general overlap and interval-valued overlap functions, and related concepts 

This subsection brings the main concepts related to overlap, general overlap and interval-valued overlap functions, start- 

ing from the definition of aggregation function: 

Definition 2.5 [9] . An aggregation function is any function A : [0, 1] n → [0, 1] that is increasing in each argument and satis- 

fies A (0 , . . . , 0) = 0 and A (1 , . . . , 1) = 1 . 

An important type of aggregation function are the overlap functions: 

Definition 2.6 [6,12] . An overlap function is any bivariate function O : [0, 1] 2 → [0, 1] that satisfies the following conditions, 

for all x, y ∈ [0, 1]: 

(O1) O is commutative; 

(O2) O (x, y ) = 0 if and only if xy = 0 ; 

(O3) O (x, y ) = 1 if and only if xy = 1 ; 

(O4) O is increasing; 

(O5) O is continuous. 

As introduced in [42] , a function O : [0, 1] 2 → [0, 1] is said to be an 0-overlap function if we loose the condition (O2) in 

Definition 2.6 to 

(O2 

′ 
) xy = 0 ⇒ O (x, y ) = 0 

without modifying any other condition. 

In the same manner, a function O : [0, 1] 2 → [0, 1] is said to be an 1-overlap function if we downgrade the condition (O3) 

in Definition 2.6 to 

(O3 

′ 
) xy = 1 ⇒ O (x, y ) = 1 

without changing the remaining conditions. 

Example 2.2. The following are some examples of overlap, 0-overlap and 1-overlap functions: 

(1) For any p > 0, the function O p : [0, 1] 2 → [0, 1] given, for any x, y ∈ [0, 1], by 

O p (x, y ) = x p y p 

is an overlap function; 
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(2) For any t > 0, the function O t : [0, 1] 2 → [0, 1] defined, x, y ∈ [0, 1], by 

O t (x, y ) = x t y t max (x t + y t − 1 , 0) 

is a 0-overlap function; 

(3) The function O U : [0, 1] 2 → [0, 1] given, x, y ∈ [0, 1], by 

O U (x, y ) = 

{
2 xy if xy ≤ 0 . 5 , 

1 otherwise . 

is a 1-overlap function. 

For properties and related concepts on overlap, 0-overlap and 1-overlap functions, see also: [17–19,42,43] . 

Definition 2.7 [28] . An n-dimensional overlap function is any mapping On : [0, 1] n → [0, 1] that satisfies the following con- 

ditions, for all x 1 , . . . , x n ∈ [0 , 1] : 

(On1) On is commutative; 

(On2) On (x 1 , . . . , x n ) = 0 if and only if 
∏ n 

i =1 x i = 0 ; 

(On3) On (x 1 , . . . , x n ) = 1 if and only if 
∏ n 

i =1 x i = 1 ; 

(On4) On is increasing; 

(On5) On is continuous. 

Here, we show that the concept of 0-overlap and 1-overlap functions can be easily extended to n-dimensional interval- 

valued functions. Considering an n-dimensional overlap function On : [0, 1] n → [0, 1], one can loose conditions (On2) to 

(On2 

′ 
) 

n ∏ 

i =1 

x i = 0 ⇒ On (x 1 , . . . , x n ) = 0 

without changing any other condition, obtaining an n-dimensional 0-overlap function. 

Analogously, a function On : [0, 1] n → [0, 1] is considered an n-dimensional 1-overlap function if the condition (On3) is 

loosened to 

(On3 

′ 
) 

n ∏ 

i =1 

x i = 1 ⇒ On (x 1 , . . . , x n ) = 1 

while the other conditions remain unchanged. 

By broadening and combining the concepts of n-dimensional 0-overlap and 1-overlap functions, the concept of general 

overlap functions is defined as follows: 

Definition 2.8 [15] . A general overlap function is any mapping GO : [0, 1] n → [0, 1] that satisfies the following conditions, 

for all x 1 , . . . , x n ∈ [0 , 1] : 

(GO1) GO is commutative; 

(GO2) If 
∏ n 

i =1 x i = 0 then GO (x 1 , . . . , x n ) = 0 ; 

(GO3) If 
∏ n 

i =1 x i = 1 then GO (x 1 , . . . , x n ) = 1 ; 

(GO4) GO is increasing; 

(GO5) GO is continuous. 

The following proposition is adapted from Proposition 1 in [15] , to include n-dimensional 0-overlap and 1-overlap func- 

tions: 

Proposition 2.2. If On : L ([0, 1]) n → [0, 1] is an n-dimensional overlap, 0-overlap or 1-overlap function, then On is also a general 

overlap function. 

Theorem 2.1 [15] . The n-ary function GO : [0, 1] n → [0, 1] is a general overlap function if and only if, for all x 1 , . . . , x n ∈ [0 , 1] , 

it holds that: 

GO (x 1 , . . . , x n ) = 

f (x 1 , . . . , x n ) 

f (x 1 , . . . , x n ) + g(x 1 , . . . , x n ) 
, 

for some f, g : [0, 1] n → [0, 1] such that 

(i) f and g are commutative; 

(ii) If 
∏ n 

i =1 x i = 0 then f (x 1 , . . . , x n ) = 0 ; 

(iii) If 
∏ n 

i =1 x i = 1 then g(x 1 , . . . , x n ) = 0 ; 

(vi) f is increasing and g is decreasing; 

(v) f and g are continuous functions; 

(vi) f (x 1 , . . . , x n ) + g(x 1 , . . . , x n ) 
 = 0 . 
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Table 1 

Examples of General Overlap Functions. 

Definition Type 

GO MIN (x 1 , . . . , x n ) = min (x 1 , . . . , x n ) overlap 

GO P (x 1 , . . . , x n ) = 

∏ n 
i =1 x i overlap 

GO mM (x 1 , . . . , x n ) = min (x 1 , . . . , x n ) max (x 2 1 , . . . , x 
2 
n ) overlap 

GO GM (x 1 , . . . , x n ) = 

n 
√ ∏ n 

i =1 x i overlap 

GO HM (x 1 , . . . , x n ) = 

{ 

n 
1 

x 1 
+ ... + 1 

x n 

if x i > 0 , for all i ∈ { 1 , . . . , n } 
0 otherwise . 

overlap 

GO L (x 1 , . . . , x n ) = max 
((∑ n 

i =1 x i 
)

− (n − 1) , 0 
)

0-overlap 

GO U (x 1 , . . . , x n ) = 

{
n 

∏ n 
i =1 x i if 

∏ n 
i =1 x i ≤ 1 /n, 

1 otherwise . 
1-overlap 

GO G (x 1 , . . . , x n ) = 

{
nGO L (x 1 , . . . , x n ) if GO L (x 1 , . . . , x n ) ≤ 1 /n, 

1 , otherwise . 
general overlap 

In Table 1 , we show some examples of general overlap functions. For more properties of general overlap functions, see 

[15] . 

Finally, we present the concept of interval-valued overlap functions, starting from the generalization of the concept of 

aggregation function to the interval context: 

Definition 2.9 [38] . An interval-valued function IA : L ([0, 1]) n → L ([0, 1]) is said to be an interval-valued aggregation function 

if it is an ≤ Pr -increasing function satisfying IA ([0 , 0] , . . . , [0 , 0]) = [0 , 0] and IA ([1 , 1] , . . . , [1 , 1]) = [1 , 1] . 

Definition 2.10 [4,42] . An interval-valued (iv) overlap function is a mapping IO : L ([0, 1]) 2 → L ([0, 1]) that respects the fol- 

lowing conditions: 

(IO1) IO is commutative; 

(IO2) IO (X, Y ) = [0 , 0] if and only if X · Y = [0 , 0] ; 

(IO3) IO (X, Y ) = [1 , 1] if and only if X · Y = [1 , 1] ; 

(IO4) IO is ≤ Pr -increasing in the first component: IO ( Y, X ) ≤ Pr IO ( Z, X ) when Y ≤ Pr Z . 

(IO5) IO is Moore continuous. 

Note that, by (IO1) and (IO4) , iv-overlap functions are also monotonic in the second component. 

Theorem 2.2 [42] . Let IO : L ([0, 1]) 2 → L ([0, 1]) be an inclusion monotonic interval-valued function. Then, IO is an iv-overlap 

function if and only if there exist a 0-overlap function O 1 and an 1-overlap function O 2 such that O 1 ≤ O 2 and IO = 

̂ O 1 , O 2 . Also, 

it holds that O 1 = IO 

− and O 2 = IO 

+ . 

Remark 2.2. Observe that, when considering two overlap functions O 1 and O 2 such that O 1 ≤ O 2 , the function 

̂ O 1 , O 2 is a 

representable iv-overlap function [4] . However, from Theorem 2.2 , it is clear that not every representable iv-overlap func- 

tion has overlap functions as its representatives. In Section 3 , we present some new results and definitions regarding this 

characteristic of iv-overlap functions. 

2.3. Overlap index 

An important concept in this work is the one of overlap index, whose related concepts we recall below. 

Definition 2.11 [27] . A mapping O : F S(U) × F S(U) → [0 , 1] is said to be an overlap index if it satisfies the following condi- 

tions, for all A, B, C ∈ FS ( U ): 

(O1) O(A, B ) = 0 if and only if, for all z ∈ U, A (z) · B (z) = 0 ; 

(O2) O(A, B ) = O(B, A ) ; 

(O3) If B ≤ C , meaning that B ( z ) ≤ C ( z ) for all z ∈ U [10] , then O(A, B ) ≤ O(A, C) . 

For an overlap index to be called normal, it also has to satisfy the following condition: 

(O4) If there exists z ∈ U such that A (z) · B (z) = 1 , then O(A, B ) = 1 . 

In the following, we present some examples of overlap indices. 

Example 2.3. Considering the Definition 2.11 , it holds that: 

(1) The function O Z : F S(U) × F S(U) → [0 , 1] defined, for all A, B ∈ FS ( U ), by: 

O Z (A, B ) = max 
z∈ U 

min (A (z) , B (z)) , 

is a normal overlap index, which is known as the Zadeh’s consistency index [49] . 
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(2) The function O π : F S(U) × F S(U) → [0 , 1] given, for all A, B ∈ FS ( U ), by: 

O π (A, B ) = 

1 

n 

n ∑ 

i =1 

A (z i ) · B (z i ) , (1) 

for U = { z 1 , . . . , z n } , is an overlap index. 

(3) The function O x : F S(U) × F S(U) → [0 , 1] defined, for all A, B ∈ FS ( U ), by: 

O x (A, B ) = 

{
0 if ∀ z ∈ U : A (z) · B (z) = 0 , 

x otherwise , 

for a given z ∈ (0, 1], is an overlap index. 

Theorem 2.3 [27] . Consider an aggregation function M : [0, 1] n → [0, 1] such that 

M(x 1 , . . . , x n ) = 0 ⇔ x 1 = . . . = x n = 0 , 

and an overlap function O : [0, 1] 2 → [0, 1] . Then, the function O 

O 
M 

: F S(U) × F S(U) → [0 , 1] , given, for all A, B ∈ FS ( U ), U = 

{ z 1 , . . . , z n } , by 

O 

O 
M 

(A, B ) = M(O (A (z 1 ) , B (z 1 )) , . . . , O (A (z n ) , B (z n ))) , 

is said to be an overlap index. 

3. N-dimensional interval-valued overlap functions 

As shown previously in Section 2.2 , the theoretical developments on interval-valued overlap functions have been done 

considering bivariate functions. However, many problems require the use of n-dimensional interval-valued functions to ag- 

gregate the information, such as obtaining the matching degree for each rule in a IV-FRBCS. To address this kind of situation, 

which is not trivial since interval-valued overlap functions are not required to be associative, in this section we introduce 

the concept of n-dimensional interval-valued overlap functions and study some properties of such functions. 

The following proposition follows directly from Proposition 2.1 : 

Proposition 3.1. An ≤ Pr -increasing interval-valued function F : L ([0, 1]) n → L ([0, 1]) is representable if and only if F is inclusion 

monotonic. 

Now, the following proposition is derived from Proposition 7 in [21] : 

Proposition 3.2. If an ≤ Pr -increasing interval-valued function F : L ([0, 1]) n → L ([0, 1]) is inclusion monotonic, then it holds that 

F (X 1 , . . . , X n ) = F −( X 1 , . . . , X n ) 

F (X 1 , . . . , X n ) = F + ( X 1 , . . . , X n ) , 

for all X 1 , . . . , X n ∈ L ([0 , 1]) . 

Proof. Since F is ≤ Pr -increasing and inclusion monotonic and, for each i ∈ { 1 , 2 , . . . , n } , one has that [ X i , X i ] ≤ Pr X i and [ X i , 

X i ] ⊆X i , for X 1 , . . . , X n ∈ L ([0 , 1]) , then it holds that 

F ([ X 1 , X 1 ] , . . . , [ X n , X n ]) ≤Pr F (X 1 , . . . , X n ) 

F ([ X 1 , X 1 ] , . . . , [ X n , X n ]) ⊆ F (X 1 , . . . , X n ) , 

respectively. So, we have that 

F −( X 1 , . . . , X n ) ≤Pr F (X 1 , . . . , X n ) 

F (X 1 , . . . , X n ) ≤Pr F −( X 1 , . . . , X n ) , 

and, thus, 

F (X 1 , . . . , X n ) = F −( X 1 , . . . , X n ) . 

The proof for F (X 1 , . . . , X n ) = F + ( X 1 , . . . , X n ) can be obtained analogously. � �

Then we define n-dimensional interval-valued overlap functions: 

Definition 3.1. An n-dimensional interval-valued (iv) overlap function is a mapping IOn : L ([0, 1]) n → L ([0, 1]) that satisfies 

the following conditions, for all X 1 , . . . , X n ∈ L ([0 , 1]) : 

(IOn1) IOn is commutative; 

(IOn2) IOn (X 1 , . . . , X n ) = [0 , 0] if and only if 
∏ n 

i =1 X i = [0 , 0] ; 

(IOn3) IOn (X 1 , . . . , X n ) = [1 , 1] if and only if 
∏ n 

i =1 X i = [1 , 1] ; 
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(IOn4) IOn is increasing in the first component: I On (X 1 , . . . , X n ) ≤Pr I On (Y, X 2 , . . . , X n ) when X 1 ≤ Pr Y ; 

(IOn5) IOn is Moore continuous. 

Example 3.1. Some examples of n-dimensional iv-overlap functions are the following, where X 1 , . . . , X n ∈ L ([0 , 1]) : 

1. IOn M 

(X 1 , . . . , X n ) = inf (X 1 , . . . , X n ) ; 

2. IOn p (X 1 , . . . , X n ) = 

∏ n 
i =1 X 

p 
i 
, for p > 0; 

3. IOn mM 

(X 1 , . . . , X n ) = [ min ( X 1 , . . . , X n ) · max ( X 2 1 , . . . , X 
2 
n ) , min ( X 1 , . . . , X n ) · max ( X 2 

1 
, . . . , X 2 n )] . 

The following result is the adaptation of Theorem 2.2 to n-dimensional iv-overlap functions. 

Theorem 3.1. Let IOn : L ([0, 1]) n → L ([0, 1]) be an inclusion monotonic interval-valued function. Then, IOn is an n-dimensional 

iv-overlap function if and only if there exist an n-dimensional 0-overlap function On 1 : [0, 1] n → [0, 1] and an n-dimensional 1- 

overlap function On 2 : [0, 1] n → [0, 1] such that On 1 ≤ On 2 and IOn = 

̂ On 1 , On 2 . Also, it holds that On 1 = IOn − and On 2 = IOn + . 

Proof. One has that: ( ⇒ ) Suppose that IOn : L ([0, 1]) n → L ([0, 1]) is an inclusion monotonic n-dimensional iv-overlap func- 

tion. Let On 1 , On 2 : [0, 1] n → [0, 1] be such that 

On 1 (x 1 , . . . , x n ) = IOn ([ x 1 , x 1 ] , . . . , [ x n , x n ]) , 

On 2 (x 1 , . . . , x n ) = IOn ([ x 1 , x 1 ] , . . . , [ x n , x n ]) , 

for all x 1 , . . . , x n ∈ [0 , 1] . Thus, it is immediate that On 1 and On 2 are well defined. Now, let us show that On 1 is an n- 

dimensional 0-overlap function, according to Definition 3.1 : 

(On1) It is immediate, since IOn is commutative. 

(On2) Considering 
∏ n 

i =1 x i = 0 , one can assume, without loss of generality, that x 1 = 0 . Thus, for all x 2 , . . . , x n ∈ [0 , 1] , one 

has that: 

On 1 (0 , . . . , x n ) = IOn ([0 , 0] , [ x 2 , x 2 ] , . . . , [ x n , x n ]) = [0 , 0] = 0 . 

(On3) Suppose 
∏ n 

i =1 x i = 1 . Then, x 1 = x 2 = . . . = x n = 1 and 

On 1 (1 , . . . , 1) = IOn ([1 , 1] , . . . , [1 , 1]) = [1 , 1] = 1 . 

Now, consider On 1 (x 1 , . . . , x n ) = 1 , for some (x 1 , . . . , x n ) ∈ [0 , 1] n . Thus, one has that: 

IOn ([ x 1 , x 1 ] , . . . , [ x n , x n ]) = 1 ⇒ IOn ([ x 1 , x 1 ] , . . . , [ x n , x n ]) = [1 , 1] 

⇒ [ x 1 , x 1 ] · [ x 2 , x 2 ] · . . . · [ x n , x n ] = [1 , 1] 

⇒ 

n ∏ 

i =1 

x i = 1 . 

(On4) As IOn is ≤ Pr -increasing in the first component, one has that 

IOn ([ x 1 , x 1 ] , . . . , [ x n , x n ]) ≤Pr IOn ([ y, y ] , [ x 2 , x 2 ] , . . . , [ x n , x n ]) 

for any y, x 1 , . . . , x n ∈ [0 , 1] with x 1 ≤ y . Then, one has that 

On 1 (x 1 , . . . , x n ) = IOn ([ x 1 , x 1 ] , . . . , [ x n , x n ]) ≤ IOn ( [ y, y ] , [ x 2 , x 2 ] , . . . , [ x n , x n ]) = On 1 ( y, x 2 , . . . , x n ) . 

(On5) Since IOn is increasing and inclusion monotonic, by Proposition 2.1 in [42] , it holds that IOn = 

̂ IOn −, IOn + . Further- 

more, as IOn is Moore-continuous and On 1 = IOn −, then, by Theorem 11 in [21] , one has that On 1 is continuous. 

The proof that On 2 is an n-dimensional 1-overlap function can be obtained analogously. Also, it is immediate that 

On 1 ≤ On 2 , On 1 = IOn −, On 2 = IOn + , and that IOn = 

̂ On 1 , On 2 . 

( ⇐ ) Let On 1 be an n-dimensional 0-overlap function and On 2 an n-dimensional 1-overlap function such that On 1 ≤ On 2 
and IOn = 

̂ On 1 , On 2 . Then, let us verify if IOn is an n-dimensional iv-overlap function: 

(IOn1) It is immediate as both On 1 and On 2 are commutative. 

(IOn2) It holds that: 

IOn (X 1 , . . . , X n ) = [0 , 0] ⇔ 

̂ On 1 , On 2 = [0 , 0] . 

Thus, it follows that: 

[ On 1 ( X 1 , . . . , X n ) , On 2 ( X 1 , . . . , X n )] = [0 , 0] ⇔ On 1 ( X 1 , . . . , X n ) = 0 ∧ On 2 ( X 1 , . . . , X n ) = 0 . 

Therefore, one has that: 

X 1 · X 2 · . . . · X n = 0 ∧ X 1 · X 2 · . . . · X n = 0 ⇔ X 1 · X 2 · . . . · X n = [0 , 0] . 
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(IOn3) One has that: 

IOn (X 1 , . . . , X n ) = [1 , 1] ⇔ 

̂ On 1 , On 2 = [1 , 1] . 

Then, it holds that: 

[ On 1 ( X 1 , . . . , X n ) , On 2 ( X 1 , . . . , X n )] = [1 , 1] ⇔ On 1 ( X 1 , . . . , X n ) = 1 ∧ On 2 ( X 1 , . . . , X n ) = 1 . 

It follows that: 

X 1 · X 2 · . . . · X n = 1 ∧ X 1 · X 2 · . . . · X n = 1 ⇔ X 1 · X 2 · . . . · X n = [1 , 1] . 

(IOn4) For any Y, X 1 , X 2 , . . . , X n ∈ L ([0 , 1]) such that X 1 ≤ Pr Y , as On 1 and On 2 are increasing, one has that 

IOn (X 1 , . . . , X n ) = [ On 1 ( X 1 , . . . , X n ) , On 2 ( X 1 , . . . , X n )] 

≤Pr [ On 1 ( Y , . . . , X n ) , On 2 ( X 1 , . . . , X n )] = IOn (Y, . . . , X n ) , 

meaning that IOn is ≤ Pr -increasing in the first component. 

(IOn5) As On 1 and On 2 are both increasing and continuous, then, by Theorem 11 in [21] , one has that IOn is Moore- 

continuous. �

Since general overlap functions are a generalization of n-dimensional 0-overlap functions and n-dimensional 1-overlap 

functions, the following result is immediate: 

Corollary 3.1. An inclusion monotonic interval-valued function IOn : L ([0, 1]) n → L ([0, 1]) is an n-dimensional iv-overlap function 

if and only if there exist general overlap functions GO 1 : [0, 1] n → [0, 1] and GO 2 : [0, 1] n → [0, 1] such that GO 1 ≤ GO 2 and 

IOn = 

̂ GO 1 , GO 2 . In particular, one has that GO 1 = IOn − and GO 2 = IOn + . 

Observe that the result presented in Corollary 3.1 also applies to bivariate iv-overlap functions, complementing 

Theorem 2.2 as well. Furthermore, Corollary 3.1 reinforces the idea that not every representable n-dimensional iv-overlap 

function has n-dimensional overlap functions as its representatives. In order to make a clear differentiation, in what follows 

we present some definitions and results regarding the representation of n-dimensional iv-overlap functions. 

Theorem 3.2. Let On 1 , On 2 : [0, 1] n → [0, 1] be n-dimensional overlap functions such that On 1 ≤ On 2 . Then, the function ̂ On 1 , On 2 
is an n-dimensional iv-overlap function. 

Proof. Conditions (IOn1) - (IOn4) are trivially obtained. Condition (IOn5) is verified by Theorem 4.2 in [5] and the fact that 

its extension to n-dimensional functions is trivial, as stated in [8] . �

Definition 3.2. An n-dimensional iv-overlap function IOn : L ([0, 1]) n → L ([0, 1]) is said to be o -representable if there exist 

n-dimensional overlap functions On 1 , On 2 : [0, 1] n → [0, 1], On 1 ≤ On 2 , such that IOn = 

̂ On 1 , On 2 . 

Clearly, by considering Definition 3.2 for bi-variate functions ( n = 2 ), we have the same concept of o -representability for 

iv-overlap functions. 

It is noteworthy that Theorem 3.1 and Corollary 3.1 result from the fact that there are some n-dimensional iv-overlap 

functions that are inclusion monotonic but are not o -representable. To address this situation, we added conditions in which 

inclusion monotonic n-dimensional iv-overlap functions must satisfy in order to also be o -representable, as stated in the 

following theorem: 

Theorem 3.3. Let IOn : L ([0, 1]) n → L ([0, 1]) be an n-dimensional iv-overlap function. Then, IOn is o-representable if and only if 

IOn is inclusion monotonic and the following conditions are satisfied, for all X 1 , . . . , X n ∈ L ([0 , 1]) : 

(i) IOn (X 1 , . . . , X n ) = 0 ⇔ 

∏ n 
i =1 X i = 0 ; 

(ii) IOn (X 1 , . . . , X n ) = 1 ⇔ 

∏ n 
i =1 X i = 1 . 

Proof. ( ⇒ ) If IOn is o -representable, then by Theorem 3.1 , IOn is inclusion monotonic. Also, by Proposition 3.2 , for all 

X 1 , . . . , X n ∈ L ([0 , 1]) , one has that 

IOn 

−( X 1 , . . . , X n ) = IOn (X 1 , . . . , X n ) , 

IOn 

+ ( X 1 , . . . , X n ) = IOn (X 1 , . . . , X n ) . 

Furthermore, by Proposition 2.1 , IOn = 

̂ IOn −, IOn + , which means that IOn − and IOn + are both n-dimensional overlap func- 

tions. Thus, for all X 1 , . . . , X n ∈ L ([0 , 1]) , it holds that : 

IOn (X 1 , . . . , X n ) = 0 ⇔ IOn 

−( X 1 , . . . , X n ) = 0 ⇔ 

n ∏ 

i =1 

X i = 0 

and 

IOn (X 1 , . . . , X n ) = 1 ⇔ IOn 

+ ( X 1 , . . . , X n ) = 1 ⇔ 

n ∏ 

i =1 

X i = 1 . 
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( ⇐ ) If IOn is an n-dimensional iv-overlap function that is inclusion monotonic and satisfies conditions (i) and (ii), then, 

by Proposition 3.1 , there exist f, g : [0, 1] n → [0, 1] (both increasing) such that, for all X 1 , . . . , X n ∈ L ([0 , 1]) , it holds that: 

IOn (X 1 , . . . , X n ) = [ f ( X 1 , . . . , X n ) , g( X 1 , . . . , X n )] . 

By Proposition 3.2 , one has that 

IOn 

−( X 1 , . . . , X n ) = IOn (X 1 , . . . , X n ) = f ( X 1 , . . . , X n ) 

and 

IOn 

+ ( X 1 , . . . , X n ) = IOn (X 1 , . . . , X n ) = g( X 1 , . . . , X n ) , 

for all X 1 , . . . , X n ∈ L ([0 , 1]) . Thus, it follows that f = IOn − and g = IOn + . 
Now, let us verify that IOn − and IOn + satisfy the conditions of Definition 2.7 : 

(On1) It is trivial as IOn is commutative. 

(On2) From condition (i), for all x 1 , . . . , x n ∈ [0 , 1] , we have that: 

IOn 

−(x 1 , . . . , x n ) = 0 ⇔ IOn ([ x 1 , x 1 ] , . . . , [ x n , x n ]) = 0 ⇔ 

n ∏ 

i =1 

[ x i , x i ] = 0 ⇔ 

n ∏ 

i =1 

x i = 0 . 

(On3) From condition (ii), for all x 1 , . . . , x n ∈ [0 , 1] , it holds that: 

IOn 

+ (x 1 , . . . , x n ) = 1 ⇔ IOn ([ x 1 , x 1 ] , . . . , [ x n , x n ]) = 1 ⇔ 

n ∏ 

i =1 

[ x i , x i ] = 1 ⇔ 

n ∏ 

i =1 

x i = 1 . 

(On4) From Proposition 3.1 and the conclusion in this context that f = IOn − and g = IOn + , then both IOn − and IOn + are 

increasing. 

(On5) From Corollary 12 in [21] , IOn − and IOn + are continuous. 

As it was proven that IOn − and IOn + are n-dimensional overlap functions, then IOn is o -representable. �

From Theorem 3.3 , when considering n = 2 the following result is immediate: 

Corollary 3.2. Let IO : L ([0, 1]) 2 → L ([0, 1]) be an iv-overlap function. Then, IO is o-representable if and only if IO is inclusion 

monotonic and the following conditions are satisfied: 

(i) IO (X, Y ) = 0 ⇔ X · Y = 0 ; 

(ii) IO (X, Y ) = 1 ⇔ X · Y = 1 . 

4. General interval-valued overlap function 

In this section, we introduce the concept of general interval-valued overlap functions, as well as some construction meth- 

ods, properties and characterization. Aside from being the broader approach for n-dimensional iv-overlap functions, this new 

definition shows a suitable behaviour in classification problems, as we present in Section 6 . 

But first, by loosening certain conditions in Definition 3.1 , one can obtain n-dimensional iv-0-overlap and iv-1-overlap 

functions in the same way as it was done with n-dimensional overlap functions. 

A function IOn : L ([0, 1]) n → L ([0, 1]) is called an n-dimensional iv-0-overlap function if the condition (IOn2) in 

Definition 3.1 is loosened to 

(IOn2 

′ ) 
n ∏ 

i =1 

X i = [0 , 0] ⇒ IOn (X 1 , . . . , X n ) = [0 , 0] 

without changing any other condition. 

Example 4.1. The function defined, for all X 1 , . . . , X n ∈ L ([0 , 1]) , as 

IOn L (X 1 , . . . , X n ) = 

̂ GO L (X 1 , . . . , X n ) 

with GO L shown in Table 1 , is an n-dimensional iv-0-overlap function, which is not an n-dimensional iv-overlap function. 

Analogously, a function IOn : L ([0, 1]) n → L ([0, 1]) is considered an n-dimensional iv-1-overlap function if the condition 

(IOn3) is loosened to 

(IOn3 

′ 
) 

n ∏ 

i =1 

X i = [1 , 1] ⇒ IOn (X 1 , . . . , X n ) = [1 , 1] 

while the other conditions remain unchanged. 
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Fig. 1. Relations between iv-overlap functions, iv-0-overlap functions, iv-1-overlap functions and general iv-overlap functions. 

Example 4.2. The function defined, for all X 1 , . . . , X n ∈ L ([0 , 1]) , as 

IOn U (X 1 , . . . , X n ) = 

⎧ ⎨ ⎩ 

n 

∏ n 
i =1 X i if 

∏ n 
i =1 X i ≤ 1 /n and 

∏ n 
i =1 X i ≤ 1 /n, [

n 

∏ n 
i =1 X i , 1 

]
if 

∏ n 
i =1 X i ≤ 1 /n and 

∏ n 
i =1 X i > 1 /n, 

[1 , 1] , otherwise . 

is an n-dimensional iv-1-overlap function, which is not an n-dimensional iv-overlap function. 

Now, by combining the concepts of n-dimensional iv-0-overlap and iv-0-overlap functions, we present the definition of 

general interval-valued overlap function. 

Definition 4.1. A general interval-valued (iv) overlap function is any mapping IGO : L ([0, 1]) n → L ([0, 1]) that satisfies the 

following conditions, for all X 1 , . . . , X n ∈ L ([0 , 1]) : 

(IGO1) IGO is commutative; 

(IGO2) If 
∏ n 

i =1 X i = [0 , 0] then IGO (X 1 , . . . , X n ) = [0 , 0] ; 

(IGO3) If 
∏ n 

i =1 X i = [1 , 1] then IGO (X 1 , . . . , X n ) = [1 , 1] ; 

(IGO4) IGO is increasing in the first component: I GO (X 1 , . . . , X n ) ≤Pr I GO (Y, X 2 , . . . , X n ) when X 1 ≤ Pr Y ; 

(IGO5) IGO is Moore continuous. 

Example 4.3. The function defined, for all X 1 , . . . , X n ∈ L ([0 , 1]) , as 

IGO 1 (X 1 , . . . , X n ) = 

{ 

n · IOn L (X 1 , . . . , X n ) if On L ( X 1 , . . . , X n ) ≤ 1 /n, 

[ n · GO L ( X 1 , . . . , X n ) , 1] if GO L ( X 1 , . . . , X n ) ≤ 1 /n and GO L ( X 1 , . . . , X n ) > 1 /n, 

[1 , 1] , otherwise . 

is a general iv-overlap function, which is neither an n-dimensional iv-0-overlap function, nor an n-dimensional iv-1-overlap 

function. Then, it is neither an n-dimensional iv-overlap function. 

The relations between iv-overlap functions, iv-0-overlap functions, iv-1-overlap functions and general iv-overlap functions 

are shown in Fig. 1 . 

It is immediate that: 

Proposition 4.1. If F : L ([0, 1]) n → L ([0, 1]) is either an n-dimensional iv-overlap, iv-0-overlap or iv-1-overlap function, then F is 

also a general iv-overlap function. 

Theorem 4.1. Let GO 1 , GO 2 : [0, 1] n → [0, 1] be two general overlap functions such that GO 1 ≤ GO 2 . Then, the function ̂ GO 1 , GO 2 

is an general iv-overlap function. 

Proof. Analogous to the proof of Theorem 3.2 . �

Based on Theorem 4.1 and Proposition 4.1 , one can obtain a representable general iv-overlap function by constructing it 

via either n-dimensional overlap, 0-overlap, 1-overlap or general overlap functions as its representatives. On the other hand, 

if an iv-general overlap function is representable, then its representatives must be general overlap functions. 

Example 4.4. The representable general iv-overlap function IGO M 

can be constructed by considering the general overlap 

function GO M 

( Table 1 ) as its two representatives, given by 

IGO M 

(X 1 , . . . , X n ) = 

̂ GO M 

(X 1 , . . . , X n ) . 
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Definition 4.2. Let IA : L ([0, 1]) n → L ([0, 1]) be an n-dimensional interval-valued aggregation function. Then, IA is said to be 

conjunctive if IA (X 1 , . . . , X n ) ≤Pr inf (X 1 , . . . , Xn ) , for any X 1 , . . . , X n ∈ L ([0 , 1]) . 

Definition 4.3. Let IA : L ([0, 1]) n → L ([0, 1]) be an n-dimensional interval-valued aggregation function. Then, IA is said to be 

disjunctive if IA (X 1 , . . . , X n ) ≥Pr sup (X 1 , . . . , Xn ) , for any X 1 , . . . , X n ∈ L ([0 , 1]) . 

Proposition 4.2. For a commutative, Moore continuous n-dimensional interval-valued aggregation function IA : L ([0, 1]) n → L ([0, 

1]), it holds that: 

1. If IA is conjunctive, then it is a general iv-overlap function; 

2. If IA is disjunctive, then it is not a general iv-overlap function. 

Proof. Let IA : L ([0, 1]) n → L ([0, 1]) be a commutative Moore continuous n-dimensional interval-valued aggregation function. 

It is immediate that IA satisfies conditions (IGO1), (IGO4) and (IGO5) from Definitions 4.1 . Now, let us verify if it satisfies 

conditions (IGO2) and (IGO3) when IA is conjunctive and, in the sequence, when IA is disjunctive. 

(i) Suppose that IA is conjunctive. If X 1 , . . . , X n ∈ L ([0 , 1]) are such that 
∏ n 

i =1 X i = [0 , 0] , then there is at least one X i = 

[0 , 0] , and so IA (X 1 , . . . , X n ) ≤Pr inf (X 1 , . . . , X n ) = [0 , 0] . Thus, IA satisfies condition (IGO2) as IA (X 1 , . . . , X n ) = [0 , 0] . On 

the other hand, if X 1 , . . . , X n ∈ L ([0 , 1]) are such that 
∏ n 

i =1 X i = [1 , 1] , then X i = [1 , 1] for each i ∈ { 1 , . . . , n } . So, by 

Definition 2.9 it holds that IA (X 1 , . . . , X n ) = [1 , 1] , which means that IA also satisfies condition (IGO3) . Therefore, IA is 

a general iv-overlap function; 

(ii) Suppose that IA is disjunctive. Then, one has that 

IA ([1 , 1] , [0 , 0] , . . . , [0 , 0]) ≥Pr sup ([1 , 1] , [0 , 0] , . . . , [0 , 0]) = [1 , 1] , 

which contradicts condition (IGO2) . Thus, IA cannot be a general iv-overlap function. �

4.1. Characterization and construction methods of general iv-overlap functions 

Inspired by the characterization of general overlap function presented in [15] and recalled previously by Theorem 2.1 , 

here we present the development of a characterization for general iv-overlap functions, followed by some construction 

methods for this type of function. 

First, we introduce some new related results that are necessary in the proofs concerning the characterization for general 

iv-overlap functions and their construction methods. 

Lemma 4.1. Consider A ∈ L ([0, 1]) and L (A ) = { B ∈ L ([0 , 1]) | A ≤Pr B and B > 0 } . The function Div A : L ( A ) → L ( A ) defined by 

Di v A (X ) = A ÷H X is Moore-continuous. 

Proof. Take X ∈ L ( A ), ε > 0 and consider δ = X ε and Y ∈ L ( A ). If d L ( A ) ( X, Y ) ≤ δ, that is, 

max (| X − Y | , | X − Y | ) ≤ X ε, 

then one has that | X − Y | ≤ X ε and | X − Y | ≤ X ε ≤ X ε. So, by Example 2.1 , one has that 

| Di v A ( X ) − Di v A ( Y ) | ≤ ε, 

| Di v A ( X ) − Di v A ( Y ) | ≤ ε. 

Therefore, it holds that: 

d L ([0 , 1]) (Di v A (X ) , Di v A (Y )) 
= max (| Di v A (X ) − Di v A (Y ) | , | Di v A (X ) − Di v A (Y ) | ) 
= max (| A ÷H X − A ÷H Y | , | A ÷H X − A ÷H Y | ) 
= max (| min ( A / X , A / X ) − min ( A / Y , A / Y ) | , | max ( A / X , A / X ) − max ( A / Y , A Y ) | ) . 

Then, we have four possible cases: �

Case 1. If min ( A / X , A / X ) = A / X and min ( A / Y , A / Y ) = A / Y , then it holds that 

max ( A / X , A / X ) = A / X , 

max ( A / Y , A / Y ) = A / Y . 

Therefore, it follows that 

d L ([0 , 1]) (Di v A (X ) , Di v A (Y )) = max (| A / X − A / Y | , | A / X − A / Y | ) 
= max (| Di v A ( X ) − Di v A ( Y ) | , | Di v A ( X ) − Di v A ( Y ) | ) 
≤ ε. 

Case 2. If min ( A / X , A / X ) = A / X and min ( A / Y , A / Y ) = A / Y then, one has that 

max ( A / X , A / X ) = A / X , 
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max ( A / Y , A / Y ) = A / Y . 

Therefore, it holds that 

d L ([0 , 1]) (Di v A (X ) , Di v A (Y )) = max (| A / X − A / Y | , | A / X − A / Y | ) . 
It follows that: 

(i) If X ≤ Y ≤ X ≤ Y then A / X ≥ A / X ≥ A / Y ≥ A / Y . Then it holds that: 

L ([0 , 1]) (Di v A (X ) , Di v A (Y )) ≤ A / X − A / Y 

= max (| A / X − A / Y | , | A / X − A / Y | ) 
= max (| Di v A ( X ) − Di v A ( Y ) | , | Di v A ( X ) − Di v A ( Y ) | ) 
≤ ε. 

(ii) If Y ≤ X ≤ Y ≤ X then A / Y ≥ A / Y ≥ A / X ≥ A / X . Thus, one has that: 

d L ([0 , 1]) (Di v A (X ) , Di v A (Y )) ≤ A / Y − A / X 

= max (| A / X − A / Y | , | A / X − A / Y | ) 
= max (| Di v A ( X ) − Di v A ( Y ) | , | Di v A ( X ) − Di v A ( Y ) | ) 
≤ ε. 

(iii) If X ≤ Y ≤ Y ≤ X then A / Y ≥ A / X ≥ A / X ≥ A / Y . However, since min ( A / Y , A / Y ) = A / Y , then A / Y = A / X = A / X = A / Y . 

Therefore, it holds that 

d L ([0 , 1]) (Di v A (X ) , Di v A (Y )) = 0 < ε. 

(iv) If Y ≤ X ≤ X ≤ Y then A / X ≥ A / Y and A / Y ≥ A / X . However, since min ( A / X , A / X ) = A / X and min ( A / Y , A / Y ) = A / Y , we 

have four possibilities: 

1. A / X ≥ A / Y ≥ A / X ≥ A / Y ; 

2. A / X ≥ A / Y ≥ A / Y ≥ A / X ; 

3. A / Y ≥ A / X ≥ A / X ≥ A / Y ; 

4. A / Y ≥ A / X ≥ A / Y ≥ A / X . 

However, in all these cases, we have that 

max (| A / X − A / Y | , | A / X − A / Y | ) ≤ max (| A / X − A / Y | , | A / X − A / Y | ) ≤ ε. 

Therefore, it holds that 

d L ([0 , 1]) (Di v A (X ) , Di v A (Y )) ≤ ε. 

Case 3. If min ( A / X , A / X ) = A / X and min ( A / Y , A / Y ) = A / Y , then the proof is analogous to Case 2 . 

Case 4. If min ( A / X , A / X ) = A / X and min ( A / Y , A / Y ) = A / Y , then the proof is analogous to Case 1 . 

Corollary 4.1. Let A, B ∈ L ([0, 1]) be such that A ̇

 + B > 0 . Then the function Di v H (A, B ) = A ÷H (A ̇

 + B ) is Moore continuous. 

Proof. Clearly, X ˙ + Y = ̂

 f (X, Y ) , where f : [0, 1] 2 → [0, 1] is defined, for all x, y ∈ [0, 1], by f (x, y ) = min (1 , x + y ) , which is 

continuous. Then, by Theorem 5 in [7] , ˙ + is Moore continuous. Since, for each A, B ∈ L ([0, 1]), such that A ̇

 + B > 0 , we have 

that C = A ̇

 + B ∈ L (A ) , then Di v H (A, B ) = Di v A (A ̇

 + B ) and, therefore, it is clear that Div H is Moore continuous. �

Lemma 4.2. For a, b, c, d ∈ [0, 1] such that a ≤ b and c ≥ d, one has that 

a 

a ̇ + c 
≤ b 

b ̇ + d 
. 

Proof. Suppose that a, b, c, d ∈ [0, 1] are such that a ≤ b and c ≥ d . It is trivial that ad ≤ bc , and then it holds that: 

ad ≤ bc ⇒ (ad ≤ bc) ∨ (a ≤ ab + bc) 

⇔ (ab + ad ≤ ab + bc) ∨ (a ≤ ab + bc) 

⇔ min (ab + ad, a ) ≤ ba + bc 

⇔ min (ab + ad, a ) ≤ min (ba + bc, b) 

⇔ min (a (b + d) , a ) ≤ min (b(a + c) , b) 

⇔ a min (b + d, 1) ≤ b min (a + c, 1) 

⇔ 

a 

min (a + c, 1) 
≤ b 

min (b + d, 1) 
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⇔ 

a 

a ̇ + c 
≤ b 

b ̇ + d 
. 

�

Now, we are ready to introduce the main results of this section. 

Theorem 4.2. The mapping IGO : L ([0, 1]) n → L ([0, 1]) is an general iv-overlap function if and only if, for all X 1 , . . . , X n ∈ L ([0 , 1]) , 

it holds that: 

IGO (X 1 , . . . , X n ) = F (X 1 , . . . , X n ) ÷H (F (X 1 , . . . , X n ) ̇ + G (X 1 , . . . , X n )) , 

for some F, G : L ([0, 1]) n → L ([0, 1]) such that 

(i) F and G are commutative; 

(ii) If 
∏ n 

i =1 X i = [0 , 0] then F (X 1 , . . . , X n ) = [0 , 0] ; 

(iii) If 
∏ n 

i =1 X i = [1 , 1] then G (X 1 , . . . , X n ) = [0 , 0] ; 

(iv) F is ≤ Pr -increasing in the first component and G is ≤ Pr -decreasing in the first component; 

(v) F and G are Moore continuous; 

(vi) F (X 1 , . . . , X n ) ̇ + G (X 1 , . . . , X n ) 
 = 0 , 

for any X 1 , . . . , X n ∈ L ([0 , 1]) . 

Proof. One has that: 

( ⇒ ) Suppose that IGO is a general iv-overlap function, and consider F (X 1 , . . . , X n ) = IGO (X 1 , . . . , X n ) and G (X 1 , . . . , X n ) = 

[1 − IGO (X 1 , . . . , X n ) , 1 − IGO (X 1 , . . . , X n ) ] , for all X 1 , . . . , X n ∈ L ([0 , 1]) . By Definition 4.1 , it is immediate that conditions (i) - 

(v) hold. Furthermore, it holds that 

F (X 1 , . . . , X n ) ̇ + G (X 1 , . . . , X n ) = IGO (X 1 , . . . , X n ) ̇ + [1 − IGO (X 1 , . . . , X n ) , 1 − IGO (X 1 , . . . , X n ) ] = [1 , 1] , 

which means that F (X 1 , . . . , X n ) ̇ + G (X 1 , . . . , X n ) = 1 , respecting condition (vi) . Finally, it is clear that 

IGO (X 1 , . . . , X n ) = F (X 1 , . . . , X n ) ÷H (F (X 1 , . . . , X n ) ̇ + G (X 1 , . . . , X n )) . 

( ⇐ ) Consider that F, G : L ([0, 1]) n → L ([0, 1]) satisfy the conditions (i) - (vi) . Let us show that 

IGO (X 1 , . . . , X n ) = F (X 1 , . . . , X n ) ÷H (F (X 1 , . . . , X n ) ̇ + G (X 1 , . . . , X n )) 

is a general iv-overlap function, or, in other words, that IGO is well defined and satisfies each condition from Definition 4.1 . 

As F (X 1 , . . . , X n ) ≤Pr (F (X 1 , . . . , X n ) ̇ + G (X 1 , . . . , X n )) , by Remark 2.1 it is clear that IGO is well defined. Now, let us verify if it 

satisfies each condition from Definition 4.1 : 

(IGO1) It is trivial as F and G are both commutative. 

(IGO2) Let X 1 , . . . , X n ∈ L ([0 , 1]) be such that 
∏ n 

i =1 X i = [0 , 0] . From condition (ii) one has that 

F (X 1 , . . . , X n ) = [0 , 0] , 

and from condition (vi) it holds that F (X 1 , . . . , X n ) ̇ + G (X 1 , . . . , X n ) 
 = 0 . Thus, we hav e that: 

F (X 1 , . . . , X n ) ÷H (F (X 1 , . . . , X n ) ̇ + G (X 1 , . . . , X n )) = [0 , 0] ÷H G (X 1 , . . . , X n ) . 

Since G (X 1 , . . . , X n ) 
 = 0 , then it follows that IGO (X 1 , . . . , X n ) = [0 , 0] . 

(IGO3) Let X 1 , . . . , X n ∈ L ([0 , 1]) be such that 
∏ n 

i =1 X i = [1 , 1] . From condition (iii) one has that 

G (X 1 , . . . , X n ) = [0 , 0] . 

Then, it holds that 

F (X 1 , . . . , X n ) ÷H (F (X 1 , . . . , X n ) ̇ + G (X 1 , . . . , X n )) = F (X 1 , . . . , X n ) ÷H (F (X 1 , . . . , X n ) ̇ + [0 , 0]) . 

As, from condition (vi) , one has that F (X 1 , . . . , X n ) ̇ + G (X 1 , . . . , X n ) 
 = 0 , then it follows that 

IGO (X 1 , . . . , X n ) = [1 , 1] . 

(IGO4) Let X 1 , . . . , X n , Y ∈ L ([0 , 1]) such that X 1 ≤ Pr Y . To simplify the notation, consider 

F (X 1 , . . . , X n ) = A, F (Y, X 2 , . . . , X n ) = B, G (X 1 , . . . , X n ) = C and G (Y, X 2 , . . . , X n ) = D. 

From condition (iv) one has that A ≤ Pr B and D ≤ Pr C . Then, by Lemma 4.2 it holds that 

A 

A ̇

 + C 
≤ B 

B ̇

 + D 

and 

A 

A ̇

 + C 
≤ B 

B ̇

 + D 

. 

Thus, one has that: 

min 

(
A 

A ̇

 + C 
, 

A 

A ̇

 + C 

)
≤ min 

(
B 

B ̇

 + D 

, 
B 

B ̇

 + D 

)
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and 

max 

(
A 

A ̇

 + C 
, 

A 

A ̇

 + C 

)
≤ max 

(
B 

B ̇

 + D 

, 
B 

B ̇

 + D 

)
. 

It follows that: [
min 

(
A 

A ̇

 + C 
, 

A 

A ̇

 + C 

)
, max 

(
A 

A ̇

 + C 
, 

A 

A ̇

 + C 

)]
≤Pr 

[
min 

(
B 

B ̇

 + D 

, 
B 

B ̇

 + D 

)
, max 

(
B 

B ̇

 + D 

, 
B 

B ̇

 + D 

)]
. 

However, one has that: 

A ÷H (A ̇

 + C) = 

[
min 

(
A 

A ̇

 + C 
, 

A 

A ̇

 + C 

)
, max 

(
A 

A ̇

 + C 
, 

A 

A ̇

 + C 

)]
and 

B ÷H (B ̇

 + D ) = 

[
min 

(
B 

B ̇

 + D 

, 
B 

B ̇

 + D 

)
, max 

(
B 

B ̇

 + D 

, 
B 

B ̇

 + D 

)]
, 

meaning that 

A ÷H (A ̇

 + C) ≤Pr B ÷H (B ̇

 + D ) , 

or in other words, I GO (X 1 , . . . , X n ) ≤Pr I GO (Y, X 2 , . . . , X n ) , proving that IGO is ≤ Pr -increasing in the first component. 

(IGO5) Straightforward from Corollary 4.1 and the fact that F, G are Moore continuous. �

Example 4.5. Let us apply the construction method presented in Theorem 4.2 to characterize some general iv-overlap func- 

tions through different pairs of functions F, G : L ([0, 1]) n → L ([0, 1]) that satisfies conditions (i)-(vi). 

1. For any F and G such that G (X 1 , . . . , X n ) = [1 − F (X 1 , . . . , X n ) , 1 − F (X 1 , . . . , X n ) ] , for all X 1 , . . . , X n ∈ L ([0 , 1]) , we have that 

IGO = F is an general iv-overlap function. 

2. Consider F and G defined, respectively, for all X 1 , . . . , X n ∈ L ([0 , 1]) , by 

F (X 1 , . . . , X n ) = 

{
[0 , 0] if min (m (X 1 ) , . . . , m (X n )) ≤ 0 . 5 

[ 2 m , 2 m ] if 0 . 5 ≤ min (m (X 1 ) , . . . , m (X n )) ≤ 1 

and 

G (X 1 , . . . , X n ) = [ max (1 − m (X 1 ) , . . . , 1 − m (X n )) , max (1 − m (X 1 ) , . . . , 1 − m (X n )) ] 

with m (X ) = 0 . 5( X + X ) and m = min (m (X 1 ) , . . . , m (X n )) − 0 . 5 . Then, 

IGO (X 1 , . . . , X n ) = F (X 1 , . . . , X n ) ÷H (F (X 1 , . . . , X n ) ̇ + G (X 1 , . . . , X n )) 

is an general iv-overlap function. 

Proposition 4.3. Given a general iv-overlap function IGO : L ([0, 1]) n → L ([0, 1]) and a commutative, Moore continuous n- 

dimensional interval-valued aggregation function IA : L ([0, 1]) n → L ([0, 1]), then the function IGO IA : L ([0, 1]) n → L ([0, 1]), defined, 

for all X 1 , . . . , X n ∈ L ([0 , 1]) , by 

IGO IA (X 1 , . . . , X n ) = IGO (X 1 , . . . , X n ) · IA (X 1 , . . . , X n ) 

is a general iv-overlap function. 

Proof. It is immediate that IGO IA is commutative (IGO1) , ≤ Pr -increasing in the first component (IGO4) and Moore continu- 

ous (IGO5) , since IGO, IA and the interval product share those same properties. Now, let us verify if IGO IA satisfies conditions 

(IGO2) and (IGO3) . 

(IGO2) Consider X 1 , . . . , X n ∈ L ([0 , 1]) such that 
∏ n 

i =1 X i = [0 , 0] . Then, one has that 

IGO (X 1 , . . . , X n ) = [0 , 0] , 

and, then, 

IGO IA (X 1 , . . . , X n ) = [0 , 0] · IA (X 1 , . . . , X n ) = [0 , 0] ;
(IGO3) Consider X 1 , . . . , X n ∈ L ([0 , 1]) such that 

∏ n 
i =1 X i = [1 , 1] . Then, one has that X i = [1 , 1] for each n ∈ { 1 , . . . , n } . Since 

IGO satisfies (IGO3) and IA is an n-dimensional interval-valued aggregation function, one has that 

IGO IA ([1 , 1] , . . . , [1 , 1]) = IGO ([1 , 1] , . . . , [1 , 1]) · IA ([1 , 1] , . . . , [1 , 1]) = [1 , 1] · [1 , 1] = [1 , 1] . 

�
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From Proposition 4.3 , it is immediate that: 

Corollary 4.2. Given an n-dimensional iv-overlap function IOn : L ([0, 1]) n → L ([0, 1]) and a commutative, Moore continuous n- 

dimensional interval-valued aggregation function IA : L ([0, 1]) n → L ([0, 1]), one has that the function IOn IA : L ([0, 1]) n → L ([0, 1]), 

defined, for all X 1 , . . . , X n ∈ L ([0 , 1]) , by 

IOn IA (X 1 , . . . , X n ) = IOn (X 1 , . . . , X n ) · IA (X 1 , . . . , X n ) 

is a general iv-overlap function. 

Example 4.6. Considering IOn L as defined in Example 4.1 , the function IGO PL : L ([0, 1]) n → L ([0, 1]) defined, for all X 1 , . . . , X n ∈ 

L ([0 , 1]) , by 

IGO PL (X 1 , . . . , X n ) = 

n ∏ 

i =1 

X i · IOn L (X 1 , . . . , X n ) , 

is a general iv-overlap function, but not an n-dimensional iv-overlap function. 

Theorem 4.3. Let IA : L ([0, 1]) m → L ([0, 1]) be a Moore continuous n-dimensional interval-valued aggregation function and 
−−→ 

IGO = 

(I GO 1 , . . . , I GO m 

) a tuple of general iv-overlap functions. Then, the interval-valued function IA 

−−→ 

IGO 
: L ([0 , 1]) n → L ([0 , 1]) , defined, 

for all X 1 , . . . , X n ∈ L ([0 , 1]) , by 

IA 

−−→ 

IGO 
(X 1 , . . . , X n ) = IA (IGO 1 (X 1 , . . . , X n ) , . . . , IGO m 

(X 1 , . . . , X n )) 

is a general iv-overlap function. 

Proof. It is immediate that IA 

−−→ 

IGO 
is commutative (IGO1) and ≤ Pr -increasing in the first component (IGO4) . As it is also 

Moore continuous (IGO5) , let us prove that IA 

−−→ 

IGO 
satisfies conditions (IGO2) and (IGO3) . 

(IGO2) Consider X 1 , . . . , X n ∈ L ([0 , 1]) such that 
∏ n 

i =1 X i = [0 , 0] . Then, one has that 

IGO j (X 1 , . . . , X n ) = [0 , 0] , 

for all j ∈ { 1 , . . . , m } , and, therefore, 

I A (I GO 1 (X 1 , . . . , X n ) , . . . , IGO m 

(X 1 , . . . , X n )) = IA ([0 , 0] , . . . , [0 , 0]) = [0 , 0] ;
(IGO3) Consider X 1 , . . . , X n ∈ L ([0 , 1]) such that 

∏ n 
i =1 X i = [1 , 1] . Then, one has that X i = [1 , 1] for each i ∈ { 1 , . . . , n } . Since 

IGO j satisfies (IGO3) for all j ∈ { 1 , . . . , m } , it holds that 

I A (I GO 1 ([1 , 1] , . . . , [1 , 1]) , . . . , IGO m 

([1 , 1] , . . . , [1 , 1])) = IA ([1 , 1] , . . . , [1 , 1]) = [1 , 1] . 

�

It is immediate that: 

Corollary 4.3. Consider the tuple 
−−→ 

IGO = (I GO 1 , . . . , I GO m 

) of general iv-overlap functions. Then, for w 1 , . . . , w m 

∈ [0 , 1] such that 

w 1 + w 2 + . . . + w m 

= 1 , the function given, for all X 1 , . . . , X n ∈ L ([0 , 1]) , by 

SUM 

−−→ 

IGO 
(X 1 , . . . , X n ) = w 1 · IGO 1 (X 1 , . . . , X n ) + . . . + w m 

· IGO m 

(X 1 , . . . , X n ) 

is a general iv-overlap function. 

Proposition 4.1 , it is immediate that: 

Corollary 4.4. Given a Moore continuous n-dimensional interval-valued aggregation function IA : L ([0, 1]) m → L ([0, 1]) and the 

tuple of n-dimensional iv-overlap functions 
−→ 

IOn = (I On 1 , . . . , I On m 

) , the interval-valued function IA 

−→ 

IOn 
: L ([0 , 1]) n → L ([0 , 1]) de- 

fined, for all X 1 , . . . , X n ∈ L ([0 , 1]) , by 

IA 

−→ 

IOn 
(X 1 , . . . , X n ) = IA (IOn 1 (X 1 , . . . , X n ) , . . . , IOn m 

(X 1 , . . . , X n )) 

is a general iv-overlap function. 

It is clear that Corollary 4.4 could be rewritten by swapping the tuple of n-dimensional iv-overlap functions by either a 

tuple of n-dimensional iv-0-overlap functions or a tuple of n-dimensional iv-1-overlap functions. 
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5. Interval-valued overlap index 

The concept of overlap index has been used for measuring the degree of overlapping between two functions. To extend 

this approach to interval-valued functions, in this section we introduce the concept interval-valued overlap index. Further- 

more, we present and analyze some construction methods for interval-valued overlap indices. 

Definition 5.1. A mapping IO : IF S(U) × IF S(U) → L ([0 , 1]) is said to be an interval-valued (iv) overlap index if it respects 

the following conditions, for all A , B, C ∈ IF S(U) : 

( IO 1) IO (A , B) = [0 , 0] if and only if for all z ∈ U, A (z) · B(z) = [0 , 0] ; 

( IO 2) IO (A , B) = IO (B, A ) ; 

( IO 3) If B ≤ C, meaning that B(z) ≤Pr C(z) for every z ∈ U , then IO (A , B) ≤Pr IO (A , C) , 

An interval-valued overlap index is said to be normal, whenever it also satisfies the following condition: 

( IO 4) If there exists z ∈ U such that A (z) · B(z) = [1 , 1] , then IO (A , B) = [1 , 1] . 

Example 5.1. The function IO π : IF S(U) × IF S(U) → L ([0 , 1]) given, for all A , B, C ∈ IF S(U) , by: 

IO π (A , B) = 

[ 

1 

n 

n ∑ 

i =1 

A (z i ) · B (z i ) , 
1 

n 

n ∑ 

i =1 

A (z i ) · B (z i ) 

] 

, (2) 

for U = { z 1 , . . . , z n } , is an iv-overlap index. 

Theorem 5.1. Consider an n-dimensional interval-valued aggregation function IM : L ([0, 1]) n → L ([0, 1]) such that, for all 

X 1 , . . . , X n ∈ L ([0 , 1]) , it holds that: 

IM(X 1 , . . . , X n ) = [0 , 0] ⇔ X 1 = . . . = X n = [0 , 0] , 

and an iv-overlap function IO : L ([0, 1]) 2 → L ([0, 1]) . Then, the function IO 

IO 
IM 

: IF S(U) × IF S(U) → L ([0 , 1]) given, for all A , B ∈ 

IF S(U) and U = { z 1 , . . . , z n } , by 

IO 

IO 
IM 

(A , B) = I M(I O (A (z 1 ) , B(z 1 )) , . . . , IO (A (z n ) , B(z n ))) , 

is an iv-overlap index. Additionally, if IM(X 1 , . . . , X n ) = [1 , 1] whenever X i = [1 , 1] , for some i ∈ { 1 , . . . , n } , meaning that IM has 

[1,1] as its nilpotent element, then IO 

IO 
IM 

is normal. 

Proof. 

( IO 1) Suppose that for all z ∈ U , it holds that A (z) · B(z) = [0 , 0] . Then, one has that IO (A (z i ) , B(z i )) = [0 , 0] , for i ∈ 

{ 1 , . . . , n } , meaning that IO 

IO 
IM 

(A , B) = IM([0 , 0] , . . . , [0 , 0]) = [0 , 0] . Now, suppose that IO 

IO 
IM 

(A , B) = [0 , 0] . Then, it 

follows that 

I M(I O (A (z 1 ) , B(z 1 )) , . . . , IO (A (z n ) , B(z n ))) = [0 , 0] . 

By the hypothesis, one has that 

I M(I O (A (z 1 ) , B(z 1 )) , . . . , IO (A (z n ) , B(z n ))) = [0 , 0] ⇔ IO (A (z i ) , B(z i )) = [0 , 0] , 

for every i ∈ { 1 , . . . , n } . Thus, one has that A (z i ) · B(z i ) = [0 , 0] , for every i ∈ { 1 , . . . , n } . 
( IO 2) Immediate, since IO is commutative. 

( IO 3) Suppose that B ≤ C. Since both IM and IO are ≤ Pr -increasing, it follows that 

IO 

IO 
IM 

(A , B) ≤Pr IO 

IO 
IM 

(A , C) ;
( IO 4) Suppose that IM has [1,1] as its nilpotent element and that there exists z i ∈ U such that A (z i ) · B(z i ) = [1 , 1] , i ∈ 

{ 1 , . . . , n } . Then, we have that 

IO (A (z i ) , B(z i )) = [1 , 1] ⇒ IM((IO (A (z 1 ) , B(z 1 )) , . . . , [1 , 1] , . . . , IO (A (z n ) , B(z n )))) = [1 , 1] , 

meaning that IO 

IO 
IM 

is normal. �

Proposition 5.1. Let O 1 , O 2 : F S(U) × F S(U) → [0 , 1] be two overlap indices such that O 1 ≤ O 2 . Then, the mapping ˜ O 1 , O 2 : 

IF S(U) × IF S(U) → L ([0 , 1]) defined, for all A , B ∈ IF S(U) , by 

˜ O 1 , O 2 (A , B) = [ O 1 (A l , B l ) , O 2 (A u , B u )] 

is an iv-overlap index. If O 1 and O 2 are both normal overlap indices, then ˜ O 1 , O 2 is also normal. 

Proof. Since O 1 ≤ O 2 , it is immediate that ˜ O 1 , O 2 is well defined. Now, let us see if all conditions from Definition 5.1 are 

met. 
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Fig. 2. Commutative diagram of the construction methods of an iv-overlap index IO based on an overlap function O . 

( IO 1) Suppose that for all z ∈ U , it holds that A (z) · B(z) = [0 , 0] . Then, for all z ∈ U , one has that: 

[ A l (z) · B l (z) , A u (z) · B u (z)] = [0 , 0] ⇔ A l (z) · B l (z) = 0 ∧ A u (z) · B u (z) = 0 

⇔ O 1 (A l (z) , B l (z)) = 0 ∧ O 2 (A u (z) , B s (z)) = 0 

⇔ [ O 1 (A l , B l ) , O 2 (A u , B u )] = [0 , 0] 

⇔ 

˜ O 1 , O 2 (A , B) = [0 , 0] . 

( IO 2) Immediate, as O 1 and O 2 are commutative. 

( IO 3) Suppose that B ≤ C. Since both O 1 and O 2 are increasing, it follows that ˜ O 1 , O 2 (A , B) ≤Pr 
˜ O 1 , O 2 (A , C) . 

( IO 4) Suppose that there exists z ∈ U such that A (z) · B(z) = [1 , 1] and that O 1 and O 2 are both normal overlap indices. 

Then, one has that: 

A l (z) · B l (z) = 1 ∧ A u (z) · B u (z) = 1 ⇒ [ O 1 (A l , B l ) , O 2 (A u , B u ) ] = [1 , 1] 

⇒ 

˜ O 1 , O 2 (A , B) = [1 , 1] , 

meaning that ˜ O 1 , O 2 is normal. �

In what follows, denote ˜ O, O simply by ˜ O . 

Theorem 5.2. Let O : [0, 1] 2 → [0, 1] be an overlap function, U = { z 1 , . . . , z n } a finite set and M : [0, 1] n → [0, 1] an aggregation 

function such that, for all x 1 , . . . , x n ∈ [0 , 1] , it holds that 

M(x 1 , . . . , x n ) = 0 ⇔ x 1 = . . . = x n = 0 . (3) 

Then, one has that 

IO ̂

 O ̂ M 

(A , B) = ̃

 O 

O 
M 

(A , B) , 

for all A , B ∈ IF S(U) . 

Proof. Consider A , B ∈ IF S(U) such that U = { z 1 , . . . , z n } , an overlap function O : [0, 1] 2 → [0, 1] and let M : [0, 1] n → [0, 1] 

be an aggregation function satisfying the Condition (3) . Since, by Definition 2.4 , one has that ̂ O (A (z) , B(z)) = O (A l (z) , B l (z)) 

and 

̂ O (A (z) , B(z)) = O (A u (z) , B u (z)) , then it holds that: 

IO ̂

 O ̂ M 

(A , B) 

= 

̂ M ( ̂  O (A (z 1 ) , B(z 1 )) , . . . , A (z n ) , B(z n )) 

= 

[ 
M ( ̂  O (A (z 1 ) , B(z 1 )) , . . . , ̂  O (A (z n ) , B(z n )) ) , M( ̂  O (A (z 1 ) , B(z 1 )) , . . . , ̂  O (A (z n ) , B(z n )) ) 

] 
= [ M(O (A l (z 1 ) , B l (z 1 )) , . . . , O (A l (z n ) , B l (z n ))) , M(O (A u (z 1 ) , B u (z 1 )) , . . . , O (A u (z n ) , B u (z n ))) ] 

by Definition 2 . 4 

= 

[
O 

O 
M 

(A l , B l ) , O 

O 
M 

(A u , B u ) 
]

by Theorem 2 . 3 

= ̃

 O 

O 
M 

(A , B) by Proposition 5 . 1 , 

which completes the proof. �

Observe that, based on Theorem 5.2 , the diagram presented in Fig. 2 commutes. 

Example 5.2. Let us consider the set U = { z 1 , . . . , z n } and the overlap function O p : [0, 1] 2 → [0, 1] defined,for all x, y ∈ [0, 1], 

by 

O p (x, y ) = xy, 

as our basis for constructing the iv-overlap IO π presented in Example 5.1 . The following construction methods are viable: 

(1) First, we build an o -representable iv-overlap IO p : L ([0, 1]) 2 → L ([0, 1]) by adopting O p as the both representatives. 

Thus, for all X, Y ∈ L ([0, 1]), one has that: 

IO p (X, Y ) = ̂

 O p (X, Y ) . 
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Next, we define the n-dimensional interval-valued aggregation IM A : L ([0, 1]) n → L ([0, 1]), for all X 1 , . . . , X n ∈ L ([0 , 1]) , 

as 

IM A (X 1 , . . . , X n ) = 

[ 

1 

n 

n ∑ 

i =1 

X i , 
1 

n 

n ∑ 

i =1 

X i 

] 

. 

It is clear that 

IM A (X 1 , . . . , X n ) = [0 , 0] ⇔ X 1 = . . . = X n = [0 , 0] . 

So, we may obtain IO π : IF S(U) × IF S(U) → L ([0 , 1]) by Theorem 5.1 as: 

IO π (A , B) = IO 

IO p 
IM A 

(A , B) = I M A (I O p (A (z 1 ) , B(z 1 )) , . . . , IO p (A (z n ) , B(z n ))) , (4) 

for all A , B ∈ IF S(U) . By rewriting Eq. (4) , we obtain the same iv-overlap index as defined in Eq. (2) in Example 5.1 . 

(2) In this method, first we build an overlap index O π through Theorem 2.3 . For that end, we consider the arithmetic 

mean as the aggregation function M A , as it holds that 

M A (x 1 , . . . , x n ) = 0 ⇔ x 1 = . . . = x n = 0 . 

Thus, O π : F S(U) × F S(U) → [0 , 1] is defined, for all A , B ∈ IF S(U) , as 

O π (A, B ) = M A (O p (A (z 1 ) , B (z 1 )) , . . . , O p (A (z n ) , B (z n ))) . 

Now, through Proposition 5.1 , we construct an iv-overlap index IO π : IF S(U) × IF S(U) → L ([0 , 1]) , defined, for all 

A , B ∈ IF S(U) , by 

IO π (A , B) = ̃

 O π = [ O π (A l , B l ) , O π (A s , B u )] , (5) 

which also coincides with Eq. (2) in Example 5.1 . 

6. An illustrative example 

This section is aimed at presenting an illustrative example of the application of general iv-overlap functions and iv- 

overlap indices in classification problems using IV-FRBCSs, specifically IVTURS (Interval-Valued Fuzzy Reasoning Method 

with Tuning and Rule Selection) [46] as an state-of-the-art IV-FRBCS. Firstly, we recall the main concepts on FRBCSs and the 

interval-valued fuzzy reasoning method. 

6.1. Fuzzy rule-based classification systems 

A classification problem is composed by P training examples �
 x p = (x p1 , . . . , x pn ) , p ∈ { 1 , . . . , P } , where x pi is the value of 

the i -th variable of the p -th training example. Each of these examples belongs to one of the M classes y p ∈ C = { C 1 , . . . , C M 

} . 
The goal of the learned classifier is to identify the class of new, unknown, testing examples. 

FRBCSs are one of the most frequently adopted techniques to deal with classification problems. Through the usage of 

linguistic labels in their rules, they provide an interpretable model while still achieving accurate results [47] . The following 

structure is adopted for the fuzzy rules: 

Rule R j : If x 1 is A j1 and . . . and x n is A jn then Class = C ′ j with RW j , (6) 

where R j is the label of the j -th rule, x = (x 1 , . . . , x n ) is an n-dimensional example vector, A ji is the fuzzy set representing 

the linguistic term of the j -th rule in the i -th antecedent, C ′ 
j 
∈ C is a class label, and RW j ∈ [0, 1] is the rule weight [31] . 

Specifically, we consider the computation of the rule weight using the fuzzy confidence value or certainty factor through 

overlap indices, as defined in [24] as 

Cn f (R j ) = 

O(C js , U) 

O(C jP , U) 
, (7) 

where U = { � x 1 , . . . , � x P } with U( � x i ) = 1 , for all i ∈ { 1 , . . . , P } , C jP is the fuzzy set built with the matching degrees of all P 

examples, C js ⊆ C jP is the fuzzy set built with the matching degrees of s ≤ P examples whose class is associated with the 

j -th rule and O is an overlap index. 

Considering O = O π , given in Eq. (1) , in [24] it was obtained the classical confidence used for the rule weight: 

RW j = 

∑ 

x p ∈ C ′ j A j (x p ) ∑ P 
p=1 A j (x p ) 

, 

where A j ( x p ) is the matching degree of the pattern x p with the antecedent part of the fuzzy rule R j , computed as 

A j (x p ) = T (A j1 (x p1 ) , · · · , A jn (x pn )) , 

with T being a conjunction operator (t-norm) and j ∈ {1 , . . . , L }. 
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In this paper, we apply the IVTURS algorithm to obtain the IV-FRBCS. We must point out that, in this case, the interval 

fuzzy rules follow a similar structure as in Eq. (6) , with the linguistic labels A ji being modeled using triangular shaped 

interval-valued membership functions and the rule weight is also an interval, now denoted by IRW j . Furthermore, the 

interval-valued fuzzy reasoning method considers the ignorance degree represented by the IVFSs throughout the inference 

process. For an in-depth look at each step of the IVTURS algorithm, see [46] . 

6.2. Applying the new concepts on the inference process 

After obtaining the interval-valued fuzzy rules, let us develop a method for classifying new examples. Thus, let �
 x p = 

(x p1 , . . . , x pn ) be a new example to be classified, L being the number of rules in the rule base and M being the number of 

classes of the problem. The new interval-valued fuzzy reasoning method can be defined by the following steps: 

(1) Interval matching degree: First, we measure the similarity between the interval membership degrees (of each variable 

to the corresponding IVFS)and the ideal membership degree [1,1] through an IV-REF IR (see Definition 2.3 ). Then, we 

apply a general iv-overlap function IGO (instead of applying an interval-valued t-norm as in IVTURS), for j ∈ { 1 , . . . , L } 
as follows: [ 

A j (x p ) , A j (x p ) 
] 

= I GO 

(
I R 

([ 
A j1 (x p1 ) , A j1 (x p1 ) 

] 
, [1 , 1] 

)
, . . . , I R 

([ 
A jn (x pn ) , A jn (x pn ) 

] 
, [1 , 1] 

))
. 

The interval matching degree represents the strength of the activation of the if-part of the rules for each x p . 

(2) Interval association degree: For the class of each rule, the interval matching degree is weighted with the correspond- 

ing iv-rule weight IRW 

k 
j 

∈ L ([0 , 1]) , resulting in the following expression: [ 
b k j , b 

k 
j 

] 
= 

[ 
A j (x p ) , A j (x p ) 

] 
·
[ 

IRW 

k 
j , IRW 

k 
j 

] 
with k = 1 , . . . , M and j = 1 , . . . , L. 

Here, we obtain the iv-rule weight for the j -rule R j through an interval-valued fuzzy confidence, which we define by: 

ICn f (R j ) = IO (C js , U ) ÷H IO (C jP , U ) , 

where U = { � x 1 , . . . , � x P } with U( � x i ) = [1 , 1] , for all i ∈ { 1 , . . . , P } , IO is an iv-overlap index, C jP is the interval fuzzy 

set built with the interval matching degrees of all P examples and C js ⊆ C jP is the interval fuzzy set built with the 

interval-valued matching degrees of s ≤ P examples whose class is associated with the j -th rule. 

The resulting expression for the iv-rule weight based on the interval-valued fuzzy confidence value when 

IO = IO π , 

given in Eq. (2) , is: 

IRW j = 

∑ 

x p ∈ C ′ j 

[ 
A j (x p ) , A j (x p ) 

] 
÷H 

P ∑ 

p=1 

[ 
A j (x p ) , A j (x p ) 

] 
. 

The remaining steps of the IV-FRM are the same as those used in IVTURS. 

6.3. Setup of the experiment 

To analyze the behaviour of a classification system when applying general iv-overlap functions and iv-overlap indices, 

we have selected 31 real-world data-sets from the KEEL repository [1] , which are publicly available on the webpage 

(http://www.keel.es/dataset.php) with all the relevant information about them. In Table 2 , one can find some properties 

of the selected data-sets, such as number of attributes (Atts.), number of examples (Ex.), and the number of classes (Class.). 

It is noteworthy that the magic, page-blocks, penbased, ring, satimage, shuttle , and twonorm data-sets have been stratified 

sampled at 10% to improve the efficiency of the learning process. Missing values from bands, cleveland and wisconsin data- 

sets have been removed before the experimentation. 

A fivefold cross-validation model has been applied in order to carry out the different experiments. This was done by 

splitting the data-set into five random partitions of data, employing a combination of four of them (80%) to train the system 

and the remaining one (20%) to test it. This process was executed 5 times, changing the testing partition in each iteration. 

The performance measure was done through the accuracy rate. 

The configuration of the IVTURS classifier is the same as in [46] , but we also apply the general iv-overlap functions 

shown in Table 3 , as the conjunction operator (the definitions for GO L , GO GM 

and GO HM 

can be seen in Table 1 ). When the 

chosen operation is the interval product (iv-Prod), then we have the original IVTURS algorithm. 

Observe that the functions iv-Luk, iv-ProdLuk, iv-GmLuk and iv-HmLuk are also n-dimensional 0-iv-overlap functions, 

and when this type of aggregation is applied as the conjunction operator, examples with a low matching degree with the 

antecedent part of a fuzzy rule are not taken into account in the system, which is why those functions were selected 

for this example. The remaining ones (iv-Prod, iv-GM and iv-HM) were included just for comparison sake, as they were the 
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Table 2 

Summary of the employed datasets. 

id Data-set Atts. Ex. Class. 

app appendicitis 7 106 2 

bal balance 4 625 3 

ban banana 2 5300 2 

bds bands 19 365 2 

bup bupa 6 345 2 

clv cleveland 13 297 5 

con contraceptive 9 1473 3 

eco ecoli 7 336 8 

gla glass 9 214 7 

hab haberman 3 306 2 

hay hayes-hoth 4 160 3 

ion ionosphere 33 351 2 

iri iris 4 150 3 

led led7digit 7 500 10 

mag magic 10 19020 2 

new newthyroid 5 215 3 

pag pageblocks 10 5472 5 

pen penbased 16 10992 10 

pho phoneme 5 5404 2 

pim pima 8 768 2 

rin ring 20 7400 2 

sah saheart 9 462 2 

sat satimage 36 6435 7 

shu shuttle 9 58000 7 

spe spectfheart 44 267 2 

tit titanic 3 2201 2 

two twonorm 20 7400 2 

veh vehicle 18 846 4 

win wine 13 178 3 

wis wisconsin 9 683 2 

yea yeast 8 1484 10 

Table 3 

General iv-overlap functions used in the application. 

General iv-overlap function identifier Definition 

iv-Prod IGO p (X 1 , . . . , X n ) = 

∏ n 
i =1 X i 

iv-Luk IGO L (X 1 , . . . , X n ) = 

̂ GO L (X 1 , . . . , X n ) 

iv-GM IGO GM (X 1 , . . . , X n ) = 

̂ GO GM (X 1 , . . . , X n ) 

iv-HM IGO HM (X 1 , . . . , X n ) = 

̂ GO HM (X 1 , . . . , X n ) 

iv-ProdLuk IGO pL (X 1 , . . . , X n ) = IGO p (X 1 , . . . , X n ) · IGO L (X 1 , . . . , X n ) 

iv-GmLuk IGO GmL (X 1 , . . . , X n ) = IGO GM (X 1 , . . . , X n ) · IGO L (X 1 , . . . , X n ) 

iv-HmLuk IGO HmL (X 1 , . . . , X n ) = IGO HM (X 1 , . . . , X n ) · IGO L (X 1 , . . . , X n ) 

functions that were combined through the construction method presented in Proposition 4.3 to obtain iv-ProdLuk, iv-GmLuk 

and iv-HmLuk. 

In order to have some statistical support in our example, we use the aligned Friedman ranks test [29] to detect statistical 

differences among a group of results and report the obtained ranks of each algorithm (lower ranks are preferable). Next, we 

applied the Holm’s post-hoc test [30] to compare the best ranking method with the other considered algorithms. We follow 

the suggestion to use these tests from [26] , where it is shown that they are strongly recommended to be employed in 

machine learning. 

6.4. Discussion of the results 

The values presented in Table 4 are the average among the 5 testing results, where the best result for each data-set is 

highlighted in bold-face . We can observe that all the general iv-overlap functions obtain similar results to those achieved 

by the original IVTURS (iv-Prod). In order to give statistical support to the previous findings we have applied the aligned 

rank test, whose ranks as well as the adjusted p-values (APVs) provided by the Holm’s post hoc test are shown in Table 5 , 

with the best ranking method highlighted in bold-face . 

From the statistical tests we see that the global results when applying general-iv overlap functions are comparable to 

those of the original IVTURS algorithm, as the ranks are close and every APV is equal to 1. The iv-HmLuk algorithm presented 

a higher global accuracy, although no operation has significantly improved the system globally, as none has statistically 

decreased the overall performance considering all data-sets. 
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Table 4 

Results in testing for the different methods. 

Data-set iv-Prod iv-Luk iv-GM iv-HM iv-ProdLuk iv-GmLuk iv-HmLuk 

app 84.89 83.94 83.98 84.89 83.98 86.80 83.98 

bal 85.76 86.56 86.72 86.56 86.72 85.12 86.24 

ban 81.45 81.79 80.68 83.17 81.89 82.21 82.49 

bds 66.32 67.74 69.05 69.41 67.99 70.8 68.82 

bup 64.06 66.67 63.77 62.32 63.77 64.06 64.06 

clv 58.58 57.91 58.93 57.58 59.25 59.25 57.91 

con 53.36 53.91 52.48 52.41 53.23 53.30 53.57 

eco 80.96 79.74 79.78 78.57 81.84 80.07 80.37 

gla 68.72 69.19 71.97 64.97 63.12 70.10 68.70 

hab 72.85 75.47 72.19 71.89 75.47 74.16 75.80 

hay 79.46 79.46 79.46 79.46 79.46 79.46 79.46 

ion 92.04 91.74 92.03 91.76 93.17 91.18 92.61 

iri 95.33 96.00 96.00 96.67 96.00 95.33 95.33 

led 70.60 70.60 70.60 70.60 70.60 70.60 70.60 

mag 79.91 80.23 80.39 79.97 80.02 80.97 79.44 

new 97.21 97.67 95.81 96.74 96.28 96.74 95.81 

pag 93.79 94.15 93.79 94.34 94.70 93.79 94.34 

pen 92.18 91.36 91.18 92.82 91.46 91.27 91.73 

pho 80.42 80.68 80.53 80.81 80.63 80.92 80.64 

pim 74.61 73.95 75.38 73.70 73.95 74.48 74.86 

rin 90.81 90.14 90.27 90.41 90.81 90.41 90.81 

sah 70.13 71.65 70.33 70.77 69.91 70.15 69.70 

sat 76.21 76.52 76.52 77.30 76.06 76.21 77.14 

shu 90.30 91.54 93.29 93.52 91.13 91.13 91.82 

son 81.74 79.37 79.36 81.25 80.31 78.40 80.29 

spe 79.38 78.28 79.40 79.41 80.51 79.39 79.76 

tit 78.87 78.87 78.87 78.87 78.87 78.87 78.87 

two 93.65 93.51 93.38 93.24 92.57 92.43 93.24 

veh 66.20 65.37 67.61 66.075 65.48 66.67 65.96 

win 97.19 94.95 95.52 96.60 96.59 95.51 96.60 

wis 96.34 96.63 97.07 96.49 96.63 96.34 96.05 

yea 55.32 55.05 57.34 55.12 55.66 53.64 56.87 

Mean 79.65 79.71 79.80 79.62 79.63 79.68 79.81 

Table 5 

Average Rankings of the algorithms 

(Aligned Friedman). 

Algorithm Rank APV 

iv-Prod (IVTURS) 113.66 1 

iv-Luk 119.64 1 

iv-GM 114.52 1 

iv-HM 109.14 1 

iv-ProdLuk 111.92 1 

iv-GmLuk 119.94 1 

iv-HmLuk 98.69 - 

However, observe that IVTURS has the best performance in only 4 of the 32 employed data-sets (12.5%). In some datasets 

like bands or haberman , we have an enhancement of the results provided by IVTURS: 1) from 66.32% to 70.8% using the iv- 

GmLuk in bands and 2) from 72.85% to 75.8% applying iv-HmLuk in haberman. This shows that there is a good chance that 

some general iv-overlap function based method can be better suited for a given data-set, depending on the context of the 

problem at hand. This experimentation example illustrates the adaptability of general iv-overlap functions, as they can be 

constructed and applied in different ways, producing competitive results in classification systems, as they were comparable 

to the results of IVTURS. 

7. Conclusion 

In this paper, we introduced important concepts to overcome the limitations of the applicability of iv-overlap functions 

in n-dimensional problems with interval-valued data. First, we developed the concept and studied the representability of 

n-dimensional iv-overlap functions, also introducing the concept o -representable functions. Then, we presented some gener- 

alizations on the definition of n-dimensional iv-overlap functions, leading to the definition, characterization and construction 

methods for general iv-overlap functions. 
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The concept of iv-overlap index was also introduced, followed by the study of some construction methods, where we 

observed that from an overlap function we can obtain an iv-overlap index, either by an aggregation of representable iv- 

overlap functions or by a pair of overlap indices ( Fig. 2 ). 

We showed an illustrative example regarding an application in classification, through a new interval-valued fuzzy rea- 

soning method in which we apply both general iv-overlap functions and iv-overlap indices. 

A future research line could be to study whether datasets have properties of the data that make some general iv-overlap 

functions more suitable to be applied than others, which could lead to the development of a powerful classifier. Ongoing 

theoretical work includes the study of similar concepts presented in this paper in the context of admissible orders [13] . 
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Abstract—Overlap functions are a type of aggregation func-
tions that are not required to be associative, generally used
to indicate the overlapping degree between two values. They
have been successfully used as a conjunction operator in several
practical problems, such as fuzzy rule-based classification systems
(FRBCSs) and image processing. Some extensions of overlap
functions were recently proposed, such as general overlap func-
tions and, in the interval-valued context, n-dimensional interval-
valued overlap functions. The latter allow them to be applied in
n-dimensional problems with interval-valued inputs, like interval-
valued classification problems, where one can apply interval-
valued FRBCSs (IV-FRBCSs). In this case, the choice of an
appropriate total order for intervals, like an admissible order,
can play an important role. However, neither the relationship
between the interval order and the n-dimensional interval-valued
overlap function (which may or may not be increasing for that
order) nor the impact of this relationship in the classification
process have been studied in the literature. Moreover, there is not
a clear preferred n-dimensional interval-valued overlap function
to be applied in an IV-FRBCS. Hence, in this paper we: (i)
present some new results on admissible orders, which allow us
to introduce the concept of n-dimensional admissibly ordered
interval-valued overlap functions, that is, n-dimensional interval-
valued overlap functions that are increasing with respect to an
admissible order; (ii) develop a width-preserving construction
method for this kind of function, derived from an admissible
order and an n-dimensional overlap function, discussing some of
its features; (iii) analyze the behaviour of several combinations
of admissible orders and n-dimensional (admissibly ordered)
interval-valued overlap functions when applied in IV-FRBCSs.
All in all, the contribution of this paper resides in pointing out the
effect of admissible orders and n-dimensional admissibly ordered
interval-valued overlap functions, both from a theoretical and
applied points of view, the latter when considering classification
problems.
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Smart Cities, Universidad Publica de Navarra, Pamplona, Spain e-mails:
{joseantonio.sanz,fcojavier.fernandez,bustince}@unavarra.es.

B. Bedregal is with Departamento de Informática e Matemática Aplicada,
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I. INTRODUCTION

In 2010, Bustince et al. [1] introduced the concept of overlap
functions in order to deal with the overlap problem that usually
appears in image processing. For that, overlap functions were
conceived as continuous aggregation functions [2] that are
not required to be associative. In fact, the associativity is
not a relevant property for many applications besides image
processing, such as decision making based on fuzzy preference
relations, as properly discussed by Dimuro et al. in [3], [4],
[5]. Observe that the continuity property of overlap functions
was essential for the application in image processing, in the
context where the concept was born.

Overlap functions are more general than the well known
t-norms [6], although the required continuity may be more
restrictive. In fact, there is an intersection between those two
families: any continuous positive t-norm is an overlap function
and any associative overlap function with 1 as neutral element
is a t-norm. Nevertheless, the class of overlap functions is
reacher than that of t-norms in many aspects, considering, e.g.,
the idempotency and homogeneity properties [7]. Moreover,
overlap functions are closed to the convex sum and the
aggregation by generalized composition of overlap functions,
whereas neither the convex sum of t-norms nor the aggregation
of t-norms by a t-norm results in t-norms, in general [8], [9].

Since the appearance of the concept of overlap functions,
many authors have dedicated time to the theoretical research
on their properties and related concepts, such as Qiao [10],
Qiao and Hu [11], Dimuro et al. [5], [8], [12], [13], Zhou and
Yan [14], Zhu et al. [15], Zhang et al. [16] and Cao et al.
[17]. Moreover, the application of overlap function is getting
attention mainly because the associativity is not required
during the information aggregation process, like in image
processing [18], decision making [19], [20], wavelet-fuzzy
power quality diagnosis system [21], forest fire detection [22]
and classification by generalizations of the Choquet integral
[23], [24], [25], [26], [27]. Observe that, in some of the men-
tioned applications (e.g., decision making and classification),
the continuity of overlap functions is not required.

However, overlap functions are bivariate functions, which
implies that they can only be applied in problems involving
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just two classes or objects. This becomes a serious drawback
when one faces n-dimensional problems (e.g., classification
[28]), since overlap functions may be not associative. In order
to overcome this limitation, Gómez et al. [29] introduced the
concept of n-dimensional overlap functions. More recently, De
Miguel et al. [30] defined general overlap functions by relaxing
the boundary conditions of n-dimensional overlap functions,
providing a more flexible definition.

Now, observe that in some applications there may be
uncertainty in providing either the membership grades or the
definition of membership functions [31]. To deal with this
problem, one may adopt interval-valued fuzzy sets (IVFSs)
[32], [33], [34], since it is capable to model both vagueness
(soft class boundaries) and uncertainty (with respect to the
membership function), as discussed in [35], [36], [37]. That
is the reason why IVFSs have been successfully applied in
several problems, such as game theory [38], decision making
[39], pest control [40] and, specially, classification [37].

To address the problem of working in the interval-valued
fuzzy context, Qiao and Hu [41] and Bedregal et al. [35]
introduced independently the concept of interval-valued (iv)
overlap functions. Latter, in [42], Asmus et al. introduced the
concepts of n-dimensional iv-overlap functions and general
iv-overlap functions, which were applied to compute the
interval matching degree in Interval-Valued Fuzzy Rule Based
Classification Systems (IV-FRBCSs) [43], [44].

IV-FRBCSs are Fuzzy Rule Based Classification Systems
(FRBCSs) [45] whose linguistic labels are modeled by means
of IVFSs, as in the work of Sanz et al. [37]. In IV-FRBCSs,
the ignorance/uncertainty inherent to the definition of the
membership functions, represented by IVFSs, is taken into
account in the whole reasoning process, which implies that
in the end of the classification process one needs to compare
intervals instead of numbers. To carry out this comparison,
a total order relation between intervals is needed, instead of
the usual partial orders (e.g., the product order [46]). For that,
one may use admissible orders introduced by Bustince et al.
[47], which are total orders that may be constructed by means
of aggregation functions, that is, different total orders can be
obtained by varying the aggregation functions used in their
construction. Since their definition, several works took into
account admissible orders, such as [48], [49].

When defining IV-FRBCSs, both the aggregation function
used to compute the interval matching degree and the adopted
total order play a key role, as they can change the behaviour
of the system. However, in the literature, there is not a consen-
sus regarding which are the recommended n-dimensional iv-
overlap functions to be applied to compute the interval match-
ing degree in IV-FRBCSs. Moreover, there is no previous study
concerning the relation between the chosen interval total order
and n-dimensional iv-overlap function (which may or may not
be increasing for that order), and the impact of such relation
in the whole classification process.

Considering the discussion above, in this paper we have the
following objectives:

1. To define n-dimensional admissibly ordered iv-overlap
functions, that is, n-dimensional iv-overlap functions that

are increasing with respect to an admissible order, study-
ing their properties and showing examples;

2. To introduce a construction method of n-dimensional
admissibly ordered iv-overlap functions based on n-
dimensional overlap functions and a chosen admissible
order, aiming at obtaining width-preserving iv-functions,
that is, the resulting interval is never wider than any of
the aggregated inputs, which is a desirable property in
many applications;

3. To analyze the influence of both the admissible orders and
the n-dimensional admissibly ordered iv-overlap func-
tions in IV-FRBCSs.

The paper is organized as follows. Section II presents some
preliminary concepts that are necessary for the development of
the paper. In Section III, we present new results on admissible
orders and introduce the concept of n-dimensional admissibly
ordered iv-overlap functions, studying properties and show-
ing examples. In section IV we develop a width-preserving
construction method for n-dimensional admissibly ordered iv-
overlap functions. In Section V, we analyze the influence
of the combination of admissible orders and n-dimensional
(admissibly ordered) interval-valued overlap functions, in clas-
sification problems. Section VI is the Conclusion.

II. PRELIMINARIES

A. Interval Representation

Let us denote as L([0, 1]) the set of all closed subintervals of
the unit interval [0, 1]. Denote ~x = (x1, . . . , xn) ∈ [0, 1]n and
~X = (X1, . . . , Xn) ∈ L([0, 1])n. Given any X = [x1, x2] ∈
L([0, 1]), X = x1 and X = x2 denote, respectively, the left
and right projections of X . The product and inclusion partial
orders are defined for all X,Y ∈ L([0, 1]), respectively, by:

X ≤Pr Y ⇔ X ≤ Y ∧ X ≤ Y ;

X ⊆ Y ⇔ X ≥ Y ∧ X ≤ Y .
We call as ≤Pr-increasing a function that is increasing with

respect to the product order ≤Pr. The projections F−, F+ :
[0, 1]n → [0, 1] of F : L([0, 1])n → L([0, 1]) are defined,
respectively, by:

F−(x1, . . . , xn) = F ([x1, x1], . . . , [xn, xn]); (1)

F+(x1, . . . , xn) = F ([x1, x1], . . . , [xn, xn]). (2)

Given two functions f, g : [0, 1]n → [0, 1] such that f ≤ g,
we define the function f̂, g : L([0, 1])n → L([0, 1]) as

f̂, g(X1, . . . , Xn) = [f(X1, . . . , Xn), g(X1, . . . , Xn)]. (3)

Definition 1. [36] Let F : L([0, 1])n → L([0, 1]) be an ≤Pr-
increasing interval function. F is said to be representable if
there exist increasing functions f, g : [0, 1]n → [0, 1] such that
f ≤ g and F = f̂, g.

The functions f and g are the representatives of the interval
function F . When F = f̂, f , we denote simply as f̂ .

Proposition 1. [42] For each ≤Pr-increasing interval func-
tion F : L([0, 1])n → [0, 1], F is representable if and only if
F is inclusion monotonic.
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Proposition 2. [42] If an ≤Pr-increasing interval function
F : L([0, 1])n → L([0, 1]) is inclusion monotonic, then
F (X1, . . . , Xn) = F−(X1, . . . , Xn) and F (X1, . . . , Xn) =

F+(X1, . . . , Xn), for all X1, . . . , Xn ∈ L([0, 1]).
Definition 2. [50] An interval-valued negation is a function
N : L([0, 1])→ L([0, 1]) that is ≤Pr-decreasing and satisfies:
(N1) N([1, 1]) = [0, 0]; (N2) N([0, 0]) = [1, 1]. If for all
X ∈ L([0, 1]), N(N(X)) = X , N is said to be involutive.

Definition 3. [51] An interval-valued restricted equivalence
functions (IV-REF) is a function IR : L([0, 1])2 → L([0, 1])
satisfying: (IR1) IR is commutative; (IR2) IR(X,Y ) =
[1, 1] ⇔ X = Y ; (IR3) IR(X,Y ) = [0, 0] ⇔ X =
[0, 0] and Y = [1, 1], or X = [1, 1] and Y = [0, 0];
(IR4) IR(X,Y ) = IR(N(X), N(Y )); (IR5) ∀X,Y, Z ∈
L([0, 1]), X ≤Pr Y ≤Pr Z ⇒ IR(X,Y ) ≥Pr IR(X,Z)
and IR(Y,Z) ≥Pr IR(X,Z).

Some interval operations that are used in this paper are
defined, for all X,Y ∈ L([0, 1]) as: [46], [52]

Sum: X + Y = [X + Y ,X + Y ];

Product: X · Y = [X · Y ,X · Y ];

Generalized Hukuhara Division: with Y 6= 0,

X ÷H Y = [min{X/Y ,X/Y },max{X/Y ,X/Y }].

B. Admissible orders

The notion of admissible orders for intervals came from the
interest in extending the product order ≤Pr to a total order.

Definition 4. [47] Let (L([0, 1]),≤AD) be a partially ordered
set. The order ≤AD is called an admissible order if
(i) ≤AD is a total order on (L([0, 1]),≤AD);
(ii) For all X,Y ∈ L([0, 1]), X ≤AD Y whenever X ≤Pr Y .

In other words, an order ≤AD on L([0, 1]) is admissible, if
it is total and refines the order ≤Pr [47].

Example 1. The following relations on L([0, 1]) are examples
of admissible orders:
(i) The lexicographical orders with respect to the first and
second coordinate, defined, respectively, by:

X ≤Lex1 Y ⇔ X < Y ∨ (X = Y ∧X ≤ Y );

X ≤Lex2 Y ⇔ X < Y ∨ (X = Y ∧X ≤ Y ).

(ii) The order ≤XY introduced by Xu and Yager in [53],
defined by:

X ≤XY Y ⇔ X +X < Y + Y or

(X +X = Y + Y and X −X ≤ Y − Y ).

(iii) Whenever one considers the comparison of the informa-
tion quality [54] provided by the intervals X and Y in the
order of Xu and Yager, it is possible to define, as in [43]:

X ≤IQ Y ⇔ X +X < Y + Y or

(X +X = Y + Y and Y − Y ≤ X −X).

Proposition 3. [47] Let A,B : [0, 1]2 → [0, 1] be aggregation
functions (see Def. 6), such that, for all X,Y ∈ L([0, 1]), the

equalities A(X,X) = A(Y , Y ) and B(X,X) = B(Y , Y )
can hold only if X = Y . Define the relation ≤A,B on L([0, 1])
by

X ≤A,B Y ⇔ A(X,X) < A(Y , Y ) or

(A(X,X) = A(Y , Y ) and B(X,X) ≤ B(Y , Y )).

Then ≤A,B is an admissible order on L([0, 1]).

The pair (A,B) of aggregation functions that generates
the order ≤A,B in Prop. 3 is called an admissible pair of
aggregation functions [47]. Of particular interest is when the
admissible order is generated by Kα mappings [47]. For
α ∈ [0, 1], the mapping Kα : [0, 1]2 → [0, 1] is defined by:

Kα(x, y) = x+ α · (y − x). (4)

Definition 5. [47] For α, β ∈ [0, 1] such that α 6= β, the
relation ≤α,β is defined by

X ≤α,β Y ⇔ Kα(X,X) < Kα(Y , Y ) or

(Kα(X,X) = Kα(Y , Y ) and Kβ(X,X) ≤ Kβ(Y , Y )).

Then, the relation ≤α,β is an admissible order generated by
an admissible pair of aggregation functions (Kα,Kβ) [47].

Remark 1. By varying the values of α and β one can recover
some of the defined admissible orders, e.g., the lexicographical
orders ≤Lex1 and ≤Lex2, and the orders ≤XY and ≤IQ are
recovered, respectively, by ≤0,1, ≤1,0, ≤0.5,1 and ≤0.5,0.

Lemma 1. [47] For any α, β ∈ [0, 1], α 6= β, it holds that:
(i)β > α⇒≤α,β=≤α,1; (ii) β < α⇒≤α,β=≤α,0.

C. n-dimensional Overlap Functions

Definition 6. [2] An aggregation function is a mapping
A : [0, 1]n → [0, 1] that is increasing in each argument and
satisfying: (A1) A(0, . . . , 0) = 0; (A2) A(1, . . . , 1) = 1.

Definition 7. [28], [29] A function On : [0, 1]n → [0, 1]
is said to be an n-dimensional overlap function if the fol-
lowing conditions hold, for all ~x ∈ [0, 1]n: (On1) On is
commutative; (On2) On(~x) = 0 ⇔ ∏n

i=1 xi = 0; (On3)
On(~x) = 1 ⇔ ∏n

i=1 xi = 1; (On4) On is increasing; (On5)
On is continuous.

If for all x, y, z ∈ (0, 1] one has that x < y implies that
On(x, z, . . . , z) < On(y, z, . . . , z), then On is called a strict
n-dimensional overlap function. In Table I we show some
examples of n-dimensional overlap functions.

A 2-dimensional overlap function is just called overlap
function. For properties on (n-dimensional) overlap functions
and related concepts, see also: [3], [4], [9], [10], [11], [29].

D. n-dimensional Interval-valued Overlap Functions

Recently, the concepts of n-dimensional interval-valued ag-
gregation/overlap functions and general interval-valued over-
lap functions were introduced by Asmus et al. in [42]:

Definition 8. [42] A function IA : L([0, 1])n → L([0, 1])
is an n-dimensional interval-valued aggregation function



1063-6706 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2021.3052342, IEEE
Transactions on Fuzzy Systems

4

TABLE I: Examples of n-dimensional overlap functions

Name Definition

Product OnP (~x) =
∏n
i=1 xi

Minimum OnM (~x) = min{x1, . . . , xn}
Hamacher OnHp(~x) =




0, ifx1 = . . . = xn = 0;∏n
i=1 xi(∑n

i=1

∏
j∈Nn

i
xj

)
−(n−1)

∏n
i=1 xi

, otherwise

where Nn
i = {1, . . . , n} − {i}

OB Overlap OnOB(~x) =
√

min{x1, . . . , xn} ·
∏n
i=1 xi

Geom. Mean OnGm(~x) = n
√∏n

i=1 xi

Harm. Mean OnHm(~x) =



n
1

xi
+ . . .+

1

xn

, ifxi 6= 0, ∀i ∈ {1, . . . , n};

0, otherwise

whenever the following conditions hold: (IA1) IA is ≤Pr-
increasing in each argument; (IA2) IA satisfies the bound-
ary conditions: (i) IA([0, 0], . . . , [0, 0]) = [0, 0] and (ii)
IA([1, 1], . . . , [1, 1]) = [1, 1].

Definition 9. [42] A function IOn : L([0, 1])n → L([0, 1])
is an n-dimensional interval-valued (iv) overlap function if,
for all ~X ∈ L([0, 1])n and Y ∈ L([0, 1]), it satisfies: (IOn1)
IOn is commutative; (IOn2) IOn( ~X) = [0, 0]⇔∏n

i=1Xi =

[0, 0]; (IOn3) IOn( ~X) = [1, 1] ⇔ ∏n
i=1Xi = [1, 1]; (IOn4)

IOn is ≤Pr-increasing in the first component: X1 ≤Pr Y ⇒
IOn(X1, X2, . . . , Xn) ≤Pr IOn(Y,X2, . . . , Xn); (IOn5)
IOn is Moore continuous [46].

Example 2. Some examples of n-dimensional iv-overlap func-
tions, for ~X =∈ L([0, 1])n are:

1. IOnM ( ~X) =
[
min{X1, . . . , Xn},min{X1, . . . , Xn}

]
;

2. IOnPp( ~X) =
[∏n

i=1Xi
p,
∏n
i=1Xi

p
]
, for p > 0;

3. IOnMp( ~X) = IOnM ( ~X) · IOnPp( ~X).

Theorem 1. [42] Let On1, On2 : [0, 1]n → [0, 1] be n-
dimensional overlap functions such that On1 ≤ On2. Then,
the function ̂On1, On2 : L([0, 1])n → L([0, 1]), as defined in
Eq. (3), is an n-dimensional iv-overlap function.

An n-dimensional iv-overlap function IOn : L([0, 1])n →
L([0, 1]) is said to be o-representable if there exist n-
dimensional overlap functions On1, On2 : [0, 1]n → [0, 1]

such that On1 ≤ On2 and IOn = ̂On1, On2.

Theorem 2. [42] Let IOn : L([0, 1])n → L([0, 1]) be an n-
dimensional iv-overlap function. Then, IOn is o-representable
if and only if IOn is inclusion monotonic and satisfies, for
all ~X ∈ L([0, 1])n: (i) IOn( ~X) = 0 ⇔ ∏n

i=1Xi = 0; (ii)

IOn( ~X) = 1⇔∏n
i=1Xi = 1.

Corollary 1. Let IOn : L([0, 1])n → L([0, 1]) be
an n-dimensional iv-overlap function such that IOn+ :
L([0, 1])n → L([0, 1]) (Eq. (2)) is a strict n-dimensional
overlap function. Then, IOn is o-representable if and only
if it is inclusion monotonic and, for all ~X ∈ L([0, 1])n:
IOn( ~X) = 0⇔∏n

i=1Xi = 0.

Proof. It is immediate from Prop. 2 and Theorem 2.

A 2-dimensional iv-overlap function is called iv-overlap
function. For more properties on such functions, see [35], [41].

III. N-DIMENSIONAL ADMISSIBLY ORDERED
INTERVAL-VALUED OVERLAP FUNCTIONS

In this section, we define the concept of n-dimensional
admissibly ordered interval-valued overlap function, following
by some properties and examples. But first, we introduce some
new results regarding admissible orders.

Proposition 4. For all α1, α2, β1, β2 ∈ [0, 1] such that α1 6=
α2, α1 6= β1 and α2 6= β2, one has that ≤α1,β1 6=≤α2,β2 .

Proof. Consider Y = [0, 1] and α1, α2 ∈ [0, 1] such that α1 <
α2. For all X = [x, x] such that α1 < x < α2 one has that
Y ≤α1,β1

X and X ≤α2,β2
Y , for any β1 6= α1 and β2 6= α2.

The proof for the case in which α2 < α1 is analogous.

Proposition 5. For all α ∈ (0, 1) one has that ≤α,0 6=≤α,1.

Proof. For all α ∈ (0, 1), it is possible to find X,Y ∈
L([0, 1]), namely, X = [α, α] and Y = [0, 1], such that
Y <α,0 X and X <α,1 Y .

Corollary 2. For all α, β1, β2 ∈ [0, 1] such that β1 < α < β2,
one has that ≤α,β1 6=≤α,β2 .

Proof. It is immediate from Lemma 1 and Prop. 5.

From Prop. 4 and 5, and Lemma 1, it is clear that
≤α1,β1 6=≤α2,β2 , for all α1, α2, β1, β2 ∈ [0, 1] such that
α1 6= β1 and α2 6= β2, except when α1 = α2 = α, β1 < α
and β2 < α or when α1 = α2 = α, α < β1 and α < β2.

Here, we introduce the definition of n-dimensional admis-
sibly ordered interval-valued overlap function.

Definition 10. A function AOn : L([0, 1])n → L([0, 1]) is
an n-dimensional admissibly ordered interval-valued overlap
function for an admissible order ≤AD (n-dimensional ≤AD-
overlap function) if it satisfies the conditions (IOn1), (IOn2)
and (IOn3) of Def. 9 and, for all Y,X1, . . . , Xn ∈ L([0, 1]):
(AOn4) AOn is increasing for ≤AD in the first com-

ponent: X1 ≤AD Y ⇒ AOn(X1, . . . , Xn) ≤AD
AOn(Y,X2, . . . , Xn).

Remark 2. Condition (IOn5) from Def. 9 is not needed as
the continuity was only a requirement in the original definition
of overlap functions in order to enable them to be applied in
image processing [1], which is not the case here. Besides that,
the notion of continuity for admissible orders is still an open
problem, and it is not the focus of this work.

A 2-dimensional ≤AD-overlap function is called ≤AD-
overlap function.

Example 3. Some examples of ≤AD-overlap functions are:
(1) The interval minimum with respect to the order ≤IQ,
defined by

min
≤0.5,0

(X,Y ) =

{
X, if X ≤0.5,0 Y
Y, otherwise

is an ≤0.5,0-overlap function (see Prop. 6);
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(2) The interval product is an n-dimensional ≤1,0-overlap
function, that is, it is increasing with respect to the order
≤Lex2 (see Theorem 2);
(3) For a given α ∈ [0, 1] and OnOB defined in Table I, the
function AOn0.5OB defined by

AOn0.5OB(X1, . . . , Xn) =

[OnOB(K0.5(X1, X1), . . . ,K0.5(Xn, Xn))− 0.5 ·m,
OnOB(K0.5(X1, X1), . . . ,K0.5(Xn, Xn)) + 0.5 ·m],

with

m = min{X1 −X1, . . . , Xn −Xn,

OnOB(K0.5(X1, X1), . . . ,K0.5(Xn, Xn)),

1−OnOB(K0.5(X1, X1), . . . ,K0.5(Xn, Xn))},
is an n-dimensional ≤0.5,1-overlap function (see Theorem 4).

It is immediate that:

Proposition 6. The interval minimum defined, for all X,Y ∈
L([0, 1]), by

min
≤AD

(X,Y ) =

{
X, if X ≤AD Y
Y, otherwise

is an ≤AD-overlap function for any admissible order ≤AD.

The result in Prop. 6 holds for a similarly defined n-
dimensional interval minimum, that is, the function that returns
the least interval from n interval-valued inputs accordingly to
an admissible order ≤AD.

Lemma 2. Let On : [0, 1]n → [0, 1] be an n-dimensional
overlap function. Then, there exists b ∈ (0, 1) such that, for
all a ∈ (0, b), it holds that On(a, 1, . . . , 1) < On(b, 1, . . . , 1).

Proof. By condition (On3) of Def. 7, one has that
On(x, 1, . . . , 1) < 1, for each x ∈ (0, 1), and by (On5),
we have that there exists x0 ∈ (0, 1) such that, for each y ∈
(x0, 1), it holds that On(x0, 1 . . . , 1) < On(y, 1, . . . , 1) < 1.
So, taking b = x0+1

2 we have that, for each a ∈ (0, b), it holds
that On(a, 1, . . . , 1) < On(b, 1, . . . , 1).

Remark 3. Consider X,Y ∈ L([0, 1]). Observe that whenever
X <α,β Y , with X > Y and X+α(X−X) < Y +α(Y −Y ),
then it is immediate that

α <
Y −X

(Y −X)− (Y −X)
. (5)

The following theorem presents an important result regard-
ing o-representable n-dimensional iv-overlap functions and
the conditions for them to be increasing with respect to an
admissible order ≤α,β .

Theorem 3. Let IOn : L([0, 1])n → L([0, 1]) be an o-
representable n-dimensional iv-overlap function and α, β ∈
[0, 1], α 6= β. Then, IOn is ≤α,β-increasing if and only if
α = 1 and IOn+ is a strict n-dimensional overlap function.

Proof. (⇒) Based on Lemma 2, there exists b ∈ (0, 1) such
that for all a ∈ (0, b), IOn+(a, 1, . . . , 1) < IOn+(b, 1, . . . , 1)
holds. Consider α < 1. It is possible to find X,Y ∈ L([0, 1])
such that X <α,β Y, with X < Y < Y < X and X+α(X−

X) < Y +α(Y −Y ). In fact, that is the case when X = [ b4 , b]
and Y = [ b2 ,

b
2−0.9 9 . . . 9︸ ︷︷ ︸

n−times

], for n sufficiently great.

Next, suppose that Z = [0, 1]. Then, it follows
that IOn(X,Z, . . . , Z) = [0, IOn+(X, 1, . . . , 1)] >Pr
[0, IOn+(Y , 1, . . . , 1)] = IOn(Y,Z, . . . , Z). As ≤α,β is an
admissible order, then, one has that IOn(X,Z, . . . , Z) >α,β
IOn(Y,Z, . . . , Z), showing that IOn is not ≤α,β-increasing.
By the contrapositive, if IOn is ≤α,β-increasing then α = 1.

Now, let us suppose that IOn+ is not strict. Then,
there exist x1, . . . , xn, y, z ∈ (0, 1] such that y < z and
IOn+(x1, . . . , xn−1, y) = IO+(x1, . . . , xn−1, z). As IOn is
≤α,β-increasing, one has that α = 1, and thus, by Lemma 1,
IOn is ≤1,0-increasing. Since [y, y] ≤1,0 [0, z], then:

IOn([x1, x1], . . . , [xn−1, xn−1], [y, y]) ≤1,0

IOn([x1, x1], . . . , [xn−1, xn−1], [0, z]).

As IOn is o-representable, one has that

IOn([x1, x1], . . . , [xn−1, xn−1], [y, y]) =

[IOn−(x1, . . . , xn−1, y), IOn
+(x1, . . . , xn−1, y)],

IOn([x1, x1], . . . , [xn−1, xn−1], [0, z]) =

[IOn−(x1, . . . , xn−1, 0), IOn
+(x1, . . . , xn−1, z)].

Since IOn+(x1, . . . , xn−1, y) = IOn+(x1, . . . , xn−1, z), it
follows that:

IOn([x1, x1], . . . , [xn−1, xn−1], [y, y]) ≤1,0

IOn([x1, x1], . . . , [xn−1, xn−1], [0, z])⇔
IOn−(x1, . . . , xn−1, y) ≤ IOn−(x1, . . . , xn−1, 0),

which is a contradiction as IOn−(x1, . . . , xn−1, 0) = 0 and
IOn−(x1, . . . , xn−1, y) > 0, showing that IOn is not ≤α,β-
increasing. Then, if IOn is ≤α,β-increasing then IOn+ must
be a strict n-dimensional overlap function.
(⇐) Consider X1, . . . , Xn−1, [a, b], [c, d] ∈ L([0, 1]) such that
[a, b] ≤1,0 [c, d]. Then, one has the following cases:
(i) a > c and b < d: In this case, one has that [a, b] ⊂ [c, d],
and, thus, by Theorem 2,

IOn(X1, . . . , Xn−1, [a, b]) ⊆ IOn(X1, . . . , Xn, [c, d]).

First, consider Xi 6= [0, 0] for all i ∈ {1, . . . , n}. By Prop. 2,
since IOn+ is a strict overlap function, one has that:

IOn(X1, . . . , Xn−1, [a, b]) = IOn+(X1, . . . , Xn−1, b)

< IOn+(X1, . . . , Xn−1, d) = IOn(X1, . . . , Xn−1, [c, d]).

If Xi=[0, 0] for some i ∈ {1, . . . , n}, then

IOn(X1, . . . , Xn−1, [a, b]) =

IOn(X1, . . . , Xn−1, [c, d]) = [0, 0].

Thus, for any X ∈ L([0, 1]), one concludes that

IOn(X1, . . . , Xn−1, [a, b]) ≤1,0 IOn(X1, . . . , Xn−1, [c, d]).

(ii) b ≤ d and a ≤ c: In this case, [a, b] ≤Pr [c, d], and, thus,

IOn(X1, . . . , Xn−1, [a, b]) ≤Pr IOn(X1, . . . , Xn−1, [c, d]).
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Since ≤1,0 is an admissible order, one concludes that

IOn(X1, . . . , Xn−1, [a, b]) ≤1,0 IOn(X1, . . . , Xn−1, [c, d]).

Since IOn is o-representable and IOn+ is a strict overlap
function, then the result follows Lemma 1.

Now, let us show an example to illustrate Theorem 3 with a
specific o-representable n-dimensional ≤AD-overlap function.

Example 4. Let IOnPp be an n-dimensional iv-overlap func-
tion as defined in Example 2, and α, β ∈ [0, 1], α 6= β. As

IOnPp( ~X) =
[
IOn−Pp( ~X), IOn+Pp(

~X)
]

=
[
X1

p · . . . ·Xn
p, X1

p · . . . ·Xn
p
]
,

it is clear that IOn+
Pp is a strict n-dimensional overlap func-

tion. Furthermore, suppose α < 1 and consider Z = [0, 1],
X = [0.1, 0.5], Y = [0.4, 0.4 9 . . . 9︸ ︷︷ ︸

n−times
] , for n > 0, where,

clearly, X < Y and X > Y . Then, there exists a sufficiently
great n such that X <α,β Y , and, by Remark 3, Eq. (5) holds.
However, one has that

IOnPp(X,Z) = [0, 0.5p] >Pr [0, (0.4 9 . . . 9︸ ︷︷ ︸
n−times

)p]

= IOnPp(Y,Z).

As ≤α,β is an admissible order, then, it follows that
IOnPp(X,Z) >α,β IOnPp(Y,Z), showing that IOnPp is
not ≤α,β-increasing. Then, if IOnPp is ≤α,β-increasing then
α = 1. Since IOnPp is o-representable and IOn+

Pp is a strict
n-dimensional overlap function, from Theorem 3 and Lemma
1 one has that IOnPp is ≤1,β-increasing. Thus, IOnPp is
≤α,β-increasing if and only if α = 1.

IV. A CONSTRUCTION METHOD

In this section, we present a construction method to obtain
n-dimensional ≤α,β-overlap functions, with α 6= β, for a given
α and a strict n-dimensional overlap function. For the sake of
simplicity, let us denote Kα(X,X) simply as Kα(X).

Theorem 4. Let On be a strict n-dimensional overlap func-
tion, α ∈ (0, 1) and β ∈ [0, 1] such that α 6= β. Then AOnα :
L([0, 1])n → L([0, 1]) defined, for all ~X ∈ L([0, 1])n, by

AOnα( ~X) = [On(Kα(X1), . . . ,Kα(Xn))− αm,
On(Kα(X1), . . . ,Kα(Xn)) + (1− α)m],

where

m =

min{X1 −X1, . . . , Xn −Xn, On(Kα(X1), . . . ,Kα(Xn)),

1−On(Kα(X1), . . . ,Kα(Xn))},

is an n-dimensional ≤α,β-overlap function.

Proof. Consider α ∈ (0, 1) and β ∈ [0, 1] such that α 6= β.
By Lemma 1 it is sufficient to consider the case β = 0 and
β = 1. Clearly, AOnα is well defined and commutative. Also:

Kα(AOn
α( ~X))

= On(Kα(X1), . . . ,Kα(Xn))− αm
+α(On(Kα(X1), . . . ,Kα(Xn)) + (1− α)m
−On(Kα(X1), . . . ,Kα(Xn)) + αm)

= On(Kα(X1), . . . ,Kα(Xn)).

Furthermore,

K0(AOn
α( ~X)) = On(Kα(X1), . . . ,Kα(Xn))− αm,

K1(AOn
α( ~X)) = On(Kα(X1), . . . ,Kα(Xn)) + (1− α)m.

Now, consider ~X ∈ L([0, 1])n. Then, since α 6= 0,

AOnα( ~X) = [0, 0]

⇔ Kα(AOn
α( ~X)) = 0

⇔ On(Kα(X1), . . . ,Kα(Xn)) = 0

⇔ Kα(Xi) = 0 for some i ∈ {1, . . . , n}
⇔ Xi = [0, 0] for some i ∈ {1, . . . , n}.

Therefore, AOnα satisfies (IOn2).
Consider ~X ∈ L([0, 1])n. Then, since α 6= 1,

AOnα( ~X) = [1, 1]

⇔ Kα(AOn
α( ~X)) = 1

⇔ On(Kα(X1), . . . ,Kα(Xn)) = 1

⇔ Kα(Xi) = 1 for each i ∈ {1, . . . , n}
⇔ Xi = [1, 1] for each i ∈ {1, . . . , n}.

Thus, AOnα satisfies (IOn3). In order to prove that AOnα sat-
isfies (AOn4) for ≤α,0, consider Y <α,0 Z and X ∈ L([0, 1])
such that Kα(X) = 0. Then,

On(Kα(Y ),Kα(X), . . . ,Kα(X)) = 0

= On(Kα(Z),Kα(X), . . . ,Kα(X))

and, therefore,

min{Y − Y ,X −X, . . . ,X −X,
On(Kα(Y ),Kα(X), . . . ,Kα(X)),

1−On(Kα(Y ),Kα(X), . . . ,Kα(X))} = 0

= min{Z − Z,X −X, . . . ,X −X,
On(Kα(Z),Kα(X), . . . ,Kα(X)),

1−On(Kα(Z),Kα(X), . . . ,Kα(X))}.

Hence, AOnα(Y,X, . . . ,X) = [0, 0] = AOnα(Z,X, . . . ,X).
Now take X ∈ L([0, 1]) such that Kα(X) > 0. By

definition, we have the following two cases:

1) Kα(Y ) < Kα(Z). Since On is strict, one has that

On(Kα(Y ),Kα(X), . . . ,Kα(X)) <

On(Kα(Z),Kα(X), . . . ,Kα(X))
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and, therefore,

Kα(AOn
α(Y,X, . . . ,X))

= On(Kα(Y ),Kα(X), . . . ,Kα(X)) <

On(Kα(Z),Kα(X), . . . ,Kα(X))

= Kα(AOn
α(Z,X, . . . ,X)).

So, AOnα(Y,X, . . . ,X) <α,0 AOn
α(Z,X, . . . ,X).

2) Kα(Y ) = Kα(Z) and K0(Y ) < K0(Z). Then, Y <
Z ≤ Z < Y and, therefore Y − Y > Z −Z. Thus, since

On(Kα(Y ),Kα(X), . . . ,Kα(X)) =

On(Kα(Z),Kα(X), . . . ,Kα(X)),

it holds that

m1 = min{Y − Y ,X −X, . . . ,X −X,
On(Kα(Y ),Kα(X), . . . ,Kα(X)),

1−On(Kα(Y ),Kα(X), . . . ,Kα(X))} ≥
min{Z − Z,X −X, . . .X −X,
On(Kα(Z),Kα(X), . . . ,Kα(X)),

1−On(Kα(Z),Kα(X), . . . ,Kα(X))} = m2.

Hence,

Kα(AOn
α(Y,X, . . . ,X))

= On(Kα(Y ),Kα(X), . . . ,Kα(X))

= On(Kα(Z),Kα(X), . . . ,Kα(X))

= Kα(AOn
α(Z,X, . . . ,X)),

and

K0(AOn
α(Y,X, . . . ,X))

= On(Kα(Y ),Kα(X), . . . ,Kα(X))− αm1

≤ On(Kα(Y ),Kα(X), . . . ,Kα(X))− αm2

= On(Kα(Z),Kα(X), . . . ,Kα(X))− αm2

= K0(AOn
α(Z,X, . . . ,X)).

So, AOnα(Y,X, . . . ,X) ≤α,0 AOnα(Z,X, . . . ,X).
Thus, for each α ∈ (0, 1), AOnα is an n-dimensional ≤α,0-

overlap function. The proof that AOnα satisfies (AOn4) for
≤α,1 and α ∈ (0, 1) is obtained analogously.

Now, let us see an example of a ≤α,β order and over-
lap function that do not allow for the construction of an
≤α,β-increasing o-representable iv-overlap function IO, but
in which one can obtain an ≤α,β-overlap function AOα via
the method presented in Theorem 4.

Example 5. Consider the admissible order ≤0.4,0 and be the
overlap function Op : [0, 1]2 → [0, 1] defined, for all x, y ∈
[0, 1], by Op(x, y) = x · y. From Theorem 4, for On = Op:

AOp0.4(X,Y ) = [K0.4(X) ·K0.4(Y )− 0.4 ·m,
K0.4(X) ·K0.4(Y ) + (0.6)m],

where

m = min{X −X,Y − Y ,K0.4(X) ·K0.4(Y ),

1−K0.4(X) ·K0.4(Y )}.

Now, for X = [0, 1], Y = [0.2, 0.2] and Z = [0, 0.4] one
has that Z ≤0.4,0 Y , AOp0.4(X,Z) = [0.0384, 0.1024] and
AOp0.4(X,Z) = [0.08, 0.08], meaning that

Z ≤0.4,0 y ⇔ AOp0.4(X,Z) ≤0.4,0 AOp
0.4(X,Y ),

which is expected for an ≤0.4,0-overlap function.
However, if we try to construct an (admissibly ordered) o-

representable interval-valued overlap function IOp in which
IOp− = IOp+ = Op, one can observe that IOp(X,Z) =
[0, 0.4] and IOp(X,Y ) = [0, 0.2], meaning that Y ≤0.4,0 Z
and IOp(X,Z) >0.4,0 IOp(X,Y ), proving that IOp is not an
≤0.4,0-overlap function. This happens because α 6= 1, which
fails to follow the conditions stated in Theorem 3.

Remark 4. The construction method introduced in Theorem
4 allows us to obtain different n-dimensional ≤α,β-overlap
functions with respect to any ≤α,β order. Thus, its adaptability
allows for it to be employed in various applications with
different approaches to the ranking of intervals, determined
by the choice of different α and β.

Remark 5. As stated in Theorem 4, the n-dimensional overlap
function that is the core of the construction method must
be strict. Yet, this requirement does not present itself as a
hindrance, as most n-dimensional overlap functions are, in
fact, strict. One notable exception is the minimum operator.
However, the interval minimum as show in Prop. 6 is an ≤AD-
overlap function for any admissible order ≤AD, and turns out
to be a more suitable interval representation of the minimum.

Remark 6. It is noteworthy that the width of the resulting
interval when applying AOnα is given by

m = min{X1 −X1, . . . , Xn −Xn,

On(Kα(X1), . . . ,Kα(Xn)),

1−On(Kα(X1), . . . ,Kα(Xn))}.

Thus, AOnα is a width-preserving operation, as the resulting
interval will never be wider than any of the aggregated inputs,
which is a desirable property in many applications. On the
other hand, by the way m is defined, if at least one of the
aggregated intervals is degenerate, than the resulting interval
when applying AOnα will also be degenerate.

V. ANALYSIS OF THE INFLUENCE OF THE STUDIED
CONCEPTS IN IV-FRBCSS

The objective of this section is to analyze the behaviour
of different admissible orders and n-dimensional (admissibly
ordered) iv-overlap functions applied on the interval-valued
fuzzy reasoning method (IV-FRM) of an IV-FRBCS. In order
to do that, first we are going to review the main points of
FRBCSs and IV-FRBCSs, highlighting the steps where we
apply our new theoretical results.

A. Interval-Valued Fuzzy Rule-based Classification Systems

A classification problem is composed by P training exam-
ples ~xp = (xp1, . . . , xpn), p ∈ {1, . . . , P} where xpi is the
value of the i-th variable of the p-th example. Each example
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belongs to one of M classes in C={C1, . . . , CM}. The learned
classifier aims to identify the class of new testing examples.

FRBCSs are one most frequently adopted technique to deal
with classification problems. They provide a good balance
between accuracy and interpretability, since the antecedents of
their rules are composed of linguistic labels, while still pro-
viding accurate results [44]. We adopt the following structure
for the fuzzy rules:

RuleRj : Ifx1 isAj1 and . . . andxn isAjn (6)
thenClass = C ′j withRWj ,

where Rj is the label of the j-th rule, x = (x1, . . . , xn) is an n-
dimensional example vector, Aji is the fuzzy set representing
the linguistic term of the j-th rule in the i-th antecedent, C ′j ∈
C is a class label, and RWj ∈ [0, 1] is the rule weight [55].
Specifically, we consider the computation of the rule weight
using the fuzzy confidence value or certainty factor, given by:

RWj =

∑
xp∈C′j Aj(xp)∑P
p=1Aj(xp)

, (7)

where Aj(xp) is the matching degree of the pattern xp with
the antecedent part of the fuzzy rule Rj , computed as

Aj(xp) = c(Aj1(xp1), · · · , Ajn(xpn)), (8)

where c is an n-dimensional conjunction operator and j ∈
{1, . . . , L}.

IV-FRBCSs are FRBCSs where some of the linguistic labels
(or all of them) are modelled using IVFSs. Furthermore, the
FRM must work with intervals instead of numbers to take
into account the degree of uncertainty throughout the whole
inference process (see Section V-B).

B. New Interval-valued Fuzzy Reasoning Method

In this paper, we apply our new theoretical results in the
IVTURS algorithm1, which is a state of the art IV-FRBCS. Its
learning process is composed of three steps:
1) To build an IV-FRBCS. This step involves the following
tasks:
• The generation of an initial FRBCS by applying FARC-
HD [56], whose first learning stage is based on the Apriori
algorithm [57] that builds fuzzy rules using the support and
confidence (Eq. (7)). In this process, the product t-norm is
usually used as the conjunction operator c in Eq. (8). In this
present paper, we propose to replace the product t-norm by
different n-dimensional overlap functions On. Those functions
are considered in the construction of the n-dimensional (ad-
missibly ordered) iv-overlap functions used in the IV-FRM
(described in the sequence). This change is important because
in this manner we can learn different fuzzy rules (resulting in
different IV-FRBCSs) depending on the function On.
• Modelling the linguistic labels of the learned FRBCS by
means of IVFSs;
• The generation of an initial IV-REF for each variable of the
problem.
2) To apply an optimization approach with a double purpose:

1For an in-depth look at each step of the IVTURS algorithm, see [43].

• To learn the best values of the IV-REFs’ parameters;
• To apply a rule selection process in order to decrease the
system’s complexity.

Once the interval-valued fuzzy rules composing the system
have been created, let us modify the mechanism for classifying
new examples. Thus, let ~xp = (xp1, . . . , xpn) be a new
example to be classified, L being the number of rules in the
rule base and M being the number of classes of the problem.
The steps of the new IV-FRM are the following:
(1) Interval matching degree: It represents the strength of
the activation of the if-part of the rules for each xp. We
use an IV-REF IR to compute the similarity between the
interval membership degrees (of each variable of the pat-
tern to the corresponding IVFS) and the ideal membership
degree [1, 1], and then, we apply an interval-valued function
FO : L([0, 1])n → L([0, 1]), for j ∈ {1, ..., L} as follows:
[
Aj(xp),Aj(xp)

]
=

FO

(
IR
([
Aj1(xp1),Aj1(xp1)

]
, [1, 1]

)
, . . . ,

IR
([
Ajn(xpn),Ajn(xpn)

]
, [1, 1]

))
,

with FO being an interval conjunction operator that can be
defined in two different ways:
a) IOn, an o-representable n-dimensional iv-overlap function;
b) AOnα, an n-dimensional ≤α,β-overlap function, with ≤α,β
being the same order applied in Step (4) of the IV-FRM.

As we have mentioned previously, FO is defined based
on the n-dimensional overlap function On applied as the
conjunction operator when generating the initial FRBCS.
(2) Interval association degree: For the class of each rule, the
interval matching degree is weighted with the corresponding
iv-rule weight IRW k

j ∈ L([0, 1]), through an interval-valued
function FP : L([0, 1])n → L([0, 1]), resulting in:
[
bkj , b

k
j

]
= FP

([
Aj(xp),Aj(xp)

]
,
[
IRW k

j , IRW
k
j

])
, (9)

with k = 1, . . . ,M , j = 1, . . . , L and FP being defined
according to the function FO applied to obtain the interval
matching degree in Step (1), resulting in two possibilities:
a) If FO = IOn, then FP = IOnP = ÔnP (representable
interval product overlap), with Onp shown in Table I;
b) If FO = AOnα, then FP = AOnαP (admissibly or-
dered interval product overlap), with AOnαP being an n-
dimensional ≤α,β-overlap function defined through the con-
struction method presented in Theorem. 4 considering Onp as
shown in Table I and the same α as the one in the chosen
≤α,β order to be applied in Step (4) of the IV-FRM.

For the rule weight, we utilize the interval-valued confidence
value as in [58]. The resulting equation is shown as follows:

IRWj =

∑

xp∈C′j

[
Aj(xp),Aj(xp)

]
÷H

P∑

p=1

[
Aj(xp),Aj(xp)

]
.

(3) Interval pattern classification soundness degree for all
classes: We aggregate the interval association degrees of each
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class (obtained in Step (2)) in which the upper bound is greater
than 0 by applying an interval-valued aggregation function IA:

[
Yk, Yk

]
= IA

([
bkj , b

k
j

]
, j = 1, . . . , L and bkj > 0

)
,

with k = 1, . . . ,M .
(4) Classification: A decision function F is applied over
the interval soundness degree of the system for the pattern
classification for all classes, given by:

F
([
Y1, Y1

]
, . . . ,

[
YM , YM

])
= arg max

k=1,...,M

([
Yk, Yk

])
.

The last step of the IV-FRM consists of selecting the
maximum interval soundness degree. To avoid a stalemate,
the usage of a total order for intervals is preferred in this step.
So, we use an admissible order ≤α,β as defined in Def. 5.

One can observe that there are many possibilities of configu-
ration of this new IV-FRM, based on the chosen functions FO,
FP and the admissible order ≤α,β . However, as some of those
choices are interconnected, we first decide on the admissible
order ≤α,β to be used in Step (4), as it determines the α
applied in the construction of the n-dimensional ≤α,β-overlap
functions when FO = AOnα and FP = AOnαP .

Notice that the interval-valued function FO plays a key
role because it determines the choice of: 1) the n-dimensional
overlap function On used in the rule learning process; 2) the
interval-valued function FP used in Step (2) of the IV-FRM.

C. Experimental Framework

To analyze the behaviour of a classification system when
applying different n-dimensional (admissibly ordered) iv-
overlap functions and different admissible orders, we have
selected 31 real-world data-sets from the KEEL reposi-
tory [59], which are publicly available on the webpage
(http://www.keel.es/dataset.php). Table II summarizes the
properties of the selected data-sets, showing for each data-
set the number of attributes (Atts.), the number of examples
(Ex.), and the number of classes (Class.). We must point out
that the magic, page-blocks, penbased, ring, satimage, shuttle,
and twonorm data-sets have been stratified sampled at 10%
in order to improve the learning process efficiency. Missing
values from bands, cleaveland and wisconsin data-sets have
been removed before the experimentation.

A fivefold cross-validation model has been applied in order
to carry out the different experiments. This was done by split-
ting the data-set into five random partitions of data, employing
a combination of four of them (80%) to train the system and
the remaining one (20%) to test it. This process is carried out
5 times, changing the testing partition in each iteration. The
performance measure was done through the accuracy rate.

The set-up of the IVTURS classifier is as recommended in
[43], but we apply our new theoretical developments described
in Sections V-A and V-B. We study the behaviour of the
classifier using several combinations of the new theoretical
concepts, as shown in Table III. Looking at Table III, we can
clearly observe that the interval-valued conjunction operator
(FO) used in Step (1) the IV-FRM determines the overlap
function (On) used when generating the initial fuzzy rules

TABLE II: Summary of the employed datasets

id Data-set Atts. Ex. Class.
app appendicitis 7 106 2
bal balance 4 625 3
ban banana 2 5300 2
bds bands 19 365 2
bup bupa 6 345 2
clv cleveland 13 297 5
con contraceptive 9 1473 3
eco ecoli 7 336 8
gla glass 9 214 7
hab haberman 3 306 2
hay hayes-hoth 4 160 3
ion ionosphere 33 351 2
iri iris 4 150 3
led led7digit 7 500 10
mag magic 10 19020 2
new newthyroid 5 215 3
pag pageblocks 10 5472 5
pen penbased 16 10992 10
pho phoneme 5 5404 2
pim pima 8 768 2
rin ring 20 7400 2
sah saheart 9 462 2
sat satimage 36 6435 7
shu shuttle 9 58000 7
spe spectfheart 44 267 2
tit titanic 3 2201 2
two twonorm 20 7400 2
veh vehicle 18 846 4
win wine 13 178 3
wis wisconsin 9 683 2
yea yeast 8 1484 10

TABLE III: Configuration schemes for the used classifiers

Classifier identifier On FO FP

REP-Prod OnP IOnP = ÔnP IOnP = ÔnP

REP-Min OnM IOnM = ÔnM IOnP = ÔnP

REP-Hp OnHp IOnHp = ÔnHp IOnP = ÔnP

REP-OB OnOB IOnOB = ÔnOB IOnP = ÔnP

REP-Gm OnGm IOnGm = ÔnGm IOnP = ÔnP

REP-Hm OnHm IOnHm = ÔnHm IOnP = ÔnP

ADM-Prod OnP AOnαP FP = AOnαP

ADM-Min OnM min≤α,β AOnαP

ADM-Hp OnHp AOnαHp AOnαP

ADM-OB OnOB AOnαOB AOnαP

ADM-Gm OnGm AOnαGm AOnαP

ADM-Hm OnHm AOnαHm AOnαP

as well as the interval product (FP ) used in the Step (2) of
the IV-FRM. We must point out in the case of ADM-Min,
min≤α,β is simply the n-dimensional interval minimum with
respect to the ≤α,β order at hand, as in Def. 6. Finally, for
each combination we check the influence of the admissible
order used in Step (4) of the IV-FRM. Specifically, we test
three linear orders for intervals: ≤Lex1 (α = 0, β = 1), ≤IQ
(α = 0.5, 0) and ≤Lex2 (α = 1, β = 0)2.

To give statistical support to our analysis, we use the aligned
Friedman ranks test [60] to detect statistical differences among
a group of results and report the obtained ranks of each method
(with lower ranks being preferable). Next, we apply the Holm’s
post-hoc test [61] to compare the best ranking method with
the other considered methods. Finally, we apply a Wilcoxon

2To respect Theorem 4, in all experiments with ADM classifiers we consider
α = 0 + 1−10 and α = 1− 1−10, for ≤Lex1 and ≤Lex2, respectively.
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TABLE IV: Results in testing for the different methods

Method ≤Lex1 ≤IQ ≤Lex2
REP-Prod 78.96 79.67 79.17

REP-Min 78.92 79.52 79.51

REP-Hp 79.08 79.34 79.35

REP-OB 79.00 79.83 79.33

REP-Gm 79.14 79.48 79.57

REP-Hm 79.19 79.39 79.41

ADM-Prod 79.49 79.14 79.19

ADM-Min 79.22 79.39 79.40

ADM-Hp 79.28 79.47 79.54

ADM-OB 79.25 79.57 79.64

ADM-Gm 79.17 79.93 79.49

ADM-Hm 78.93 79.23 79.16

Signed-Ranks test [62] in order to do pairwise comparisons.
This selection of tests is suggested in [63], where it is shown
that its use in machine learning is highly recommended.

D. Discussion of the Results

In Table IV we show the averaged results in testing for
all the possible combinations among the three orders (by
columns) and the configurations shown in Table III (by rows).
The result we show is the averaged behaviour of the system in
the 31 datasets considered in the study. For each admissible
order, we highlight in bold face the best result, that is, the
best n-dimensional (admissibly ordered) overlap function. The
detailed results, that is, the results in all the datasets (in all
the partitions) for all the combinations can be queried on the
webpage (https://github.com/tiagoasmus/TestingResults-Adm-
Overlaps/find/master?q=).

By looking at the highlighted results in Table IV, we see
that, for each admissible order, the best performing configura-
tion of the algorithm (regarding the global mean) was based on
an ≤AD-overlap function (ADM-Prod, ADM-Gm and ADM-
OB). Furthermore, it appears that both the admissible order
and the (interval-valued) conjunction operators have an impact
on the accuracy obtained by each classifier.

In first place we studied if there are differences in the accu-
racy for a given method when we vary the chosen admissible
order. In order to do so, we applied the aligned test to compare
the three total orders for each configuration. The obtained
ranks, as well as the Adjusted P-Values (APVs, presented in
brackets) provided by the Holm’s post hoc test are shown in
Table V, where we have highlighted in bold-face the best rank
(the least one) and we have stressed with an asterisk (*) those
cases in which there are statistical differences (using α = 0.05)
between the control method (the one associated with the best
rank) and the method in the corresponding total order.

From the results in Table V, one can observe:
1) The order ≤Lex1 is the control method for only one
configuration (ADM-Prod), being the worst ranking method in
most cases, with statistical differences in several comparisons;
2) Although the order ≤Lex2 is considered the control method
in six configurations, in all those cases there are no significant

TABLE V: Average Rankings of the algorithms (Aligned
Friedman) - Comparing ≤α,β orders

Method ≤Lex1 ≤IQ ≤Lex2
REP-Prod 55.16 (0.011)* 36.11 (-) 49.73 (0.047)*

REP-Min 57.94 (0.033)* 41.55 (0.996) 41.52 (-)

REP-Hp 52.29 (0.466) 44.60 (0.944) 44.11 (-)

REP-OB 57.81 (0.001)* 33.73 (-) 49.47 (0.022)*

REP-Gm 56.24 (0.065) 41.60 (-) 43.16 (0.819)

REP-Hm 51.32 (0.567) 45.71 (0.799) 43.9677 (-)

ADM-Prod 43.05 (-) 48.95 (0.771) 49.00 (0.771)

ADM-Min 47.11 (1.000) 48.61 (1.000) 45.27 (-)

ADM-Hp 49.69 (0.9230) 46.66 (0.9230) 44.65 (-)

ADM-OB 52.58 (0.4129) 44.50 (0.9325) 43.92 (-)

ADM-Gm 57.95 (0.002)* 35.13 (-) 47.92 (0.062)

ADM-Hm 45.00 (0.079) 40.89 (-) 45.11 (0.538)

TABLE VI: Average Rankings of the algorithms (Aligned
Friedman)

Group REP Group ADM
Method Rank APV Method Rank APV
REP-Prod 84.82 0.453 ADM-Prod 100.74 0.186

REP-Min 98.24 0.250 ADM-Min 99.02 0.187

REP-Hp 104.61 0.112 ADM-Hp 97.03 0.187

REP-OB 74.57 - ADM-OB 87.65 0.302

REP-Gm 92.11 0.399 ADM-Gm 73.52 -

REP-Hm 106.65 0.095 ADM-Hm 103.05 0.154

differences with respect to the order ≤IQ, with both orders
presenting similar ranks;
3) The order ≤IQ is the control method in five configurations,
and in two of those cases, it presents statistical differences
versus ≤Lex2 (and a low APV for ADM-Gm). Furthermore, it
produces comparable results with the other orders even when
it is not the control method.

In summary, we can conclude that ≤Lex1 is not a suitable
choice and ≤IQ is providing a robust behaviour regardless of
the configuration. For these reasons, we decided to investigate
the behaviour of our classifiers by varying the n-dimensional
(admissibly ordered) iv-overlap functions used in the IV-FRM,
taking in consideration the admissible order ≤IQ.

To do it, we divided the methods into two groups, based
on the interval conjunction operator (FO) applied in Step (1)
of the IV-FRM: representable (REP) and admissibly ordered
(ADM) n-dimensional iv-overlap functions. We applied the
Aligned Friedman and Holm’s tests to compare the six n-
dimensional (admissibly ordered) iv-overlap function belong-
ing to each group. The results obtained for the functions of
groups REP and ADM are shown in Tables VI, with the best
ranking method in each group highlighted in bold-face.

From the results presented in Table VI, one can observe:
1) The behaviours of the representable n-dimensional iv-
overlap functions are similar, but REP-OB seems to be the
best option among its group;
2) Though there are not statistical differences among the n-
dimensional admissibly ordered iv-overlap functions, ADM-
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TABLE VII: Pairwise comparisons via Wilcoxon test

Comparison R+ R− p-value
REP-OB vs ADM-Gm 230 266 0.649

REP-Prod vs ADM-Gm 195 301 0.285

Gm stands out as it obtains low APVs versus the remained
functions in its group, except for ADM-OB.

An interesting observation is that both control methods
(REP-OB and ADM-Gm) and their respective interval con-
junction operations (IOnOB and AOn0.5Gm) are based on
non-associative operations (OB overlap and geometric mean),
pointing out that n-dimensional overlap functions and their
interval extensions are suitable to be applied in IV-FRBCS.

Next, we carry out a pairwise comparison between the
two representatives of each group (control methods), using
the Wilcoxon test. We also compare the best performing
method overall (ADM-Gm) with the original IVTURS (which
is obtained using the REP-Prod configuration and the order
≤IQ). The results for of these two last pairwise comparisons
can be seen in Table VII.

As first indicated by the global means and afterwards
confirmed by the statistical analysis, the combination of the
admissible order ≤IQ and the n-dimensional ≤IQ-overlap
function AOn0.5Gm in the ADM-Gm method produces the most
accurate classification results. It does not statistically improve
the performance over all other configurations, but in the light
of the obtained results, we can recommend it as the best option
for this type of IV-FRBCS.

VI. CONCLUSION

In this paper, we presented new results regarding admissible
orders and defined the concept of n-dimensional admissibly
ordered interval-valued overlap functions. A width-preserving
construction method for this type of function for a given
admissible order was also presented, which allowed us to
define different n-dimensional ≤AD-overlap functions to be
applied in the IV-FRM of IVTURS.

On the application side, our experimentation made clear the
impact of the chosen admissible order on IV-FRBCSs, with the
order ≤IQ presenting itself as the most robust one. We also
conclude that n-dimensional (admissibly ordered) interval-
valued overlap functions, particularly the non-associative ones,
are recommended to be applied on the IV-FRM of an IV-
FRBCSs, with a special mention to the n-dimensional ≤IQ-
overlap function AOn0.5Gm.

All of the aforementioned contributions aimed to address:
(i) the theoretical and applied gap in the literature regarding
the configuration possibilities of IV-FRBCSs; (ii) the charac-
teristics of the applied interval-valued functions and related
interval orders.

As future work, we intend to further research on the effect of
different n-dimensional interval-valued aggregation functions
(such as the ones studied in this paper) in the interval pattern
classification soundness degree for all classes (Step (3) of
the IV-FRM). Particularly, the relation between such interval
functions applied in this third stage and the admissible orders

chosen for the decision making in the classification phase (last
stage of the IV-FRM).
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Abstract

Overlap functions are a class of aggregation functions that measure the overlapping degree between two values. They have been 
successfully applied as a fuzzy conjunction operation in several problems in which associativity is not required, such as image 
processing and classification. Interval-valued overlap functions were defined as an extension to express the overlapping of interval-
valued data, and they have been usually applied when there is uncertainty regarding the assignment of membership degrees, as in 
interval-valued fuzzy rule-based classification systems. In this context, the choice of a total order for intervals can be significant, 
which motivated the recent developments on interval-valued aggregation functions and interval-valued overlap functions that are 
increasing to a given admissible order, that is, a total order that refines the usual partial order for intervals. Also, width preservation 
has been considered on these recent works, in an intent to avoid the uncertainty increase and guarantee the information quality, but 
no deeper study was made regarding the relation between the widths of the input intervals and the output interval, when applying 
interval-valued functions, or how one can control such uncertainty propagation based on this relation. Thus, in this paper we: (i) 
introduce and develop the concepts of width-limited interval-valued functions and width limiting functions, presenting a theoretical 
approach to analyze the relation between the widths of the input and output intervals of bivariate interval-valued functions, with 
special attention to interval-valued aggregation functions; (ii) introduce the concept of (a, b)-ultramodular aggregation functions, 
a less restrictive extension of one-dimension convexity for bivariate aggregation functions, which have an important predictable 
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behaviour with respect to the width when extended to the interval-valued context; (iii) define width-limited interval-valued overlap 
functions, taking into account a function that controls the width of the output interval and a new notion of increasingness with 
respect to a pair of partial orders (≤1, ≤2); (iv) present and compare three construction methods for these width-limited interval-
valued overlap functions, considering a pair of orders (≤1, ≤2), which may be admissible or not, showcasing the adaptability of 
our developments.
© 2021 Published by Elsevier B.V.

Keywords: Aggregation functions; Overlap functions; Interval-valued aggregation functions; Interval-valued overlap functions; Admissible orders

1. Introduction

Aggregation functions are useful operators that combine (fuse) several numerical values into a single representa-
tive one, being especially suitable to model fuzzy logic operations and they have been widely employed in several 
theoretical and applied fields [1,2].

Overlap functions are a particular class of aggregation functions that do not need to be associative, and they were 
originally defined as continuous functions in order to deal with the overlapping between classes in image processing 
problems [3–5]. They have quickly risen in popularity due to some desirable properties that they present. In [6,7], 
one can find clear discussions on the advantages that overlap functions have over the popular t-norms. For example, 
overlap functions are closed to the convex sum and the aggregation by internal generalized composition, whereas 
t-norms are not. Also, overlap functions showed good results when applied in problems in which associativity of the 
employed aggregation operator is not required, as in fuzzy rule-based classification [8–10], decision making [11], 
wavelet-fuzzy power quality diagnosis system [12] or forest fire detection [13], among others.

In fuzzy modelling, there may be uncertainty regarding the values of the membership degrees or the definition of 
the membership functions to be employed in the system [14]. One possible solution is the adoption of interval-valued 
fuzzy sets (IVFSs) [15,16], where the membership degrees are represented by intervals. In this manner, the widths 
of the assigned intervals are intrinsically related with the uncertainty/ignorance with respect to the modelling of the 
fuzzy sets [17–19]. IVFSs have been successfully applied in many different fields, such as classification [20,21], image 
processing [22], game theory [23], multicriteria decision making [24], pest control [25], irrigation systems [26] and 
collaborative clustering [27].

Interval-valued aggregation functions were defined in [28], in order to model the aggregation of interval-valued 
data in the unit interval. Following a similar approach, interval-valued overlap functions were defined, independently, 
by Qiao and Hu [29] and Bedregal et al. [30], as an extension of overlap functions to the interval-valued context. By 
extending and generalizing the concept of interval-valued overlap functions, Asmus et al. [21] introduced the concepts 
of n-dimensional interval-valued overlap functions and general interval-valued overlap functions.

It is important to observe that not all interval-valued aggregation functions are interval extensions of some known 
aggregation function on the unit interval [31]. Nevertheless, it is noteworthy that most popular definitions of interval-
valued aggregation functions were developed to properly encompass the result of interval extensions of well known 
aggregation functions following the optimality (the least possible interval width) and correctness (the unknown value 
of the extended operation is contained in the resulting interval) criteria for interval representation (also called, the 
best interval representation), as discussed in [17,31], and taking into account the usual product order when comparing 
intervals [32]. Although this approach is both intuitive and theoretically sound, it may present some drawbacks on the 
application side:

(i) Observe that, although it is natural that the uncertainty carried out by intervals leads to a partial order, as the 
product order (and also the Fishburn interval orders [33]), one may face data that is not comparable, which is a 
serious hindrance in problems such as decision making and classification [34], in which the system must always 
decide and rely in just one interval result when comparing all possible alternatives;

(ii) In many interval-valued processes, the output intervals’ widths become larger than a desirable threshold, accord-
ing to the widths of the input intervals, which may be imposed by applications constraints concerning the quality 
of the information required for the interval results. In those cases, the interval outputs, although correct, usually 
carry no meaningful information about the exact value they are actually approximating [35,36].

2
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To solve the first problem (i), avoiding a stalemate when comparing intervals, Bustince et al. [34] introduced the 
concept of admissible orders, that is, total orders that refine the product order, in the sense that they coincide with the 
product order whenever the intervals are comparable. In particular, they defined the ≤α,β order, based on an operator 
Kα that corresponds to the Hurwicz’s criterion [37] for balancing pessimism and optimism under uncertainty [38].

Since then, many works using admissible orders have appeared in the literature, for example, [34,38–40]. In partic-
ular, Bustince et al. [38] presented a construction method for interval-valued aggregation functions that are increasing 
with respect to a given admissible order. In a similar line of work, Asmus et al. [40] introduced the concept of n-
dimensional admissibly ordered interval-valued overlap functions, which are n-dimensional interval-valued overlap 
functions that are increasing with respect to an admissible order.

In an initial attempt to deal with the second drawback (ii), the construction method presented by Bustince et al. [38]
produces interval-valued aggregation functions that can be width-preserving whenever some restrictive conditions are 
satisfied. Note that the width of the interval output of a width-preserving interval-valued function is equal to the width 
of the interval inputs, when they all have the same width. However, Bustince et al. [38] clearly state that, ideally, the 
definition of width preservation would have to take into account the width of the interval inputs in every case, not only 
when those inputs have the same length, which we call the drawback (iii) to be overcome.

Considering the second problem (ii), Asmus et al. [40] presented a construction method for n-dimensional admis-
sibly ordered interval-valued overlap functions in which the width of the output is always less or equal to the minimal 
width of the inputs (see Theorem 2.2 in Section 2), which also comes to avoid the problem (iii). However, this type 
of minimal width limitation has two sides: on one hand, as desired, the functions produced by the method avoid an 
increasing width (uncertainty) propagation; on the other hand, unfortunately, just one degenerate input interval (that 
is, with width equal to zero) is sufficient to completely remove all uncertainty of the output interval, which is clearly 
counterintuitive, to say the least.

Thus, the study of the relation between the width of the inputs and the output of interval-valued fuzzy operations 
coupled with adaptable tools to limit the increasing uncertainty in the output of such operations is still a challenge 
to overcome in the literature, especially regarding interval-valued aggregation and interval-valued overlap functions, 
which are of our particular interest.

The development of models that help to avoid that the interval outputs’ widths become larger than the expected/re-
quired in practical applications certainly will increase the applicability of interval-valued fuzzy-based tools to solve 
many problems, as in interval-valued fuzzy-rule based classification systems (see, e.g.: [19,40,41]) and decision mak-
ing (see, e.g.: [42,43]), by providing interval outputs with better information quality. We point out that the information 
quality of interval-valued results is a strong requirement claimed by scientists and engineers interested in interval-
based tools [32].

So, in order to present a contribution to solve the problems (ii) and (iii) in the context of interval-valued overlap 
functions, and even in a more general framework, without disregarding the problem (i), this paper has the following 
general objective:

• To develop a theoretical approach to aid the analysis of bivariate interval-valued operations with respect to the 
width of the operated intervals in order to control the uncertainty propagation, with special attention to interval-
valued overlap functions, admissibly ordered or not.

To accomplish this goal, we have the following specific objectives:

1) To introduce the concepts of width-limited interval-valued functions and width-limiting functions, which are the-
oretical tools to study the relation between the widths of the inputs with the width of the output of interval-valued 
functions, necessary for the construction of interval-valued functions with controlled uncertainty propagation;

2) To define (a, b)-ultramodular aggregation functions, a less restrictive extension of one-dimension convexity for 
bivariate aggregation functions, which shall have an important predictable behaviour with respect to their interval 
output widths when extended to the interval-valued context;

3) To study the relation between some width-limited interval-valued functions and their respective width-limiting 
functions, especially when dealing with (a, b)-ultramodular aggregation functions, giving some backdrop for 
future comparisons with similarly constructed interval-valued functions;

3
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4) To define the notion of increasingness for a pair of partial orders, allowing for more flexible construction methods 
for width-limited interval-valued functions;

5) To introduce the concept of width-limited interval-valued overlap functions, taking into account a width-limiting 
function and a pair of partial orders, which allows the definition of interval-valued overlap operations that provide 
output intervals that do not exceed a desirable uncertainty (width) threshold;

6) To study the relation between width-limited interval-valued overlap functions and some of their width-limiting 
functions, particularly when considering the best interval representation of some overlap function;

7) To present and study three construction methods for width-limited interval-valued overlap functions, presenting 
examples and comparisons between them to showcase the versatility and applicability of our approach.

Regarding the paper organization, in Section 2 we present some preliminary concepts, followed by Section 3, 
where Specific Objectives 1-3 are addressed. In Section 4, we encompass Specific Objectives 4-7, with the final 
remarks being presented in Section 5.

2. Preliminaries

In this section, we recall some concepts on (ultramodular) aggregation functions, overlap functions, interval math-
ematics, admissible orders and (admissibly ordered) interval-valued overlap functions.

2.1. Fuzzy negations and aggregation functions

Definition 2.1. [44] A function N : [0, 1] → [0, 1] is a fuzzy negation if the following conditions hold:

(N1) N(0) = 1 and N(1) = 0;
(N2) If x ≤ y then N(y) ≤ N(x), for all x, y ∈ [0, 1].

If N also satisfies the involutive property,

(N3) N(N(x)) = x, for all x ∈ [0, 1],

then it is said to be a strong fuzzy negation.

Example 2.1. The Zadeh negation given by

NZ(x) = 1 − x,

is a strong fuzzy negation [44].

Definition 2.2. [44] Given a fuzzy negation N : [0, 1] → [0, 1] and a function F : [0, 1]2 → [0, 1], then the function 
FN : [0, 1]2 → [0, 1] defined, for all x, y ∈ [0, 1], by

FN(x, y) = N(F(N(x),N(y))), (1)

is the N -dual of F .

When it is clear by the context, the NZ-dual function (dual with respect to the Zadeh negation) of F will be just 
called dual of F , and will be denoted by Fd .

Definition 2.3. [2] An aggregation function is any function A : [0, 1]n → [0, 1] that satisfies the following conditions:

(A1) A is increasing in each argument;
(A2) A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.

4
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Table 1
Examples of overlap functions.

Name Definition

Product OP (x, y) = x · y
Minimum OM(x,y) = min{x, y}
Geom. Mean OGm(x,y) = √

x · y
OmM Overlap OM(x,y) = min{x, y} · max{x2, y2}
OB Overlap OOB(x, y) = min{x√

y, y
√

x}
Ot Overlap Ot (x, y) = (2x−1)3+1

2 · (2y−1)3+1
2

The Ot Overlap is an original definition introduced here. 
The others can be found in the literature (e.g. [10]).

Example 2.2. For α ∈ [0, 1], the mapping Kα : [0, 1]2 → [0, 1], defined, for all x, y ∈ [0, 1], by

Kα(x, y) = x + α · (y − x), (2)

is an aggregation function.

Observe that the operator Kα corresponds to Hurwicz’s criterion [37] for adjusting pessimism and optimism under 
uncertainty, when working in contexts of imperfect information.

In [2], one may find the concepts of conjunctive and disjunctive aggregation function. In this paper, we need a more 
general definition:

Definition 2.4. Consider a function F : [0, 1]2 → [0, 1]. Then, F is said to be:

a) Conjunctive, if F(x, y) ≤ min{x, y} for all x, y ∈ [0, 1];
b) Disjunctive, if F(x, y) ≥ max{x, y} for all x, y ∈ [0, 1].

The definition of ultramodular aggregation functions is a key concept in this work:

Definition 2.5. [45] An aggregation function A : [0, 1]2 → [0, 1] is called ultramodular if, for all x1, x2, y1, y2, ε, δ ∈
[0, 1], such that x2 + ε, y2 + δ ∈ [0, 1], x1 ≤ x2 and y1 ≤ y2, it holds that:

A(x1 + ε, y1 + δ) − A(x1, y1) ≤ A(x2 + ε, y2 + δ) − A(x2, y2). (3)

Proposition 2.1. [45] Assume that all partial derivatives of order 2 of the aggregation function A : [0, 1]2 → [0, 1]
exist. Then A is ultramodular if and only if all partial derivatives of order 2 are non-negative.

Theorem 2.1. [45] Let A1, A2, A3 : [0, 1]2 → [0, 1] be ultramodular aggregation functions. Then, the composite 
function A : [0, 1]2 → [0, 1] given, for all x, y ∈ [0, 1], by A(x, y) = A3(A1(x, y), A2(x, y)) is an ultramodular 
aggregation function.

Corollary 2.1. [45] Let A1, A2 : [0, 1]2 → [0, 1] be ultramodular aggregation functions and Kα : [0, 1]2 → [0, 1]
as defined in Equation (2). Then, we have that the function Aα : [0, 1]2 → [0, 1] given, for all x, y, α ∈ [0, 1], by 
Aα(x, y) = Kα(A1(x, y), A2(x, y)), is an ultramodular aggregation function.

Example 2.3. The following are examples of ultramodular aggregation functions:

1) The weighted sum Kα , as defined in Equation (2);
2) The product overlap (see Table 1).

By Propositions 2.2 and 2.7 in [45], the following result is immediate.

5
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Proposition 2.2. Let A : [0, 1]2 → [0, 1] be an ultramodular aggregation function. Then, it holds that:

A(x∗, y) + A(x,y∗) ≤ A(x∗, y∗) + A(x,y),

for all x∗, y∗, x, y ∈ [0, 1] such that x ≤ x∗ and y ≤ y∗.

Observe that Proposition 2.2 also follows directly from Definition 2.5, by taking x1 = x2 = x, y1 = y, y2 = y∗, 
ε = x∗ − x and δ = 0.

Definition 2.6. [3,46] An overlap function is any bivariate function O : [0, 1]2 → [0, 1] that satisfies the following 
conditions, for all x, y ∈ [0, 1]:

(O1) O is commutative;
(O2) O(x, y) = 0 if and only if xy = 0;
(O3) O(x, y) = 1 if and only if xy = 1;
(O4) O is increasing;
(O5) O is continuous.

Note that an overlap function is, in particular, an aggregation function. If for all x, y, z ∈ (0, 1] one has that x <

y ⇔ O(x, z) < O(y, z), then O is called a strict overlap function.
By Theorem 4 in [3], one has that:

Proposition 2.3. Let O1, O2, O3 : [0, 1]2 → [0, 1] be overlap functions. Then, the composite function OC : [0, 1]2 →
[0, 1] given, for all x, y ∈ [0, 1] by OC(x, y) = O3(O1(x, y), O2(x, y)) is an overlap function.

Proposition 2.4. [3] Let O1, O2 : [0, 1]2 → [0, 1] be overlap functions. Then, we have that function Oα : [0, 1]2 →
[0, 1] given, for all x, y, α ∈ [0, 1], by Oα(x, y) = Kα(O1(x, y), O2(x, y)) is an overlap function.

The theoretical development of both overlap functions and their dual (grouping functions) are summarized by 
Bustince et al. in [5]. Additionally, some examples of studies on overlap and grouping functions are described in 
the sequence. The basic properties of overlap functions and grouping functions, like homogeneity, migrativity and 
idempotency, were studied by Bedregal et al. in [46]. Archimedean overlap functions were introduced by Dimuro 
et al. in [47]. Additive generators of overlap functions and grouping functions were introduced by Dimuro et al. 
in [48,49], and their multiplicative generators by Qiao et al. in [50]. Further studies on the migrativity property of 
overlap functions were presented in [51,52]. Dimuro et al. developed the concept of fuzzy implication functions 
derived overlap and grouping functions in [7,53,54]. The properties of such fuzzy implications were studied in [6,55]. 
Extensions of overlap and grouping functions to the n-dimensional context were studied in [56,57].

2.2. Interval mathematics

Let us denote as L([0, 1]) the set of all closed subintervals of the unit interval [0, 1]. Given any X = [x1, x2] ∈
L([0, 1]), X = x1 and X = x2 denote, respectively, the left and right projections of X, and w(X) = X − X denotes 
the width of X. When X = X, and consequently w(X) = 0, we call X a degenerate interval.

The interval product is defined, for all X, Y ∈ L([0, 1]), by:

X · Y = [X · Y ,X · Y ].
The product and inclusion partial orders are defined for all X, Y ∈ L([0, 1]), respectively, by [32]:

X ≤Pr Y ⇔ X ≤ Y ∧ X ≤ Y ;
X ⊆ Y ⇔ X ≥ Y ∧ X ≤ Y .

We call as ≤Pr -increasing a function that is increasing with respect to the product order ≤Pr . The projections 
IF−, IF+ : [0, 1]2 → [0, 1] of IF : L([0, 1])2 → L([0, 1]) are defined, respectively, by:

6
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IF−(x, y) = IF ([x, x], [y, y]); (4)

IF+(x, y) = IF ([x, x], [y, y]). (5)

Given two increasing functions F, G : [0, 1]2 → [0, 1] such that F ≤ G, we define the function F̂,G : L([0, 1])2 →
L([0, 1]) as

F̂,G(X,Y ) = [F(X,Y ),G(X,Y )]. (6)

An interval-valued function IF is said to be Moore-continuous if it is continuous with respect to the Moore metric 
[32] dM : L([0, 1])2 → R, defined, for all X, Y ∈ L([0, 1]), by:

dM(X,Y ) = max(|X − Y |, |X − Y |).

Definition 2.7. [18] Let IF : L([0, 1])2 → L([0, 1]) be an ≤Pr -increasing interval function. IF is said to be repre-
sentable if there exist increasing functions F, G : [0, 1]2 → [0, 1] such that F ≤ G and F = F̂,G.

The functions F and G are the representatives of the interval function IF . When IF = F̂,F , we denote simply as 
F̂ . In this case, IF is said to be the best interval representation of F , as in [17,18].

Consider α ∈ [0, 1] and the aggregation function Kα as defined in Equation (2). Then, given an interval X ∈
L([0, 1]), we denote Kα(X, X) simply as Kα(X). Also, it is immediate that

[Kα(X) − α · w(X),Kα(X) + (1 − α) · w(X)] = X, (7)

for all α ∈ [0, 1].

2.3. Admissible orders

The notion of admissible orders for intervals came from the interest in extending the product order ≤Pr to a total 
order.

Definition 2.8. [34] Let (L([0, 1]), ≤AD) be a partially ordered set. The order ≤AD is called an admissible order if

(i) ≤AD is a total order on L([0, 1]);
(ii) For all X, Y ∈ L([0, 1]), X ≤AD Y whenever X ≤Pr Y .

In other words, an order ≤AD on L([0, 1]) is admissible, if it is total and refines the order ≤Pr [34].

Proposition 2.5. [34] Let A1, A2 : [0, 1]2 → [0, 1] be two continuous aggregation functions, such that, for all X, Y ∈
L([0, 1]), the equalities A1(X, X) = A1(Y , Y ) and A2(X, X) = A2(Y , Y ) can hold only if X = Y . Define the relation 
≤A1,A2 on L([0, 1]) by

X ≤A1,A2 Y ⇔ A1(X,X) < A1(Y ,Y ) or

(A1(X,X) = A1(Y ,Y ) and A2(X,X) ≤ A2(Y ,Y )).

Then ≤A1,A2 is an admissible order on L([0, 1]).

The pair (A1, A2) of aggregation functions that generates the order ≤A1,A2 in Proposition 2.5 is called an admissible 
pair of aggregation functions [34].

For α, β ∈ [0, 1], such that α �= β , when A1 = Kα and A2 = Kβ , with Kα and Kβ given by Equation (2), we write 
≤α,β for the order ≤Kα,Kβ , which is given by:

X ≤α,β Y ⇔ Kα(X,X) < Kα(Y ,Y ) or (8)

(Kα(X,X) = Kα(Y ,Y ) and Kβ(X,X) ≤ Kβ(Y ,Y )).

Lemma 2.1. [34] For any α, β ∈ [0, 1], α �= β , it holds that: (i) β > α ⇒≤α,β=≤α,1; (ii) β < α ⇒≤α,β=≤α,0.

7
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Remark 2.1. By varying the values of α and β one can recover some of the known admissible orders, e.g., the 
lexicographical orders ≤Lex1 and ≤Lex2 are recovered, respectively, by ≤0,1 and ≤1,0, and the Xu and Yager order 
[58] ≤XY is recovered by ≤0.5,1.

2.4. Interval-valued overlap functions

Definition 2.9. [28] An interval-valued function IA : L([0, 1])2 → L([0, 1]) is said to be an interval-valued aggrega-
tion function if the following conditions hold:

(IA1) IA is ≤Pr -increasing;
(IA2) IA([0, 0], [0, 0]) = [0, 0] and IA([1, 1], [1, 1]) = [1, 1].

Definition 2.10. [29,30] An interval-valued (iv) overlap function is a mapping IO : L([0, 1])2 → L([0, 1]) that re-
spects the following conditions:

(IO1) IO is commutative;
(IO2) IO(X, Y) = [0, 0] if and only if X · Y = [0, 0];
(IO3) IO(X, Y) = [1, 1] if and only if X · Y = [1, 1];
(IO4) IO is ≤Pr -increasing in the first component: IO(Y, X) ≤Pr IO(Z, X) when Y ≤Pr Z.
(IO5) IO is Moore continuous.

Note that, by (IO1) and (IO4), iv-overlap functions are also monotonic in the second component.
An iv-overlap function IO : L([0, 1])2 → L([0, 1]) is said to be o-representable [21] if there exist overlap functions 

O1, O2 : [0, 1]2 → [0, 1] such that O1 ≤ O2 and IO = Ô1,O2.

Definition 2.11. [40] A function AO : L([0, 1])2 → L([0, 1]) is an admissibly ordered interval-valued overlap func-
tion for an admissible order ≤AD (≤AD-overlap function) if it satisfies the conditions (IO1), (IO2) and (IO3) of 
Definition 2.10 and, for all X, Y, Z ∈ L([0, 1]):

(AO4) AO is ≤AD-increasing: X ≤AD Y ⇒ AO(X, Z) ≤AD AO(Y, Z).

The following construction method for admissibly ordered interval-valued overlap functions preserves the minimal 
width of the input intervals:

Theorem 2.2. [40] Let O be a strict overlap function and α ∈ (0, 1), β ∈ [0, 1] such that α �= β . Then AOα :
L([0, 1])2 → L([0, 1]) defined, for all X, Y ∈ L([0, 1]), by

AOα(X,Y ) = [O(Kα(X),Kα(Y )) − αm,O(Kα(X),Kα(Y )) + (1 − α)m], (9)

where

m = min{w(X),w(Y ),O(Kα(X),Kα(Y )),1 − O(Kα(X),Kα(Y ))}
is an ≤α,β -overlap function.

3. Width-limited interval-valued functions

As a motivation to the developments presented in this section, we pose the following question: with respect to 
a given interval-valued function, how can the width of the output interval be affected by the widths of the input 
intervals? In order to aid on such discussion, concerning the uncertainty propagation control in aggregation processes, 
we introduce the following definition:

Definition 3.1. Consider an interval-valued function IF : L([0, 1])2 → L([0, 1]) and a mapping B : [0, 1]2 → [0, 1]. 
Then, IF is said to be width-limited by B if w(IF(X, Y)) ≤ B(w(X), w(Y)), for all X, Y ∈ L([0, 1]). B is called a 
width-limiting function of IF .

8
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Remark 3.1. Every function IF : L([0, 1])2 → L([0, 1]) is width-limited by the function B1 : [0, 1]2 → [0, 1] defined 
by B1(x, y) = 1, for all x, y ∈ [0, 1].

In the following, denote:

IF = {IF : L([0,1])2 → L([0,1]) | IF is a binary interval-valued function}
and

F = {F : [0,1]2 → [0,1] |F is binary function}.
First, we analyze how to obtain the least width-limiting function for a given interval-valued function:

Theorem 3.1. The mapping L : IF → F defined for all IF ∈ IF and ε, δ ∈ [0, 1], by

L(IF )(ε, δ) = sup
u ∈ [0,1 − ε]
v ∈ [0,1 − δ]

{w(IF([u,u + ε], [v, v + δ]))}

provides the least width-limiting function L(IF ) : [0, 1]2 → [0, 1] for IF .

Proof. It is clear that L(IF ) is well defined, since

sup
u ∈ [0,1 − ε]
v ∈ [0,1 − δ]

{w(IF([u,u + ε], [v, v + δ]))} ∈ [0,1],

for all IF ∈ IF and all ε, δ ∈ [0, 1].
Now, observe that

L(IF )(ε, δ) = sup
u ∈ [0,1 − ε]
v ∈ [0,1 − δ]

{w(IF([u,u + ε], [v, v + δ]))}

≥ w(IF([u,u + ε], [v, v + δ]))
for all u ∈ [0, 1 −ε], v ∈ [0, 1 −δ], showing that IF is width-limited by L(IF ), since w([u, u +ε]) = ε and w([v, v+
δ]) = δ.

Finally, suppose that there exists a function B : [0, 1]2 → [0, 1] such that: (i) B is a width-limiting function for IF ; 
(ii) there exist ε0, δ0 ∈ [0, 1] such that B(ε0, δ0) < L(IF )(ε0, δ0). So, it follows that

B(ε0, δ0) < sup
u ∈ [0,1 − ε0]
v ∈ [0,1 − δ0]

{w(IF([u,u + ε0], [v, v + δ0]))}.

Then, there exist u0 ∈ [u, u + ε0], v0 ∈ [v, v + δ0] such that

B(ε0, δ0) < w(IF ([u0, u0 + ε0], [v0, v0 + δ0])),
meaning that IF cannot be width-limited by B , which is a contradiction. The conclusion is that L(IF ) is the least 
function that is width-limiting for IF . �

In the following, denote:

A = {A : [0,1]2 → [0,1] |A is an aggregation function}
and

IA = {IA : L([0,1])2 → L([0,1]) | IA is the best interval representation of an aggregation functionA ∈ A}.
Then, a similar approach of Theorem 3.1 can be used to obtain the least width-liming aggregation function for a given 
representable interval-valued aggregation function.

9
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Theorem 3.2. The mapping L : IA → F defined for all IA ∈ IA and ε, δ ∈ [0, 1], by

L(IA)(ε, δ) = sup
u ∈ [0,1 − ε]
v ∈ [0,1 − δ]

{w(IA([u,u + ε], [v, v + δ]))} (10)

provides the least width-limiting function L(IA) : [0, 1]2 → [0, 1] for IA. Moreover, L(IA) is an aggregation func-
tion.

Proof. From Theorem 3.1, it only remains to be shown that L(IA) respects the conditions for it to be an aggregation 
function, for all IA ∈ IA:

(A1) Consider ε1, ε2, δ1, δ2 ∈ [0, 1] such that ε1 ≤ ε2 and δ1 ≤ δ2. Thus, for all u ∈ [0, 1 − ε2] and v ∈ [0, 1 − δ2], it 
holds that

[u,u + ε1] ≤ [u,u + ε2] and [v, v + δ1] ≤ [v, v + δ2].
Since IA is ≤Pr -increasing, for all u ∈ [0, 1 − ε2] and v ∈ [0, 1 − δ2], it follows that

IA([u,u + ε1], [v, v + δ1]) ≤Pr IA([u,u + ε2], [v, v + δ2]). (11)

As IA ∈ IA, then there exists an aggregation function A : [0, 1]2 → [0, 1] such that

IA(X,Y ) = [A(X,Y ),A(X,Y )],
for all X, Y ∈ L([0, 1]). Thus, by Equation (11), one has that

[A(u,v),A(u + ε1, v + δ1)] ≤Pr [A(u,v),A(u + ε2, v + δ2)]
⇒ A(u + ε1, v + δ1) − A(u,v) ≤ A(u + ε2, v + δ2) − A(u,v)

⇒ w([A(u,v),A(u + ε1, v + δ1)]) ≤ w([A(u,v),A(u + ε2, v + δ2)])
⇒ w(IA([u,u + ε1], [v, v + δ1])) ≤ w(IA([u,u + ε2], [v, v + δ2]))
⇒ sup

u ∈ [0,1 − ε1]
v ∈ [0,1 − δ1]

{w(IA([u,u + ε1], [v, v + δ1]))} ≤ sup
u ∈ [0,1 − ε2]
v ∈ [0,1 − δ2]

{w(IA([u,u + ε2], [v, v + δ2]))}

⇒ L(IA)(ε1, δ1) ≤ L(IA)(ε2, δ2),

showing that L(IA) is increasing.
(A2) As IA ∈ IA, it follows that

L(IA)(0,0) = sup
u,v∈[0,1]

{w(IA([u,u], [v, v]))} = sup
u,v∈[0,1]

{A(u,v) − A(u,v)} = 0,

and

L(IA)(1,1) = w(IA([0,1], [0,1])) = A(1,1) − A(0,0) = 1. �
Example 3.1. Let A : [0, 1]2 → [0, 1] be an aggregation function defined, for all x, y ∈ [0, 1], by A(x, y) = x+y+x·y

3 . 
Then, the mapping L(Â) : [0, 1]2 → [0, 1] defined, for all ε, δ ∈ [0, 1], by

L(Â)(ε, δ) = sup
u ∈ [0,1 − ε]
v ∈ [0,1 − δ]

{w(Â([u,u + ε], [v, v + δ]))}

= sup
u ∈ [0,1 − ε]
v ∈ [0,1 − δ]

{A(u + ε, v + δ) − A(u,v)}

= sup
u ∈ [0,1 − ε]
v ∈ [0,1 − δ]

{
u + ε + v + δ + (u + ε) · (v + δ)

3
−

(
u + v + y · v

3

)}

10
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= sup
u ∈ [0,1 − ε]
v ∈ [0,1 − δ]

{
ε + δ + u · δ + ε · v + ε · δ

3

}

= ε + δ + (1 − ε) · δ + ε · (1 − δ) + ε · δ
3

= 2ε + 2δ − ε · δ
3

is the least width-limiting function for Â. Observe that L(Â) is an aggregation function.

Based on the concept of ultramodularity, let us define a less restrictive extension of one-dimension convexity for 
bivariate aggregation functions:

Definition 3.2. Consider a, b ∈ [0, 1]. An aggregation function A : [0, 1]2 → [0, 1] is called (a, b)-ultramodular if, for 
all x, y, ε, δ ∈ [0, 1] and x + ε, y + δ, a − ε, b − δ ∈ [0, 1], it holds that:

A(x + ε, y + δ) − A(x,y) ≤ A(a,b) − A(a − ε, b − δ). (12)

Proposition 3.1. Let A : [0, 1]2 → [0, 1] be an ultramodular aggregation function. Then, A is an (1, 1)-ultramodular 
aggregation function.

Proof. Immediate, since Equation (12), with a = b = 1, is a particular case of Equation (3) when ε + x2 = 1 and 
δ + y2 = 1. �
Remark 3.2. If an aggregation function A : [0, 1]2 → [0, 1] is (1, 1)-ultramodular, then, for all x, y, ε, δ ∈ [0, 1] such 
that x + ε, y + δ, a − ε, b − δ ∈ [0, 1], it holds that:

A(x + ε, y + δ) − A(x,y) ≤ Ad(ε, δ), (13)

where Ad is the dual of A.

Remark 3.3. From Proposition 3.1, we have that every ultramodular function is also (1, 1)-ultramodular. However, 

the converse may not hold. For example, the Ot overlap (Table 1) given by Ot(x, y) = (2x−1)3+1
2 · (2y−1)3+1

2 , for 
all x, y ∈ [0, 1], is an (1, 1)-ultramodular function. However, by Proposition 2.1, Ot is clearly not an ultramodular 
aggregation function.

Now, let us present a characterization for the least width-limiting function of the best interval representation of an 
(1, 1)-ultramodular aggregation function, or the best interval representation of its dual:

Theorem 3.3. Let A : [0, 1]2 → [0, 1] be an aggregation function, L(Â), L(Âd) : [0, 1]2 → [0, 1] be the least width-
limiting functions for Â and Âd , respectively. Then, L(Â) = L(Âd) = Ad if and only if A is an (1, 1)-ultramodular 
aggregation function.

Proof. (⇒) Suppose that L(Â) = L(Âd) = Ad . Then, we have that:

L(Â) = Ad

⇒ sup
u ∈ [0,1 − ε]
v ∈ [0,1 − δ]

{w(Â([u,u + ε], [v, v + δ]))} = 1 − A(1 − ε,1 − δ)

⇒ A(u + ε, v + δ) − A(u,v) ≤ A(1,1) − A(1 − ε,1 − δ), for all u ∈ [0,1 − ε], v ∈ [0,1 − δ]. (14)

From Equation (14), we conclude that A is (1, 1)-ultramodular.
(⇐) Suppose that A : [0, 1]2 → [0, 1] is an (1, 1)-ultramodular aggregation function. Then, for all ε, δ ∈ [0, 1], it 

holds that:

11
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L(Â)(ε, δ) = sup
u ∈ [0,1 − ε]
v ∈ [0,1 − δ]

{w(Â([u,u + ε], [v, v + δ]))}

= sup
u ∈ [0,1 − ε]
v ∈ [0,1 − δ]

{A(u + ε, v + δ) − A(u,v)}

= A(1 − ε + ε,1 − δ + δ) − A(1 − ε,1 − δ)

= 1 − A(1 − ε,1 − δ)

= Ad(ε, δ),

and

L(Âd)(ε, δ) = sup
u ∈ [0,1 − ε]
v ∈ [0,1 − δ]

{w(Âd([u,u + ε], [v, v + δ]))}

= sup
u ∈ [0,1 − ε]
v ∈ [0,1 − δ]

{A(1 − u,1 − v) − A(1 − u − ε,1 − v − δ)}

= A(1,1) − A(1 − ε,1 − δ)

= Ad(ε, δ),

since A is (1, 1)-ultramodular. Thus, if A is an (1, 1)-ultramodular aggregation function, then L(Â) = L(Âd) =
Ad . �
Remark 3.4. In the context of Theorem 3.3, as Â and Âd are representable iv-aggregation functions, then their least 
width-limiting function Ad is an aggregation function, as stated by Theorem 3.2. Also, observe that the function A
does not need to be ultramodular.

Example 3.2. The least width-limiting function for either Ôt (the best interval representation of the overlap function 
Ot , shown in Table 1) or Ôd

t (the best interval representation of the dual of Ot ) is Od
t , as Ot is an (1, 1)-ultramodular 

aggregation function.

Since every ultramodular aggregation function is also (1, 1)-ultramodular, the following result is immediate.

Corollary 3.1. Let A : [0, 1]2 → [0, 1] be an aggregation function, L(Â), L(Âd) : L([0, 1])2 → L([0, 1]) be the least 
width-limiting functions for Â and Âd , respectively. Then, L(Â) = L(Âd) = Ad if and only if A is an ultramodular 
aggregation function.

Example 3.3. Here we present some examples of width-limiting functions for the best interval representation of either 
an ultramodular aggregation function or its dual:

1) The least width-limiting function for either ÔP (the best interval representation of the product overlap) or Ôd
P

(the best interval representation of the dual of OP ) is Od
P ;

2) The least width-limiting function for K̂α (the best interval representation of the weighted sum), is Kd
α = Kα , with 

α ∈ [0, 1];
3) Consider the aggregation function AM : [0, 1]2 → [0, 1] given by AM(x, y) = x+y

2 (arithmetic mean). So, the 
least width-limiting function for ÂM (the best interval representation of the arithmetic mean), is AMd = AM .

Proposition 3.2. Let IF1, IF2, IG, IH ∈ IA, such that IH(X, Y) = IG(IF1(X, Y), IF2(X, Y)), for all X, Y ∈
L([0, 1]). Then, it holds that:

L(IH) ≤ L(IG)(L(IF1),L(IF2)).

12
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Proof. Consider IF1([x1, x1 + ε], [x2, x2 + δ]) = [y1, y1 + ε∗], IF2([x1, x1 + ε], [x2, x2 + δ]) = [y2, y2 + δ∗], with 
ε, δ, ε∗, δ∗, ∈ [0, 1] and x1 + ε, x2 + δ, y1 + ε∗, y2 + δ∗ ∈ [0, 1]. Then, it follows that:

w(IH([x1, x1 + ε], [x2, x2 + δ]))
= w(IG(IF1([x1, x1 + ε], [x2, x2 + δ]), IF2([x1, x1 + ε], [x2, x2 + δ])))
= w(IG([y1, y1 + ε∗], [y2, y2 + δ∗])
≤ L(IG)(ε∗, δ∗), by Theorem 3.2

≤ L(IG)(L(IF1)(ε, δ),L(IF2)(ε, δ)),

which means that L(IG)(L(IF1), L(IF2)) is a width-limiting function for IH .
However, as L(IH) is the least width-limiting function for IH (by Theorem 3.2), thus, one concludes that

L(IH) ≤ L(IG)(L(IF1),L(IF2)). �
Example 3.4.

1) Take IF1 = ÂM , IF2 = ÔP , IG = K̂α , as presented in Example 3.3. Then, let IH : L([0, 1])2 → L([0, 1]) be 
an iv-aggregation function defined, for all X, Y ∈ L([0, 1]) with α ∈ [0, 1], by

IH(X,Y ) = K̂α(ÂM(X,Y ), ÔP (X,Y ))

= K̂α([AM(X,Y ),AM(X,Y )], [OP (X,Y ),OP (X,Y )]))

= K̂α

([
X + Y

2
,
X + Y

2

]
, [X · Y ,X · Y ]

)
.

Since AM, OP and Kα are ultramodular, it holds that:

L(IH)(ε, δ)

= sup
u ∈ [0,1 − ε]
v ∈ [0,1 − δ]

{
Kα

(
u + ε + v + δ

2
, (u + ε) · (v + δ)

)
− Kα

(
u + v

2
, u · v

)}

= Kα

(
1 − ε + ε + 1 − δ + δ

2
, (1 − ε + ε) · (1 − δ + δ)

)
− Kα

(
1 − ε + 1 − δ

2
, (1 − ε) · (1 − δ)

)
= Kα (1,1) − Kα

(
(1 − ε) + (1 − δ)

2
, (1 − ε) · (1 − δ)

)
= 1 − Kα (AM(1 − ε,1 − δ),OP (1 − ε,1 − δ))

= 1 − Kα

(
1 − AM(ε, δ),1 − Od

P (ε, δ)
)

= Kα

(
AM(ε, δ),Od

P (ε, δ)
)

.

From Theorem 3.3 we have that L(ÔP ) = Od
P , L(ÂM) = AMd = AM and L(K̂α) = Kd

α = Kα , for all α ∈ [0, 1]. 
So, we conclude that

L(K̂α)(L(ÂM)(ε, δ),L(ÔP )(ε, δ)) = Kα(AM(ε, δ),Od
P (ε, δ)) = L(IH).

2) Now, take IF1 = ÔP , IF2 = Ôd
P , IG = K̂0.25, with α = 0.25. Then, let IH : L([0, 1])2 → L([0, 1]) be the 

iv-aggregation function defined, for all X, Y ∈ L([0, 1]), by

IH(X,Y ) = K̂0.25(ÔP (X,Y ), Ôd
P (X,Y ))

= K̂0.25([OP (X,Y ),OP (X,Y )], [Od
P (X,Y ),Od

P (X,Y )]))
= K̂0.25

([
X · Y ,X · Y ]

, [X + Y − X · Y ,X + Y − X · Y ])
=

[
X + Y + 2 · X · Y

4
,
X + Y + 2 · X · Y

4

]
.

13
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Thus,

L(IH)(ε, δ)

= sup
u ∈ [0,1 − ε]
v ∈ [0,1 − δ]

{
u + ε + v + δ + 2 · (u + ε) · (v + δ)

4
− u + v + 2 · u · v

4

}

= sup
u ∈ [0,1 − ε]
v ∈ [0,1 − δ]

{
ε + δ + 2 · u · δ + 2 · ε · v + 2 · ε · δ

4

}

= ε + δ + 2 · (1 − ε) · δ + 2 · ε · (1 − δ) + 2 · ε · δ
4

= 3ε + 3δ − 2εδ

4
.

From Theorem 3.3 we have that L(ÔP ) = L(Ôd
P ) = Od

P and L(K̂0.25) = Kd
0.25 = K0.25. So, we have that

L(K̂0.25)(L(ÔP )(ε, δ),L(Ôd
P )(ε, δ))

= K0.25(O
d
P (ε, δ),Od

P (ε, δ))

= Od
P (ε, δ)

≥ 3ε + 3δ − 2εδ

4
= L(IH).

Remark 3.5. Consider an interval-valued function IF : L([0, 1])2 → L([0, 1]) and an aggregation function A :
[0, 1]2 → [0, 1]. If IF is width-limited by A, we have that, for any X, Y ∈ L([0, 1]):

1) If A = max, then IF is limited by the maximal width of the input intervals X, Y ;
2) If A = min, then IF is limited by the minimal width of the input intervals X, Y ;
3) If A is conjunctive and either X or Y is degenerate, then IF (X, Y) is also degenerate;
4) If A is averaging, then min{w(X), w(Y)} ≤ w(IF(X, Y)) ≤ max{w(X), w(Y)}.

4. Width-limited interval-valued overlap functions

The aim of this section is to apply the newly developed concepts of width-limited interval-valued functions and 
width limiting functions to obtain a new definition of width-limited interval-valued overlap functions, taking into 
consideration different partial orders. Also, we are going to present three construction methods for width-limited 
interval-valued overlap functions, followed by some examples and comparisons.

First, to enable a more flexible definition of interval-valued functions, let us define the concept of increasingness 
with respect to a pair of partial orders:

Definition 4.1. Let IF : L([0, 1])2 → L([0, 1]) be an interval-valued function and ≤1, ≤2 be two partial or-
der relations on L([0, 1]). Then, IF is said to be (≤1, ≤2)-increasing if the following condition holds, for all 
X1, X2, Y1, Y2 ∈ L([0, 1]):

X1 ≤1 X2 ∧ Y1 ≤1 Y2 ⇒ IF (X1, Y1) ≤2 IF (X2, Y2).

When an interval-valued function IF : L([0, 1])2 → L([0, 1]) is (≤, ≤)-increasing, we denote it simply as ≤-
increasing, for any partial order relation ≤ on L([0, 1]).

Proposition 4.1. Let ≤AD be an admissible order on L([0, 1]). Then, an ≤Pr -increasing function IF : L([0, 1])2 →
L([0, 1]) is also (≤Pr , ≤AD)-increasing.

14
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Proof. Immediate, as ≤AD is an admissible order and, as such, refines ≤Pr . �
Example 4.1. Given an overlap function O : [0, 1]2 → [0, 1], the ≤α,β -overlap function AOα : L([0, 1])2 → L([0, 1])
defined in Equation (9) (Theorem 2.2) is (≤Pr , ≤α,β)-increasing for all α, β ∈ [0, 1] such that α �= β .

Here, we present the definition of width-limited interval-valued overlap functions:

Definition 4.2. Let B : [0, 1]2 → [0, 1] be a commutative and increasing function and ≤1, ≤2 be two partial order 
relations on L([0, 1]). Then, the mapping IOw : L([0, 1])2 → L([0, 1]) is said to be a width-limited interval-valued 
overlap function (w-iv-overlap function) with respect to the tuple (≤1, ≤2, B), if the following conditions hold for all 
X, Y ∈ L([0, 1]):

(IOw1) IOw is commutative;
(IOw2) IOw(X, Y) = [0, 0] ⇔ X · Y = [0, 0];
(IOw3) IOw(X, Y) = [1, 1] ⇔ X · Y = [1, 1];
(IOw4) IOw is (≤1, ≤2)-increasing;
(IOw5) IOw is width-limited by B.

Remark 4.1. Taking a similar approach as in [40] when defining admissibly ordered interval-valued overlap functions, 
we do not require the continuity as a condition in Definition 4.2. The original definition of overlap functions (Defini-
tion 2.10) included the Moore continuity as a necessary condition as the goal was to be applied in image processing 
problems [3], which is not the case here.

Now, let us presents some results regarding width-limited interval-valued overlap functions obtained through the 
best interval representation of an overlap function:

Proposition 4.2. Let O : [0, 1]2 → [0, 1] be an (1, 1)-ultramodular overlap function. Then, the function IF :
L([0, 1])2 → L([0, 1]), such that IF = Ô is an w-iv-overlap function for the tuple (≤Pr, ≤Pr , Od), where Od is 
the dual of O .

Proof. Immediate from Theorem 3.3. �
Example 4.2. Let Ot : [0, 1]2 → [0, 1] be the Ot overlap, given in Table 1. Then, the function IF : L([0, 1])2 →
L([0, 1]), such that IF = Ôt is an w-iv-overlap function for the tuple (≤Pr, ≤Pr , Od

t ), where Od
t is the dual of Ot .

Proposition 4.3. Let O1, O2, O3 : [0, 1]2 → [0, 1] be ultramodular overlap functions, and OC : [0, 1]2 → [0, 1]
be an overlap function given, for all x, y ∈ [0, 1], by OC(x, y) = O3(O1(x, y), O2(x, y)). Then, the function 
IF : L([0, 1])2 → L([0, 1]), such that IF = ÔC is an w-iv-overlap function for the tuple (≤Pr, ≤Pr , Od

C), where 
Od

C is the dual of OC .

Proof. Immediate from Theorem 2.1, Proposition 2.3 and Theorem 3.3. �
Example 4.3. Consider the overlap functions O1, O2, O3, OC : [0, 1]2 → [0, 1] given, for all x, y, ∈ [0, 1], respec-
tively, by O1(x, y) = x2p · y2p , O2(x, y) = x2q · y2q , O3(x, y) = x · y and OC(x, y) = O3(O1(x, y), O2(x, y)), with 
p, q ∈N+. Since O1, O2 and O3 are ultramodular, it follows that the function IF : L([0, 1])2 → L([0, 1]), such that 
IF = ÔC , is an w-iv-overlap function for the tuple (≤Pr, ≤Pr , Od

C).

Proposition 4.4. Let O1, O2 : [0, 1]2 → [0, 1] be ultramodular overlap functions, and Oα : [0, 1]2 → [0, 1] be an 
overlap function given, for all x, y, α ∈ [0, 1], by Oα(x, y) = Kα(O1(x, y), O2(x, y)). Then, the function IF :
L([0, 1])2 → L([0, 1]) such that IF = Ôα , for all α ∈ [0, 1], is an w-iv-overlap function for (≤Pr, ≤Pr , Od

α), where 
Od

α is the dual of Oα .
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Proof. Immediate from Corollary 2.1, Proposition 2.4 and Theorem 3.3. �
Example 4.4. Consider the ultramodular overlap functions O1, O2, Oα : [0, 1]2 → [0, 1] given, for all x, y, α ∈ [0, 1], 
respectively, by O1(x, y) = x2y2, O2(x, y) = x4y4 and Oα = Kα(O1(x, y), O2(x, y)). It follows that the function 
IF : L([0, 1])2 → L([0, 1]), such that IF = Ôα , for all α ∈ [0, 1], is an w-iv-overlap function for the tuple (≤Pr,

≤Pr , Od
α).

As discussed in the Introduction, our aim is to construct interval-valued overlap functions in which the width of the 
interval output does not surpass a desirable threshold, according to the width-limiting function applied to the widths 
of the interval inputs. We point out that the desirable maximal threshold is determined by the application requirement, 
concerning the extent of the necessity to conserve the information quality of the results, with respect to the information 
quality of the inputs (see Remark 4.6).

In the following, we introduce the definition of such maximal width threshold, a key concept to be applied in two 
of the construction methods presented latter in the paper:

Definition 4.3. Consider a function B : [0, 1]2 → [0, 1] and let IF : L([0, 1])2 → L([0, 1]) be an interval-valued 
function. Then, the function mIF,B : L([0, 1])2 → [0, 1], defined for all X, Y ∈ L([0, 1]) by:

mIF,B(X,Y ) = min{w(IF(X,Y )),w(IF (Y,X)),B(w(X),w(Y )),B(w(Y ),w(X))}, (15)

is called the maximal width threshold for the pair (IF, B). Whenever B and IF are both commutative, then Equation 
(15) can be reduced to:

mIF,B(X,Y ) = min{w(IF (X,Y )),B(w(X),w(Y ))}.

Proposition 4.5. Let mF̂,B : L([0, 1])2 → [0, 1] be the maximal width threshold for the pair (F̂ , B) with F̂ :
L([0, 1])2 → L([0, 1]) being an interval-valued function having an increasing function F : [0, 1]2 → [0, 1] as both 
its representatives. Whenever it holds that: i) both X and Y are degenerate or ii) either X or Y is degenerate and B
is a conjunctive function, then mF̂,B(X, Y) = 0.

Proof. Consider an increasing function F : [0, 1]2 → [0, 1], a conjunctive function B : [0, 1]2 → [0, 1] and the maxi-
mal width threshold mF̂,B : L([0, 1])2 → [0, 1] given by Definition 4.3. Then:

i) Take X, Y ∈ L([0, 1]) such that X = X and Y = Y , that is, both X and Y are degenerate. Then, we have that 
w(F̂ (X, Y)) = F(X, Y) − F(X, Y ) = 0 and, similarly, w(F̂ (Y, X)) = 0. So, it holds that

mF̂,B(X,Y ) = min{0,0,B(w(X),w(Y )),B(w(Y ),w(X))} = 0;
ii) Take X, Y ∈ L([0, 1]) such that X = X, meaning that w(X) = 0. Since B is conjunctive, it holds that 

B(w(X), w(Y)) = B(0, w(Y)) = 0 and, analogously, B(w(Y ), w(X)) = 0. Then, we have that

mF̂,B(X,Y ) = min{w(F̂ (X,Y )),w(F̂ (Y,X)),0,0} = 0.

The same result applies when Y is degenerate. �
Lemma 4.1. Consider a strict overlap function O : [0, 1]2 → [0, 1] and X, Y, Z ∈ L([0, 1]) such that X ≤Pr Y and 
Z > 0. Then, one has that:

a) If X = Y and X < Y , then Kα(Ô(X, Z)) < Kα(Ô(Y, Z)), for all α ∈ (0, 1];
b) If X < Y and X = Y , then Kα(Ô(X, Z)) < Kα(Ô(Y, Z)), for all α ∈ [0, 1);
c) If X < Y and X < Y , then Kα(Ô(X, Z)) < Kα(Ô(Y, Z)), for all α ∈ [0, 1].

Proof. Consider a strict overlap function O : [0, 1]2 → [0, 1] and X, Y, Z ∈ L([0, 1]) such that X <Pr Y . Then, we 
have the following cases:

16
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a) X = Y and X < Y . As O is strict and Z > 0, we have that O(X, Z) = O(Y , Z) and O(Y , Z) < O(Y , Z). Then, 
Kα(Ô(X, Z)) = (1 − α) · O(X, Z) + α · O(X, Z) < (1 − α) · O(Y , Z) + α · O(Y , Z) = Kα(Ô(Y, Z)), for all 
α ∈ (0, 1];

b) X < Y and X = Y . Again, as O is strict and Z > 0, we have that O(X, Z) < O(Y , Z) and O(Y , Z) = O(Y , Z). 
So, Kα(Ô(X, Z)) = (1 −α) ·O(X, Z) +α ·O(X, Z) < (1 −α) ·O(Y , Z) +α ·O(Y , Z) = Kα(Ô(Y, Z)), for all 
α ∈ [0, 1);

c) X < Y and X < Y . Analogously to the other cases, we have that O(X, Z) < O(Y , Z) and O(Y , Z) < O(Y , Z). 
Thus, Kα(Ô(X, Z)) = (1 − α) · O(X, Z) + α · O(X, Z) < (1 − α) · O(Y , Z) + α · O(Y , Z) = Kα(Ô(Y, Z)), for 
all α ∈ [0, 1]. �

Here, we present the first construction method for w-iv-overlap functions:

Theorem 4.1. Consider a commutative and increasing function B : [0, 1]2 → [0, 1], a strict overlap function O :
[0, 1]2 → [0, 1] and take α ∈ (0, 1] and β ∈ [0, α). Then, the interval-valued function IOwα

B : L([0, 1])2 → L([0, 1])
defined, for all X, Y ∈ L([0, 1]), by

IOwα
B(X,Y ) = [Kα(Ô(X,Y )) − α · mÔ,B(X,Y ),Kα(Ô(X,Y )) + (1 − α) · mÔ,B(X,Y )], (16)

is a w-iv-overlap function for the tuple (≤Pr, ≤α,β, B).

Proof. See Appendix A. �
Proposition 4.6. Let O : [0, 1]2 → [0, 1] be a strict overlap function, B : [0, 1]2 → [0, 1] be an increasing and 
commutative function and IOwα

B : L([0, 1])2 → L([0, 1]) be an w-iv-overlap function for the tuple (≤Pr, ≤α,β, B)

obtained through Theorem 4.1 for any α, β ∈ [0, 1] such that α �= β . Then, for any X, Y ∈ L([0, 1]) one has that 
IOwα

B(X, Y) ⊆ Ô(X, Y).

Proof. It is immediate that Kα(IOwα
B(X, Y)) = Kα(Ô(X, Y)), for any α ∈ [0, 1]. Then, either IOwα

B(X, Y) ⊆
Ô(X, Y) or Ô(X, Y) ⊆ IOwα

B(X, Y). On the other hand, as

w(IOwα
B(X,Y )) = mÔ,B(X,Y ) = min{w(Ô(X,Y )),B(w(X),w(Y ))} ≤ w(Ô(X,Y )),

then IOwα
B(X, Y) ⊆ Ô(X, Y). �

The next result is immediate from Theorem 3.3.

Proposition 4.7. Let O : [0, 1]2 → [0, 1] be an (1, 1)-ultramodular overlap function, A : [0, 1]2 → [0, 1] be an ag-
gregation function such that A ≥ Od and IOwα

A : L([0, 1])2 → L([0, 1]) be the w-iv-overlap function for the tuple 
(≤Pr , ≤α,β, A), obtained by Theorem 4.1 with α, β ∈ [0, 1]. Then, IOwα

A(X, Y) = Ô(X, Y), for all X, Y ∈ L([0, 1]).
Remark 4.2. From Proposition 4.7, when we apply construction method presented in Theorem 4.1 to obtain an w-
iv-overlap function IOwα

A based on an (1, 1)-ultramodular overlap function O with a width-limiting aggregation 
function A, such that A < Od and α, β ∈ [0, 1], the output interval is narrower (with greater quality of information) 
than the one obtained by Ô. Furthermore, from Proposition 4.6, it holds that this interval is contained in the one 
obtained by Ô , which is a desirable property, since Ô is the best interval representation of O , in the sense of [17,31].

The following examples aim to illustrate how the construction method presented in Theorem 4.1 works, comparing 
the results with the ones obtained through o-representable iv-overlap functions.

Example 4.5. Consider an increasing and commutative function B : [0, 1]2 → [0, 1], the product overlap function 
Op : [0, 1]2 → [0, 1], α ∈ (0, 1] and β ∈ [0, α). Then, the interval-valued function IOpwα

B : L([0, 1])2 → L([0, 1])
defined, for all X, Y ∈ L([0, 1]), by

IOpwα
B(X,Y ) = [Kα(Ôp(X,Y )) − α · mÔp,B(X,Y ),Kα(Ôp(X,Y )) + (1 − α) · mÔp,B(X,Y )], (17)

is a w-iv-overlap function for the tuple (≤Pr, ≤α,β, max).

17
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1) Take B = max, X = [0.2, 0.8] and Y = [0.5, 1]. So, we have that Ôp([0.2, 0.8], [0.5, 1]) = [0.1, 0.8]. It is 
clear that Ôp is not width-limited by max, as w(Ôp([0.2, 0.8], [0.5, 1])) = 0.7 > 0.6 = max(w([0.2, 0.8]),
w([0.5, 1])). Also, by Equation (7), observe that Ôp([0.2, 0.8], [0.5, 1]) can be obtained as:

Ôp([0.2,0.8], [0.5,1]) = [Kα([0.1,0.8]) − α · 0.7,Kα([0.1,0.8]) + (1 − α) · 0.7], (18)

which also results in [0.1, 0.8], for all α ∈ (0, 1].
The maximal width threshold for the pair (Op, max) in this context is given by

mÔp,max([0.2,0.8], [0.5,1]) =
min{w(Ôp([0.2,0.8], [0.5,1])),max(w([0.2,0.8]),w([0.5,1]))} = min{0.7,max{0.6,0.5}} = 0.6.

By Equation (17), we have that

IOpwα
max([0.2,0.8], [0.5,1]) = [Kα([0.1,0.8]) − α · 0.6,Kα([0.1,0.8]) + (1 − α) · 0.6], (19)

and w(IOpwα
max([0.2, 0.8], [0.5, 1])) = 0.6 ≤ max(w([0.2, 0.8]), w([0.5, 1])), which is expected as IOpwα

max is 
width-limited by max.
Notice, from Equations (18) and (19), that Kα(Ôp([0.2, 0.8], [0.5, 1])) = Kα(IOpwα

max([0.2, 0.8], [0.5, 1])), and 
that w(Ôp([0.2, 0.8], [0.5, 1])) = 0.7 > 0.6 = w(IOpwα

max([0.2, 0.8], [0.5, 1])).
Let us assign some values for α to observe what is the resulting interval for IOpwα

max([0.2, 0.8], [0.5, 1]).
a) If α = 0.01, then

IOp0.01
max ([0.2,0.8], [0.5,1]) = [K0.01([0.1,0.8]),K0.01([0.1,0.8]) + 0.6] = [0.107,0.707];

b) If α = 0.5, then

IOp0.5
max([0.2,0.8], [0.5,1]) = [K0.5([0.1,0.8]) − 0.5 · 0.6,K0.5([0.1,0.8]) + 0.5 · 0.6] = [0.15,0.75];

c) If α = 1, then

IOp1
max([0.2,0.8], [0.5,1]) = [K1([0.1,0.8]) − 0.6,K1([0.1,0.8])] = [0.2,0.8].

2) Now, consider B = max and take X = [0.6, 0.9] and Y = [0.8, 0.8]. So, we have that

Ôp([0.6,0.9], [0.8,0.8]) = [0.48,0.72].
Although Ôp is not width-limited by max, in this case it holds that as

w(Ôp([0.6,0.9], [0.8,0.8])) = 0.24 < 0.3 = max(w([0.6,0.9]),w([0.8,0.8])).
Moreover, by Equation (7), Ôp([0.6, 0.9], [0.8, 0.8]) can be written as:

Ôp([0.6,0.9], [0.8,0.8]) = [Kα([0.48,0.72]) − α · 0.24,Kα([0.48,0.72]) + (1 − α) · 0.24] = [0.48,0.72].
The maximal width threshold for the pair (Op, max) in this context is given by

mÔp,max([0.6,0.9], [0.8,0.8]) =
min{w(Ôp([0.6,0.9], [0.8,0.8])),max(w([0.6,0.9]),w([0.8,0.8]))} = min{0.24,max{0.3,0}} = 0.24.

By Equation (17), we have that

IOpwα
max([0.6,0.9], [0.8,0.8]) = [Kα([0.48,0.72])−α ·0.24,Kα([0.48,0.72])+(1−α) ·0.24] = [0.48,0.72].

Thus, Ôp([0.6, 0.9], [0.8, 0.8]) = IOpwα
max([0.6, 0.9], [0.8, 0.8]) = [0.48, 0.72], for all α ∈ (0, 1].

3) Next, take the same X = [0.6, 0.9], and Y = [0.8, 0.8], but now with B = min. So,

mÔp,min([0.6,0.9], [0.8,0.8]) =
min{w(Ôp([0.6,0.9], [0.8,0.8])),min{w([0.6,0.9]),w([0.8,0.8])}} = min{0.24,min{0.3,0}} = 0,

and, therefore,
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IOpα
min([0.6,0.9], [0.8,0.8]) = [Kα([0.48,0.72]),Kα([0.48,0.72])],

for any α ∈ (0, 1]. One can observe that w(IOpα
min([0.6, 0.9], [0.8, 0.8])) = 0, which is expected from Remark 3.5

as Y = [0.8, 0.8] is degenerate and min is a conjunctive function.
4) Finally, take X = [0.2, 0.8] and Y = [0.5, 1], and let B = Opd . Then, the maximal width threshold for the pair 

(Ôp, Opd) is given by

mÔp,Opd ([0.2,0.8], [0.5,1]) =
min{w(Ôp([0.2,0.8], [0.5,1])),Opd(w([0.2,0.8]),w([0.5,1]))} = min{0.7,Opd(0.6,0.5)} = 0.7.

By Equation (17), we have that

IOpwα
Opd ([0.2,0.8], [0.5,1])

= [Kα([0.1,0.8]) − α · 0.7,Kα([0.1,0.8]) + (1 − α) · 0.7]
= Ôp([0.2,0.8], [0.5,1])
= [0.1,0.8],

which is expected, by Proposition 4.7, since Op is an (1, 1)-ultramodular overlap function.

Next, we present the second construction method for w-iv-overlap functions:

Theorem 4.2. Let O : [0, 1]2 → [0, 1] be a strict overlap function, B : [0, 1]2 → [0, 1] be a commutative, increasing 
and conjunctive function and α ∈ (0, 1), β ∈ [0, 1] such that α �= β . Then IOwα

B : L([0, 1])2 → L([0, 1]) defined, for 
all X, Y ∈ L([0, 1]), by

IOwα
B(X,Y ) = [O(Kα(X),Kα(Y )) − αθ,O(Kα(X),Kα(Y )) + (1 − α)θ ],

where

θ = B(B(w(X),w(Y )),B(O(Kα(X),Kα(Y )),1 − O(Kα(X),Kα(Y ))))

is a w-iv-overlap function for the tuple (≤α,β, ≤α,β, B).

Proof. See Appendix B. �
The following result is immediate as a w-iv-overlap function for the tuple (≤α,β, ≤α,β, B) is also a ≤α,β -overlap 

function (Definition 2.11), in the sense of [40].

Corollary 4.1. Let O : [0, 1]2 → [0, 1] be a strict overlap function, B : [0, 1]2 → [0, 1] be a commutative, increasing 
and conjunctive function and α ∈ (0, 1), β ∈ [0, 1] such that α �= β . Then IOwα

B : L([0, 1])2 → L([0, 1]) defined, for 
all X, Y ∈ L([0, 1]), by

IOwα
B(X,Y ) = [O(Kα(X),Kα(Y )) − αθ,O(Kα(X),Kα(Y )) + (1 − α)θ ],

where

θ = B(B(w(X),w(Y )),B(O(Kα(X),Kα(Y )),1 − O(Kα(X),Kα(Y ))))

is a ≤α,β -overlap function.

Example 4.6. Consider a function B : [0, 1]2 → [0, 1] such that B = min and the product overlap function 
Op : [0, 1]2 → [0, 1]. Then, the interval-valued function IOpwα

min : L([0, 1])2 → L([0, 1]) defined, for all X, Y ∈
L([0, 1]), by

IOpwα
min(X,Y ) = [Op(Kα(X),Kα(Y )) − αθ,Op(Kα(X),Kα(Y )) + (1 − α)θ ], (20)
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where

θ = min(min(w(X),w(Y )),min(Op(Kα(X),Kα(Y )),1 − Op(Kα(X),Kα(Y ))))

is a w-iv-overlap function for the tuple (≤α,β, ≤α,β, min), for all α ∈ (0, 1), β ∈ [0, 1] with α �= β .

1) Take X = [0.2, 0.8], and Y = [0.5, 1]. By Equation (20), we have that

IOpwα
min([0.2,0.8], [0.5,1])

= [Op(Kα([0.2,0.8]),Kα([0.5,1])) − αθ,Op(Kα([0.2,0.8]),Kα([0.5,1])) + (1 − α)θ ],
where

θ = min(min(w([0.2,0.8]),w([0.5,1])),
min(Op(Kα([0.2,0.8]),Kα([0.5,1])),1 − Op(Kα([0.2,0.8]),Kα([0.5,1]))))

Let us assign some values for α to observe what is the resulting interval for IOpwα
min([0.2, 0.8], [0.5, 1]).

a) If α = 0.01 then

θ = min(min(w([0.2,0.8]),w([0.5,1])),
min(Op(K0.01([0.2,0.8]),K0.01([0.5,1])),1 − Op(K0.01([0.2,0.8]),K0.01([0.5,1]))))

= min(min(0.6,0.5),min(0.104,0.896)) = 0.104

and

IOpw0
min([0.2,0.8], [0.5,1]) = [0.104 − 0.01 · 0.104,0.104 + 0.99 · 0.104] = [0.103,0.207];

b) If α = 0.5 then

θ = min(min(w([0.2,0.8]),w([0.5,1])),
min(Op(K0.5([0.2,0.8]),K0.5([0.5,1])),1 − Op(K0.5([0.2,0.8]),K0.5([0.5,1]))))

= min(min(0.6,0.5),min(0.375,0.625)) = 0.375

and

IOpw0.5
min([0.2,0.8], [0.5,1]) = [0.375 − 0.5 · 0.375,0.375 + 0.5 · 0.375] = [0.1875,0.5625];

c) If α = 0.99 then

θ = min(min(w([0.2,0.8]),w([0.5,1])),
min(Op(K0.99([0.2,0.8]),K0.99([0.5,1])),1 − Op(K0.99([0.2,0.8]),K0.99([0.5,1]))))

= min(min(0.6,0.5),min(0.79,0.2099)) = 0.2099

and

IOpw0.99
min ([0.2,0.8], [0.5,1]) = [0.79 − 0.99 ∗ 0.2099,0.79 + 0.01 ∗ 2099] = [0.5822,0.7921].

2) Now, take X = [0.6, 0.9], and Y = [0.8, 0.8]. By Equation (20), we have that

IOpwα
min([0.6,0.9], [0.8,0.8])

= [Op(Kα([0.6,0.9]),Kα([0.8,0.8])) − αθ,Op(Kα([0.6,0.9]),Kα([0.8,0.8])) + (1 − α)θ ],
where

θ = min(min(w([0.6,0.9],w([0.8,0.8])),min(Op(Kα([0.6,0.9]),
Kα([0.8,0.8])),1 − Op(Kα([0.6,0.9]),Kα([0.8,0.8])))) = 0.

Thus, IOpwα
min([0.6, 0.9], [0.8, 0.8]) = [Kα([0.6, 0.9]) · Kα([0.8, 0.8])], for any α ∈ (0, 1). For example:
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a) If α = 0.01 then IOpw0.01
min ([0.6, 0.9], [0.8, 0.8]) = [0.603 · 0.8, 0.603 · 0.8] = [0.4824, 0.4824];

b) If α = 0.5 then IOpw0.5
min([0.6, 0.9], [0.8, 0.8]) = [0.7 · 0.8, 0.7 · 0.8] = [0.56, 0.56];

c) If α = 0.99 then IOpw0.99
min ([0.6, 0.9], [0.8, 0.8]) = [0.897 · 0.8, 0.897 · 0.8] = [0.7176, 0.7176].

Remark 4.3. Considering Theorem 4.2, when B = min we recover the construction method presented in Theorem 2.2, 
meaning that Theorem 4.2 is more general. Also, it is noteworthy that the reason for α ∈ (0, 1) is to assure that the 
construction method produces an w-iv-overlap function. For example, if α = 0, then IOw0

B([0, 1], [0.2, 0.2]) = [0, 0], 
which would contradict (IOw2). Also, one can observe that IOwα

B falls into the conditions of Remark 3.5, meaning 
that if either X or Y is degenerate, then IOwα

B(X, Y) is also degenerate, as shown in Example 4.6, for X = [0.6, 0.9]
and Y = [0.8, 0.8]. Finally, although the w-iv-overlap constructed by the method presented in Theorem 4.2 is width-
limited by the chosen function B , the output interval may not be contained in the best interval representation of the 
chosen overlap function O , as shown in the next example.

Example 4.7. Consider an w-iv-overlap function IOpw0.99
min for the tuple (≤0.99,β , ≤0.99,β , min) obtained via the con-

struction method presented in Theorem 4.2 by taking B = min, O = OP (the product overlap) and β ∈ [0, 1] such 
that β �= 0.99. In the case when X = Y = [0.1, 0.4], we have that

Ôp([0.1,0.4], [0.1,0.4]) = [0.1 · 0.1,0.4 · 0.4] = [0.01,0.16].
From Theorem 4.2, it holds that

θ = min(min(w([0.1,0.4]),w([0.1,0.4])),
min(Op(K0.99([0.1,0.4]),K0.99([0.1,0.4])),1 − Op(K0.99([0.1,0.4]),K0.99([0.1,0.4]))))

= min(min(0.3,0.3),min(Op(0.397,0.397),1 − Op(0.397,0.397))))

= min(0.3,min(0.1576,0.8424)))

= 0.1576.

So,

IOpw0.99
min ([0.1,0.4], [0.1,0.4]) = [Op(K0.99([0.1,0.4]),K0.99([0.1,0.4])) − 0.99 · 0.1576,

Op(K0.99([0.1,0.4]),K0.99([0.1,0.4])) + 0.01 · 0.1576]
= [0.0016,0.1502],

showing that IOpw0.99
min ([0.1, 0.4], [0.1, 0.4]) � Ôp([0.1, 0.4], [0.1, 0.4]).

Before presenting the third construction method for w-iv-overlaps, let us recall some important concepts presented 
in [38]:

Definition 4.4. Let c ∈ [0, 1] and α ∈ [0, 1]. We denote by dα(c) the maximal possible width of an interval Z ∈
L([0, 1]) such that Kα(Z) = c. Moreover, for any X ∈ L([0, 1]), define

λα(X) = w(X)

dα(Kα(X))
,

where we set 0
0 = 1.

Proposition 4.8. For all α ∈ [0, 1] and X ∈ L([0, 1]) it holds that

dα(Kα(X)) = min

{
Kα(X)

α
,

1 − Kα(X)

1 − α

}
,

where we set r
0 = 1, for all r ∈ [0, 1].

Now, we present a version of Theorem 3.16 in [38] in the context of 2-dimensional functions.
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Theorem 4.3. Let α, β ∈ [0, 1], such that, α �= β . Let A1, A2 : [0, 1]2 → [0, 1] be two aggregation functions where A1
is strictly increasing. Then IFα : L([0, 1])2 → L([0, 1]) defined by:

IFα
A1,A2(X,Y ) = R, where,

{
Kα(R) = A1(Kα(X),Kα(Y )),

λα(R) = A2(λα(X),λα(Y )),

for all X, Y ∈ L([0, 1]), is an ≤α,β -increasing iv-aggregation function.

Proof. It follows from Theorem 3.16 in [38]. �
As overlap functions are a class of aggregation functions, the following result is immediate.

Corollary 4.2. Let α, β ∈ [0, 1], such that, α �= β . Let O : [0, 1]2 → [0, 1] be a strict overlap function and A :
[0, 1]2 → [0, 1] be an aggregation function. Then IFα

O,A : L([0, 1])2 → L([0, 1]) defined by:

IFα
O,A(X,Y ) = R, where,

{
Kα(R) = O(Kα(X),Kα(Y )),

λα(R) = A(λα(X),λα(Y )),

for all X, Y ∈ L([0, 1]), is an ≤α,β -increasing iv-aggregation function.

The following result is immediate from Definition 4.4 and Corollary 4.2.

Corollary 4.3. Let α, β ∈ [0, 1] be such that, α �= β . Let O : [0, 1]2 → [0, 1] be a strict overlap function, A : [0, 1]2 →
[0, 1] be an aggregation function and IFα

O,A : L([0, 1])2 → L([0, 1]) be an iv-aggregation function constructed as in 
Corollary 4.2. Then, for all X, Y ∈ L([0, 1]), we have that

w(IFα
O,A(X,Y )) = A(λα(X),λα(Y )) · dα(Kα(IFα

O,A(X,Y ))).

Finally, the third construction method for w-iv-overlaps is obtained as follows:

Theorem 4.4. Consider a strict overlap function O : [0, 1]2 → [0, 1], a commutative aggregation function B :
[0, 1]2 → [0, 1], an interval-valued aggregation function IFα

O,B : L([0, 1])2 → L([0, 1]) defined as in Corollary 4.2, 
the maximal width threshold mIFα

O,B,B : L([0, 1])2 → L([0, 1]) for the pair (IFα
O,B, B), α ∈ (0, 1) and β ∈ [0, 1] with 

α �= β . Then, the interval-valued function IOwα
B : L([0, 1])2 → L([0, 1]) defined by

IOwα
B(X,Y ) = R,

where:

(i) Kα(R) = O(Kα(X), Kα(Y ));
(ii) w(R) = mIFα

O,B,B(X, Y),

is a w-iv-overlap function for the tuple (≤α,β, ≤α,β, B).

Proof. See Appendix C. �
The following result is immediate as a w-iv-overlap function for the tuple (≤α,β, ≤α,β, B) is also a ≤α,β -overlap 

function (Definition 2.11), in the sense of [40].

Corollary 4.4. Consider a strict overlap function O : [0, 1]2 → [0, 1], a commutative aggregation function B :
[0, 1]2 → [0, 1], an interval-valued aggregation function IFα

O,B : L([0, 1])2 → L([0, 1]) defined as in Corollary 4.2, 
the maximal width threshold mIFα

O,B,B : L([0, 1])2 → L([0, 1]) for the pair (IFα
O,B, B), α ∈ (0, 1) and β ∈ [0, 1] with 

α �= β . Then, the interval-valued function IOwα
B : L([0, 1])2 → L([0, 1]) defined by

IOwα
B(X,Y ) = R,
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where:

(i) Kα(R) = O(Kα(X), Kα(Y ));
(ii) w(R) = mIFα

O,B,B(X, Y).

is a ≤α,β -overlap function.

Example 4.8. Consider a commutative aggregation function B : [0, 1]2 → [0, 1] and the product overlap function Op :
[0, 1]2 → [0, 1]. Then, the interval-valued function IOpwα

B : L([0, 1])2 → L([0, 1]) defined, for all X, Y ∈ L([0, 1]), 
by

IOpwα
B(X,Y ) = R,

where:

(i) Kα(R) = Op(Kα(X), Kα(Y ));
(ii) w(R) = mIFα

Op,B ,B(X, Y),

is a w-iv-overlap function for the tuple (≤α,β, ≤α,β, B), for all α, β ∈ [0, 1] such that α �= β .

1) Take B = max, X = [0.2, 0.8] and Y = [0.5, 1]. By (i), we have that

Kα(R) = Op(Kα([0.2,0.8]),Kα([0.5,1]))
and

w(R) = mIFα
Op,max,max([0.2,0.8], [0.5,1]) by (ii)

= min{w(IFα
O,max([0.2,0.8], [0.5,1])),max(w([0.2,0.8]),w([0.5,1]))} by Definition 4.3

= min{max(λα([0.2,0.8]), λα([0.5,1])) · dα(Kα(IFα
O,max([0.2,0.8], [0.5,1]))),max(0.6,0.5)}

by Corollary 4.3

= min{max(λα([0.2,0.8]), λα([0.5,1])) · dα(Op(Kα([0.2,0.8]),Kα([0.5,1]))),0.6}.
by Corollary 4.2

Let us assign some values for α to observe what is the resulting interval for IOpwα
max([0.2, 0.8], [0.5, 1]).

a) If α = 0.01 then

K0.01(R) = Op(K0.01([0.2,0.8]),K0.01([0.5,1])) = 0.206 · 0.505 = 0.104,

and

w(R)

= min{max(λ0.01([0.2,0.8]), λ0.01([0.5,1])) · d0.01(Op(Kα([0.2,0.8]),K0.01([0.5,1]))),0.6}
= min

{
max

(
w([0.2,0.8])

d0.01(K0.01([0.2,0.8])) ,
w([0.5,1])

d0.01(K0.01([0.5,1]))
)

· d0.01(0.104),0.6

}
by Definition 4.8

= min

⎧⎨⎩max

⎛⎝ 0.6

min
{

0.206
0.01 , 0.794

0.99

} ,
0.5

min
{

0.505
0.01 , 0.495

0.99

}
⎞⎠ · min

{
0.104

0.01
,

0.896

0.99

}
,0.6

⎫⎬⎭
by Proposition 4.4

= min

{
max

(
0.6

0.802
,

0.5

0.5

)
· 0.905,0.6

}
= min{0.905,0.6} = 0.6.

So, by Equation (7), IOpw0.01
max ([0.2, 0.8], [0.5, 1]) = [0.104 − 0.01 · 0.6, 0.104 + 0.99 · 0.6] = [0.098, 0.698].

In the next cases, we will just present the final results.

23



JID:FSS AID:8170 /FLA [m3SC+; v1.347] P.24 (1-39)

T. da Cruz Asmus, G. Pereira Dimuro, B. Bedregal et al. Fuzzy Sets and Systems ••• (••••) •••–•••

b) If α = 0.5 then

K0.5(R) = Op(K0.5([0.2,0.8]),K0.5([0.5,1])) = 0.5 · 0.75 = 0.375,

and

w(R) = min

{
max

(
0.6

1
,

0.5

0.5

)
· 0.625,0.6

}
= min{0.625,0.6} = 0.6.

Thus, IOpw0.5
max([0.2, 0.8], [0.5, 1]) = [0.375 − 0.5 · 0.6, 0.375 + 0.5 · 0.6] = [0.075, 0.675].

c) If α = 0.99 then

K0.99(R) = Op(K0.99([0.2,0.8]),K0.99([0.5,1])) = 0.794 · 0.995 = 0.79,

and

w(R) = min

{
max

(
0.6

0.802
,

0.5

0.5

)
· 0.798,0.6

}
= min{0.798,0.6} = 0.6.

Therefore, IOpw0.99
max ([0.2, 0.8], [0.5, 1]) = [0.79 − 0.99 · 0.6, 0.79 + 0.01 · 0.6] = [0.196, 0.796].

2) Now, take X = [0.6, 0.9], and Y = [0.8, 0.8]. Then, we have that

Kα(R) = Op(Kα([0.6,0.9]),Kα([0.8,0.8]))
and, by (ii),

w(R) = min{max(λα([0.6,0.9]), λα([0.8,0.8])) · dα(Op(Kα([0.6,0.9]),Kα([0.8,0.8]))),0.3}.
by Corollary 4.2

Once again, let us observe the value of IOpwα
max([0.6, 0.9], [0.8, 0.8]) by varying the value of α:

a) If α = 0.01 then

K0.01(R) = Op(K0.01([0.6,0.9]),K0.01([0.8,0.8])) = 0.603 · 0.8 = 0.4824,

and

w(R) = min

{
max

(
0.3

0.401
,

0

0.202

)
· 0.5228,0.3

}
= min{0.3911,0.3} = 0.3.

So, IOpw0.01
max ([0.6, 0.9], [0.8, 0.8]) = [0.4824 − 0.01 · 0.3, 0.4824 + 0.99 · 0.3] = [0.4794, 0.7794].

b) If α = 0.5 then

K0.5(R) = Op(K0.5([0.6,0.9]),K0.5([0.8,0.8])) = 0.75 · 0.8 = 0.6,

and

w(R) = min

{
max

(
0.3

0.5
,

0

0.4

)
· 0.8,0.3

}
= min{0.48,0.3} = 0.3.

Thus, IOpw0.5
max([0.6, 0.9], [0.8, 0.8]) = [0.6 − 0.5 · 0.3, 0.6 + 0.5 · 0.3] = [0.45, 0.75].

c) If α = 0.99 then

K0.99(R) = Op(K0.99([0.6,0.9]),K0.99([0.8,0.8])) = 0.897 · 0.8 = 0.7176,

and

w(R) = min

{
max

(
0.3

0.906
,

0

0.808

)
· 0.7248,0.3

}
= min{0.24,0.3} = 0.24.

Therefore, IOpw0.99
max ([0.6, 0.9], [0.8, 0.8]) = [0.7176 − 0.99 · 0.24, 0.7176 + 0.01 · 0.24] = [0.48, 0.72].
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Table 2
Comparison between construction methods of a w-iv-overlap IOwα

B
, based on an overlap function O and a width-

limiting function B .

Construction 1 Construction 2 Construction 3

Advantages
IOwα

B
is (≤Pr ,≤α,β )-increasing � � �

IOwα
B

is ≤α,β -increasing � �
For all X,Y ∈ L([0,1]): IOwα

B
(X,Y ) ⊆ Ô(X,Y ) �

Drawbacks
α must be different than 1 ✗ ✗

β < α must hold ✗

B needs to be conjunctive ✗

For all B: (w(X) = 0 or w(Y ) = 0) ⇒ IOwα
B

(X,Y ) = 0 ✗

3) Finally, take X = [0.6, 0.9], and Y = [0.8, 0.8], but consider B = min. Then, we have that

Kα(R) = Op(Kα([0.6,0.9]),Kα([0.8,0.8]))
and, by (ii),

w(R) = min{min(λα([0.6,0.9]), λα([0.8,0.8])) · dα(Op(Kα([0.6,0.9]),Kα([0.8,0.8]))),0} = 0.

So, let us see the different values of IOpwα
min([0.6, 0.9], [0.8, 0.8]) in this case by varying the value of α:

a) If α = 0.01 then IOpw0.01
min ([0.6, 0.9], [0.8, 0.8]) = [0.4824, 0.4824];

b) If α = 0.5 then IOpw0.5
min([0.6, 0.9], [0.8, 0.8]) = [0.56, 0.56];

c) If α = 0.99 then IOpw0.99
min ([0.6, 0.9], [0.8, 0.8]) = [0.7176, 0.7176].

Remark 4.4. The reason why α ∈ (0, 1) is to assure that the construction method results in an w-iv-overlap function, so 
that conditions (IOw2) and (IOw3) are respected. Moreover, one may observe that the construction method presented 
in Theorem 4.4, for a given overlap O , may not produce intervals contained in the best interval representation of O . 
However, it generates an interval-valued function which is ≤α,β-increasing and the chosen width-limiting aggregation 
function B does not need to be conjunctive. In the case when B is conjunctive, as Remark 3.5 states, when either X
or Y is degenerate, then IOwα

B(X, Y) is also degenerate.

Table 2 shows a comparison between the three construction methods for w-iv-overlap functions presented in Theo-
rems 4.1 (Construction 1), 4.2 (Construction 2) and 4.4 (Construction 3), regarding some desirable properties (marked 
with �) and some possible drawbacks (marked with ✗).

On Table 3, we review the results obtained from Examples 4.5 and 4.8, to further compare the constructions 
methods presented on Theorems 4.1 (Construction 1) and 4.4 (Construction 3), all based on the product overlap OP , 
but with different choices of the width-limiting function B and different values of α. As the construction method 
provided by Theorem 4.4 (Construction 3) does not allow for α = 1, we present the values obtained by this method 
for α = 0.99, instead. We omitted the results from Example 4.6 on Table 3, as the construction method based on 
Theorem 4.2 (Construction 2) presented itself as the most restrictive one, by a simple analysis of Table 2.

Remark 4.5. It is noteworthy that our construction methods of w-iv-overlap functions are all based on a core overlap 
function O , but do not necessarily provide a proper interval extension of O . However, such constructed w-iv-overlap 
functions satisfy interval counterparts ((IOw1)-(IOw4) of Definition 4.2) of most of the defining properties of O
((O1)-(O4) of Definition 2.6), being well fitted to measure the overlap of interval data in a similar manner as O
measures overlap of real data.

Remark 4.6. Concerning the application of the presented construction methods of width-limited iv-overlap functions 
in practical problems, a number of choices need to be made by the domain expert:
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Table 3
Comparison of the results obtained in Examples 4.5 and 4.8.

Construction 1 Construction 3 Best interval representation

X = [0.2,0.8]
Y = [0.5,1] IOwp0.01

max = [0.107,0.707] IOwp0.01
max = [0.098,0.698] ÔP (X,Y ) = [0.1,0.8]

A = max
α = 0.01

X = [0.2,0.8]
Y = [0.5,1] IOwp0.5

max = [0.15,0.75] IOwp0.5
max = [0.075,0.675] ÔP (X,Y ) = [0.1,0.8]

A = max
α = 0.5

X = [0.2,0.8]
Y = [0.5,1] IOwp1

max = [0.2,0.8] IOwp0.99
max = [0.196,0.796] ÔP (X,Y ) = [0.1,0.8]

A = max
α = 1

X = [0.6,0.9]
Y = [0.8,0.8] IOwp0.01

max = [0.48,0.72] IOwp0.01
max = [0.4794,0.7794] ÔP (X,Y ) = [0.48,0.72]

A = max
α = 0.01

X = [0.6,0.9]
Y = [0.8,0.8] IOwp0.5

max = [0.48,0.72] IOwp0.5
max = [0.45,0.75] ÔP (X,Y ) = [0.48,0.72]

A = max
α = 0.5

X = [0.6,0.9]
Y = [0.8,0.8] IOwp1

max = [0.48,0.72] IOwp0.99
max = [0.48,0.72] ÔP (X,Y ) = [0.48,0.72]

A = max
α = 1

X = [0.6,0.9]
Y = [0.8,0.8] IOwp0

min = [0.4824,0.4824] IOwp0.01
min = [0.4824,0.4824] ÔP (X,Y ) = [0.48,0.72]

A = min
α = 0.01

X = [0.6,0.9]
Y = [0.8,0.8] IOwp0.5

min = [0.6,0.6] IOwp0.5
min = [0.56,0.56] ÔP (X,Y ) = [0.48,0.72]

A = min
α = 0.5

X = [0.6,0.9]
Y = [0.8,0.8] IOwp1

min = [0.72,0.72] IOwp0.99
min = [0.7176,0.7176] ÔP (X,Y ) = [0.48,0.72]

A = min
α = 1

1. The choice of overlap function O: According to the considered application, some overlap functions produce 
better results than others. For example, in the literature, it is possible to verify that some overlap functions are 
more suitable to be applied in image processing [4] while others present good behaviour in classification problems 
[59,60,21,40].

2. The choice of α and β: It is completely determined by the admissible order ≤α,β that is suitable for the application, 
reflecting the adopted attitude of the expert in front of uncertainty [37]. A pessimist/caution attitude towards the 
uncertainty is considered when one relies that the exact real value that an interval is approximating is much closer 
to its left endpoint than to its right endpoint [38]. The optimist/audacious attitude is defined analogously.
That is, the more pessimist/cautious attitude is needed in the decision process, the closer to zero should be α
stated. On the contrary, the more optimist/audacious attitude is expected in the decision process, the closer to 
one should be α defined. The value of β is only used when the compared Kα points have the same value. In this 
case, β determines the ordering according to the interval widths, that is, the information quality required by the 
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application. For β = 0, the ordering respects the information quality ordering. On the other hand, for β = 1, the 
ordering respects the inclusion set order.

3. The choice of the width-limiting function B: Different applications may require that the aggregation process 
produces interval-valued outputs with more or less uncertainty tolerance, which will inform the definition of B . 
This will be determined by the information quality required by the application. For example, when using B = min
one has a more rigid control of the information quality of the interval result than when B = max. That is, the higher 
the output’s width, the lesser will be the information quality [35].

5. Conclusion

We introduced and developed the concepts of width-limited interval-valued functions and their respective width-
limiting functions, as a way to analyze the effect of the width of the input intervals on the width of the output 
interval, accordingly to the interval-valued function at hand. Furthermore, it was shown a way to obtain the least 
width-limiting function for a given interval-valued function, which informs how much width-propagation one can 
expect for such interval-valued operation. A relaxation of the concept of ultramodularity was presented, in the form of 
(a, b)-ultramodular functions, allowing us to analyze the width-limiting functions of the best interval representation 
of some aggregation functions. Also, we introduced the notion of an interval-valued function that is increasing with 
respect to a pair of partial orders, a more flexible approach for increasingness of interval-valued functions.

These new developed concepts could aid the definition of different interval-valued functions with controlled width 
propagation. As our primary interest was to apply such notions on interval-valued overlap operations, width-limited 
interval-valued overlap functions were defined and studied. Following that, three construction methods for w-iv-
overlap functions were presented, analyzed and compared. As these construction methods are all based on choices 
of overlap functions, width-limiting functions and admissible orders, it was made clear the adaptability of the devel-
oped concepts, as one can obtain an interval-valued overlap operations that best satisfy the restrictions of the context 
regarding the acceptable amount of width propagation and/or the ordering of intervals to be applied.

Thus, the contributions of this work aimed to address the gap in the literature regarding the analysis of the width 
of interval-valued functions, especially interval-valued overlap functions, while providing the initial theoretical tools 
to allow the application of similarly defined width-limited interval-valued functions in practical problems, where the 
increasing uncertainty associated with the widths of the operated intervals may be an obstacle to overcome, in order 
to maintain the information quality. On the near future, we intend to generalize adequately the presented theoretical 
approach to allow for applications in the context of interval-valued fuzzy rule-based classification systems.
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Appendix A. Proof of Theorem 4.1

Proof. Consider a commutative and increasing function B : [0, 1]2 → [0, 1], a strict overlap function O : [0, 1]2 →
[0, 1] and take α ∈ (0, 1], β ∈ [0, α). Observe that, for all X, Y ∈ L([0, 1]):

(i) Kα(IOwα
B(X, Y)) = Kα(Ô(X, Y));

(ii) w(IOwα
B(X, Y)) = mÔ,B(X, Y) = min{w(Ô(X, Y)), B(w(X), w(Y))}.
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So, it is immediate that IOwα
B is well defined. Now, let us verify if IOwα

B respects conditions (IOw1)-(IOw5) of 
Definition 4.2.

(IOw1) Immediate, as O and B are both commutative;

(IOw2) (⇒) Suppose that there are X, Y ∈ L([0, 1]) such that IOwα
B(X, Y) = [0, 0]. Then, we have the following 

cases:

1) mÔ,B(X, Y) = w(Ô(X, Y))

From Equations (2) and (16), it follows that:

[Kα(Ô(X,Y )) − α · w(Ô(X,Y )),Kα(Ô(X,Y )) + (1 − α) · w(Ô(X,Y ))] = [0,0]
⇒ [O(X,Y ) + α · w(Ô(X,Y )) − α · w(Ô(X,Y )),

O(X,Y ) + α · w(Ô(X,Y )) + w(Ô(X,Y )) − α · w(Ô(X,Y ))] = [0,0]
⇒ [O(X,Y ),O(X,Y ) + w(Ô(X,Y ))] = [0,0] ⇒ [O(X,Y ),O(X,Y )] = [0,0]
⇒ Ô(X,Y ) = [0,0] ⇔ X · Y = [0,0].

2) mÔ,B(X, Y) = B(w(X), w(Y))

From Equations (2) and (16), it holds that:

[Kα(Ô(X,Y )) − α · B(w(X),w(Y )),Kα(Ô(X,Y )) + (1 − α) · B(w(X),w(Y ))] = [0,0]
⇒ −α · B(w(X),w(Y )) = (1 − α) · B(w(X),w(Y )) ⇒ B(w(X),w(Y )) = 0

⇒ [Kα(Ô(X,Y )),Kα(Ô(X,Y ))] = [0,0] ⇒ Kα(Ô(X,Y )) = 0

⇒ Ô(X,Y ) = [0,0] ⇔ X · Y = [0,0].

(⇐) Consider X, Y ∈ L([0, 1]) such that X · Y = [0, 0]. Then, it is immediate that Ô(X, Y) = [0, 0] and 
mÔ,B(X, Y) = 0. Furthermore, from Equation (16):

IOwα
B(X,Y ) = [Kα([0,0]) − α · 0,Kα([0,0]) + (1 − α) · 0] = [0,0].

(IOw3) (⇒) Consider X, Y ∈ L([0, 1]) such that IOwα
B(X, Y) = [1, 1]. Then, we have the following cases:

1) mÔ,B(X, Y) = w(Ô(X, Y))

From Equations (2) and (16), it follows that:

[Kα(Ô(X,Y )) − α · w(Ô(X,Y )),Kα(Ô(X,Y )) + (1 − α) · w(Ô(X,Y ))] = [1,1]
⇒ [O(X,Y ) + α · w(Ô(X,Y )) − α · w(Ô(X,Y )),

O(X,Y ) + α · w(Ô(X,Y )) + w(Ô(X,Y )) − α · w(Ô(X,Y ))] = [1,1]
⇒ [O(X,Y ),O(X,Y ) + w(Ô(X,Y ))] = [1,1] ⇒ [O(X,Y ),O(X,Y )] = [1,1]
⇒ Ô(X,Y ) = [1,1] ⇔ X · Y = [1,1].

2) mÔ,B(X, Y) = B(w(X), w(Y))

From Equations (2) and (16), it holds that:

[Kα(Ô(X,Y )) − α · B(w(X),w(Y )),Kα(Ô(X,Y )) + (1 − α) · B(w(X),w(Y ))] = [1,1]
⇒ −α · B(w(X),w(Y )) = (1 − α) · B(w(X),w(Y )) ⇒ B(w(X),w(Y )) = 0

⇒ [Kα(Ô(X,Y )),Kα(Ô(X,Y ))] = [1,1] ⇒ Kα(Ô(X,Y )) = 1

⇒ Ô(X,Y ) = [1,1] ⇔ X · Y = [1,1].
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(⇐) Consider X, Y ∈ L([0, 1]) such that X · Y = [1, 1]. Then, it is immediate that Ô(X, Y) = [1, 1] and 
mÔ,B(X, Y) = 0. Furthermore, from Equation (16):

IOwα
B(X,Y ) = [Kα([1,1]) − α · 0,Kα([1,1]) + (1 − α) · 0] = [1,1].

(IOw4) Consider X, Y, Z ∈ L([0, 1]) such that X ≤Pr Y . Then:

IOwα
B(X,Z) = [Kα(Ô(X,Z)) − α · mÔ,B(X,Z),Kα(Ô(X,Z)) + (1 − α) · mÔ,B(X,Z)], (A.1)

and

IOwα
B(Y,Z) = [Kα(Ô(Y,Z)) − α · mÔ,B(Y,Z),Kα(Ô(Y,Z)) + (1 − α) · mÔ,B(Y,Z)]. (A.2)

Observe that IOwα
B(X, Z) is obtained by constructing an interval around the value of Kα(Ô(X, Z)), and that 

Ô(X, Z) is an o-representable iv-overlap function with O as both its representatives. Then, from Equations (2) and 
(A.1), it follows that:

Kα(IOwα
B(X,Z)) = Kα(Ô(X,Z)), (A.3)

Kβ(IOwα
B(X,Z)) = Kα(Ô(X,Z)) − α · mÔ,B(X,Z) + β · mÔ,B(X,Z).

As β < α, by Lemma 2.1, one can consider β = 0. Thus, we have that:

Kβ(IOwα
B(X,Z)) = Kα(Ô(X,Z)) − α · mÔ,B(X,Z). (A.4)

Analogously, from Equations (2) and (A.2), it follows that:

Kα(IOwα
B(Y,Z)) = Kα(Ô(Y,Z)), (A.5)

Kβ(IOwα
B(Y,Z)) = Kα(Ô(Y,Z)) − α · mÔ,B(Y,Z). (A.6)

Now, we have the following possibilities regarding mÔ,B(X, Z) and mÔ,B(Y, Z) that affects the values of 
IOwα

B(X, Z) and IOwα
B(Y, Z), respectively:

1) mÔ,B(X, Z) = w(Ô(X, Z)) and mÔ,B(Y, Z) = w(Ô(Y, Z))

In this case, we have

IOwα
B(X,Z) = Ô(X,Z) ≤Pr Ô(Y,Z) = IOwα

B(Y,Z),

meaning that IOwα
B(X, Z) ≤α,β IOwα

B(Y, Z).
2) mÔ,B(X, Z) = B(w(X), w(Z)) and mÔ,B(Y, Z) = B(w(Y ), w(Z))

It follows that

IOwα
B(X,Z) = [Kα(Ô(X,Z)) − α · B(w(X),w(Z)),Kα(Ô(X,Z)) + (1 − α) · B(w(X),w(Z))],

and

IOwα
B(Y,Z) = [Kα(Ô(Y,Z)) − α · B(w(Y ),w(Z)),Kα(Ô(Y,Z)) + (1 − α) · B(w(Y ),w(Z))].

Now, let us verify all the cases in which X ≤Pr Y holds:
a) X = Y and X = Y :

We have that X = Y , meaning that

IOwα
B(X,Z) = IOwα

B(Y,Z) ⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

b) X = Y and X < Y :
When Z �= 0, from Lemma 4.1, it holds that Kα(Ô(X, Z)) < Kα(Ô(Y, Z)), since O is a strict overlap function 
and α ∈ (0, 1]. As Kα(IOwα

B(X, Z)) = Kα(Ô(X, Z)) and Kα(IOwα
B(Y, Z)) = Kα(Ô(Y, Z)), we have that

Kα(IOwα
B(X,Z)) < Kα(IOwα

B(Y,Z)) ⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).
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If Z = 0 and Z �= 0, by (O2), one has that

Ô(X,Z) = [0,O(X,Z)],
and

Ô(Y,Z) = [0,O(Y ,Z)].
Since X < Y and O is strict, then

Kα(IOwα
B(X,Z)) = Kα(Ô(X,Z)) < Kα(Ô(Y,Z)) = Kα(IOwα

B(Y,Z))

⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

If Z = 0 and Z = 0, then

Ô(X,Z) = IOwα
B(X,Z) = [0,0] = IOwα

B(Y,Z) = Ô(X,Z).

So, we have that IOwα
B(X, Z) ≤α,β IOwα

B(Y, Z), for all X, Y, Z ∈ L([0, 1]), such that X = Y and X < Y .
c) X < Y and X = Y :

When Z �= 0 and α �= 1, from Lemma 4.1, we have that Kα(Ô(X, Z)) < Kα(Ô(Y, Z)). So, it holds that

Kα(IOwα
B(X,Z)) < Kα(IOwα

B(Y,Z)) ⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

When taking Z �= 0 and α = 1, we have that Kα(IOwα
B(X, Z)) = Kα(IOwα

B(Y, Z)). Moreover, from Equa-
tions (A.4) and (A.6):

Kβ(IOw1
B(X,Z)) = O(X,Z) − B(w(X),w(Z))

and

Kβ(IOw1
B(Y,Z)) = O(Y ,Z) − B(w(Y ),w(Z)).

As X < Y and X = Y , we have that w(Y) < w(X), and thus, B(w(Y ), w(Z)) ≤ B(w(X), w(Z)), as B is 
increasing. So,

Kβ(IOw1
B(X,Z)) = O(X,Z) − B(w(X),w(Z)) ≤ O(Y ,Z) − B(w(Y ),w(Z)) = Kβ(IOw1

B(Y,Z)).

Then,

Kα(IOwα
B(X,Z)) = Kα(IOwα

B(Y,Z)) and Kβ(IOwα
B(X,Z)) ≤ Kβ(IOwα

B(Y,Z))

⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

If Z = 0, by (O2), one has that

Ô(X,Z) = [0,O(X,Z)],
and

Ô(Y,Z) = [0,O(Y ,Z)].
Since X = Y , then Kα(IOwα

B(X, Z)) = Kα(IOwα
B(Y, Z)) and, analogous to the previous case when Z �= 0

and α = 1, we have that

Kα(IOwα
B(X,Z)) = Kα(IOwα

B(Y,Z)) and Kβ(IOwα
B(X,Z)) ≤ Kβ(IOwα

B(Y,Z))

⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

So, we have that IOwα
B(X, Z) ≤α,β IOwα

B(Y, Z), for all X, Y, Z ∈ L([0, 1]), such that X < Y and X = Y .
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d) X < Y and X < Y :
When Z �= 0, from Lemma 4.1, it holds that Kα(Ô(X, Z)) < Kα(Ô(Y, Z)). So, we have that

Kα(IOwα
B(X,Z)) < Kα(IOwα

B(Y,Z)) ⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

If Z = 0 and Z �= 0, by (O2), one has that

Ô(X,Z) = [0,O(X,Z)],
and

Ô(Y,Z) = [0,O(Y ,Z)].
Since X < Y and O is strict, then

Kα(IOwα
B(X,Z)) = Kα(Ô(X,Z)) < Kα(Ô(Y,Z)) = Kα(IOwα

B(Y,Z))

⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

If Z = 0 and Z = 0, then

Ô(X,Z) = IOwα
B(X,Z) = [0,0] = IOwα

B(Y,Z) = Ô(X,Z).

So, we have that IOwα
B(X, Z) ≤α,β IOwα

B(Y, Z), for all X, Y, Z ∈ L([0, 1]), such that X < Y and X < Y .
Thus, one can conclude that, for all X, Y, Z ∈ L([0, 1]), when mÔ,B(X, Z) = B(w(X), w(Z)) and mÔ,B(Y, Z) =
B(w(Y ), w(Z)), then

X ≤Pr Y ⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

3) mÔ,B(X, Z) = w(Ô(X, Z)) and mÔ,B(Y, Z) = B(w(Y ), w(Z))

It follows that

IOwα
B(X,Z) = Ô(X,Z),

and

IOwα
B(Y,Z) = [Kα(Ô(Y,Z)) − α · B(w(Y ),w(Z)),Kα(Ô(Y,Z)) + (1 − α) · B(w(Y ),w(Z))].

Now, let us verify all the cases in which X ≤Pr Y holds:
a) X = Y and X = Y :

We have that X = Y and

IOwα
B(X,Z) = IOwα

B(Y,Z) ⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

b) X = Y and X < Y :
When Z �= 0, from Lemma 4.1, it holds that Kα(Ô(X, Z)) < Kα(Ô(Y, Z)), since O is a strict overlap function 
and α ∈ (0, 1]. So, as Kα(IOwα

B(X, Z)) = Kα(Ô(X, Z)) and Kα(IOwα
B(Y, Z)) = Kα(Ô(Y, Z)), we have 

that

Kα(IOwα
B(X,Z)) < Kα(IOwα

B(Y,Z)) ⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

If Z = 0 and Z �= 0, by (O2), one has that

Ô(X,Z) = [0,O(X,Z)],
and

Ô(Y,Z) = [0,O(Y ,Z)].
Since X < Y and O is strict, then

Kα(IOwα
B(X,Z)) = Kα(Ô(X,Z)) < Kα(Ô(Y,Z)) = Kα(IOwα

B(Y,Z))

⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).
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If Z = 0 and Z = 0, then

Ô(X,Z) = IOwα
B(X,Z) = [0,0] = IOwα

B(Y,Z) = Ô(X,Z).

So, we have that IOwα
B(X, Z) ≤α,β IOwα

B(Y, Z), for all X, Y, Z ∈ L([0, 1]), such that X = Y and X < Y .
c) X < Y and X = Y :

When Z �= 0 and α �= 1, from Lemma 4.1, we have that Kα(Ô(X, Z)) < Kα(Ô(Y, Z)). So, it holds that

Kα(IOwα
B(X,Z)) < Kα(IOwα

B(Y,Z)) ⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

If Z �= 0 and α = 1, we have that Kα(IOwα
B(X, Z)) = Kα(IOwα

B(Y, Z)). Moreover, from Equations (A.4)
and (A.6):

Kβ(IOw1
B(X,Z)) = O(X,Z) − w(Ô(X,Z))

and

Kβ(IOw1
B(Y,Z)) = O(Y ,Z) − B(w(Y ),w(Z)).

As X < Y and X = Y , we have that

B(w(Y ),w(Z)) ≤ w(Ô(Y,Z)) = O(Y ,Z) − O(Y ,Z) ≤ O(X,Z) − O(X,Z) = w(Ô(X,Z)),

as O is increasing. So,

Kβ(IOw1
B(X,Z)) = O(X,Z) − w(Ô(X,Z)) ≤ O(Y ,Z) − B(w(Y ),w(Z)) = Kβ(IOw1

B(Y,Z)).

Then,

Kα(IOwα
B(X,Z)) = Kα(IOwα

B(Y,Z)) and Kβ(IOwα
B(X,Z)) ≤ Kβ(IOwα

B(Y,Z))

⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

When Z = 0, by (O2) we have that

Ô(X,Z) = [0,O(X,Z)],
and

Ô(Y,Z) = [0,O(Y ,Z)].
Since X = Y , then Kα(IOwα

B(X, Z)) = Kα(IOwα
B(Y, Z)) and, analogous to the previous case when Z �= 0

and α = 1, we have that

Kα(IOwα
B(X,Z)) = Kα(IOwα

B(Y,Z)) and Kβ(IOwα
B(X,Z)) ≤ Kβ(IOwα

B(Y,Z))

⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

So, we have that IOwα
B(X, Z) ≤α,β IOwα

B(Y, Z), for all X, Y, Z ∈ L([0, 1]), such that X < Y and X = Y

d) X < Y and X < Y :
If Z �= 0, from Lemma 4.1, it holds that Kα(Ô(X, Z)) < Kα(Ô(Y, Z)). So, we have that

Kα(IOwα
B(X,Z)) < Kα(IOwα

B(Y,Z)) ⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

If Z = 0 and Z �= 0, by (O2), one has that

Ô(X,Z) = [0,O(X,Z)],
and

Ô(Y,Z) = [0,O(Y ,Z)].
Since X < Y and O is strict, then
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Kα(IOwα
B(X,Z)) = Kα(Ô(X,Z)) < Kα(Ô(Y,Z)) = Kα(IOwα

B(Y,Z))

⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

If Z = 0 and Z = 0, then

Ô(X,Z) = IOwα
B(X,Z) = [0,0] = IOwα

B(Y,Z) = Ô(X,Z).

So, we have that IOwα
B(X, Z) ≤α,β IOwα

B(Y, Z), for all X, Y, Z ∈ L([0, 1]), such that X < Y and X < Y .
Thus, one can conclude that, for all X, Y, Z ∈ L([0, 1]), when mÔ,B(X, Z) = w(Ô(X, Z)) and mÔ,B(Y, Z) =
B(w(Y ), w(Z)), then

X ≤Pr Y ⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

4) mÔ,B(X, Z) = B(w(X), w(Z)) and mÔ,B(Y, Z) = w(Ô(Y, Z))

It follows that

IOwα
B(X,Z) = [Kα(Ô(X,Z)) − α · B(w(X),w(Z)),Kα(Ô(X,Z)) + (1 − α) · B(w(X),w(Z))],

and

IOwα
B(Y,Z) = Ô(Y,Z).

Now, let us verify all the cases in which X ≤Pr Y holds:
a) X = Y and X = Y :

We have that X = Y and IOwα
B(X, Z) = IOwα

B(Y, Z) ⇒ IOwα
B(X, Z) ≤α,β IOwα

B(Y, Z).
b) X = Y and X < Y :

When Z �= 0, from Lemma 4.1, it holds that Kα(Ô(X, Z)) < Kα(Ô(Y, Z)), since O is a strict overlap function 
and α ∈ (0, 1]. So, as Kα(IOwα

B(X, Z)) = Kα(Ô(X, Z)) and Kα(IOwα
B(Y, Z)) = Kα(Ô(Y, Z)), we have 

that

Kα(IOwα
B(X,Z)) < Kα(IOwα

B(Y,Z)) ⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

If Z = 0 and Z �= 0, by (O2), one has that

Ô(X,Z) = [0,O(X,Z)],
and

Ô(Y,Z) = [0,O(Y ,Z)].
Since X < Y and O is strict, then

Kα(IOwα
B(X,Z)) = Kα(Ô(X,Z)) < Kα(Ô(Y,Z)) = Kα(IOwα

B(Y,Z))

⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

If Z = 0 and Z = 0, then

Ô(X,Z) = IOwα
B(X,Z) = [0,0] = IOwα

B(Y,Z) = Ô(X,Z).

So, we have that IOwα
B(X, Z) ≤α,β IOwα

B(Y, Z), for all X, Y, Z ∈ L([0, 1]), such that X = Y and X < Y .
c) X < Y and X = Y :

When Z �= 0 and α �= 1, from Lemma 4.1, we have that Kα(Ô(X, Z)) < Kα(Ô(Y, Z)). So, it holds that

Kα(IOwα
B(X,Z)) < Kα(IOwα

B(Y,Z)) ⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

If Z �= 0 and α = 1, we have that Kα(IOwα
B(X, Z)) = Kα(IOwα

B(Y, Z)). Moreover, from Equations (A.4)
and (A.6):

Kβ(IOw1
B(X,Z)) = O(X,Z) − B(w(X),w(Z))

and
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Kβ(IOw1
B(Y,Z)) = O(Y ,Z) − w(Ô(Y,Z)).

As X < Y and X = Y , we have that w(Y) < w(X), and thus,

w(Ô(Y,Z)) ≤ B(w(Y ),w(Z)) ≤ B(w(X),w(Z)),

as B is increasing. So,

Kβ(IOw1
B(X,Z)) = O(X,Z) − w(Ô(X,Z)) ≤ O(Y ,Z) − B(w(Y ),w(Z)) = Kβ(IOw1

B(Y,Z)).

Then,

Kα(IOwα
B(X,Z)) = Kα(IOwα

B(Y,Z)) and Kβ(IOwα
B(X,Z)) ≤ Kβ(IOwα

B(Y,Z))

⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

So, we have that IOwα
B(X, Z) ≤α,β IOwα

B(Y, Z), for all X, Y, Z ∈ L([0, 1]), such that X < Y and X = Y .
d) X < Y and X < Y :

When Z �= 0, from Lemma 4.1, it holds that Kα(Ô(X, Z)) < Kα(Ô(Y, Z)). So, we have that

Kα(IOwα
B(X,Z)) < Kα(IOwα

B(Y,Z)) ⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

If Z = 0 and Z �= 0, by (O2), one has that

Ô(X,Z) = [0,O(X,Z)],
and

Ô(Y,Z) = [0,O(Y ,Z)].
Since X < Y and O is strict, then

Kα(IOwα
B(X,Z)) = Kα(Ô(X,Z)) < Kα(Ô(Y,Z)) = Kα(IOwα

B(Y,Z))

⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

If Z = 0 and Z = 0, then

Ô(X,Z) = IOwα
B(X,Z) = [0,0] = IOwα

B(Y,Z) = Ô(X,Z).

So, we have that IOwα
B(X, Z) ≤α,β IOwα

B(Y, Z), for all X, Y, Z ∈ L([0, 1]), such that X < Y and X < Y .
Thus, one can conclude that, for all X, Y, Z ∈ L([0, 1]), when mÔ,B(X, Z) = B(w(X), w(Z)) and mÔ,B(Y, Z) =
w(Ô(Y, Z)), then

X ≤Pr Y ⇒ IOwα
B(X,Z) ≤α,β IOwα

B(Y,Z).

As verified for all possible scenarios, it holds that IOwα
B is (≤Pr , ≤α,β)-increasing, for all α, β ∈ [0, 1] such that 

α �= β .

(IOw5)

w(IOwα
B(X,Y )) = Kα(Ô(X,Y )) + (1 − α) · mÔ,B(X,Y ) − (Kα(Ô(X,Y )) − α · mÔ,B(X,Y ))

= mÔ,B(X,Y )

= min{w(Ô(X,Y )),B(w(X),w(Y ))}
≤ B(w(X),w(Y )).

Then, it holds that IOwα
B is width-limited by B for all α ∈ [0, 1]. �
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Appendix B. Proof of Theorem 4.2

Proof. Consider a commutative, increasing and conjunctive function B : [0, 1]2 → [0, 1], a strict overlap function 
O : [0, 1]2 → [0, 1] and let α ∈ (0, 1), β ∈ [0, 1] such that α �= β . Observe that, for all X, Y ∈ L([0, 1]):

(i) Kα(IOwα
B(X, Y)) = O(Kα(X), Kα(Y ));

(ii) w(IOwα
B(X, Y)) = θ = B(B(w(X), w(Y)), B(O(Kα(X), Kα(Y )), 1 − O(Kα(X), Kα(Y )))).

So, it is clear that IOwα
B is well defined. Now, let us verify if IOwα

B respects conditions (IOw1)-(IOw5) from 
Definition 4.2.

(IOw1) Immediate, as O and B are commutative;

(IOw2) (⇒) Take X, Y ∈ L([0, 1]) and suppose that IOwα
B(X, Y) = [0, 0]. Then, by (i), we have that

Kα(IOwα
B(X,Y )) = Kα([0,0]) = 0 = O(Kα(X),Kα(Y )),

since α ∈ (0, 1). Thus, by condition (O2), either Kα(X) = 0 or Kα(Y ) = 0, and, therefore, X · Y = [0, 0];
(⇐) Consider X, Y ∈ L([0, 1]) such that X · Y = [0, 0]. So, Kα(X) · Kα(Y ) = 0, since α ∈ (0, 1). Then, by (i) and

(O2), one has that Kα(IOwα
B(X, Y)) = O(Kα(X), Kα(Y )) = 0, meaning that IOwα

B(X, Y) = [0, 0];

(IOw3) (⇒) Take X, Y ∈ L([0, 1]) such that IOwα
B(X, Y) = [1, 1]. Then, by (i), one has that

Kα(IOwα
B(X,Y )) = Kα([1,1]) = 1 = O(Kα(X),Kα(Y )).

By (O3), Kα(X) · Kα(Y ) = 1, since α ∈ (0, 1), meaning that X · Y = [1, 1];
(⇐) Consider X, Y ∈ L([0, 1]) such that X · Y = [1, 1]. So, Kα(X) · Kα(Y ) = 1, since α ∈ (0, 1). Then, by (i) and

(O3), one has that Kα(IOwα
B(X, Y)) = O(Kα(X), Kα(Y )) = 1, meaning that IOwα

B(X, Y) = [1, 1];

(IOw4) Consider X, Y, Z ∈ L([0, 1]) such that X ≤α,β Y with α ∈ (0, 1), β ∈ [0, 1], α �= β . By Lemma 2.1, it is 
sufficient to consider the cases β = 0 and β = 1. First, for X <α,β Y and β = 0 we have the following possibilities:

1) X <α,0 Y and Kα(Z) = 0. Then, O(Kα(X), Kα(Z)) = 0 = O(Kα(Y ), Kα(Z)), and, therefore, since α �= 0, by
(i) it holds that IOwα

B(X, Z) = IOwα
B(Y, Z) = [0, 0];

2) X <α,0 Y and Kα(Z) > 0. Here, we have the following possibilities:
a) Kα(X) < Kα(Y ). Since O is strict, by (O4), one has that O(Kα(X), Kα(Z)) < O(Kα(Y ), Kα(Z)), and, thus, 

by (i) it follows that IOwα
B(X, Z) <α,0 IOwα

B(Y, Z);
b) Kα(X) = Kα(Y ) and Kβ=0(X) < Kβ=0(Y ). Then, X < Y ≤ Y < X, meaning that w(X) > w(Y). So, by (i),

Kα(IOwα
B(X,Z)) = O(Kα(X),Kα(Z)) = O(Kα(Y ),Kα(Z)) = Kα(IOwα

B(Y,Z)),

and

Kβ=0(IOwα
B(X,Z)) = Kα(IOwα

B(X,Z)) − α · w(IOwα
B(X,Z)) by Equation (8)

= Kα(IOwα
B(X,Z)) − α · B(B(w(X),w(Z)),B(O(Kα(X),Kα(Z)),1 − O(Kα(X),Kα(Z))))

by (ii)

≤ Kα(IOwα
B(Y,Z)) − α · B(B(w(Y ),w(Z)),B(O(Kα(Y ),Kα(Z)),1 − O(Kα(Y ),Kα(Z))))

= Kα(IOwα
B(Y,Z)) − α · w(IOwα

B(Y,Z))

= Kβ=0(IOwα
B(Y,Z)),

as B is increasing. Therefore, IOwα
B(X, Z) ≤α,0 IOwα

B(Y, Z).
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When X = Y , it is immediate that IOwα
B(X, Z) = IOwα

B(Y, Z). Then, for β = 0 it holds that

IOwα
B(X,Z) ≤α,0 IOwα

B(Y,Z).

The proof for β = 1 can be obtained analogously.

(IOw5) By (ii), since B is conjunctive, it holds that

w(IOwα
B(X,Y )) = θ

= B(B(w(Y ),w(Z)),B(O(Kα(Y ),Kα(Z)),1 − O(Kα(Y ) ≤ B(w(X),w(Y )).

Then, it holds that IOwα
B is width-limited by B for all α ∈ (0, 1). �

Appendix C. Proof of Theorem 4.4

Proof. Consider a commutative aggregation function B : [0, 1]2 → [0, 1], a strict overlap function O : [0, 1]2 →
[0, 1] and let α ∈ (0, 1) and β ∈ [0, 1] such that α �= β . Observe that it is immediate that IOwα

B is well defined. In 
fact, considering that IOwα

B(X, Y) = R, one has that w(R) = mIFα
O,B,B(X, Y) which, by Definition 4.3, is uniquely 

defined for the pair (IFα
O,B, B). As Kα(R) = O(Kα(X), Kα(Y )), then, it follows that R = Kα(R) − α · w(R) and 

R = Kα(R) + (1 − α) · w(R).
Now, let us verify if IOwα

B respects conditions (IOw1)-(IOw5) from Definition 4.2.

(IOw1) Observe that, since O and B are commutative, then IFα
O,B is commutative, as well as mIFα

O,B,B . Then, it 
is immediate that IOwα

B is commutative;

(IOw2) (⇒) Take X, Y ∈ L([0, 1]) and suppose that IOwα
B(X, Y) = R = [0, 0]. Then, by (i), we have that

Kα(R) = Kα([0,0]) = 0 = O(Kα(X),Kα(Y )),

since α ∈ (0, 1). Thus, by condition (O2), either Kα(X) = 0 or Kα(Y ) = 0, and, therefore, X · Y = [0, 0];
(⇐) Consider X, Y ∈ L([0, 1]) such that X · Y = [0, 0]. So, Kα(X) · Kα(Y ) = 0, since α ∈ (0, 1). Then, by (i) and

(O2), one has that

Kα(R) = O(Kα(X),Kα(Y )) = 0,

meaning that IOwα
B(X, Y) = R = [0, 0];

(IOw3) (⇒) Take X, Y ∈ L([0, 1]) such that IOwα
B(X, Y) = R = [1, 1]. Then, by (i), one has that

Kα(R) = Kα([1,1]) = 1 = O(Kα(X),Kα(Y )).

By (O3), Kα(X) · Kα(Y ) = 1, since α ∈ (0, 1), meaning that X · Y = [1, 1];
(⇐) Consider X, Y ∈ L([0, 1]) such that X · Y = [1, 1]. So, Kα(X) · Kα(Y ) = 1, since α ∈ (0, 1). Then, by (i) and

(O3), one has that

Kα(R) = O(Kα(X),Kα(Y )) = 1,

meaning that IOwα
B(X, Y) = R = [1, 1];

(IOw4) Consider X, Y, Z ∈ L([0, 1]) such that X ≤α,β Y with α ∈ (0, 1), β ∈ [0, 1], such that α �= β . By 
Lemma 2.1, it is sufficient to consider the cases β = 0 and β = 1. First, for X <α,β Y and β = 0 we have the following 
possibilities:

1) X <α,0 Y and Kα(Z) = 0. Then, O(Kα(X), Kα(Z)) = 0 = O(Kα(Y ), Kα(Z)), and, therefore, since α �= 0, by
(i) it holds that IOwα

B(X, Z) = [0, 0] = IOwα
B(Y, Z);
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2) X <α,0 Y and Kα(Z) > 0. Here, we have the following possibilities:
a) Kα(X) < Kα(Y ). Since O is strict, by (O4), one has that O(Kα(X), Kα(Z)) < O(Kα(Y ), Kα(Z)), and, thus, 

by (i) it follows that IOwα
B(X, Z) <α,0 IOwα

B(Y, Z);
b) Kα(X) = Kα(Y ) and Kβ=0(X) < Kβ=0(Y ). Then, X < Y ≤ Y < X, meaning that w(X) > w(Y) and, there-

fore, by Definition 4.4, λα(X) > λα(Y ). So, by (i),

Kα(IOwα
B(X,Z)) = O(Kα(X),Kα(Z)) = O(Kα(Y ),Kα(Z)) = Kα(IOwα

B(Y,Z)),

and

Kβ=0(IOwα
B(X,Z)) = Kα(IOwα

B(X,Z)) − α · w(IOwα
B(X,Z)) by Equation (8)

= Kα(IOwα
B(X,Z)) − α · mIFα

O,B,B(X,Z) by (ii)

= Kα(IOwα
B(X,Z)) − α · min{B(w(X),w(Z)),B(λα(X),λα(Z)) · dα(Kα(IOwα

B(X,Z)))}
by Definition 4.3

≤ Kα(IOwα
B(Y,Z)) − α · min{B(w(Y ),w(Z)),B(λα(Y ), λα(Z)) · dα(Kα(IOwα

B(Y,Z)))}
= Kα(IOwα

B(Y,Z)) − α · mIFα
O,B,B(Y,Z) by Definition 4.3

= Kβ=0(IOwα
B(Y,Z)),

as B is increasing. Therefore, IOwα
B(X, Z) ≤α,0 IOwα

B(Y, Z).

When X = Y , it is immediate that IOwα
B(X, Z) = IOwα

B(Y, Z). Then, for β = 0 it holds that

IOwα
B(X,Z) ≤α,0 IOwα

B(Y,Z).

The proof for β = 1 can be obtained analogously.

(IOw5) By (ii) and Definition 4.3, it holds that

w(IOwα
B(X,Y )) = mIFα

O,B,B(X,Y )

= min{B(w(X),w(Y )),B(λα(X),λα(Y )) · dα(Kα(R))}
≤ B(w(X),w(Y )).

Then, it holds that IOwα
B is width-limited by B for all α ∈ (0, 1). �
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(O,G,N) and the generation of fuzzy subsethood and entropy measures, Int. J. Approx. Reason. 82 (2017) 170–192.

[54] G.P. Dimuro, B. Bedregal, R.H.N. Santiago, On (G, N)-implications derived from grouping functions, Inf. Sci. 279 (2014) 1–17, https://
doi .org /10 .1016 /j .ins .2014 .04 .021.

[55] J. Qiao, B.Q. Hu, On the distributive laws of fuzzy implication functions over additively generated overlap and grouping functions, IEEE 
Trans. Fuzzy Syst. 26 (4) (2018) 2421–2433, https://doi .org /10 .1109 /TFUZZ .2017 .2776861.

[56] D. Gómez, J.T. Rodríguez, J. Montero, H. Bustince, E. Barrenechea, n-Dimensional overlap functions, Fuzzy Sets Syst. 287 (2016) 57–75, 
https://doi .org /10 .1016 /j .fss .2014 .11 .023.

[57] L. De Miguel, D. Gómez, J.T. Rodríguez, J. Montero, H. Bustince, G.P. Dimuro, J.A. Sanz, General overlap functions, Fuzzy Sets Syst. 372 
(2019) 81–96, https://doi .org /10 .1016 /j .fss .2018 .08 .003.

[58] Z. Xu, R.R. Yager, Some geometric aggregation operators based on intuitionistic fuzzy sets, Int. J. Gen. Syst. 35 (4) (2006) 417–433, https://
doi .org /10 .1080 /03081070600574353.

[59] M. Elkano, M. Galar, J. Sanz, H. Bustince, Fuzzy rule-based classification systems for multi-class problems using binary decomposition 
strategies: on the influence of n-dimensional overlap functions in the fuzzy reasoning method, Inf. Sci. 332 (2016) 94–114.

[60] M. Elkano, M. Galar, J. Sanz, A. Fernández, E. Barrenechea, F. Herrera, H. Bustince, Enhancing multi-class classification in FARC-HD fuzzy 
classifier: on the synergy between n-dimensional overlap functions and decomposition strategies, IEEE Trans. Fuzzy Syst. 23 (5) (2015) 
1562–1580.

39



164 5.1. Main publications

5.1.4 A methodology for controlling the information quality in interval-valued fusion

processes: theory and application

Related publication:

◦ T. Asmus, G. Dimuro, B. Bedregal, J. Sanz, R. Mesiar and H. Bustince, “A methodology for

controlling the information quality in interval-valued fusion processes: theory and application.”,

Knowledge Based Systems (submitted).

– Journal: Knowledge Based Systems

– Status: Submitted

– Impact Factor (JCR 2021): 8.083

– Knowledge Area:

* Artificial Intelligence: Ranking 16/227 (Q1)

A framework for general fusion processes under uncertainty modeling control, with an application in interval-valued fuzzy

rule-based classification systems



A methodology for controlling the information quality in interval-valued fusion processes:
theory and application
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Abstract

An important problem faced when dealing with imperfect information in fusion processes is that of the uncertainty regarding the
values of the membership degrees to be employed in fuzzy modeling. In this scenario, one can apply interval-valued (iv) fuzzy
sets, where the membership degrees are represented by intervals. A recurrent issue is the situation where the quality of information
carried by the intervals, expressed by their widths, suffers degradation during the fusion process. So, the main objective of this paper
is to develop a general framework to construct iv-fusion functions whose outputs conserve the information quality of the operated
intervals. To achieve that, we first extend important concepts such as width-limiting functions and width-limited iv-functions to the
n-dimensional context. Then, we present a characterization for any subclass of increasing fusion function by their set of properties,
followed by the interval extension of such characterization to obtain classes of width-limited iv-fusion functions. We show that
our methodology is general enough to retrieve several classes of iv-aggregation functions from the literature. Two approaches for
constructing width-limited iv-fusion functions are also presented, which enables the application of different subclasses of width-
limited iv-fusion functions in fusion/aggregation processes with imperfect information. Finally, we present a case study in a
classification problem. Specifically, we use IVTURS, a state-of-the-art iv-fuzzy rule-based classification system, and a particular
subclass of width-limited iv-fusion functions (n-dimensional width-limited iv-overlap functions), showing that the control of the
information quality through width limitation significantly enhances the accuracy of the classifier.

Keywords: Fusion functions, interval-valued aggregation functions, interval information quality, n-dimensional interval-valued
overlap functions, fuzzy rule-based classification systems

1. Introduction

Fusion functions are useful operators that combine several
numerical values into a single representative one [1]. The most
important class of fusion functions is that of aggregation func-
tions [2] (or, more generally, pre-aggregation functions [3]),
which are especially suitable to model fuzzy logic operations.
For example, t-norms [4] and overlap functions [5] can be ap-
plied as fuzzy conjunction operators, while t-conorms [4] and
grouping functions [6] can be applied as fuzzy disjunction oper-
ators. For that reason, aggregation functions have been widely
used in several theoretical and applied fields [2, 7]. In par-
ticular, we have worked with n-dimensional overlap functions
[8], which constitute a subclass of aggregation functions that do
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not require associativity and have been successfully applied in
the reasoning method of fuzzy rule-based classification systems
(FRBCSs) [9, 10].

When facing problems with imperfect information [11, 12],
there may be uncertainty regarding the values of the member-
ship degrees or even in the definition of the membership func-
tions to be used in a fuzzy modeling [13, 14]. A viable and
popular solution is the adoption of interval-valued fuzzy sets
(IVFSs) [15, 16], where the membership degrees are repre-
sented by intervals. In this context, the width of the assigned
intervals are intrinsically related with the uncertainty/ignorance
with respect to the modeling of the fuzzy sets [17, 18]. IVFSs
have been successfully applied in many different fields, such
as image processing [19], game theory [20], multicriteria de-
cision making [21], pest control [22], irrigation systems [23]
and collaborative clustering [24]. The modeling of linguistic
labels via IVFSs in FRBCSs gave birth to interval-valued rule-
based classification systems (IV-FRBCSs) [25, 26, 27], where
the aggregation process is a key component for the success of
the classifier.

To accomplish aggregation processes with interval data, dif-

Preprint submitted to Knowledge-Based Systems October 24, 2021



ferent aggregation functions had to be extended to the inter-
val context [28]. Since then, several classes of iv-aggregation
were introduced, such as interval-valued t-norms and t-conorms
[18], iv-overlap and grouping functions [29, 30] and general iv-
overlap and grouping functions [26, 31]. In most cases, a partic-
ular class of iv-aggregation function is defined by extending the
definition of a given class of aggregation function based on the
concept of best interval representation [17]. That is, the interval
output of the iv-aggregation function is defined by the applica-
tion of the original aggregation function to the endpoints of the
input intervals. Besides being intuitive and theoretically sound,
extending aggregation functions to the interval context through
the best interval representation has other benefits: the compu-
tation is generally easy, as one only deals with the endpoints of
the input intervals, and correctness is guaranteed, since the out-
put interval contains the exact unknown aggregated value [32].

Nevertheless, there are some drawbacks when applying iv-
aggregation functions defined in this manner in practical prob-
lems. First, monotonicity is usually evaluated with respect to
the product order [33], which also considers only the endpoints
of the intervals when comparing them. However, the product
order is not a total order, meaning that one may have intervals
that are not comparable, a hindrance that has to be avoided in
problems such as decision making and classification [34]. To
tackle this drawback, Bustince et al. [34] introduced the con-
cept of admissible orders, that is, total orders that refine the
product order, and that can be constructed by a pair of aggre-
gation functions. Since then, many works using admissible or-
ders have appeared in the literature [35, 36, 37]. In the con-
text of aggregation of interval data, Bustince et al. [38] pre-
sented a construction method for iv-aggregation functions that
are increasing with respect to a given admissible order. In the
same context, Asmus et al. [27] introduced the concept of n-
dimensional admissibly ordered iv-overlap functions, which are
n-dimensional iv-overlap functions that are increasing with re-
spect to an admissible order, showing good results when applied
in IV-FRBCSs.

Another drawback in a practical sense is that, due to some
applications constraints concerning the quality of the informa-
tion [39, 40] required for the interval result, the interval output
of iv-aggregation functions based on the best interval represen-
tation may be larger than a desirable threshold. In this case, the
interval result is guaranteed to be correct, however, it may carry
no meaningful information about the real value it is approxi-
mating.

In an initial study to address this problem, Bustince et al.
[38] introduced the concept of width-preserving functions, that
is, iv-functions that, under some conditions, can provide out-
puts with the same width of all the inputs. However, the concept
of width preservation only takes into account the very specific
case where all the interval inputs have the same width. Then,
more recently, Asmus et al. [41] introduced the concept of in-
terval width limitation, where the width of the output of a bi-
variate iv-function is limited by a function applied to the widths
of its inputs. Nevertheless, such theoretical approach for con-
serving the interval information quality in fusion processes was
not considered in any applied problem, which means that there

is a challenge yet to be addressed in a practical sense.
Motivated by the discussion above, this paper brings a novel

and general methodology to deal with the problem of guaran-
teeing the information quality by controlling the width of inter-
val outputs that are generated when applying the so called iv-
fusion functions (in particular, iv-aggregation functions). Then,
the main theoretical objective of this paper is to provide a gen-
eral framework for n-dimensional width-limited interval-valued
(w-iv) fusion functions, which enables the definition and con-
struction methods for different subclasses of w-iv-aggregation
functions, capable of retrieving known definitions of iv-aggre-
gation functions from the literature and suitable to be applied on
different practical problems where the information quality has
to be controlled. To accomplish this goal, we have the following
specific objectives:

1. To extend the concepts of width-limited w-iv-fusion func-
tions and width-limiting fusion functions to the n-dimen-
sional context (Sect. 3);

2. To present a characterization of any class of increasing fu-
sion function through a set of properties (Sect. 4);

3. To define classes of w-iv-fusion functions based on an in-
creasing fusion function, the interval extension of its set
of properties and a pair of partial orders (Sect, 4);

4. To present two general approaches to provide construction
methods for w-iv-fusion functions, one based on repre-
sentable interval functions and other on admissibly or-
dered interval functions, discussing examples (Sect. 5).

On the application side, we show the beneficial effects of
this type of information quality control in classification prob-
lems (Sect. 6). Specifically, we apply the new framework in IV-
TURS, which is a state-of-the-art IV-FRBCS. For that, we de-
velop a new interval-valued fuzzy reasoning method, in which
the information quality is controlled by w-iv-fusion functions,
in particular, n-dimensional w-iv-overlap functions. We ana-
lyze the effect of the interval width control on the performance
of the classifier, since the construction methods allow one to
determine the control level by means of a hyper-parameter. Fi-
nally, we conduct an experimental study where we compare the
results of the original IVTURS classifier versus the best per-
forming configurations of our new approach in order to clearly
observe the obtained improvement, regardless of the chosen
construction method to obtain w-iv-fusion functions. Addition-
ally, Section 2 presents some necessary preliminary concepts,
and the main conclusions are drawn in Section 7, which com-
pletes the organization of the paper.

2. Preliminaries

In this section, we recall some basic concepts on aggrega-
tion functions, interval mathematics and iv-aggregation func-
tions.
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2.1. Aggregation Functions

Denote ~x = (x1, . . . , xn) ∈ [0, 1]n. Any F : [0, 1]n → [0, 1]
is called a fusion function [1].

Definition 1. [42] A function N : [0, 1] → [0, 1] is a fuzzy
negation if, for all x, y ∈ [0, 1]: (N1) N(0) = 1 and N(1) = 0;
(N2) If x ≤ y then N(y) ≤ N(x). If (involutive property) (N3)
N(N(x)) = x, then N is a strong fuzzy negation.

Example 1. The Zadeh negation given, for all x ∈ [0, 1], by
NZ(x) = 1 − x, is a strong fuzzy negation.

Definition 2. Let H be the set of annihilator elements of a fu-
sion function F : [0, 1]n → [0, 1]. F is said to be a strict fusion
function is if it is strictly increasing on ([0, 1] − H)n.

Definition 3. [42] Given a strong fuzzy negation N : [0, 1] →
[0, 1] and a fusion function F : [0, 1]n → [0, 1], then the fusion
function FN : [0, 1]n → [0, 1] defined, for all ~x ∈ [0, 1]n, by
FN(~x) = N(F(N(x1), . . . ,N(xn))), it the N-dual of F.

When it is clear by the context, the NZ-dual function (dual
with respect to the Zadeh negation) of F will be just called dual
of F, and will be denoted by Fd.

A particularly important class of fusion function is that of
aggregation functions [2], defined as follows.

Definition 4. [2] An aggregation function is any fusion function
A : [0, 1]n → [0, 1] respecting: (A1) A is increasing; (A2)
A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.

An aggregation function A that is strictly increasing in ([0, 1]−
H)n, with H being the set of annihilator elements of F, is said
to be a strict aggregation function.

Definition 5. [43] An aggregation function A : [0, 1]n → [0, 1]
is called ultramodular if, for all ~x, ~y, ~ε ∈ [0, 1]n, such that ~y+~ε ∈
[0, 1]n and ~x ≤ ~y: A(~x + ~ε) − A(~x) ≤ A(~y + ~ε) − A(~y).

Here we extend the concept of (a, b)-ultramodular binary
function [41] for the n-dimensional context:

Definition 6. Consider ~a ∈ [0, 1]n. An aggregation function A :
[0, 1]n → [0, 1] is called ~a-ultramodular if, for all ~x, ~ε ∈ [0, 1]n

and ~x + ~ε,~a − ~ε ∈ [0, 1]n, it holds that:

A(~x + ~ε) − A(~x) ≤ A(~a) − A(~a − ~ε). (1)

When ~a = (1, . . . , 1), from Eq. (1) and condition (A2) from
Def. 4, we have that A(~x + ~ε) − A(~x) ≤ Ad(~ε), where Ad is the
dual of A. In this case, A is said to be ~1-ultramodular.

The next result is an extension to the n-dimensional context
of Prop. 3.1 from the work of Asmus et al. [41]:

Proposition 1. Let A : [0, 1]n → [0, 1] be an ultramodular ag-
gregation function. Then, A is an (~1)-ultramodular aggregation
function, but the converse may not hold.

There are many classes of aggregation functions defined in
the literature. Here we highlight some of them that are going to
be of importance on this work.

Definition 7. [10] A fusion function On : [0, 1]n → [0, 1] is
an n-dimensional overlap function if, for all ~x ∈ [0, 1]n: (On1)
On is symmetric; (On2) On(~x) = 0 ⇔ ∏n

i=1 xi = 0; (On3)
On(~x) = 1 ⇔ ∏n

i=1 xi = 1; (On4) On is increasing; (On5) On
is continuous.

A 2-dimensional overlap function is just called overlap func-
tion [5].

Definition 8. [8] A fusion function Gn : [0, 1]n → [0, 1] is said
to be an n-dimensional grouping function if, for all ~x ∈ [0, 1]n:
(Gn1) Gn is symmetric; (Gn2) Gn(~x) = 0 ⇔ xi = 0 for all i ∈
{1, . . . , n}; (Gn3) Gn(~x) = 1 ⇔ there exists i ∈ {1, . . . , n} such
that xi = 1; (Gn4) Gn is increasing; (Gn5) Gn is continuous.

By duality, one can obtain n-dimensional grouping func-
tions from n-dimensional overlap functions, and vice-versa.

Example 2. a) The arithmetic mean AM : [0, 1]n → [0, 1],
defined, for all ~x ∈ [0, 1]n, by AM(~x) =

∑n
i=1 xi

n , is an aggregation
function that is strict (with H = ∅) and ~1-ultramodular;
b) The geometric mean: GM : [0, 1]n → [0, 1], given, for all
~x ∈ [0, 1]n, by

GM(~x) =

√√ n∏

i=1

xi, (2)

is a strict (with H = {0}) n-dimensional overlap function;
c) OnB : [0, 1]n → [0, 1], given, for all ~x ∈ [0, 1]n, by

OnB(~x) =

√√
(

n∏

i=1

xi) · (min{x1, . . . , xn}), (3)

is a strict (with H = {0}) n-dimensional overlap function;
d) OnT : [0, 1]n → [0, 1], given, for all ~x ∈ [0, 1]n, by

OnT (~x) =
n∏

i=1

(2xi − 1)3 + 1
2

, (4)

is an n-dimensional overlap function that is also an ~1-ultramo-
dular aggregation function, but it is not an ultramodular aggre-
gation function.
e) The functions GnB,GnT : [0, 1]n → [0, 1] such that GnB =
OnBd and GnT = OnT d, are n-dimensional grouping functions.

2.2. Interval Mathematics and Admissible Orders
Denote by L([0, 1]) the set of closed subintervals of the

unit interval [0, 1] and ~X = (X1, . . . , Xn) ∈ L([0, 1])n. For any
X = [x1, x2] ∈ L([0, 1]), the left and right projections of X are
denoted, respectively, by X = x1 and X = x2. The width of X is
denoted w(X), which is given by w(X) = X − X.

We call by interval-valued (iv) fusion function any interval-
valued function IF : L([0, 1])n → L([0, 1]) that merges n inter-
vals from L([0, 1]) into a single interval in L([0, 1]).

Definition 9. [38] An iv-fusion function IF : L([0, 1])n →
L([0, 1]) is called width-preserving (or w-preserving, for sim-
plicity) if, for any ~X ∈ L([0, 1])n such that w(X1) = . . . = w(Xn),
it holds that w(IF(~X)) = w(X1).
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An iv-fusion function IF : L([0, 1])n → L([0, 1]) is said to
be increasing with respect to a partial order ≤ on L([0, 1]) (or,
simply, ≤-increasing) if, for all ~X, ~Y ∈ L([0, 1])n, the following
condition holds:

Xi ≤ Yi for all i ∈ {1, . . . , n} ⇒ IF(~X) ≤ IF(~Y).

Definition 10. [41] Let IF : L([0, 1])n → L([0, 1]) be an iv-
fusion function and ≤1, ≤2 be two partial order relations on
L([0, 1]). Then, IF is said to be (≤1,≤2)-increasing if the fol-
lowing condition holds, for all ~X, ~Y ∈ L([0, 1])n:

Xi ≤1 Yi for all i ∈ {1, . . . , n} ⇒ IF(~X) ≤2 IF(~Y).

When an iv-fusion function IF : L([0, 1])n → L([0, 1]) is
(≤,≤)-increasing, we denote it simply as ≤-increasing, for any
partial order relation ≤ on L([0, 1]).

The product order [33], denoted by ≤Pr, is a partial order
relation, defined, for all X,Y ∈ L([0, 1]), by:

X ≤Pr Y ⇔ X ≤ Y ∧ X ≤ Y .

Let f , g : [0, 1]n → [0, 1] be two fusion functions such that
f ≤ g. Then, the iv-fusion function f̂ , g : L([0, 1])n → L([0, 1])
is given by: f̂ , g(~X) = [ f (X1, . . . , Xn), g(X1, . . . , Xn)].

Definition 11. [18] Let IF : L([0, 1])n → L([0, 1]) be a ≤Pr-
increasing iv-fusion function. Then, IF is said to be repre-
sentable if there exist increasing fusion functions f , g : [0, 1]n →
[0, 1] such that f ≤ g and IF = f̂ , g.

f and g are called the representatives of IF. When IF =
f̂ , f , we denote simply as f̂ . In this case, IF is said to be the
best interval representation (BIR) of f [18].

The next interval operations, defined for all X,Y ∈ L([0, 1]),
are used in this paper: [33, 44]

Sum: X + Y = [X + Y , X + Y], with X + Y ≤ 1;

Product: X · Y = [X · Y , X · Y];
Generalized Hukuhara Division: for Y , 0, X ≤Pr Y:

X ÷H Y = [min{X/Y , X/Y},max{X/Y , X/Y}]. (5)

Here, we recall the concept of admissible orders.

Definition 12. [34] Let (L([0, 1]),≤AD) be a partially ordered
set. The order ≤AD is an admissible order if, for all X,Y ∈
L([0, 1]): (i) ≤AD is a total order on (L([0, 1]),≤AD); (ii) X ≤Pr

Y ⇒ X ≤AD Y .

Thus, an order ≤AD on L([0, 1]) is said to be admissible if it
is a total order that refines the product order ≤Pr [34]. Since ev-
ery admissible order ≤AD refines ≤Pr, it is immediate that every
≤AD-increasing function is also ≤Pr-increasing.

Example 3. Here are some examples of admissible orders: (i)
The lexicographical orders ≤Lex1 and ≤Lex2, corresponding, re-
spectively, to the first and second coordinates, are given by:

X ≤Lex1 Y ⇔ X < Y ∨ (X = Y ∧ X ≤ Y);

X ≤Lex2 Y ⇔ X < Y ∨ (X = Y ∧ X ≤ Y).

(ii) The order of Xu and Yager ≤XY [45], given by:

X ≤XY Y ⇔ X + X < Y + Y or

(X + X = Y + Y and X − X ≤ Y − Y).

(iii) The order ≤IQ [27], given by:

X ≤IQ Y ⇔ X + X < Y + Y or (6)

(X + X = Y + Y and Y − Y ≤ X − X).

Observe that the order ≤IQ is based on the order of Xu and
Yager, but takes into consideration the information quality [39]
when comparing the intervals.

Next, we recall the definition of the admissible order ≤α,β:
Definition 13. [34] For α, β ∈ [0, 1] such that α , β, the rela-
tion ≤α,β is defined, for all X,Y ∈ L([0, 1]), by

X ≤α,β Y ⇔ Kα(X, X) < Kα(Y ,Y) or

(Kα(X, X) = Kα(Y ,Y) and Kβ(X, X) ≤ Kβ(Y ,Y)),

where Kα,Kβ : [0, 1]2 → [0, 1] are aggregation functions de-
fined, for all x, y ∈ [0, 1], respectively, by

Kα(x, y) = x + α · (y − x); Kβ(x, y) = x + β · (y − x). (7)

Remark 1. The order ≤α,β can recover other known admissi-
ble orders, by an appropriate choice of α and β. For example,
i) The lexicographical orders ≤Lex1 and ≤Lex2 are recovered,
respectively, by ≤0,1 and ≤1,0; ii) The orders ≤XY and ≤IQ are
recovered, respectively, by ≤0.5,1 and ≤0.5,0.

Whenever we apply the mapping Kα on the endpoints of an
interval X ∈ [0, 1], we denote Kα(X, X) simply as Kα(X).

Lemma 1. [34] For any α, β ∈ [0, 1], α , β, it holds that: (i)
β > α⇒≤α,β=≤α,1; (ii) β < α⇒≤α,β=≤α,0.

2.3. Interval-valued Fusion Functions

Definition 14. [46] IN : L([0, 1]) → L([0, 1]) is called an iv-
fuzzy negation if it is ≤Pr-decreasing, (IN1) IN([1, 1]) = [0, 0]
and (IN2) IN([0, 0]) = [1, 1]. If IN(IN(X)) = X, for all X ∈
L([0, 1]), then IN is said to be involutive.

Definition 15. [47] IR : L([0, 1])2 → L([0, 1]) is an iv-restricted
equivalence function (IV-REF) with respect to an iv-fuzzy nega-
tion IN, if, for all X,Y,Z ∈ L([0, 1]): (IR1) IR is commuta-
tive; (IR2) IR(X,Y) = [1, 1] ⇔ X = Y; (IR3) IR(X,Y) =
[0, 0]⇔ X = [0, 0] and Y = [1, 1], or X = [1, 1] and Y = [0, 0];
(IR4) IR(X,Y) = IR(IN(X), IN(Y)); (IR5) X ≤Pr Y ≤Pr Z ⇒
IR(X,Y) ≥Pr IR(X,Z), IR(Y,Z) ≥Pr IR(X,Z).

Definition 16. [26] An iv-fusion function IA : L([0, 1])n →
L([0, 1]) is called an iv-aggregation function if: (IA1) IA is
≤Pr-increasing; (IA2) IA([0, 0], . . . , [0, 0]) = [0, 0] and
IA([1, 1], . . . , [1, 1]) = [1, 1].
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Definition 17. [38] Consider c ∈ [0, 1] and α ∈ [0, 1]. Then,
the maximal possible width of an interval Z ∈ L([0, 1]) is de-
noted by dα(c), such that Kα(Z) = c. Also, define, for any
X ∈ L([0, 1]),

λα(X) =
w(X)

dα(Kα(X))
, (8)

where we set 0
0 = 1.

Proposition 2. [38] For all α ∈ [0, 1] and X ∈ L([0, 1]), one
has that

dα(Kα(X)) = min
{

Kα(X)
α

,
1 − Kα(X)

1 − α
}
, (9)

where we set r
0 = 1, for all r ∈ [0, 1].

Theorem 1. [38] Let α, β ∈ [0, 1] be such that α , β. Let
A1, A2 : [0, 1]n → [0, 1] be two aggregation functions where A1
is strictly increasing. Then IFα : L([0, 1])n → L([0, 1]) defined,
for all ~X ∈ L([0, 1])n, by:

IFα
A1,A2(~X) = R

where
{

Kα(R) = A1(Kα(X1), . . . ,Kα(Xn)),
λα(R) = A2(λα(X1), . . . , λα(Xn)),

is an ≤α,β-increasing iv-aggregation function.

Corollary 1. [41] Let α ∈ (0, 1], β ∈ [0, 1] be such that α ,
β. Let On : [0, 1]n → [0, 1] be a strict n-dimensional over-
lap function and A be an aggregation function. Then IFα

On,A :
L([0, 1])n → L([0, 1]) defined, for all ~X ∈ L([0, 1])n, by:

IFα
On,A(~X) = R

where
{

Kα(R) = On(Kα(X1), . . . ,Kα(Xn)),
λα(R) = A(λα(X1), . . . , λα(Xn)),

is an ≤α,β-increasing iv-aggregation function.

Definition 18. [26] An iv-fusion function IOn : L([0, 1])n →
L([0, 1]) is called an n-dimensional iv-overlap function if, for
all ~X ∈ L([0, 1])n: (IOn1) IOn is symmetric; (IOn2) IOn(~X) =
[0, 0]⇔∏n

i=1 Xi = [0, 0]; (IOn3) IOn(~X) = [1, 1]⇔∏n
i=1 Xi =

[1, 1]; (IOn4) IOn is ≤Pr-increasing; (IOn5) IOn is Moore con-
tinuous [33].

For n = 2, IOn is just called iv-overlap function [29, 30].

Definition 19. [27] An iv-fusion function AOn : L([0, 1])n →
L([0, 1]) is called an n-dimensional admissibly ordered iv-overlap
function for an admissible order ≤AD (≤AD-overlap function) if
it respects the conditions (IOn1), (IOn2) and (IOn3) of Def.
18, and (AOn4) AOn is ≤AD-increasing.

Although the construction method presented in Corollary 1
is based on an n-dimensional overlap function, the constructed
function is not necessarily an ≤α,β-overlap function. It is not
trivial to obtain such type of function, so we present here a new
result, which is an adaptation of Corollary 1 with that purpose,
as ≤α,β-overlap functions are featured throughout our theoreti-
cal and practical developments:

Theorem 2. Consider a strict n-dimensional overlap function
On : [0, 1]n → [0, 1], an increasing and symmetric fusion func-
tion B : [0, 1]n → [0, 1] and α ∈ (0, 1), β ∈ [0, 1], such that,
α , β . AOnαB : L([0, 1])n → L([0, 1]) defined by:

AOnαB(~X) = R

where
{

Kα(R) = On(Kα(X1), . . . ,Kα(Xn)),
λα(R) = B(λα(X1), . . . , λα(Xn)),

for all ~X ∈ L([0, 1])n, is an ≤α,β-overlap function.

Proof. See Appendix Appendix A.

The following result is immediate from Def. 17 and Theo-
rem 2.

Corollary 2. Let α ∈ (0, 1), β ∈ [0, 1] be such that, α , β.
Let On : [0, 1]n → [0, 1] be a strict n-dimensional overlap
function, B : [0, 1]n → [0, 1] be an increasing and symmetric
fusion function and AOnαB : L([0, 1])n → L([0, 1]) be an iv-
aggregation function constructed as in Theorem 2. Then, for
all ~X ∈ L([0, 1])n, we have that

w(AOnαB(~X)) = (10)

B(λα(X1), . . . , λα(Xn)) · dα(Kα(AOnαB(~X))).

3. Width-Limited iv-Fusion Functions

Here, we extend for the n-dimensional context the main
results on width-limitation presented by Asmus et al. [41],
as these concepts are going to be thoroughly featured on our
present theoretical developments and are also required in the
practical application presented in Section 6.

Definition 20. [41] Consider an iv-fusion function IF : L([0, 1])n →
L([0, 1]) and B : [0, 1]n → [0, 1]. IF is said to be width-limited
by B if w(IF(~X)) ≤ B(w(X1), . . . ,w(Xn)), for all ~X ∈ L([0, 1])n.
B is called a width-limiting function of IF.

Denote F={F:[0, 1]n → [0, 1]|F is a fusion function} and
IF={IF:L([0, 1])n→L([0, 1])|IF is an iv-fusion function}. Next
theorem shows how to obtain the least width-limiting function
for a given iv-fusion function:

Theorem 3. [41] The mapping L : IF → F defined, for all
IF ∈ IF and ~ε ∈ [0, 1]n, by

L(IF)(~ε)= sup
u1∈[0, 1 − ε1]

. . .
un∈[0, 1 − εn]

{w(IF([u1, u1 + ε1], . . ., [un, un + εn]))}

provides the least width-limiting function L(IF) : [0, 1]n →
[0, 1] for IF.

DenoteA={A:[0, 1]n→[0, 1]|A is an aggregation function},
IA = {IA : L([0, 1])n → L([0, 1]) | IA is the best interval

representation of an aggregation function A ∈ A}.
Then, an approach similar to that one considered in Theorem 3
can be used to obtain the least width-liming aggregation func-
tion for a given representable iv-aggregation function.
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Theorem 4. [41] The mapping L : IA → F defined, for all
IA ∈ IA and ~ε ∈ [0, 1]n, by

L(IA)(~ε)= (11)
sup

u1 ∈ [0, 1 − ε1]
. . .

un ∈ [0, 1 − εn]

{w(IA([u1, u1 + ε1], . . ., [un, un + εn]))}

provides the least width-limiting function L(IA) : [0, 1]n →
[0, 1] for IA. Moreover, L(IA) is an aggregation function.

Now, let us present a characterization for the least width-
limiting function of the best interval representation (BIR) of an
~1-ultramodular aggregation function, or the BIR of its dual:

Theorem 5. [41] Let A : [0, 1]n → [0, 1] be an aggregation
function, Ad : [0, 1]n → [0, 1] be the dual of A, L(Â),L(Âd) :
[0, 1]n → [0, 1] be the least width-limiting functions for Â and
Âd, respectively. Then, L(Â) = L(Âd) = Ad if and only if A is an
~1-ultramodular aggregation function.

In the context of Theorem 5, as Â and Âd are representable
iv-aggregation functions, then their least width-limiting func-
tion Ad is an aggregation function, as stated by Theorem 4. Ob-
serve that the function A does not need to be ultramodular.

Example 4. a) Every iv-fusion function IF : L([0, 1])n →
L([0, 1]) is width-limited by the function B : [0, 1]n → [0, 1]
given by B(~x) = 1, for all ~x ∈ [0, 1]n.
b) The n-dimensional iv-overlap function IOnP, defined, for all
~X ∈ L([0, 1])n, by IOnP(~X) =

∏n
i=1 Xi, is width-limited by the

probabilistic sum, given by B(~x) = 1 − ∏n
i=1 1 − xi, for all

~x ∈ [0, 1]n. This holds because the IOnp is the BIR of the
product, which is an ultramodular aggregation function, and
the probabilistic sum is the dual of the product.
c) Similar to the last case, the BIR of the n-dimensional overlap
function OnT , defined in Eq. (4), denoted by ÔnT , is width-
limited by B = OnT d, since OnT is an ~1-ultramodular aggre-
gation function.

Remark 2. Observe that a width-limited function (Def. 20)
differs from a width-preserving function (Def. 9), since one
can only guarantee the uncertainty control in width-preserving
functions when all the inputs have the same width. On the
other hand, some width-limited functions can guarantee the un-
certainty control accordingly to some width-limiting function
B and still not be considered width-preserving as by Def. 9.
So, width-limitation is a more suitable (and flexible) concept
to indicate the potential uncertainty on the outputs of a given
interval-valued function than width-preservation.

4. A Framework for Width-Limited iv-Fusion Functions

The goal of this section is to present a way to obtain dif-
ferent classes of aggregation functions that have their outputs’
widths limited by some arbitrary width-limiting function. In the
work by Asmus et al. [41], for instance, width-limited interval-
valued overlap functions were introduced based on such notion.
Here, we recall their definition:

Definition 21. [41] Let B : [0, 1]2 → [0, 1] be a commuta-
tive and increasing function and ≤1, ≤2 be two partial order
relations on L([0, 1]). Then, the mapping IOw : L([0, 1])2 →
L([0, 1]) is said to be a width-limited interval-valued overlap
function (w-iv-overlap function) with respect to the tuple (≤1,
≤2, B), if the following conditions hold for all X,Y ∈ L([0, 1]):
(IOw1) IOw is commutative; (IOw2) IOw(X,Y) = [0, 0]⇔ X ·
Y = [0, 0]; (IOw3) IOw(X,Y) = [1, 1]⇔ X ·Y = [1, 1]; (IOw4)
IOw is (≤1,≤2)-increasing; (IOw5) IOw is width-limited by B.

Notice that Def. 21 is quite similar to Def. 18 for n = 2.
In fact, conditions (IOn1), (IOn2) and (IOn3), for n = 2, are
the same as (IOw1), (IOw2) and (IOw3). That is, both classes
of iv-fusion functions share the same properties except for (i)
monotonicity, (ii) continuity and (iii) width-limitation. Further-
more, it is easy to observe that those properties that they share,
commutativity and boundaries conditions, are interval counter-
parts of properties (On1), (On2) and (On3) of n-dimensional
overlap functions (Def. 7). In a sense, one can say that n-
dimensional overlap functions are the core functions in which
both Def.s 18 and 21 derive from. So, one could obtain anal-
ogous definitions for width-limited interval-valued aggregation
functions based on other core aggregation functions, if the prop-
erties of those core functions can be extended to the interval
context.

For that, inspired by the approach of directional increas-
ing fusion functions developed by Bustince et al. [48], first
we present a characterization of any subclass F of increasing
n-dimensional fusion functions through a set of properties PF
such that: (i) includes boundary conditions for any F ∈ F and
(ii) possibly includes some other constraints not related to the
monotonicity. Such subclass of fusion functions is given by:

F = {F : [0, 1]n → [0, 1]| F is increasing (12)
and satisfies all the properties in PF }.

Remark 3. In this paper, we work with the usual definition of
monotonicity, however, our characterization is not restricted by
this specific definition, meaning that other kinds of monotonic-
ity could be considered, such as weak monotonicity [49], di-
rectional monotonicity [50], ordered directionally monotonicity
[51] or strengthened ordered directionally monotonicity [52].

Example 5. Based on Eq. (12), the class of aggregation func-
tions A is given by A = {A : [0, 1]n → [0, 1]| A is increasing
and satisfies all the properties in PA}, where PA={A(0, . . ., 0)=
0, A(1, . . . , 1) = 1}. Analogously, any subclass of aggregation
functions can be denoted in this manner. For example, the class
of n-dimensional overlap functions On can be defined by: On =
{On : [0, 1]n → [0, 1]|On is increasing and satisfies all the
properties in POn}, where POn = {(On1), (On2), (On3), (On5)}.

Now, given the set PF of properties of a fusion function
F ∈ F , denote by IPF the set of interval extensions of the
properties in PF . Usually, there are more than one way to ex-
tend a given property of a function to the interval context, so
IPF varies accordingly to how one extends such properties.

Finally, consider the function B ∈ B, where a B is a sub-
class of increasing fusion functions (with its corresponding set
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of properties PB) and let ≤1,≤2 be partial orders on L([0, 1]).
Then, denote the class of width-limited interval-valued fusion
functions (w-iv-fusion functions) for the tuple (≤1,≤2, B) by
IFWB

≤1,≤2
, which is then given by:

IFwB
≤1,≤2
= (13)

{IF : L([0, 1])n → L([0, 1])|IF is (≤1,≤2)-increasing,
width-limited by B and satisfies the properties in IPF }.

Example 6. Consider the class of aggregation functions A,
with its respective set of properties PA (as shown in Ex. 5).
Also, consider an increasing fusion function B : [0, 1]n → [0, 1]
and let ≤1,≤2 be partial orders on L([0, 1]). Then, based on Eq.
(13), IAwB

≤1,≤2
is the class of width-limited interval-valued ag-

gregation functions (w-iv-aggregation functions) for the tuple
(≤1,≤2, B), given by:

IAwB
≤1,≤2
= (14)

{IA : L([0, 1])n → L([0, 1])|IA is (≤1,≤2)-increasing,

width-limited by B and satisfies the properties in IPA}
where IPA is an interval extension of PA, given by IPA =
{IA([0, 0], . . . , [0, 0]) = [0, 0], IA([1, 1], . . . , [1, 1]) = [1, 1]}. Ob-
serve that if ≤1=≤2=≤Pr and B(~x) = 1, for all ~x ∈ [0, 1]n,
then IAwB

≤1,≤2
is the class of iv-aggregation functions defined

in Def. 16. Similarly, other subclasses of iv-aggregation func-
tions can be retrieved by Eq. (13), depending on the set of
properties IPF . For example, take IPF = IPOn, where IPOn

is the interval extension of the set POn (see Ex. 5): IPOn =

{(IOn1), (IOn2), (IOn3), (IOn5)}, and B(~x) = 1, for all ~x ∈
[0, 1]n. Then, IOnwB

≤Pr
, given by

IOnwB
≤Pr
= (15)

{IOn : L([0, 1])n → L([0, 1])|IOn is ≤Pr -increasing,

width-limited by B and satisfies the properties in IPOn},
is the class of n-dimensional iv-overlap functions (Def. 18).

Remark 4. The representation of w-iv-fusion functions by Eq.
(13) is general enough so that different iv-aggregation func-
tions defined in the literature may be retrieved, such as interval-
valued t-norms and t-conorms [18], general interval-valued over-
lap functions [26], general interval-valued grouping functions
[31], among others, by restricting to the case where≤1=≤2=≤Pr

and B(~x) = 1, for all ~x ∈ [0, 1]n. However, those functions
clearly have no limitation regarding their output widths and
may not be applicable in problems where admissible orders
must be considered.

Example 7. Consider a function B ∈ B, where B is the sub-
class of increasing fusion functions, such that PB = {simmetry},
and two partial orders ≤1,≤2 on L([0, 1]). Then, IOnwB

≤1,≤2
is

the class of width-limited n-dimensional interval-valued over-
lap functions (w-iv-overlap functions) for the tuple (≤1,≤2, B),
given by:

IOnwB
≤1,≤2
= {IOnw : L([0, 1])n → L([0, 1])| (16)

IOnw is (≤1,≤2)-increasing, width-limited by B

and satisfies the properties in IPOn′ },
where IPOn′ = {(IOn1), (IOn2), (IOn3)}.

Observe that when n = 2, IOnwB
≤1,≤2

is the class of w-iv-
overlap functions as shown in Def. 21. In other case, when
≤1=≤2=≤α,β, with α, β ∈ [0, 1], such that α , β, and B(~x) = 1,
for all ~x ∈ [0, 1]n, then, also by Eq. (16), IOnwB

≤α,β is the
class of n-dimensional admissibly ordered interval-valued over-
lap function as presented in Def. 19.

Then, one can see that classes of iv-fusion functions that
may not be ≤Pr-increasing can also be retrieved by Eq. (13).

Remark 5. It is noteworthy that the continuity (On5) was not
extended to the interval context, so was not considered in IP′On.
Neither Def. 19 nor Def. 21 has continuity as a condition, as
its interval extension it is not fully developed in the context of
admissible orders. This is not a drawback, since the continu-
ity requirement was added to the definition of overlap functions
just because it was introduced firstly to be applied in image
processing [5]. Actually, it is well known that the continuity
can be disregarded in several applications, which is the case,
for example, when overlap functions are applied in classifica-
tion problems [26, 27, 53, 54]. Nevertheless, if one is defining
a class of width-limited ≤Pr-increasing fusion functions, than
the continuity can be extended to the interval-context by the
Moore-continuity [33], as in Ex. 6, when defining the class of
n-dimensional iv-overlap functions.

Remark 6. The associativity property was proved to be difficult
to maintain in iv-fusion functions that have controlled width-
limitation (see the construction methods in Sect. 5), so we do
not include it when defining a set IPF . We point out that this
is not a drawback of our approach, in the sense that we ex-
plain below. Observe that, for several applications (e.g., clas-
sification), it is necessary to consider n-dimensional inputs for
the aggregation process. That is why the associativity property
has been considered an important requirement for extending bi-
variate aggregation functions to the n-dimensional context in a
very direct way, which is the case, for example, of t-norms and
t-conorms [42]. However, it is well known that possibly non-
associative bi-variate functions (e.g., overlap/grouping func-
tions) can be extended to the n-dimensional context in many
ways (e.g., n-dimensional overlap/grouping functions and gen-
eral overlap/grouping functions). Also, one can find in the lit-
erature several possibly non-associative aggregation functions
which can be used as alternatives to t-norms/t-conorms, such as
t-seminorms or semi-copulas [55], weak t-norms [56], pseudo-
t-norms [57], semi-uninorms [58], MICA operators [59], and
micanorms [60].

Remark 7. In general, there are no restrictions regarding the
width-limiting function B, or its set of properties PB, when
defining a class IFWB

≤1,≤2
by Eq. (13). But, to construct some

examples of w-iv-fusion functions of the class IFWB
≤1,≤2

re-
specting the properties of IPF , it may be necessary that PB
shares some properties with PF . That is the reason for which
we required that B to be symmetric in Ex. 7, a shared prop-
erty with On. This relation between the core function F and
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the width-limiting function B becomes clear in the construction
methods presented in Section 5.

5. Construction Methods

With the concepts of width-limited functions and least width-
limiting functions, by Theorem 3, one can expect the maximum
amount of uncertainty on the outputs of a given iv-fusion func-
tion. However, in order to control such uncertainty to an ar-
bitrary degree (given by a chosen width-limiting function B),
one can apply the developed theory to obtain some construc-
tion methods for width-limited iv-fusion functions. This is the
main goal of this section.

In the following, we present a key concept to be applied in
the construction methods for w-iv-fusion functions:

Definition 22. Consider a fusion function B : [0, 1]n → [0, 1]
and let IF : L([0, 1])n → L([0, 1]) be an iv-fusion function.
Then, the function mIF,B : L([0, 1])n → [0, 1], defined for all
~X ∈ L([0, 1])n by:

mIF,B(~X) = min{w(IF(~X)), B(w(X1), . . . ,w(Xn))},

is called the maximal width threshold for the pair (IF, B).

5.1. Construction Method Based on representable iv-fusion func-
tions (CMR)

The main idea of the Construction Method based on Rep-
resentable iv-fusion functions (CMR) is to reduce the output’s
width of a representable iv-fusion function when it surpasses
the limit imposed by a width-limiting fusion function B. The
outputs of the constructed function are given by the maximal
threshold for the pair (F̂, B), where F̂ is the best interval rep-
resentation (BIR) of a strict fusion function F. The reduction
of the output occurs in the direction of a point of the interval,
accordingly to a chosen value of α ∈ [0, 1]. For example, if
α = 0.5, then the output is “narrowed” towards the medium
point of the interval obtained through the BIR.

The formalization of this concept is presented in the follow-
ing three theorems, each one with some specificity regarding
the chosen strict fusion function F and its respective restriction
on the choice of admissible order that is suitable for the con-
struction method.

Theorem 6. Consider an increasing fusion function B : [0, 1]n →
[0, 1], a strict fusion function F : [0, 1]n → [0, 1] with h = 0
as its annihilator element, α ∈ (0, 1] and β ∈ [0, α). Then, the
iv-fusion function IFwα

B : L([0, 1])n → L([0, 1]) defined, for all
~X ∈ L([0, 1])n, by

IFwα
B(~X) = [Kα(F̂(~X)) − α · mF̂,B(~X), (17)

Kα(F̂(~X)) + (1 − α) · mF̂,B(~X)],

is a width-limited fusion function for the tuple (≤Pr,≤α,β, B).

Proof. See Appendix Appendix B.

Theorem 7. Consider an increasing fusion function B : [0, 1]n →
[0, 1], a strict fusion function F : [0, 1]n → [0, 1] with h = 1
as its annihilator element α ∈ [0, 1) and β ∈ (α, 1]. Then, the
iv-fusion function IFwα

B : L([0, 1])n → L([0, 1]) defined, for all
~X ∈ L([0, 1])n, by

IFwα
B(~X) = [Kα(F̂(~X)) − α · mF̂,B(~X),

Kα(F̂(~X)) + (1 − α) · mF̂,B(~X)],

is a width-limited fusion function for the tuple (≤Pr,≤α,β, B).

Proof. Analogous to the proof of Theorem 6.

The following theorem follows from Theorems 6 and 7.

Theorem 8. Consider an increasing fusion function B : [0, 1]n →
[0, 1], a strictly increasing fusion function F : [0, 1]n → [0, 1]
and α, β ∈ [0, 1] with α , β. Then, the iv-fusion function
IFwα

B : L([0, 1])n → L([0, 1]) defined, for all ~X ∈ L([0, 1])n,
by

IFwα
B(~X) = [Kα(F̂(~X)) − α · mF̂,B(~X),

Kα(F̂(~X)) + (1 − α) · mF̂,B(~X)],

is a width-limited fusion function for the tuple (≤Pr,≤α,β, B).

One can impose certain conditions on the functions B and F,
reflected on the sets PB and PF , respectively, in order to obtain
specific subclasses of fusion functions. In the following, con-
sider the class of w-iv-aggregation functions IAwB

≤Pr ,≤α,β given
by Eq. (14), in Ex. 6.

Theorem 9. Consider an increasing function B : [0, 1]n →
[0, 1], a strict aggregation function A : [0, 1]n → [0, 1] with
h = 0 as its annihilator element, α ∈ (0, 1] and β ∈ [0, α). Then,
the iv-fusion function IAwα

B : L([0, 1])n → L([0, 1]) defined, for
all ~X ∈ L([0, 1])n, by

IAwα
B(~X) = [Kα(Â(~X)) − α · mÂ,B(~X),

Kα(Â(~X)) + (1 − α) · mÂ,B(~X)],

is a width-limited aggregation function for (≤Pr,≤α,β, B).

Proof. From the proof of Theorem 6, IAwα
B is well defined, (≤Pr

,≤α,β)-increasing and width-limited by B. We prove that: (i)
IAwα

B([0, 0], . . ., [0, 0])=[0, 0], (ii) IAwα
B([1, 1], . . ., [1, 1])=[1, 1].

(i) From (A2), one has that Â([0, 0], . . . , [0, 0]) = [0, 0]. Then:
w(Â([0, 0], . . . , [0, 0])) = 0 = mÂ,B([0, 0], . . . , [0, 0]).

So, IAwα
B([0, 0], . . . , [0, 0]) = Â([0, 0], . . . , [0, 0]) = [0, 0].

(ii) Also, from (A2), one has that Â([1, 1], . . . , [1, 1]) = [1, 1].
Then: w(Â([1, 1], . . . , [1, 1])) = 0 = mÂ,B([1, 1], . . . , [1, 1]). So,
IAwα

B([1, 1], . . ., [1, 1])=Â([1, 1], . . ., [1, 1])=[1, 1].

Theorem 10. Consider an increasing function B : [0, 1]n →
[0, 1], a strict aggregation function A : [0, 1]n → [0, 1] with
h = 1 as its annihilator element, α ∈ [0, 1) and β ∈ (α, 1]. Then,
the iv-fusion function IAwα

B : L([0, 1])n → L([0, 1]) defined, for
all ~X ∈ L([0, 1])n, by

IAwα
B(~X) = [Kα(Â(~X)) − α · mÂ,B(~X),
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Kα(Â(~X)) + (1 − α) · mÂ,B(~X)],

is a width-limited aggregation function for (≤Pr,≤α,β, B).

Proof. Analogous to the proof of Theorem 9.

The next theorem follows from Theorems 9 and 10:

Theorem 11. Consider an increasing function B : [0, 1]n →
[0, 1], an aggregation function A : [0, 1]n → [0, 1] that is
strictly increasing on [0, 1]n, and α, β ∈ [0, 1] with α , β. Then,
the iv-fusion function IAwα

B : L([0, 1])n → L([0, 1]) defined, for
all ~X ∈ L([0, 1])n, by

IAwα
B(~X) = [Kα(Â(~X)) − α · mÂ,B(~X),

Kα(Â(~X)) + (1 − α) · mÂ,B(~X)],

is a w-iv-aggregation function for the tuple (≤Pr,≤α,β, B).

Example 8. Consider B = min, A = AM (arithmetic mean),
α = 0.5 and β = 0 (admissible order ≤IQ). Then, the iv-fusion
function IAMwα

min : L([0, 1])n → L([0, 1]) defined, for all ~X ∈
L([0, 1])n, by

IAMwα
min(~X) = [Kα(ÂM(~X)) − α · mÂM,min(~X),

Kα(ÂM(~X)) + (1 − α) · mÂM,min(~X)],

is a w-iv-aggregation function for the tuple (≤Pr,≤IQ,min).

Remark 8. It is noteworthy that, by Theorem 5, ÂM (BIR of
the arithmetic mean) is width-limited by AM, as AM is an ~1-
ultramodular aggregation function and AM = AMd. However,
if one must control the output’s width by a width-limiting func-
tion B such that B ≤ AM (which is the case for B = min),
then the construction method shown in Theorem 11 may be em-
ployed, with the result presented in Ex. 8.

Analogously, one can construct w-iv-fusion functions that
are interval extensions of specific types of aggregation func-
tions. For instance, consider the class of w-iv-overlap functions
IOnwB

≤Pr ,≤α,β given by Eq. (15), in Ex. 7.

Theorem 12. Consider a symmetric and increasing function
B : [0, 1]n → [0, 1], a strict n-dimensional overlap function
On : [0, 1]n → [0, 1], α ∈ (0, 1) and β ∈ [0, α). Then, the iv-
fusion function IOnwα

B : L([0, 1])n → L([0, 1]) defined, for all
~X ∈ L([0, 1])n, by

IOnwα
B(~X) = [Kα(Ôn(~X)) − α · mÔn,B(~X), (18)

Kα(Ôn(~X)) + (1 − α) · mÔn,B(~X)],

is a width-limited overlap function for (≤Pr,≤α,β, B).

Proof. From the proof of Theorem 6, it is immediate that IOnwα
B

is well defined, (≤Pr,≤α,β)-increasing and width-limited by B.
It remains to be proven that IOnwα

B has the properties of the set
IPOn′ = {(IOn1), (IOn2) and (IOn3)}:
(IOn1) It is immediate, since On and B are both symmetric.
(IOn2) (⇒) Take ~X ∈ L([0, 1])n, such that IOnwα

B(~X) = [0, 0].
Then, we have the following cases:

1) mÔn,B(~X) = w(Ôn(~X)):
From Eqs. (7) and (18), it follows that:

[Kα(Ôn(~X)) − αw(Ôn(~X)),
Kα(Ôn(~X)) + (1 − α)w(Ôn(~X))] = [0, 0]

⇒ [On(X1, . . . , Xn) + αw(Ôn(~X)) − αw(Ôn(~X)),

On(X1, . . . , Xn) + αw(Ôn(~X)) + w(Ôn(~X)) −
αw(Ôn(~X))] = [0, 0]

⇒ [On(X1, . . . , Xn),

On(X1, . . . , Xn) + w(Ôn(~X))] = [0, 0]

⇒ [On(X1, . . . , Xn),On(X1, . . . , Xn)] = [0, 0]

⇒ Ôn(~X) = [0, 0]⇔
n∏

i=1

Xi = [0, 0], by (On2).

2) mÔn,B(~X) = B(w(X1), . . . ,w(Xn)):
From Eqs. (7) and (18), it holds that:

[Kα(Ôn(~X)) − αB(w(X1), . . .,w(Xn)), (19)
Kα(Ôn(~X)) + (1 − α)B(w(X1), . . .,w(Xn))]=[0, 0]

⇒ −αB(w(X1), . . . ,w(Xn)) =
(1 − α)B(w(X1), . . . ,w(Xn))

⇒ B(w(X1), . . . ,w(Xn)) = 0
⇒ [Kα(Ôn(~X)),Kα(Ôn(~X))] = [0, 0], by Eq. (19)
⇒ Kα(Ôn(~X)) = 0
⇒ Ôn(~X) = [0, 0], since α , 0

⇔
n∏

i=1

Xi = [0, 0], by (On2).

(⇐) Consider ~X ∈ L([0, 1])n, such that
∏n

i=1 Xi = [0, 0].
Then, it is immediate that Ôn(~X) = [0, 0] and mÔn,B(~X) = 0.
Furthermore, from Eq. (18):

IOnwα
B(~X) = [Kα([0, 0])−α · 0,Kα([0, 0])+ (1−α) · 0] = [0, 0].

(IOn3) (⇒) Take ~X ∈ L([0, 1])n, such that IOnwα
B(X,Y) =

[1, 1]. We have the following cases:
1) mÔn,B(~X) = w(Ôn(~X))

From Eqs. (7) and (18), it follows that:

[Kα(Ôn(~X)) − αw(Ôn(~X)),
Kα(Ôn(~X)) + (1 − α)tw(Ôn(~X))] = [1, 1]

⇒ [On(X1, . . . , Xn) + αw(Ôn(~X)) − αw(Ôn(~X)),

O(X,Y) + αw(Ô(X,Y)) + w(Ô(X,Y))

−αw(Ôn(~X))] = [1, 1]

⇒ [On(X1, . . ., Xn),On(X1, . . ., Xn)+w(Ôn(~X))]=[1, 1]

⇒ [On(X1, . . . , Xn),On(X1, . . . , Xn)] = [1, 1]

⇒ Ôn(~X) = [1, 1]⇔
n∏

i=1

Xi = [1, 1], by (On3).

2) mÔn,B(~X) = B(w(X1), . . . ,w(Xn))
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From Eqs. (7) and (18), it holds that:

[Kα(Ôn(~X)) − αB(w(X1), . . .,w(Xn)),Kα(Ôn(~X)) (20)
+(1 − α)B(w(X1), . . .,w(Xn))]=[1, 1]

⇒ −αB(w(X1), . . . ,w(Xn)) =
(1 − α)B(w(X1), . . . ,w(Xn))

⇒ B(w(X1), . . . ,w(Xn)) = 0 (21)
⇒ [Kα(Ôn(~X)),Kα(Ôn(~X))] = [1, 1], by Eq. (20)
⇒ Kα(Ôn(~X)) = 1
⇒ Ôn(~X) = [1, 1], since α , 1

⇔
n∏

i=1

Xi = [1, 1], by (On3).

(⇐) Consider ~X ∈ L([0, 1])n such that
∏n

i=1 Xi = [1, 1].
Then, it is immediate that Ôn(~X) = [1, 1] and mÔn,B(~X) = 0.
Furthermore, from Eq. (18): IOnwα

B(~X) = [Kα([1, 1]) − α ·
0,Kα([1, 1])(1 − α) · 0] = [1, 1].

Remark 9. In Theorem 12, we have that α , 1, which is not
necessary in Theorems 6 and 9. This is to ensure that IOnwα

B
respects condition (IOn3). Furthermore, B must be symmetric
for IOnwα

B to respect condition (IOn1). These restrictions on B
and αmay vary accordingly to the class of aggregation function
on which the construction method is based.

Here, we present an example of applying CMR based on the
n-dimensional overlap function OnB, given in Eq. (3), which is
a function that produces good results when applied in classifi-
cation problems, as shown in Section 6.

Example 9. Consider B = max, On = OnB, given in Eq. (3),
α = 0.5 and β = 0 (admissible order ≤IQ). Then, by Theorem
12, the iv-fusion function IOnwα

OnB,max : L([0, 1])n → L([0, 1])
defined, for all ~X ∈ L([0, 1])n, by

IOnwα=0.5
OnB,max(~X) = (22)

[Kα=0.5(ÔnB(~X)) − 0.5 · mÔnB,max(~X),

Kα=0.5(ÔnB(~X)) + 0.5 · mÔnB,max(~X)],

is a w-iv-overlap function for the tuple (≤Pr,≤IQ,max).
a) Let n = 2, X1 = [0.2, 0.8] and X2 = [0.5, 1]. So, we have that
w(X1) = 0.6, w(X2) = 0.5 and max{w(X1),w(X2)} = 0.6. Also,
it holds that:

ÔnB(~X) = [OnB(0.2, 0.5),OnB(0.8, 1)] = [0.1414, 0.8].

Observe that

w(ÔnB(~X)) = 0.6586 > 0.6 = max{w(X1),w(X2)},
meaning that ÔnB is not width-limited by max.

However, from Eq. (22), one has that:

IOnwα=0.5
OnB,max(~X)

= [Kα=0.5(ÔnB(~X)) − 0.5 · mÔnB,max(~X),

Kα=0.5(ÔnB(~X)) + 0.5 · mÔnB,max(~X)]

= [Kα=0.5([0.1414, 0.8]) − 0.5 ·min{w(ÔnB(~X)),
max{w(X1),w(X2)}},Kα=0.5([0.1414, 0.8])
+0.5 ·min{w(ÔnB(~X)),max{w(X1),w(X2)}}]

= [0.4707 − 0.5 ·min{0.6586, 0.6}, 0.4707
+0.5 ·min{0.6586, 0.6}] = [0.1707, 0.7707].

So, w(IOnwα=0.5
OnB,max(~X)) = 0.6 ≤ max{w(X1),w(X2)}, which is

expected from a function that is width-limited by max.
One can visualise the way that the method works by taking

the interval [0.1414, 0.8] (output of the BIR) and “narrowing”
it in the direction of its Kα point. In this case, as α = 0.5, its the
midpoint (0.4707). This can be verified, since:

Kα=0.5(ÔnB(~X)) = Kα=0.5([0.1414, 0.8]) = 0.4707
=Kα=0.5([0.1707, 0.7707])=Kα=0.5(IOnwα=0.5

OnB,max(~X)).

If we consider α = 0.99, then the narrowing of the interval
[0.1414, 0.8] would occur towards the value 0.7934, near its
right endpoint. In this case, IOnwα=0.99

OnB,max(~X) = [0.1994, 0.7994].
b) Take X1 = [0.6, 0.9] and X2 = [0.8, 0.8], then, w(X1) = 0.3,
w(X2) = 0 and max{w(X1),w(X2)} = 0.3. In this case,

ÔnB(~X) = [OnB(0.6, 0.8),OnB(0.9, 0.8)] = [0.5367, 0.759].

So, w(ÔnB(~X)) = 0.2223 < 0.3 = max{w(X1),w(X2)}. Also,
from Eq. (22):

IOnwα=0.5
OnB,max(~X)

= [Kα=0.5(ÔnB(~X)) − 0.5 · mÔnB,max(~X),

Kα=0.5(ÔnB(~X)) + 0.5 · mÔnB,max(~X)]

= [Kα=0.5([0.5367, 0.759]) − 0.5 ·min{w(ÔnB),
max{w(X1),w(X2)}},Kα=0.5([0.5367, 0.759])
+0.5 ·min{w(ÔnB),max{w(X1),w(X2)}}]

= [0.6479 − 0.5 · 0.2223, 0.6479 + 0.5 · 0.2223]
= [0.5367, 0.759].

Observe that, although ÔnB is not width-limited by max, in this
case, the width of the output does not exceed the limit imposed
by the chosen width-limiting function (max). That is why, by
applying the construction method as by Eq. (22), it follows that
IOnwα=0.5

OnB,max(~X) = [0.5367, 0.759] = ÔnB(~X).

In Table 1, we show the results obtained for IOnwα
OnB,B(~X),

given in Ex. 9, by different choices of α and width-limiting
function B. In this table, it is possible to compare the results
obtained by CMR with the ones given by the BIR. Also, one can
observe that, in every case shown in Table 1, IOnwα

OnB,B(~X) ⊆
ÔnB(~X).

By extending n-dimensional grouping functions to the in-
terval context in a similar manner as done in Ex. 7 with n-
dimensional overlap functions, one can obtain the class of n-
dimensional w-iv-grouping functions, denoted by IGnwB

≤Pr ,≤α,β .
As n-dimensional grouping functions are the dual of n-dimensional
overlap functions, the following result is immediate from The-
orems 10 and 12.
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Table 1: Ex. of CMR, comparing with the BIR

CMR Best Interval Representation

X1 = [0.2, 0.8]
X2 = [0.5, 1] IOnw0.5

OnB,max(~X) = [0.1707, 0.7707] ÔnB(~X) = [0.1414, 0.8]
B = max
α = 0.5

X1 = [0.2, 0.8]
X2 = [0.5, 1] IOnwp0.99

OnB,max(~X) = [0.1994, 0.7994] ÔnB(~X) = [0.1414, 0.8]
B = max
α = 0.99

X1 = [0.2, 0.8]
X2 = [0.5, 1] IOnw0.5

OnB,min(~X) = [0.2207, 0.7207] ÔnB(~X) = [0.1414, 0.8]
B = min
α = 0.5

X1 = [0.2, 0.8]
X2 = [0.5, 1] IOnwp0.99

OnB,min(~X) = [0.2984, 0.7984] ÔnB(~X) = [0.1414, 0.8]
B = min
α = 0.99

Theorem 13. Consider a symmetric and increasing function
B : [0, 1]n → [0, 1], a strict n-dimensional grouping function
Gn : [0, 1]n → [0, 1], α ∈ (0, 1) and β ∈ (α, 1]. Then, the iv-
fusion function IOnwα

B : L([0, 1])n → L([0, 1]) defined, for all
~X ∈ L([0, 1])n, by

IOnwα
B(~X) = [Kα(Ôn(~X)) − α · mÔn,B(~X), (23)

Kα(Ôn(~X)) + (1 − α) · mÔn,B(~X)],

is n-dimensional w-iv-grouping function for (≤Pr,≤α,β, B).

Example 10. Consider B = AM (arithmetic mean), Gn = Gnp

(probabilistic sum), α = 0.5 and β = 1 (admissible order ≤XY ).
Then, the iv-fusion function IGPwα

min : L([0, 1])n → L([0, 1])
defined, for all ~X ∈ L([0, 1])n, by

IGPwα
AM(~X) = [Kα(Ĝnp(~X)) − αmĜnp,AM(~X),

Kα(Ĝnp(~X)) + (1 − α)mĜnp,AM(~X)], (24)

is a w-iv-grouping function for the tuple (≤Pr,≤XY , AM).

Regardless of the core fusion function F employed on CMR,
the following result holds:

Proposition 3. Let IFwα
B : L([0, 1])n → L([0, 1]) be a w-

iv-fusion function for the tuple (≤Pr,≤α,β, B) obtained through
Theorem 6, Theorem 7 or Theorem 8, with the respective choices
of α, β ∈ [0, 1] such that α , β. Then, for any ~X ∈ L([0, 1])n

one has that IFwα
B(~X) ⊆ F̂(~X).

Remark 10. Prop. 3 ensures that any w-iv-fusion function ob-
tained through the CMR never generates outputs outside of the
interval output of the BIR of the base fusion function F.

5.2. A Construction Method based on admissibly ordered iv-
fusion functions (CMA)

This method follows a similar approach as CMR, by apply-
ing the maximal threshold to limit the outputs’ widths of the
constructed function around a Kα point. The main difference
is that, instead of being based on representable iv-fusion func-
tions, it is based on ≤α,β-increasing fusion functions.

Theorem 14. Consider an increasing fusion function B : [0, 1]n →
[0, 1], a strict fusion function F : [0, 1]n → [0, 1] with h = 0 as
its annihilator element, α ∈ (0, 1], β ∈ [0, 1] such that α , β,
and an ≤α,β-increasing iv-fusion function IFα : L([0, 1])n →
L([0, 1]), such that Kα(IFα)(~X) = F(Kα(X1), . . . ,Kα(Xn)), for
all ~X ∈ L([0, 1])n. Then, the iv- fusion function IFwα

B : L([0, 1])n →
L([0, 1]) defined, for all ~X ∈ L([0, 1])n, by

IFwα
B(~X) = [Kα(IFα(~X)) − α · mIFα,B(~X),

Kα(IFα(~X)) + (1 − α) · mIFα,B(~X)],

is a width-limited fusion function for (≤α,β,≤α,β, B).

Proof. See Appendix Appendix C.

Theorem 15. Consider an increasing fusion function B : [0, 1]n →
[0, 1], a strict fusion function F : [0, 1]n → [0, 1] with h = 1 as
its annihilator element, α ∈ [0, 1), β ∈ [0, 1] such that α , β,
and an ≤α,β-increasing iv-fusion function IFα : L([0, 1])n →
L([0, 1]), such that Kα(IFα)(~X) = F(Kα(X1), . . . ,Kα(Xn)), for
all ~X ∈ L([0, 1])n. Then, the iv- fusion function IFwα

B : L([0, 1])n →
L([0, 1]) defined, for all ~X ∈ L([0, 1])n, by

IFwα
B(~X) = [Kα(IFα(~X)) − α · mIFα,B(~X),

Kα(IFα(~X)) + (1 − α) · mIFα,B(~X)],

is a width-limited fusion function for (≤α,β,≤α,β, B).

Proof. Analogous to the proof of Theorem 14.

The next theorem follows from Theorems 14 and 15.

Theorem 16. Consider an increasing fusion function B : [0, 1]n →
[0, 1], a strictly increasing fusion function F : [0, 1]n → [0, 1],
α, β ∈ [0, 1] such that α , β, and an ≤α,β-increasing iv-fusion
function IFα : L([0, 1])n → L([0, 1]), such that Kα(IFα)(~X) =
F(Kα(X1), . . . ,Kα(Xn)), for all ~X ∈ L([0, 1])n. Then, the iv-
fusion function IFwα

B : L([0, 1])n → L([0, 1]) defined, for all
~X ∈ L([0, 1])n, by

IFwα
B(~X) = [Kα(IFα(~X)) − α · mIFα,B(~X),

Kα(IFα(~X)) + (1 − α) · mIFα,B(~X)],

is a width-limited fusion function for (≤α,β,≤α,β, B).

Similarly as done with CMR, one can obtain w-iv-aggregation
functions as follows:

Theorem 17. Consider an increasing fusion function B : [0, 1]n →
[0, 1], a strict aggregation function A : [0, 1]n → [0, 1] with
h = 0 as its annihilator element, α ∈ (0, 1], β ∈ [0, 1] such that
α , β, and an ≤α,β-increasing iv-aggregation function IAα :
L([0, 1])n → L([0, 1]), such that Kα(IA)(~X) = A(Kα(X1), . . . ,Kα(Xn)),
for all ~X ∈ L([0, 1])n. Then, the iv-fusion function IAwα

B :
L([0, 1])n → L([0, 1]) defined, for all ~X ∈ L([0, 1])n, by

IAwα
B(~X) = [Kα(IAα(~X)) − α · mIAα,B(~X),

Kα(IAα(~X)) + (1 − α) · mIA,B(~X)],

is a w-iv-aggregation function for the tuple (≤α,β,≤α,β, B).
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Proof. From the proof of Theorem 16, it is immediate that IAwα
B

is well defined, ≤α,β-increasing and width-limited by B. It re-
mains to be proven that: (i) IAwα

B([0, 0], . . . , [0, 0]) = [0, 0] and
(ii) IAwα

B([1, 1], . . . , [1, 1]) = [1, 1].
(i) By (IA2), one has that IA([0, 0], . . . , [0, 0]) = [0, 0]. Then
w(IA([0, 0], . . . , [0, 0])) = 0 = mIAα,B([0, 0], . . . , [0, 0]). So,
IAwα

B([0, 0], . . . , [0, 0]) = IAα([0, 0], . . . , [0, 0]) = [0, 0].
(ii) By (IA2), IAα([1, 1], . . . , [1, 1]) = [1, 1]. So, we have that
w(IAα([1, 1], . . . , [1, 1])) = 0 = mIAα,B([1, 1], . . . , [1, 1]), and
IAwα

B([1, 1], . . . , [1, 1])=IAα([1, 1], . . . , [1, 1]) = [1, 1].

Theorem 18. Consider an increasing fusion function B : [0, 1]n →
[0, 1], a strict aggregation function A : [0, 1]n → [0, 1] with
h = 1 as its annihilator element, α ∈ [0, 1), β ∈ [0, 1] such
that α , β, and an ≤α,β-increasing iv-aggregation function
IAα : L([0, 1])n → L([0, 1]), such that

Kα(IAα)(~X) = A(Kα(X1), . . . ,Kα(Xn)),

for all ~X ∈ L([0, 1])n. Then, the iv-fusion function IAwα
B :

L([0, 1])n → L([0, 1]) defined, for all ~X ∈ L([0, 1])n, by

IAwα
B(~X) = [Kα(IAα(~X)) − α · mIAα,B(~X),

Kα(IAα(~X)) + (1 − α) · mIAα,B(~X)],

is a w-iv-aggregation function for the tuple (≤α,β,≤α,β, B).

Proof. Analogous to the proof of Theorem 17.

The next theorem follows from Theorems 17 and 18:

Theorem 19. Consider an increasing fusion function B : [0, 1]n →
[0, 1], a strictly increasing aggregation function A : [0, 1]n →
[0, 1], α, β ∈ [0, 1] such that α , β, and an ≤α,β-increasing
iv-aggregation function IAα : L([0, 1])n → L([0, 1]), such that
Kα(IAα)(~X) = A(Kα(X1), . . . ,Kα(Xn)), for all ~X ∈ L([0, 1])n.
Then, the iv-fusion function IAwα

B : L([0, 1])n → L([0, 1]) de-
fined, for all ~X ∈ L([0, 1])n, by

IAwα
B(~X) = [Kα(IAα(~X)) − α · mIAα,B(~X),

Kα(IAα(~X)) + (1 − α) · mIAα,B(~X)],

is a w-iv-aggregation function for the tuple (≤α,β,≤α,β, B).

Width-limited functions based on a specific class of aggre-
gation functions can also be constructed. In the following, we
present the construction method for w-iv-overlap functions:

Theorem 20. Consider an increasing and symmetric fusion
function B : [0, 1]n → [0, 1], a strict n-dimensional overlap
function On : [0, 1]n → [0, 1], α ∈ (0, 1), β ∈ [0, 1] with α , β,
and an ≤α,β-overlap function IOnα : L([0, 1])n → L([0, 1]),
such that Kα(IOn)(~X) = On(Kα(X1), . . . ,Kα(Xn)), for all ~X ∈
L([0, 1])n. Then, the iv-fusion function IOnwα

B : L([0, 1])n →
L([0, 1]) defined, for all ~X ∈ L([0, 1])n, by

IOnwα
B(~X) = [Kα(IOnα(~X)) − α · mIOnα,B(~X),

Kα(IOnα(~X)) + (1 − α) · mIOnα,B(~X)],

is a w-iv-overlap function for the tuple (≤α,β,≤α,β, B).

Proof. From the proof of Theorem 19, it is immediate that IOnwα
B

is well defined, (≤Pr,≤α,β)-increasing and width-limited by B.
It remains to be proven that IOnwα

B has the properties of the set
IPOn′ = {(IOn1), (IOn2), (IOn3)}:
(IOn1) It is immediate, since On and B are both symmetric.
(IOn2) (⇒) Take ~X ∈ L([0, 1])n and suppose that IOnwα

B(~X) =
[0, 0]. Then, we have that

Kα(IOnwα
B(~X))=Kα([0, 0])=0=On(Kα(X1), . . .,Kα(Xn)),

since α ∈ (0, 1). Thus, by condition (On2), Kα(Xi) = 0 for
some i ∈ {0, . . . , n}, and, therefore,

∏n
i=1 Xi = [0, 0];

(⇐) Consider ~X ∈ L([0, 1])n such that
∏n

i=1 Xi = [0, 0]. So,
Kα(Xi) · . . . · Kα(Xn) = 0, since α ∈ (0, 1). Then, by (On2), one
has that

Kα(IOnwα
B(~X)) = On(Kα(X1), . . . ,Kα(Xn)) = 0,

meaning that IOnwα
B(~X) = [0, 0];

(IOn3) (⇒) Take ~X ∈ L([0, 1])n such that IOnwα
B(~X) = [1, 1].

Then, one has that

Kα(IOnwα
B(~X))=Kα([1, 1])=1=On(Kα(X1), . . .,Kα(Xn)).

By (On3), Kα(X1) · . . . · Kα(Xn) = 1, since α ∈ (0, 1), meaning
that

∏n
i=1 Xi = [1, 1];

(⇐) Consider ~X ∈ L([0, 1])n such that
∏n

i=1 Xi = [1, 1]. So,
Kα(X1) · . . . · Kα(Xn) = 1, since α ∈ (0, 1). Then, by (On3), one
has that

Kα(IOnwα
B(~X))=On(Kα(X1), . . .,Kα(Xn))=1,

meaning that IOnwα
B(~X) = [1, 1].

Example 11. Consider the ≤IQ-overlap function AOnαOnB,max
given by Theorem 2 for B = max, On = OnB given by Eq. (3),
α = 0.5 and β = 0 (admissible order ≤IQ). Then, the iv-fusion
function IOnwα

OnB,max : L([0, 1])n → L([0, 1]) defined, for all
~X ∈ L([0, 1])n, by

IOnwα
OnB,max(~X) = (25)

[Kα(AOnαOnB,max(~X)) − αmAOnαOnB,max,max(~X),

Kα(AOnαOnB,max(~X)) + (1−α)mAOnαOnB,max,max(~X)],

is a w-iv-overlap function for the tuple (≤IQ,≤IQ,max).
Let us consider the same cases as in Ex. 9, but now applying

CMA. So, take n = 2, X1 = [0.2, 0.8] and X2 = [0.5, 1], meaning
that max{w(X1),w(X2)} = 0.6. Also, from Theorem 2, it holds
that:

AOnαOnB,max(~X) = R (26)

where
{

Kα(R) = OnB(Kα(X1),Kα(X2)),
λα(R) = max{λα(X1), λα(X2)},

with λα(X1) and λα(X2) given by Def. 17. So, we have that:

w(AOnαOnB,max(~X))

= λα(AOnαOnB,max) ·min
{ Kα(AOnαOnB,max)

α
,
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1 − Kα(AOnαOnB,max)

1 − α
}

by Eq. (10)

= max{λα([0.2, 0.8]), λα([0.5, 1])} ·
min

{
OnB(Kα([0.2, 0.8]),Kα([0.5, 1]))

0.5
,

1 − OnB(Kα([0.2, 0.8]),Kα([0.5, 1]))
1 − 0.5

}
by Eq. (26)

= max
{

w([0.2, 0.8])
dα(Kα([0.2, 0.8]))

,
w([0.5, 1])

dα(Kα([0.5, 1]))

}
·

min
{

OnB(0.5, 0.75)
0.5

,
1 − OnB(0.5, 0.75)

0.5

}
by Eq. (8)

= max


0.6

min
{

0.5
0.5 ,

0.5
0.5

} , 0.5

min
{

0.75
0.5 ,

0.25
0.5

}


·

min
{

0.433
0.5

,
1 − 0.433

0.5

}
by Eq. (9)

= max
{

0.6
1
,

0.5
0.5

}
·min {0.866, 1.134} = 0.866.

So, it follows that:

w(AOnαOnB,max(~X)) = 0.866 > 0.6 = max{w(X1),w(X2)},
meaning that AOnαOnB,max is not width-limited by max. By ap-
plying CMA, from Eq. (25), one has that:

IOnwα=0.5
OnB,max(~X)

= [Kα=0.5(AOnαOnB,max(~X))−0.5 · mAOnαOnB,max,max(~X),

Kα=0.5(AOnαOnB,max(~X))+0.5 · mAOnαOnB,max,max(~X)]
= [OnB(0.5, 0.75) − 0.5 ·min{0.866, 0.6},

OnB(0.5, 0.75) + 0.5 ·min{0.866, 0.6}]
= [0.433 − 0.5 · 0.6, 0.433 + 0.5 · 0.6]
= [0.133, 0.733].

So, w(IOnwα=0.5
OnB,max(~X) = 0.6 ≤ max{w(X1),w(X2)}, which is

expected from a function that is width-limited by max.
For a similar reason as observed in Ex. 9, whenever one

has that w(AOnαOnB,max(~X)) ≤ max{w(X1),w(X2)}, for some ~X ∈
L([0, 1])n and α ∈ (0, 1], then the output already respects the
width control dictated by max, and, in this case, IOnwα

OnB,max(~X) =
AOnαOnB,max(~X).

Some values obtained by both IOnwα
OnB,B(~X) and AOnαOnB,B(~X)

(from Ex. 11) can be seen on Table 2, by varying the value of
α and the chosen width-limiting function B. One can observe
that, in Table 2, every result obtained by CMA (IOnwα

OnB,B(~X))
is contained on the interval given by the corresponding ≤α,β-
overlap function without width-limitation (AOnαOnB,B(~X)). Also,
different from the BIR, AOnαOnB,B varies accordingly to the cho-
sen α. Finally, it is noteworthy that, in both Ex. 11 and Table
2, we applied the same function B for both IOnwα

OnB,B(~X) and
AOnαOnB,B(~X), but this is not a requirement. We decided to keep
both iv-functions based on the same B for simplicity.

At this point, it is clear that other classes of w-iv-aggregation
functions can be obtained through CMA, by the appropriate
choices of a strict aggregation function A, a width-limiting func-
tion B, α, β and an ≤α,β-increasing iv-aggregation function IAα.

Table 2: CMA, comparing with ≤α,β-overlap functions

CMA ≤α,β-overlap function

X1 = [0.2, 0.8]
X2 = [0.5, 1] IOnw0.5

OnB,max(~X) = [0.13, 0.73] AOn0.5
OnB,max(~X) = [0, 0.87]

B = max
α = 0.5

X1 = [0.2, 0.8]
X2 = [0.5, 1] IOnw0.99

OnB,max(~X) = [0.19, 0.79] AOn0.99
OnB,max(~X) = [0, 0.80]

B = max
α = 0.99

X1 = [0.2, 0.8]
X2 = [0.5, 1] IOnw0.5

OnB,min(~X) = [0.18, 0.68] AOn0.5
OnB,min(~X) = [0.17, 0.69]

B = min
α = 0.5

X1 = [0.2, 0.8]
X2 = [0.5, 1] IOnwp0.99

OnB,min(~X) = [0.29, 0.79] AOn0.99
OnB,min(~X) = [0.19, 0.80]

B = min
α = 1

5.3. Applications to practical problems

When applying either of the construction methods of width-
limited iv-fusion functions in practical problems, the domain
expert has to make some key choices, as explained bellow:
1. The choice of fusion function F: usually, when extending
a fusion/aggregation process modelled by a fusion function F
to the interval context, one can maintain the same fusion func-
tion F as the core of the construction method to be employed.
For example, it was shown by Asmus et al. [27] that the n-
dimensional overlap functions GM and OnB, defined in Eqs.
(2) and (3), respectively, are well fitted to be employed in clas-
sification problems. Thus, it is natural that those functions are
chosen to be the core of some w-iv-fusion functions to be ap-
plied in IV-FRBCSs with width-limitation (see Sect. 6);
2. The choice of α: It is entirely determined by the admissible
order ≤α,β that is indicated for the application. The choice of
the interval order depends on how the intervals are obtained or
interpreted [34, 36, 38]. To keep the same example, Asmus et
al. [27] showed that the admissible order ≤IQ (α = 0.5, β = 0),
defined in Eq. (6), is a suitable choice for IV-FRBCSs.
3. The choice of the width-limiting function B: it depends on
how much the length of the output interval’s width has to be
controlled to conserve the information quality of the interval in-
puts, since the larger the width of the interval output, the lesser
is the information quality carried by it [39]. This level of con-
trol to be determined may not be obvious, but there are ways to
test/compare different configurations of the same construction
method by taking in to account different width-limiting func-
tions, as we show in the application in a classification problem,
presented in Sect. 6.

6. Application to Classification Problems

To showcase the applicability of our developments in prac-
tical problems, in this section we apply interval operators of
specific subclasses of w-iv-fusion functions in the IVTURS IV-
FRBCS. In the work by Asmus et al. [27], it was shown that
n-dimensional overlap functions (and interval-valued functions
based on them) are recommended to be applied in this type of
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problem. Furthermore, the best performing methods on that pa-
per are based on n-dimensional ≤α,β-increasing iv-overlap func-
tions that are width-limited by the minimum, that is, the out-
puts’ widths are lesser or equal than the widths of the inputs.
So, the class of n-dimensional w-iv-overlap functions as de-
fined in Ex. 5 seems a natural choice to provide functions for
this application.

In the following, first we recall some key concepts regard-
ing IV-FRBCSs. After that, we present the experimental frame-
work, followed by the analysis of the results.

6.1. IV-FRBCSs

A classification problem is composed by P training exam-
ples ~xp = (xp1, . . . , xpn), p ∈ {1, . . . , P} where xpi is the value of
the i-th variable of the p-th example. Each example belongs to
one of M classes in C={C1, . . . ,CM}. The goal of the learned
classifier is to identify the class of new testing examples.

One of the most frequently applied techniques to deal with
classification problems are the FRBCSs. They can achieve ac-
curate results by using highly interpretable models, since the
fuzzy rules are expressed by linguistic labels [61]. The struc-
ture of the fuzzy rules is given by:

Rule R j : If x1 is A j1 and . . . and xn is A jn (27)
then Class = C′j with RW j,

where R j is the label of the j-th rule, x = (x1, . . . , xn) is an n-
dimensional example vector, A ji is the fuzzy set modeling the
linguistic term of the j-th rule in the i-th antecedent, C′j ∈ C
is a class label, and RW j ∈ [0, 1] is the rule weight [62]. In
particular, the rule weight is computed by the fuzzy confidence
value (or certainty factor), as follows:

RW j =

∑
xp∈C′j A j(xp)

∑P
p=1 A j(xp)

, (28)

where A j(xp) is the matching degree of the pattern xp with the
antecedent part of the fuzzy rule R j, given by

A j(xp) = c(A j1(xp1), · · · , A jn(xpn)), (29)

where c is an n-dimensional conjunction operator and j ∈ {1, . . . , L}.
A FRBCS becomes an IV-FRBCS when some of the lin-

guistic labels (or all of them) are modelled using IVFSs. This
means that the fuzzy reasoning method must work with in-
tervals instead of numbers, being called an iv-fuzzy reason-
ing method (IV-FRM), to take into account the interval widths
(uncertainty) throughout the whole inference process [63] (see
Sect. 6.2). As a novelty for this kind of classifier, we apply
width-limited functions to control the information quality of the
interval operations that occur on the IV-FRM, and analyze if
such width control improves the performance of the system.

6.2. New iv-Fuzzy Reasoning Method

For the following experimentation, we apply our new theo-
retical concepts in the IVTURS algorithm, which is a state of
the art IV-FRBCS (an in-depth look at each step of the IVTURS

algorithm can be seen in the work by Sanz et al. [64]). Here,
we recall the steps of its learning process:
1) The building of an IV-FRBCS, by the following procedures:

a) To generate an initial FRBCS by applying the two first
stages of FARC-HD [65], a technique that is based on the Apri-
ori algorithm [66] to build fuzzy rules (Eq. (28)) in its first
learning stage. In those fuzzy rules, the product t-norm is usu-
ally applied as the conjunction operator c in Eq. (29). However,
as shown by Asmus et at. [27], one can benefit from replacing
the product t-norm by other n-dimensional overlap functions
On, such as the Geometric Mean and the n-dimensional OnB-
overlap, given by Eq.s (2) and (3), respectively. This allows for
the chosen n-dimensional overlap functions to be considered as
the core functions for the construction of the n-dimensional w-
iv-overlap functions to be used in the IV-FRM (described in the
sequence). Thus, the function On impacts the learning process
of the fuzzy rules, which means that if On is not the product,
then the obtained fuzzy rules would not necessarily be the same
than those obtained by the original IVTURS.

b) To define IVFSs to model the linguistic labels of the
learned FRBCS;

c) To generate initial IV-REFs for each variable of the prob-
lem.
2) The application of an optimization approach, so that:

a) It learns the best values of the IV-REFs’ parameters;
b) It applies a rule selection process to decrease the system’s

complexity.
After creating the interval-valued fuzzy rules that compose

the system, we define the new mechanism for classifying exam-
ples, as follows.

Let ~xp = (xp1, . . . , xpn) be a new example to be classified,
L be the number of rules in the rule base and M be the number
of classes of the problem. The new IV-FRM is defined by the
following steps:
(1) Interval matching degree: It expresses activation strength
the rules’ antecedents for each xp. The similarity between the
interval membership degrees (of each variable of the pattern
to the corresponding IVFS) and the ideal membership degree
[1, 1] is computed by an IV-REF IR and, then, we use an interval-
valued fusion function FO : L([0, 1])n → L([0, 1]), for j ∈
{1, ..., L} to combine their results as follows:

A j(xp)=FO

(
IR

(
A j1(xp1), [1, 1]

)
, . . ., IR

(
A jn(xpn), [1, 1]

))
,

with FO being an n-dimensional w-iv-overlap function based
on the n-dimensional overlap function On (applied as the con-
junction operator when generating the initial FRBCS) and an
increasing and symmetric width-limiting function B, which will
determine how much information quality control we desire on
the IV-FRM.
(2) Interval association degree: For the respective class of each
rule, the interval matching degree is weighted with the corre-
sponding iv-rule weight IRWk

j ∈ L([0, 1]), through an iv-fusion
function FP : L([0, 1])n → L([0, 1]), as follows:

bk
j = FP

(
A j(xp), IRWk

j

)
, (30)
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with k = 1, . . . ,M, j = 1, . . . , L and FP being an interval-valued
product operation, applied with the same criteria for width-
limitation as the one for FO.

The rule weight is defined by the interval-valued confidence
value [67], given by:

IRW j =
∑

xp∈C′j
A j(xp) ÷H

P∑

p=1

A j(xp),

with ÷H being defined as in Eq. (5).
(3) Interval pattern classification soundness degree for all classes:
All interval association degrees of each class (obtained in Step
(2)) with upper bounds that are greater than 0 are aggregated by
an interval-valued aggregation function IA:

Yk = IA
(
bk

j, j = 1, . . . , L and bk
j > 0

)
,

with k = 1, . . . ,M.
(4) Classification: A decision function F is applied over the
interval pattern classification soundness degrees for all classes,
as follows:

F (Y1, . . . ,YM) = arg max
k=1,...,M

(Yk) .

In this final step of the IV-FRM, the system selects the great-
est interval soundness degree, which is done by comparing the
resulting intervals through an admissible order (in order to avoid
a stalemate). As discussed by Asmus et al. [27], the order ≤IQ

(order of Xu-Yager based on the quality of information, or ≤α,β
with α = 0.5 and β = 0) is a suitable option for this type of
classification problem, so we opt for this admissible order in
our experiment.

6.3. Experimental Framework

The general goal of our experiment is to analyze the classi-
fication performance of the system when applying different n-
dimensional w-iv-overlap functions obtained by either the con-
struction method based on representable fusion functions (CMR)
or the construction method based on≤α,β-increasing fusion func-
tions (CMA). To conduct our experiment, we have selected 31
real-world data-sets from the KEEL repository [68], which are
publicly available on the webpage (http://www.keel.es/dataset.php).
Table 3 summarizes the properties of the considered data-sets,
presenting, for each data-set, the numbers of attributes (Atts.),
examples (Ex.), and classes (Class.). To improve the learn-
ing process efficiency, the magic, page-blocks, penbased, ring,
satimage, shuttle, and twonorm data-sets have been stratified
sampled at 10%. Also, missing values from bands, cleaveland
and wisconsin data-sets have been removed before our experi-
ments.

We apply a 5-fold cross-validation model, by dividing each
data-set in 5 random partitions. Four of them (80%) are com-
bined to train the system and the remaining one (20%) is re-
served for testing. This process is executed 5 times, changing
the testing partition in each iteration. The accuracy rate is used
to measure the system’s performance.

Table 3: Summary of the employed datasets

id Data-set Atts. Ex. Class.
app appendicitis 7 106 2
bal balance 4 625 3
ban banana 2 5300 2
bds bands 19 365 2
bup bupa 6 345 2
clv cleveland 13 297 5
con contraceptive 9 1473 3
eco ecoli 7 336 8
gla glass 9 214 7
hab haberman 3 306 2
hay hayes-hoth 4 160 3
ion ionosphere 33 351 2
iri iris 4 150 3
led led7digit 7 500 10
mag magic 10 19020 2
new newthyroid 5 215 3
pag pageblocks 10 5472 5
pen penbased 16 10992 10
pho phoneme 5 5404 2
pim pima 8 768 2
rin ring 20 7400 2
sah saheart 9 462 2
sat satimage 36 6435 7
shu shuttle 9 58000 7
spe spectfheart 44 267 2
tit titanic 3 2201 2
two twonorm 20 7400 2
veh vehicle 18 846 4
win wine 13 178 3
wis wisconsin 9 683 2
yea yeast 8 1484 10

We follow the recommendation provided by Sanz et al. [64]
for the set-up of the IVTURS classifier, with the modifications
explained in Section 6.2. Then, we analyze the classification
performance by comparing different configurations based on
the function FO applied on Step (1) of the IV-FRM, which is
determined by both the corresponding On used on the learn-
ing process of the fuzzy rules and the weighting operation (FP)
used in the Step (2) of the IV-FRM, as shown in Table 4. The
selected n-dimensional overlap functions (On) to be used as the
core of FO were based on the best performing operations for
this kind of classifier [27], namely, GM and OnB (Eq. (2) and
(3), respectively), as well as the product, since it is the operation
used on the original IVTURS.

From Table 4, it can be seen that there are nine methods
belonging to three groups: (i) REP: FO is obtained by the BIR
of On (Ôn), (ii) CONR: FO is obtained by CMR, via Theo-
rem 12 (IOnwα

On,B), and (iii) CONA: FO is obtained by CMA,
via Theorem 20 (AOnwα

On,B). In each group we test the three
n-dimensional overlap functions selected in this study, for in-
stance, for the representable group, we have REP-Prod, REP-
GM and REP-OnB.

When FO is given by an n-dimensional w-iv-overlap func-
tion (all the approaches derived for the CONR and CONA groups),
we check the effect of the width-limitation by comparing the re-
sults of the classifier when varying the width-limiting function
B, given by:

Bρ(w(x1), . . . ,w(xn)) = min{w(x1), . . . ,w(xn)}+ (31)
ρ(max{w(x1), . . . ,w(xn)} −min{w(x1), . . . ,w(xn)}),

with ρ ∈ [0, 1]. Specifically, we test each configuration with
five possible values for ρ: ρ = 0 (B = min); ρ = 0.25; ρ = 0.5;
ρ = 0.75; ρ = 1 (B = max). In this manner, the parameter
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Table 4: Configuration schemes for the used classifiers

Classifier identifier On FO FP

REP-Prod OnP IOnP = ÔnP IOnP = ÔnP

REP-OnB OnB IOnB = ÔnB IOnP = ÔnP

REP-Gm GM IGM = ĜM IOnP = ÔnP

CONR-Prod OnP IOnwα
OnP,B IOnwα

OnP,B

CONR-OnB OnB IOnwα
OnB,B IOnwα

OnP,B

CONR-Gm GM IOnwα
GM,B IOnwα

OnP,B

CONA-Prod OnP AOnwα
OnP,B AOnwα

OnP,B

CONA-OnB OnB AOnwα
OnB,B AOnwα

OnP,B

CONA-Gm GM AOnwα
GM,B AOnwα

OnP,B

Table 5: Results in testing for the different methods

Method

REP-Prod 79.56

REP-OnB 79.83

REP-Gm 79.75

ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.75 ρ = 1

CONR-Prod 79.82 79.62 79.58 79.61 79.20

CONR-OnB 80.11 79.76 79.79 79.87 79.76

CONR-Gm 79.65 79.90 79.71 79.71 79.95

CONA-Prod 79.54 79.48 79.46 79.43 79.60

CONA-OnB 80.06 80.00 80.02 80.09 79.87

CONA-Gm 79.91 79.94 79.94 79.91 80.04

ρ indicates the amount of width control that we are imposing
on the system. When ρ = 0, the output’s width is limited by
the minimum of the inputs’ widths, representing the most strict
width limitation. Conversely, when ρ = 1, the output’s width is
limited by the maximum of the inputs’ widths, representing the
less width control.

To detect if there are statistical differences in performance
among the methods in a selected group, first, we use the aligned
Friedman ranks test [69], reporting the obtained ranks of each
method (the less the rank, the better). The best ranking method
of such group is compared with the others through a Holm’s
post-hoc test [70]. When the goal is to provide a pairwise com-
parison, we apply a Wilcoxon Signed-Ranks test [71]. Garcı́a
et al. [72] showed that this selection of statistical tests is highly
recommended to be used in machine learning.

6.4. Discussion of the Results

In Table 5 we present results in testing (average in the 31
datasets) for all the possible configurations of the new method,
one in each row (the same ones as shown in Table 4). All ap-
proaches based on the construction methods CONR and CONA
allow the control of the interval widths by means of the hyper-
parameter ρ, whose results are shown in columns. On the other
hand, approaches belonging to the REP group do not allow such
control and, therefore, we present their results in a single col-
umn as they are not affected by the hyper-parameter ρ. For

Table 6: Average Rankings of the algorithms (Aligned Friedman) - Comparing
levels of width control ρ

Method ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.75 ρ = 1
CONR-Prod 60.61 (-) 77.87 (0.390) 72 (0.390) 77.76 (0.390) 101.76 (0.001)*

CONR-OnB 61.31 (-) 84.81 (0.118) 81.40 (0.156) 75.34 (0.218) 87.15 (0.094)*

CONR-GM 86.58 (0.383) 70.47 (0.800) 80.18 (0.539) 85.19 (0.383) 67.58 (-)

CONA-Prod 73.02 (0.583) 80.19 (0.477) 83.97 (0.394) 86.07 (0.362) 66.76 (-)

CONA-OnB 80.16 (1.000) 78.42 (1.000) 76.79 (1.000) 72.24 (-) 82.39 (1.000)

CONA-GM 81.65 (0.529) 78.36 (0.529) 79.69 (0.529) 84.08 (0.469) 66.23 (-)

each ρ, we highlight in bold face the best result, that is, the
configuration of the classifier that produced the greatest global
mean. The detailed results for all the datasets (in all the par-
titions), with every possible combination, can be queried on
https://github.com/tiagoasmus/testingResults-w-iv-overlaps.

By observing Table 5, we see that the methods from group
REP are not able to obtain better averaged behaviours than those
highlighted in the second part of the table, that is, the best con-
figurations of the methods that allow one to control de output’s
interval width. Moreover, most of the highlighted results come
from the group CONA, with the exception of one method that is
from group CONR (CONR-OnB with ρ = 0), which is also the
method with the best global mean. Therefore, we can affirm
that methods from groups CONR and CONA produce good
results, possibly due to the control of the interval widths in
the interval operations. In particular, the method CONA-OnB
achieves a very robust performance for every considered level
of width limitation.

Next, we study the effect of the level of width control per-
formed in each method (the different values of ρ). To do it, we
compare the five possible values of ρ for each method, by apply-
ing the aligned Friedman’s test. The obtained ranks, as well as
the Adjusted P-Values (APVs, presented in brackets) obtained
by the Holm’s post hoc test are shown in Table 6, where we
have highlighted in bold-face the best rank (the less one) and
we have stressed with an asterisk (*) those cases where there
are statistical differences (using α = 0.1) in favour to the ρ as-
sociated to the less rank. Looking at Table 6, one can observe
that the benefit from a more rigid width control depends on the
applied interval-valued function:
a) For the group CONR, two algorithms with a more strict
width control produced better results (CONR-Prod and CONR-
OnB, both with ρ = 0 as the control method). In both cases,
there are significant differences from the control method (ρ = 0,
strong width-limitation), and the algorithm with ρ = 1 (least
considered width-limitation);
b) Considering the group CONA, the method CONA-Prod ap-
pear to perform better with a less aggressive width limitation
(control method has ρ = 1). Confirming the previous obser-
vation, CONA-OnB achieved good results for every considered
level of width control, as indicated by the same APV = 1 ob-
tained for each of its configurations when compared to the con-
trol method (ρ = 0.75);
c) Independently of the employed Construction method, the al-
gorithms that are based on the geometric mean also seem more
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Table 7: Average Rankings of the algorithms (Aligned Friedman) - Comparison
by groups

Method Rank (APV) Method Rank (APV) Method Rank (APV)

REP-Prod 50.61 (0.500) CONR-Prod0 49.44 (0.628) CONA-Prod1 57.31 (0.029*)

REP-OnB 42.73 (-) CONR-OnB0 42.53 (-) CONA-OnB0.75 40.55 (-)

REP-GM 47.66 (0.500) CONR-GM1 49.03 (0.628) CONA-GM1 43.15 (0.705)

Table 8: Average Rankings of the algorithms (Aligned Friedman) - Comparing
construction methods

Method Rank (APV)

REP-OnB 55.87 (0.069*)

CONR-OnB0 43.77 (0.724)

CONA-OnB0.75 41.36 (-)

accurate with less strict width control, as the control methods
have ρ = 1 for both CONR-GM and CONA-GM.

Next, we apply three Aligned Friedman and Holm’s tests,
one for each group (REP, CONR and CONA), to compare the
best performing algorithms from each group. In the case of the
group REP, we test the three considered methods as they do not
depend on the values of ρ. For the groups CONR and CONA,
we compare the control methods we obtained from Table 6. We
indicate the value of ρ of each method as a superindex, when
necessary. For example, the method CONR-Prod with ρ = 0 is
denoted by CON-PROD0. The results of these tests are shown
in Table 7, with the best ranking method in each group high-
lighted in bold-face and methods that present significant dif-
ference from the control method are marked with an asterisk
(*).

Observing Table 7, it is clear that the methods based on the
n-dimensional overlap function OnB have good performance,
as they are the control methods in each of the groups (REP,
CONR and CONA). Next, we statistically compare those three
best performing methods in another aligned test, whose ob-
tained results are presented on Table 8. From Table 8, we see
that the method CONA-OnB0.75 is the best option, although
CONR-OnB0 also performs well. The method REP-OnB, does
not achieve the same level of performance of the other two com-
pared methods, being significantly less accurate than the control
method. As those three methods are all based on the same core
n-dimensional overlap function (OnB), which is used through-
out all the components of those algorithms, the main difference
between them lies on the construction of the interval-valued op-
erations that take place in the IV-FRM, which may or may not
control the widths of the outputs of such operations. Thus, we
can conclude that controlling the width of the intervals, which
implies having intervals with better information quality, is ben-
eficial for the system’s performance.

Finally, to further analyze the benefits of the new proposed
methods, we carry out three pairwise comparisons between the
best performing method from each group with the original con-
figuration of the IVTURS algorithm (REP-Prod), through the
Wilcoxon test. These results can be seen on Table 9, with

Table 9: Pairwise comparisons via Wilcoxon test

Comparison R+ R− p-value
IVTURS vs REP-OnB 181.5 314.5 0.214

IVTURS vs CONR-OnB0 131.5 364.5 0.024*

IVTURS vs CONA-OnB0.75 125.5 370.5 0.018*

the results with significant differences marked with an aster-
isk (*). Analyzing Table 9, it is clear that the configurations
of both CONR-OnB0 and CONA-OnB0.75 improve significantly
the performance of the IVTURS algorithm, whereas the method
REP-OnB does not improve the accuracy of IVTURS in the
same manner. Therefore, we can conclude that the exchange
from the product to the n-dimensional overlap OnB is not the
sole reason for the better performance of CONR-OnB0 and CONA-
OnB0.75, indicating that these new methods benefit from a cer-
tain amount of width limitation.

7. Conclusion

When aggregating interval data through iv-aggregation func-
tions, usually by means of the BIR, one may face the problem
of dealing with interval outputs with large widths and, thus, low
information quality. With the motivation to tackle this sort of
challenge, in this paper, we presented a general framework to
define and construct different subclasses of w-iv-fusion func-
tions, allowing for the control of the interval output widths pro-
vided by interval aggregation operations that occur in practical
problems, such as in IV-FRBCSs. From that, we have the fol-
lowing contributions:
1. The development of the concept of width-limitation, with
the extension to the n-dimensional context of width-limited iv-
fusion functions and width-limiting fusion functions;
2. The characterization of increasing fusion functions through
a set of properties, a form of representation that facilitates the
definition of interval-valued counterparts of such functions;
3. The definition of classes of w-iv-fusion functions based on
an increasing fusion function, the interval extension of its set of
properties and a pair of partial orders. This general methodol-
ogy is capable of retrieving known definitions of iv-aggregation
functions from the literature while also providing a flexible way
to obtain iv-fusion functions with a desirable amount of width-
limitation;
4. Two approaches to provide construction methods for w-iv-
fusion functions, one based on the representable interval func-
tions (CMR) and one based on admissibly ordered interval func-
tions (CMA), where the interval outputs are “narrowed” in the
direction of a Kα point and whose widths to not surpass a given
threshold.

One of the key aspects of the developed framework and the
presented construction methods is their flexibility, derived from
the different possible choices of fusion functions, interval or-
ders and width-limiting functions. This flexibility translates
into potential applicability, as one can define a particular class
of w-iv-fusion function accordingly to the constraints/requirements
of a given practical problem. This aspect was highlighted in our
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case study, where we developed and applied a new IV-FRM for
IV-FRBCSs, in which the information quality is controlled by
n-dimensional w-iv-overlap functions, whose class is defined
through our general framework. From our experimentation and
subsequent statistical analysis, we can draw the following con-
clusions:
1. Configurations of the classifier based on n-dimensional w-
iv-overlap functions constructed via either CMR or CMA have
good classification accuracy, in general;
2. Although the amount of width control that benefits the per-
formance of the system varies for each choice of w-iv-fusion
function, this information can be retrieved by defining the width-
limiting function through a parameter (ρ). In this manner, we
can compare different values of ρ for each algorithm and pos-
sibly determine how much the widths of the outputs have to be
constrained;
3. Configurations of the classifier based on the n-dimensional
overlap function OnB produce the best results. Among those
configurations, the one based on the CMA method have a sig-
nificantly higher classification accuracy than the one based on
the BIR of OnB. Particularly, CMA-OnB produces good results
for every considered level of width limitation, presenting itself
as a very stable method;
4. The two best performing methods, one based on CMR and
other based on CMA, significantly enhances the classification
accuracy of the state-of-the-art IVTURS algorithm, showing
that both construction method approaches are suitable to pro-
vide w-iv-fusion functions to be applied in classification prob-
lems, which can benefit from the width control provided by
such methods.

In future works we intend to apply our general framework
to define and construct w-iv-fusion functions to be employed
in aggregation processes with uncertainty (e.g., sensor data fu-
sion), as in techniques for multicriteria decision making [21]
and image processing [19].

Acknowledgements

Supported by CNPq (307781/2016-0, 301618/2019-4),
FAPERGS (19/2551-0001660), the Grant APVV-18-0052, the
Spanish Ministry of Science and Technology (TIN2016-77356-
P, PID2019-108392GB I00 (AEI/10.13039/501100011033)) and
the Public University of Navarre under the project PJUPNA1926.

Appendix A. Proof of Theorem 2

Proof. Consider a symmetric aggregation function B : [0, 1]n →
[0, 1], a strict n-dimensional overlap function On : [0, 1]n →
[0, 1] and let α ∈ (0, 1) and β ∈ [0, 1] such that α , β. Observe
that AOnαB is well defined. In fact, considering that AOnαB(~X) =
R, one has that w(R) = On(λα(X1), . . . , λα(Xn)) · dα(Kα(R)),
R = Kα(R) − α · w(R) and R = Kα(R) + (1 − α) · w(R). Now, let
us verify if IAOnαB respects all conditions from Def. 19.
(IOn1) Immediate, since On and B are both symmetric;

(IOn2) (⇒) Take ~X ∈ L([0, 1])n and suppose that AOnαB(~X) =
R = [0, 0]. Then, we have that

Kα(R) = Kα([0, 0]) = 0 = On(Kα(X1), . . . ,Kα(Xn)),

since α ∈ (0, 1). Thus, by condition (On2), Kα(Xi) = 0 for
some i ∈ {1, . . . , n}, and, therefore,

∏n
i=1 Xi = [0, 0];

(⇐) Consider ~Xi ∈ L([0, 1])n such that
∏n

i=1 Xi = [0, 0]. So,
Kα(X1) · . . . · Kα(Xn) = 0, since α ∈ (0, 1). Then, by (O2), one
has that Kα(R) = On(Kα(X1), . . . ,Kα(Xn)) = 0, meaning that
AOnαB(~X) = R = [0, 0];
(IOn3) (⇒) Take ~X ∈ L([0, 1])n such that AOnαB(~X) = R =
[1, 1]. Then, one has that

Kα(R) = Kα([1, 1]) = 1 = On(Kα(X1), . . . ,Kα(Xn)).

By (On3), Kα(X1) · . . . · Kα(Xn) = 1, since α ∈ (0, 1), meaning
that

∏n
i=1 Xi = [1, 1];

(⇐) Consider ~X ∈ L([0, 1])n such that
∏n

i=1 Xi = [1, 1]. So,
Kα(X1) · . . . ·Kα(Xn) = 1, since α ∈ (0, 1). Then, by (i) and (O3),
one has that Kα(R) = On(Kα(X1), . . . ,Kα(Xn)) = 1, meaning
that AOnαB(~X) = R = [1, 1];
(AOn4) Consider Z ∈ L([0, 1]), ~X, ~Y ∈ L([0, 1])n, such that
there exist k ∈ {1, . . . , n} for which Xk ≤α,β Yk and Xi = Yi = Z
for all i ∈ {1, . . . , n} − {k}. So, it holds that Xi ≤α,β Yi for all
i ∈ {1, . . . , n}. By Lemma 1, one can consider β = 0 or β = 1.
Here, we present the proof for β = 0.

If Kα(Z) = 0, then we have that Kα(AOnαB(~X)) = 0 =
Kα(AOnαB(~Y)), which means that AOnαB(~X) = [0, 0] = AOnαB(~Y),
since α , 0. Then, AOnαB(~X) ≤α,β AOnαB(~Y).

If Kα(Z) , 0, then we have the following cases:
a) Kα(Xk) < Kα(Yk): Since On is strict, one has that Kα(AOnαB(~X)) <
Kα(AOnαB(~Y)). Therefore,

Kα(AOnαB(~X)) < Kα(AOnαB(~Y))

⇒ AOnαB(~X) ≤α,β AOnαB(~Y).

b) Kα(Xk) = Kα(Yk) and Kβ(Xk) < Kβ(Yk): Then, Xk < Yk ≤
Yk < Xk, meaning that w(Xk) > w(Yk) and, therefore, by Def.
17, λα(Xk) > λα(Yk). So,

Kα(AOnαB(~X)) = On(Kα(Z), . . . ,Kα(Xk), . . . ,Kα(Z))
= On(Kα(Z), . . . ,Kα(Yk), . . . ,Kα(Z))
= Kα(AOnαB(~Y)), and

Kβ=0(AOnαB(~X))

= Kα(AOnαB(~X)) − αw(AOnαB(~X)) by Def. 13

= Kα(AOnαB(~X)) −
αB(λα(Z), . . ., λα(Xk), . . ., λα(Z))dα(Kα(AOnαB(~X)))

≤ Kα(AOnαB(~Y)) −
αB(λα(Z), . . ., λα(Yk), . . ., λα(Z))dα(Kα(AOnαB(~Y)))

= Kβ=0(AOnαB(~Y)),

since B is increasing. Therefore, AOnαB(~X) ≤α,β AOnαB(~Y).
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c) Kα(Xk) = Kα(Yk) and Kβ(Xk) = Kβ(Yk): In this case, ~X = ~Y ,
so, it is immediate that AOnαB(~X) ≤α,β AOnαB(~Y). So, for every
scenario when β = 0, it holds that if Xi ≤α,β Yi, for all i ∈
{1, . . . , n}, then AOnαB(~X) ≤α,β AOnαB(~Y). The proof for β = 1 is
obtained analogously.

Appendix B. Proof of Theorem 6

Proof. Consider an increasing fusion function B : [0, 1]n →
[0, 1], a strict fusion function F : [0, 1]n → [0, 1] with h = 0 as
its annihilator element and take α ∈ (0, 1], β ∈ [0, α). Observe
that, for all ~X ∈ L([0, 1])n:
(i) Kα(IFwα

B(~X)) = Kα(F̂(~X));
(ii) Kβ(IFwα

B(~X))=Kα(F̂(~X))−αmF̂,B(~X)+βmF̂,B(~X);
(iii) w(IFwα

B(~X)) = mF̂,B(~X)
= min{w(F̂(~X)), B(w(X1), . . . ,w(Xn))}.
So, it is immediate that IFwα

B is well defined and, by (iii),
that is width-limited by B. Now, consider Z ∈ L([0, 1]), ~X, ~Y ∈
L([0, 1])n, such that there exists k ∈ {1, . . . , n} for which Xk ≤Pr

Yk and Xi = Yi = Z for all i ∈ {1, . . . , n} − {k}. So, it holds that
Xi ≤Pr Yi for all i ∈ {1, . . . , n}. As β < α, by Lemma 1, one can
consider β = 0. Thus:

Kβ=0(IFwα
B(~X)) = Kα(F̂(~X)) − α · mF̂,B(~X) (B.1)

Kβ=0(IFwα
B(~Y)) = Kα(F̂(~Y)) − α · mF̂,B(~Y). (B.2)

Now, we have the following possibilities regarding mF̂,B(~X) and
mF̂,B(~Y) that affects the values of IFwα

B(~X) and IFwα
B(~Y), re-

spectively:
1) mF̂,B(~X) = w(F̂(~X)) and mF̂,B(~Y) = w(F̂(~Y)): In this case,
we have IFwα

B(~X) = F̂(~X) ≤Pr F̂(~Y) = IFwα
B(~Y), meaning that

IFwα
B(~X) ≤α,β IFwα

B(~Y).
2) mF̂,B(~X) = B(w(Z), . . . ,w(Xk), . . . ,w(Z)) and
mF̂,B(~Y) = B(w(Z), . . . ,w(Yk), . . . ,w(Z)): It follows that

IFwα
B(~X) = [Kα(F̂(~X)) − αB(w(Z), . . . ,w(Xk), . . . ,w(Z)),

Kα(F̂(~X))+(1−α)B(w(Z), . . .,w(Xk), . . .,w(Z))], and

IFwα
B(~Y) = [Kα(F̂(~Y)) − αB(w(Z), . . . ,w(Yk), . . . ,w(Z)),

Kα(F̂(~Y)) + (1 − α)B(w(Z), . . . ,w(Yk), . . . ,w(Z))].

Now, let us verify all the cases in which Xk ≤Pr Yk holds:
a) Xk = Yk and Xk = Yk: We have that Xk = Yk, meaning that
IFwα

B(~X) = IFwα
B(~Y)⇒ IFwα

B(~X) ≤α,β IFwα
B(~Y).

b) Xk = Yk and Xk < Yk: When Z , h = 0, it holds that
Kα(F̂(~X)) < Kα(F̂(~Y)), since F is strictly increasing on (0, 1]n

and α ∈ (0, 1]. So, it follows that

Kα(IFwα
B(~X)) < Kα(IFwα

B(~Y))⇒ IFwα
B(~X) ≤α,β IFwα

B(~Y).

If Z = h = 0 and Z , h = 0, one has that

F̂(~X) = [0, F(Z, . . . , Xk, . . . ,Z)],
F̂(~Y) = [0, F(Z, . . . ,Yk, . . . ,Z)].

Since Xk < Yk and F is strict, then

Kα(IFwα
B(~X)) = Kα(F̂(~X))

< Kα(F̂(~Y))
= Kα(IFwα

B(~Y))

⇒ IFwα
B(~X) ≤α,β IFwα

B(~Y).

If Z = h = 0 and Z = h = 0, then

F̂(~X) = IFwα
B(~X) = [0, 0] = IFwα

B(~Y) = F̂(~Y).

So, we have that IFwα
B(~X) ≤α,β IFwα

B(Y,Z), for all Xk,Yk,Z ∈
L([0, 1]), such that Xk = Yk and Xk < Yk.
c) Xk < Yk and Xk = Yk: When Z , h = 0 and α , 1, we have
that Kα(F̂(~X)) < Kα(F̂(~Y)). So, it holds that

Kα(IFwα
B(~X))<Kα(IFwα

B(~Y))⇒IFwα
B(~X)≤α,βIFwα

B(~Y).

When taking Z , h = 0 and α = 1, we have that Kα(IFwα
B(~X)) =

Kα(IFwα
B(~Y)) = K. Moreover, from Eqs. (C.1) and (C.2):

Kβ(IFwα
B(~X)) = K − B(w(Z), . . . ,w(Xk), . . . ,w(Z))

Kβ(IFwα
B(~Y)) = K − B(w(Z), . . . ,w(Yk), . . . ,w(Z)).

As Xk < Yk and Xk = Yk, we have that w(Yk) < w(Xk), and,
since B is increasing,

B(w(Z), . . . ,w(Yk), . . . ,w(Z)) ≤ B(w(Z), . . . ,w(Xk), . . . ,w(Z)).

So:

Kβ(IFwα
B(~X)) = K − B(w(Z), . . . ,w(Xk), . . . ,w(Z))

≤ K − B(w(Z), . . . ,w(Yk), . . . ,w(Z))
= Kβ(IFwα

B(~Y)). Then:

Kα(IFwα
B(~X)) = Kα(I f wα

B(~Y))

and Kβ(IFwα
B(~X)) ≤ Kβ(IFwα

B(~Y))

⇒ IFwα
B(~X) ≤α,β IFwα

B(~Y).

If Z = h = 0, one has that

F̂(~X) = [0, F(Z, . . . , Xk, . . . ,Z)],
F̂(~Y) = [0, F(Z, . . . ,Yk, . . . ,Z)].

Since Xk = Yk, then Kα(IFwα
B(~X)) = Kα(IFwα

B(~Y)) and, anal-
ogously to the previous case, when Z , h = 0 and α = 1, we
have that

Kα(IFwα
B(~X)) = Kα(IFwα

B(~Y))

and Kβ(IFwα
B(~X)) ≤ Kβ(IFwα

B(~Y))

⇒ IFwα
B(~X) ≤α,β IFwα

B(~Y).

So, we have that IFwα
B(~X) ≤α,β IFwα

B(~Y), for all Xk,Yk,Z ∈
L([0, 1]), such that Xk < Yk and Xk = Yk.
d) X < Y and X < Y: When Z , h = 0, it holds that Kα(F̂(~X)) <
Kα(F̂(~Y)). So, we have that

Kα(IFwα
B(~X))<Kα(IFwα

B(~Y))⇒IFwα
B(~X)≤α,βIFwα

B(~X).
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If Z = h = 0 and Z , h = 0, one has that

F̂(~X) = [0, F(Z, . . . , Xk, . . . ,Z)],
F̂(~X) = [0, F(Z, . . . ,Yk, . . . ,Z)].

Since Xk < Yk and F is strict, then

Kα(IFwα
B(~X)) = Kα(F̂(~X))

< Kα(F̂(~X))
= Kα(IFwα

B(~Y))

⇒ IFwα
B(~X) ≤α,β IFwα

B(~Y).

If Z = Z = h = 0, then

F̂(~X) = IFwα
B(~X) = [0, 0] = IFwα

B(~Y) = F̂(~Y).

So, we have that IFwα
B(~X) ≤α,β IFwα

B(~Y), for all Xk,Yk,Z ∈
L([0, 1]), such that Xk < Yk and Xk < Yk. Thus, we conclude
that, for all Xk,Yk,Z ∈ L([0, 1]), when

mF̂,B(X,Z) = B(w(Z), . . . ,w(Xk), . . . ,w(Z))
mF̂,B(Y,Z) = B(w(Z), . . . ,w(Yk), . . . ,w(Z)), then

Xi≤PrYi for all i ∈ {1, . . ., n}⇒IOwα
B(~X)≤α,βIOwα

B(~Y).

3) mF̂,B(~X) = w(F̂(~X)) and mF̂,B(~X)
= B(w(Z), . . . ,w(Yk), . . . ,w(Z)): It follows that

IFwα
B(~X) = F̂(~X) and

IFwα
B(~Y)=[Kα(F̂(~Y))−αB(w(Z), . . .,w(Yk), . . .,w(Z)),

Kα(F̂(~Y)) + (1 − α)B(w(Z), . . . ,w(Yk), . . . ,w(Z))].

Again, we analyze all the possibilities in which Xk ≤Pr Yk

holds. The results are exactly the same as the ones presented
on the proof when mF̂,B(~X) = B(w(Z), . . . ,w(Xk), . . . ,w(Z)) and
mF̂,B(~X) = B(w(Z), . . . ,w(Yk), . . . ,w(Z)), with the exception of
the particular case when Xk < Yk, Xk = Yk, Z , h = 0 and α =
1. In this case, we have that Kα(IFwα

B(~X)) = Kα(IFwα
B(~Y)) = K.

Moreover, from Eqs. (C.1) and (C.2): Kβ(IFwα
B(~X)) = K −

w(F̂(~X)) and Kβ(IFwα
B(~Y)) = K − B(w(Z), . . . ,w(Yk), . . . ,w(Z))

.
As Xk < Yk and Xk = Yk, we have that:

B(w(Z), . . . ,w(Yk), . . . ,w(Z))
≤ w(F̂(~Y))
= F(Z, . . . ,Yk, . . . ,Z) − F(Z, . . . ,Yk, . . . ,Z)

≤ F(Z, . . . , Xk, . . . ,Z) − F(Z, . . . , Xk, . . . ,Z)

= w(F̂(~X)),

since F is strictly increasing. So,

Kβ(IFwα
B(~X))

= F(Z, . . . , X, . . . ,Z) − w(F̂(~X))
≤ F(Z, . . . ,Yk, . . . ,Z) − B(w(Z), . . . ,w(Yk), . . . ,w(Z))
= Kβ(IFwα

B(~Y)). Then:

Kα(IFwα
B(~X)) = Kα(IFwα

B(~Y))

and ,Kβ(IFwα
B(~X)) ≤ Kβ(IFwα

B(~Y))

⇒ IFwα
B(~X) ≤α,β IOwα

B(Y,Z).

Thus, one can conclude that, for all Xk,Yk,Z ∈ L([0, 1]), when
mF̂,B(~X) = w(F̂(~X)) and mF̂,B(~Y)=B(w(Z), . . .,w(Yk), . . . ,w(Z)),
then

Xi≤PrYi for all i ∈ {1, . . ., n}⇒IOwα
B(~X)≤α,βIOwα

B(~Y).

4) mF̂,B(~X) = B(w(Z), . . . ,w(Xk), . . . ,w(Z)) and mF̂,B(~Y) = w(F̂(~Y)):
It follows that

IFwα
B(~X)=[Kα(F̂(~X))−αB(w(Z), . . . ,w(Xk), . . .,w(Z)),

Kα(F̂(~X))+(1−α)B(w(Z), . . .,w(Xk), . . . ,w(Z))] and

IFwα
B(~Y) = F̂(~Y).

Once more, by analyzing every possibility in which Xk ≤Pr Yk

holds, one may observe that the results are exactly the same as
the ones presented previously, with the exception when Xk <

Yk, Xk = Yk, Z , h = 0 and α = 1. In this case, we have that
Kα(IFwα

B(~X)) = Kα(IFwα
B(~Y)). Moreover, from Eqs. (C.1) and

(C.2):

Kβ(IFwα
B(~X))

=F(Z, . . ., Xk, . . .,Z)−B(w(Z), . . .,w(Xk), . . .,w(Z)) and

Kβ(IFwα
B(~Y)) = F(Z, . . . ,Yk, . . . ,Z) − w(F̂(~Y)).

As Xk < Yk and Xk = Yk, we have that w(Yk) < w(Xk), and,
since B is increasing:

w(F̂(~Y)) ≤ B(w(Z), . . . ,w(Yk), . . . ,w(Z))
≤ B(w(Z), . . . ,w(Xk), . . . ,w(Z)), So:

Kβ(IFwα
B(~X))

= F(Z, . . . , Xk, . . . ,Z) − w(F̂(~X))
≤ F(Z, . . . ,Yk, . . . ,Z) − B(w(Z), . . . ,w(Yk), . . . ,w(Z))
= Kβ(IFwα

B(~Y)). Then:

Kα(IFwα
B(~X)) = Kα(IFwα

B(~Y))

and Kβ(IFwα
B(~X)) ≤ Kβ(IFwα

B(~Y))

⇒ IFwα
B(~X) ≤α,β IFwα

B(~Y).

Then, we have that IFwα
B(~X) ≤α,β IFwα

B(~Y), for all Xk,Yk,Z ∈
L([0, 1]), such that Xk < Yk and Xk = Yk.

Thus, one conclude that, for all Xk,Yk,Z ∈ L([0, 1]), when

mF̂,B(~X) = B(w(Z), . . . ,w(X), . . . ,w(Z))

mF̂,B(~Y) = w(F̂(~Y)), then

∀i∈{1, . . ., n} : Xi≤PrYi⇒IFwα
B(~X)≤α,βIFwα

B(~Y).

As verified for all possible scenarios, it holds that IFwα
B is (≤Pr

,≤α,β)-increasing, for all α ∈ (0, 1] and β ∈ [0, α), which com-
pletes the proof that IFwα

B is a w-iv-fusion function for the tuple
(≤Pr,≤α,β, B).
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Appendix C. Proof of Theorem 14

Proof. Consider an increasing fusion function B : [0, 1]n →
[0, 1], a strict fusion function F : [0, 1]n → [0, 1] with h = 0
as its annihilator element, α ∈ (0, 1], β ∈ [0, 1] such that α ,
β, and an ≤α,β increasing fusion function IFα : L([0, 1])n →
L([0, 1]) such that Kα(IF)(~X) = F(Kα(X1), . . . ,Kα(Xn)), for
all ~X ∈ L([0, 1])n. Observe that, for all ~X ∈ L([0, 1])n: (i)
Kα(IFwα

B(~X)) = Kα(IFα(~X)); (ii) Kβ(IFwα
B(~X)) = Kα(IFα(~X))−

α · mIFα,B(~X) + β · mIFα,B(~X); (iii) w(IFwα
B(~X)) = mIFα,B(~X) =

min{w(IFα(~X)), B(w(X1), . . . ,w(Xn))}. So, it is immediate that
IFwα

B is well defined and, by (iii), that is width-limited by B.
Now, consider Z ∈ L([0, 1]), ~X, ~Y ∈ L([0, 1])n, such that

there exist k ∈ {1, . . . , n} for which Xk ≤α,β Yk and Xi = Yi = Z
for all i ∈ {1, . . . , n} − {k}. So, it holds that Xi ≤α,β Yi for all
i ∈ {1, . . . , n}. By Lemma 1, one can consider β = 0 or β = 1.
First, we present the proof for β = 0. Thus:

Kβ=0(IFwα
B(~X)) = Kα(IFα(~X))−αmIFα,B(~X) (C.1)

Kβ=0(IFwα
B(~Y)) = Kα(IFα(~Y))−αmIFα,B(~Y). (C.2)

Next, if Kα(Z) = 0, then Kα(IFwα
B(~X)) = Kα(IFα(~X)) = 0 =

Kα(IFα(~Y)) = Kα(IFwα
B(~Y)), which means that IFwα

B(~X) =
IFα(~X) = [0, 0] = IFα(~Y) = IFwα

B(~Y), since α , 0. Then,
IFwα

B(~X) ≤α,β IFwα
B(~Y).

If Kα(Z) , 0, then we have the following cases:
a) Kα(Xk) < Kα(Yk): Since F is strict, one has that:

Kα(IFwα
B(~X))

= Kα(IFα(~X))<Kα(IFα(~Y))=Kα(IFwα
B(~Y)). Thus:

Kα(IFwα
B(~X)) < Kα(IFwα

B(~Y))

⇒ IFwα
B(~X) ≤α,β IFwα

B(~Y).

b) Kα(Xk) = Kα(Yk) and Kβ(Xk) < Kβ(Yk): Since Kα(Xk) =
Kα(Yk), then Kα(IFwα

B(~X)) = Kα(IFα(~X)) = Kα(IFα(~Y)) =
Kα(IFwα

B(~Y)) = K and, since IFα is ≤α,β-increasing, we have
that Kβ(IFα(~X)) ≤ Kβ(IFα(~Y)). As β = 0, then w(Xk) > w(Yk)
and w(IFα(~X)) ≥ w(IFα(~Y)). From Eqs (C.1) and (C.2), the
values of Kβ(IFwα

B(~X)) and Kβ(IFwα
B(~Y)) depend on the values

of mIFα,B(~X) and mIFα,B(~Y), respectively. So, let us analyze each
possibility regarding those maximal thresholds.

1) mIFα,B(~X) = w(IFα(~X)) and mIFα,B(~Y) = w(IFα(~Y)): In
this case, IFwα

B(~X) = IFα(~X) = IFα(~Y) = IFwα
B(~Y).

2) mIFα,B(~X) = B(w(Z), . . . ,w(Xk), . . . ,w(Z)) and mIFα,B(~Y) =
B(w(Z), . . . ,w(Yk), . . . ,w(Z)): From Eqs. (C.1) and (C.2):

Kβ(IFwα
B(~X)) = K − B(w(Z), . . . ,w(Xk), . . . ,w(Z))

≤ K − B(w(Z), . . . ,w(Yk), . . . ,w(Z))
= Kβ(IFwα

B(~Y)),

since B is increasing and w(Xk) > w(Yk). Thus,

IFwα
B(~X) ≤α,β IFwα

B(~Y).

3) mIFα,B(~X) = w(IFα(~X)) and
mIFα,B(~Y) = B(w(Z), . . . ,w(Yk), . . . ,w(Z)): From Eqs. (C.1)
and (C.2):

Kβ(IFwα
B(~X)) = K − w(IFα(~X))

≤ K − B(w(Z), . . . ,w(Yk), . . . ,w(Z))
= Kβ(IFwα

B(~Y)),

since B(w(Z), . . . ,w(Yk), . . . ,w(Z)) ≤ w(IFα(~Y)) ≤ w(IFα(~X)).
Thus,

IFwα
B(~X) ≤α,β IFwα

B(~Y).

4) mIFα,B(~X) = B(w(Z), . . . ,w(Xk), . . . ,w(Z)) and mIFα,B(~Y) =
w(IFα(~Y)): Since w(Yk) ≤ w(Xk), then

w(IFα(~Y)) ≤ B(w(Z), . . . ,w(Yk), . . . ,w(Z))
≤ B(w(Z), . . . ,w(Xk), . . . ,w(Z)).

From Eqs. (C.1) and (C.2):

Kβ(IFwα
B(~X))

= K − B(w(Z), . . . ,w(Xk), . . . ,w(Z)) ≤ K − w(IFα(~Y)),

meaning that IFwα
B(~X) ≤α,β IFwα

B(~Y). So, when Kα(Xk) =
Kα(Yk) and Kβ(Xk) < Kβ(Yk), we have that IFwα

B(~X) ≤α,β IFwα
B(~Y).

c)Kα(Xk) = Kα(Yk) and Kβ(Xk) = Kβ(Yk): In this case, ~X = ~Y ,
so, it is immediate that IFwα

B(~X) ≤α,β IFwα
B(~Y). So, for every

scenario when β = 0, it holds that, if Xi ≤α,β Yi for all i ∈
{1, . . . , n}, then IFwα

B(~X) ≤α,β IFwα
B(~Y).

The proof for β = 1 is obtained analogously.
Thus, as verified for all possible scenarios, it holds that

IFwα
B is (≤α,β,≤α,β)-increasing, for all α ∈ (0, 1] and β ∈ [0, 1],

which completes the proof that IFwα
B is a w-iv-fusion function

for the tuple (≤α,β,≤α,β, B).

References
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of correctness and optimality of interval computations, Formal Aspects
of Computing 18 (2006) 231–243. doi:https://doi.org/10.
1007/s00165-006-0089-x.

[33] R. E. Moore, R. B. Kearfott, M. J. Cloud, Introduction to Interval Analy-
sis, SIAM, Philadelphia, 2009.

[34] H. Bustince, J. Fernandez, A. Kolesárová, R. Mesiar, Generation of linear
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[37] Z. Takáč, J. Fernandez, J. Fumanal, C. Marco-Detchart, I. Couso,
G. Dimuro, H. Santos, H. Bustince, Distances between interval-valued
fuzzy sets taking into account the width of the intervals, in: 2019 IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE), 2019, pp. 1–
6. doi:10.1109/FUZZ-IEEE.2019.8858908.

[38] H. Bustince, C. Marco-Detchart, J. Fernandez, C. Wagner, J. Garibaldi,
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Abstract

Fusion functions and their most important subclass, aggregation functions, have been successfully applied in fuzzy
modeling. However, there are practical problems, such as classification via neural networks, where the data to be
aggregated are not modeling membership degrees in the unit interval. In this scenario, systems could benefit from
the application of operators defined in domains different from [0, 1], although, presenting similar behavior of some
aggregation functions whose subclasses are currently defined only in the fuzzy context (e.g., overlap functions and
t-norms). So, the main objective of this paper is to present a general framework to characterize classes of fusion
functions with floating domains, called (a, b)-fusion functions, defined on any closed real interval [a, b], based on
classes of core fusion functions defined on [0, 1]. The fundamental aspect of this framework is that the properties of
a core fusion function are preserved in the context of the analogous (a, b)-fusion function. Construction methods for
(a, b)-aggregation functions are presented and some properties are studied. Finally, we introduce a similar framework
to define fusion functions in which the inputs come from an interval [a, b] but the output is mapped on a possibly
different interval [c, d], called (a, b, c, d)-fusion functions, along with some construction methods.

Keywords: (a, b)-fusion functions; (a, b)-aggregation functions; n-dimensional overlap functions; t-norms;
uninorms

1. Introduction

Fusion functions are operators defined to combine/fuse several numerical values from the unit interval [0, 1] into
a single representative one, also from this same interval [42]. The most known and studied class of fusion functions
is that of aggregation functions [8, 29], which are increasing fusion functions with some boundary conditions. Aggre-
gation functions, in fact, can be defined on any interval [a, b], with a, b ∈ R and a < b, such as the ordered weighted
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averaging (OWA) [57] operator and the Choquet integral [13, 20]. However, most of its subclasses (e.g., that of over-
lap functions [7, 11, 12], t-norms [36] and uninorms [58]) were defined specifically on [0, 1], as they are mostly used
to model fuzzy logic operations over membership degrees or truth-values.

For that reason, aggregation functions and their subclasses have been successfully employed in a plethora of
theoretical and applied fields that involves some sort of fuzzy modeling. For instance, overlap functions and their
generalizations (such as general overlap functions [15]) show good results when applied as a fuzzy conjunction oper-
ator in problems where associativity of the applied aggregation function is not required, such as in image processing
[12, 34], fuzzy rule-based classification [38, 39, 40], decision making [23], wavelet-fuzzy power quality diagnosis
system [45] and forest fire detection [26].

Some problems, though, may have imperfect information [60, 61], meaning that there may be uncertainty in the
process of assigning the membership degrees or defining the membership functions to be applied in the fuzzy modeling
[41, 44]. Several works tackled this challenge in different ways accordingly to their perspective on uncertainty [9],
by using, for example, intervals [43], interval-valued fuzzy sets [30, 59], intuitionistic fuzzy sets [6] soft sets [1] or
rought sets [48] . Naturally, aggregation functions (and many of its subclasses) were extended to be applied in each
one of those contexts (e.g., interval-valued aggregation functions [2, 3, 4, 19] and intuitionistic aggregations [56]).
Such generalizations can also be studied through the lens of lattice theory1. Recently, it was observed in the literature
the development of many classes of aggregation functions on lattices, such as t-norms and t-conorms [24, 51, 53],
uninorms [14, 35], overlap and grouping functions [46, 49, 54]. Although some of those defined functions could
operate with inputs that are not from the unit interval, there has not been an interest in applying such generalizations
of aggregation functions in applications that are not fuzzy in nature.

We point out that the necessity of defining aggregation functions in intervals that are not the unit interval may be
observed in the literature, even in the fuzzy context. For example, the ordinal sums of t-norms (t-conorms) [36, 51]
and overlap (grouping) functions [18, 55] acting on [0, 1] are defined on the basis of t-norms (t-conorms) and overlap
(grouping) functions acting on a family of non-empty, pairwise disjoint open subintervals (x, y), which, although
included in [0, 1], are not equal to [0, 1].

Still, there are practical problems where the data to be aggregated are not modeling membership degrees, truth
values or some extension of them considering uncertainty modeling, which could benefit from the application of
functions with similar behaviour of aggregation functions that are currently defined only to operate in the fuzzy
context. That is the case, for example, of the pooling process in convolutional neural networks [37], which are widely
applied in image processing [17, 47], and recurrent neural networks [31], such as Long Short-Term Memory [33],
which are used in several machine learning problems with sequential information [32].

Then, the main objective of this paper is to present a framework to characterize extended classes of fusion functions
on a floating domain [a, b]n, which we call (a, b)-fusion functions, based on core classes of fusion functions defined
on [0, 1]n. The fundamental aspect of this framework is that the properties of the core fusion function, defined in
the context of the unit interval, are preserved in the context of an arbitrary interval [a, b] when defining an analogous
(a, b)-fusion function. We point out that this property preservation is not trivial, since there are a multitude of ways of
characterizing properties that are equivalent in the context of the unit interval, but that can lead to different concepts
when defined in another interval [a, b].

Since the motivation comes from an application standpoint, we present some construction methods for these newly
defined (a, b)-aggregation functions, based on some core known aggregation functions (e.g., n-dimensional overlap
functions [28], t-norms [36] and uninorms [58]), guaranteeing that the constructed function behaves in [a, b] in a
similar manner as the core function does in [0, 1]. Furthermore, the presented construction methods are based on the
choice of core aggregation function and an increasing bijective function, both able to be defined with parameters that
can be manipulated/adapted/learned, accordingly to the application at hand, without sacrificing the main properties
of the desired constructed function. Then, we proceed to study some interesting properties of aggregation functions,
namely, idempotency, a kind of generalized migrativity (introduced here) and abstract homogeneity [52], and how
such properties are preserved when our construction methods for (a, b)-aggregation functions are applied.

Finally, we present the main concepts to develop a similar framework to define fusion functions whose the inputs
come from an interval [a, b] but the output is mapped on a possibly different interval [c, d]. We call them (a, b, c, d)-

1For more on lattice theory, see [27].
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fusion functions. Then, based on this framework, subclasses of (a, b, c, d)-fusion functions are defined and construc-
tion methods for them are presented. We show that, under some constraints, when a constructed (a, b, c, d)-aggregation
function is based on an (a, b)-aggregation function, which, in turn, is based on a core aggregation function defined on
[0, 1]n, then, it is equivalent to the (a, b, c, d)-aggregation function obtained directly from the same core aggregation
function defined in [0, 1].

The paper is organized as follows:

Section 2 Important preliminary concepts are presented;

Section 3 We introduce and discuss the notion of property shifting, which is how we denominate the action of prop-
erly transpose a given property from one domain to another, and develop a general framework for defining
classes of (a, b)-fusion functions based on classes of fusion functions, showing examples;

Section 4 The construction methods for different classes of (a, b)-aggregation functions are presented and discussed;

Section 5 We study some properties of aggregation functions and their counterparts in the context of (a, b)-aggregation
functions, with particular interest in the study of (a, b)-aggregation functions obtained by our construction meth-
ods;

Section 6 The main concepts of (a, b, c, d)-fusion concepts are developed, focusing on different ways to construct
them;

Section 7 In our concluding remarks, we review the main contributions of the paper and propose some possible future
lines of work.

2. Preliminary concepts

In this section, we recall some preliminary concepts that are relevant for the development of the paper.
Let us denote ~x = (x1, . . . , xn) ∈ [0, 1]n, where n > 1.

Definition 2.1. [36] A function N : [0, 1]→ [0, 1] is a fuzzy negation if the following conditions hold:

(N1) N(0) = 1 and N(1) = 0;

(N2) If x ≤ y then N(y) ≤ N(x), for all x, y ∈ [0, 1].

If N also satisfies the involutive property,

(N3) N(N(x)) = x, for all x ∈ [0, 1],

then it is said to be a strong fuzzy negation.

Example 2.1. The Zadeh negation given, for all x ∈ [0, 1], by

NZ(x) = 1− x,

is a strong fuzzy negation.

The concept of fusion function [42] was originally defined in the context of the unit interval as an arbitrary function
F : [0, 1]n → [0, 1].

Definition 2.2. [36] Given a strong fuzzy negation N : [0, 1]→ [0, 1] and a fusion function F : [0, 1]n → [0, 1], then
the fusion function FN : [0, 1]n → [0, 1] defined, for all ~x ∈ [0, 1]n, by

FN (~x) = N(F (N(x1), . . . , N(xn))), (1)

is the N -dual of F .
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When it is clear by the context, the NZ-dual function (dual with respect to the Zadeh negation) of F is just called
dual of F , and is denoted by F d. Observe that (FN )N = F , since N is a strong negation.

Here we recall the representation, introduced by Asmus et al. [5], of a class of fusion functions through its set
of sufficient and necessary properties, which we denominate as constitutive properties. Let F be a subclass of fusion
functions F : [0, 1]n → [0, 1] and PF be a set of constitutive properties of the functions from F , such that it includes:
(i) boundary conditions for any F ∈ F , (ii) some kind of monotonicity and (iii) possibly other constraints not related
to neither (i) nor (ii). Such subclass of functions is given by:

F = {F : [0, 1]n → [0, 1]| F satisfies all the properties in PF}. (2)

We present the same style of representation for the definition of aggregation functions, which is the most important
subclass of fusion functions, as follows:

Definition 2.3. [8] An aggregation function is any function A ∈ A, where:

A = {A : [0, 1]n → [0, 1]| A satisfies all the properties in PA}

with

PA = {(A1), (A2)},

and

(A1) A is increasing;

(A2) A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.

Example 2.2. i) The function AM : [0, 1]n → [0, 1] (arithmetic mean), given, for all ~x ∈ [0, 1]n, by

AM(~x) =

∑n
i=1 xi
n

, (3)

is an aggregation function.

ii) The function AW : [0, 1]n → [0, 1] (weighted arithmetic mean), given, for all ~x, ~w ∈ [0, 1]n, by

AW (~x) =
n∑

i=1

xi · wi, (4)

such that
∑n
i=1 wi = 1, is an aggregation function.

There are many subclasses of aggregation functions defined in the literature. Here we highlight some of them that
are going to be of importance on this work.

Definition 2.4. [22, 28] An n-dimensional overlap function is any fusion function O ∈ O, such that:

O = {O : [0, 1]n → [0, 1]| O satisfies all the properties in PO}

where

PO = {(O1), (O2), (O3), (O4), (O5)},

and

(O1) O is symmetric;

(O2) O(~x) = 0⇔∏n
i=1 xi = 0;
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(O3) O(~x) = 1⇔∏n
i=1 xi = 1;

(O4) O is increasing;

(O5) O is continuous.

A 2-dimensional overlap function is just called overlap function [7, 11].

Remark 2.1. Taking into consideration Definitions 2.3 and 2.4, one can observe that conditions (A1) and (O4) are
the same one (increasingness). However, we decide to label them differently so that each condition is associated with
one respective class of functions, to aid the readability of the mathematical proofs in this paper.

Example 2.3. i) The function OP : [0, 1]n → [0, 1] (product overlap), given, for all ~x ∈ [0, 1]n, by

GM(~x) =
n∏

i=1

xi, (5)

is an n-dimensional overlap function.

ii) The function GM : [0, 1]n → [0, 1] (geometric mean), given, for all ~x ∈ [0, 1]n, by

GM(~x) = n

√√√√
n∏

i=1

xi, (6)

is an n-dimensional overlap function.

Theorem 2.1. [28] Consider a continuous aggregation function A : [0, 1]m → [0, 1], such that

(PA) A(~x) = 0 if and only if xi = 0, for some i ∈ {1, . . . ,m};

(PB) A(~x) = 1 if and only if xi = 1, for all i ∈ {1, . . . ,m};

and a tuple of n-dimensional overlap functions
−→
O = (O1, . . . , Om). Then, the mapping A−→

O
: [0, 1]n → [0, 1],

defined, for all ~x ∈ [0, 1]n, by

A−→
O
(~x) = A(O1(~x), . . . , Om(~x)), (7)

is an n-dimensional overlap function.

Corollary 2.1. [28] Consider anm-dimensional overlap functionOC : [0, 1]m → [0, 1] and a tuple of n-dimensional
overlap functions

−→
O = (O1, . . . , Om) . Then, the mapping OC−→

O
: [0, 1]n → [0, 1], defined for all ~x ∈ [0, 1]n, by

OC−→
O
(~x) = OC(O1(~x), . . . , Om(~x)), (8)

is an n-dimensional overlap function.

By Corollary 2.1, one can observe that the class of n-dimensional overlap functions is self closed with respect to
the generalized composition.

Definition 2.5. [36] A t-norm is any bivariate fusion function T ∈ T , such that:

T = {T : [0, 1]2 → [0, 1]| T satisfies all the properties in PT }

where

PT = {(T1), (T2), (T3), (T4)},

and
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(T1) T is symmetric;

(T2) T is associative;

(T3) T has 1 as its neutral element;

(T4) T is increasing.

Example 2.4. i) The function TL : [0, 1]2 → [0, 1] (Łukasiewicz t-norm), given, for all x, y ∈ [0, 1], by

TL(x, y) = max{x+ y − 1, 0}, (9)

is a t-norm.

ii) The function TH : [0, 1]2 → [0, 1] (Hamacher product), given, for all x, y ∈ [0, 1], by

TH(x, y) =

{
0 if x = y = 0,

xy
x+y−xy otherwise, (10)

is a t-norm.

Definition 2.6. [58] An uninorm is any bivariate fusion function U ∈ U , such that:

U = {U : [0, 1]2 → [0, 1]| U satisfies all the properties in PU}

where

PU = {(U1), (U2), (U3), (U4)},

and

(U1) U is symmetric;

(U2) U is associative;

(U3) U has a neutral element;

(U4) U is increasing.

Example 2.5. i) Consider e ∈ [0, 1]. Then, the function UC : [0, 1]2 → [0, 1], given, for all x, y ∈ [0, 1], by

UC(x, y) =

{
max{x, y} if (x, y) ∈ [e, 1]2,
min{x, y} otherwise, (11)

is an uninorm with e as its neutral element;

ii) The function UP : [0, 1]2 → [0, 1], given, for all x, y ∈ [0, 1], by

UP (x, y) =

{
0 if (x, y) ∈ {(1, 0), (0, 1)},

xy
(1−x)+(1−y)+xy otherwise, (12)

is an uninorm with 1
2 as its neutral element.
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3. F -shifted (a, b)-fusion functions

The main goal of this section is to introduce a general framework to define new classes of functions with similar
behaviour as some known subclasses of fusion/aggregation functions, but that are not limited to the unit interval. The
idea is to define those new classes of functions (acting on an interval [a, b]) through a sets of properties that mirrors
the ones from the known functions (acting on [0, 1]).

From the remainder of this paper, consider a, b ∈ R, such that a < b.

Definition 3.1. An (a, b)-fusion function is an arbitrary function F a,b : [a, b]n → [a, b].

It is clear that every fusion function is an (a, b)-fusion function for a = 0 and b = 1. Then, henceforward, every
(0, 1)-fusion function is called here just as fusion function.

We denote by Fa,b a subclass of (a, b)-fusion functions determined by a set of constitutive properties PFa,b .
The action of shifting a property (P1) of a function F1 : [a1, b1]

n → [a1, b1] from [a1, b1] to [a2, b2] is to “rewrite”
(P1) so that it conveys the same concept in the context of [a2, b2], resulting in a property (P2) of a function F2 :
[a2, b2]

n → [a2, b2]. In other words, (P2) is the counterpart in [a2, b2] for the property (P1) (see Example 3.1).
Some properties can be shifted without any rewriting (e.g., monotonicity, continuity, associativity and idempotency).
However, boundary conditions, in general, have to be rewritten when shifted.

Example 3.1. Suppose that we intend to define a property (A2’) that conveys the boundary conditions of a function
F : [−10, 10]n → [−10, 10] by shifting the property (A2) of aggregation functions (Definition 2.3). It is clear that
(A2) is written taking into consideration the boundaries of [0, 1], since aggregation functions are defined on the unit
interval. So, a natural way to shift (A2) from [0, 1] to [−10, 10] is to rewrite it by changing the lower and upper
boundaries accordingly, resulting in (A2’) as follows:

(A2’) A(−10, . . . ,−10) = −10 and A(10, . . . , 10) = 10.

Remark 3.1. A given property in the context of the interval [0, 1] can be defined for a general interval [a, b] in different
ways, so that it coincides with the original definition when a = 0 and b = 1. This is the case of the 1-Lipschitz property
[29]. A bivariate fusion function F : [0, 1]2 → [0, 1] has this property if, for all x1, x2, y1, y2 ∈ [0, 1], one has that:

|F (x1, y1)− F (x2, y2)| ≤ |x1 − x2|+ |y1 − y2|. (13)

Observe that this property, expressed by Inequality (13), can be defined without modifications for (a, b)-fusion func-
tions. Now, consider the following expression for a property of a bivariate (a, b)-fusion functionF a,b : [a, b]2 → [a, b]:

|F a,b(x1, y1)− F a,b(x2, y2)| ≤
|x1 − x2|+ |y1 − y2|

(b− a)k , k ∈ [0,+∞), (14)

for all x1, x2, y1, y2 ∈ [a, b]. The property expressed by Equation (14) coincides with the 1-Lipschitz property in the
particular case when k = 0, or when b− a = 1. However, it is clear that the properties expressed by Equations (13)
and (14) are not equivalent, that is, they do not convey the same concept. That is why, when shifting the 1-Lipschitz
property from [0, 1] to [a, b], one should express it by Equation (13), without rewriting it, in order to avoid introducing
a different concept.

Definition 3.2. Let F be the subclass of fusion functions F : [0, 1]n → [0, 1] determined by the set of constitutive
properties PF , defined in Equation (2). Then, a set of constitutive properties PFa,b of a class of (a, b)-fusion functions
Fa,b is said to be F-shiftable if PF coincides with the set composed of all the properties obtained by shifting each
property of PFa,b from [a, b] to [0, 1].

Definition 3.3. Let PF be the set of constitutive properties of a class of fusion functions F . Then, Fa,b, given by

Fa,b = {F a,b : [a, b]n → [a, b]| F a,b satisfies all the properties in P a,bF }, (15)

is said to be F-shifted if P a,bF is F-shiftable.
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A F-shifted class of (a, b)-fusion functions Fa,b is a counterpart (in [a, b]) of a class of fusion function F (in
[0, 1]).

Example 3.2. i) Consider a subclass of (−10, 10)-fusion functions FA−10,10, with its set of constitutive properties
PFA−10,10 given by:

PFA−10,10 = {(A1’), (A2’)},

where, for all FA−10,10 ∈ FA−10,10, it holds that:

(A1’) FA−10,10 is increasing;

(A2’) FA−10,10(−10, . . . ,−10) = −10 and FA−10,10(10, . . . , 10) = 10.

Then, PFA−10,10 isA-shiftable, since we obtain (A1) and (A2) (Definition 2.3), which are the defining properties
of A, by shifting (A1’) and (A2’) from [−10, 10] to [0, 1]. Thus, FA−10,10 is an A-shifted class of (a, b)-fusion
functions.

ii) Consider the class of n-dimensional overlap functionsO and a subclass of (a, b)-fusion functionsHa,b with its set
of constitutive properties PHa,b , given by:

PHa,b = {(H1), (H2)},

where, for all for all Ha,b ∈ Ha,b, it holds that:

(H1) Ha,b is symmetric;

(H2) Ha,b is associative.

Clearly, PHa,b is not O-shiftable, since we cannot transpose their properties to the context of the unit interval
so that they coincide with the properties from PO (Definition 2.4). Thus, Ha,b is not an O-shifted class of
(a, b)-fusion functions. However, if we consider the classH of symmetric and associative fusion functions, then
it is immediate thatHa,b isH-shifted.

In [8], aggregation functions were already defined in the context of a domain [a, b]n. But here, to avoid confusion,
we call them aggregation functions only when a = 0 and b = 1 (Definition 2.3). Otherwise, we call them (a, b)-
aggregation functions, just to standardize the notation. The definition of the class of (a, b)-aggregation function is
given as follows:

Definition 3.4. [8] An (a, b)-aggregation function is any function Aa,b ∈ Aa,b, such that:

Aa,b = {Aa,b : [a, b]n → [a, b]| Aa,b satisfies all the properties in P a,bA }

where

P a,bA = {(A1*), (A2*)},

and

(A1*) Aa,b is increasing;

(A2*) Aa,b(a, . . . , a) = a and Aa,b(b, . . . , b) = b.

Example 3.3. i) The arithmetic mean AM : [a, b]n → [a, b], given by Equation (3), is an (a, b)-aggregation function
for any arbitrary a, b ∈ R, such that a < b;

ii) The product operation is a (0, b)-fusion function with b ≤ 1 and an (a, b)-fusion function when a < 0, b ≤ 1
and a2 ≤ b (e.g., [−1, 1]). It is only considered an (a, b)-aggregation function in the particular case where
a = 0 and b = 1. However, in Section 4 we present a construction method in which one can obtain an (a, b)-
aggregation function based on the product (or any other aggregation function, for that matter) for any arbitrary
a, b ∈ R, such that a < b.
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The following results are immediate:

Proposition 3.1. Consider the class of aggregation functions A and its set of constitutive properties PA (from Defi-
nition 2.3). Then the set of properties P a,bA (from Definition 3.4) is A-shiftable.

Corollary 3.1. The class Aa,b of (a, b)-aggregation functions (Definition 3.4) is A-shifted.

3.1. Some A-shifted subclasses of (a, b)-aggregation functions
Here we study some A-shifted subclasses of (a, b)-aggregation functions.
Analogous to Definition 3.3 ofF-shifted subclasses of (a, b)-fusion functions, one can defineA-shifted subclasses

of (a, b)-aggregation functions, as follows:

Definition 3.5. Let PA′ be the set of constitutive properties of a subclass of aggregation functions A′. Then, A′a,b,
given by

A′a,b = {A′a,b : [a, b]n → [a, b]| A′a,b satisfies all the properties in P a,bA′ }, (16)

is said to be A′-shifted if P a,bA′ is A′-shiftable.

Observe that any A-shifted subclass of (a, b)-aggregation functions is also an A-shifted subclass of (a, b)-fusion
functions.

Now, let us define differentA′-shifted subclasses of (a, b)-aggregation functionsA′a,b ⊆ Aa,b, based on a subclass
of aggregation functions A′ ⊆ A. First, for a given subclass A′a,b, one must define its set of constitutive properties
P a,bA′ in a way for it to be A′-shiftable.

Example 3.4. Suppose that we intend to define an O-shifted subclass Oa,b of (a, b)-aggregation functions as the
counterpart in [a, b] for the class of n-dimensional overlap functions O (Definition 2.4). For that, we have to define
the set of constitutive properties POa,b in a way for it to be O-shiftable, that is, so that POa,b = PO when shifting the
properties of POa,b from [a, b] to [0, 1].

From Definition 2.4, we see that the set PO has three properties that can be shifted without rewriting them: (O1),
(O4) and (O5). So, these three properties can be part of the set POa,b . However, properties (O2) and (O3) are the
lower and upper boundary conditions, respectively, and, thus, they depend on the values of such boundaries (0 and
1). Also, they are defined by means of the product operation which, in the context of the interval [0, 1], has the lower
boundary as its annihilator element and the upper boundary as its neutral element. This characteristic is not carried
when defining such boundary conditions on a different interval [a, b].

So, it is clear that we cannot simply exchange 0 for the left endpoint (a) on condition (O2) and 1 for right endpoint
(b) on condition (O3) to obtain the analogous boundary conditions for POa,b . There are more than one way to define
such boundary conditions so that they are equivalent to (O2) and (O3) when a = 0 and b = 1. Here we present a
viable alternative. Considering an (a, b)-fusion function Oa,b : [a, b]n → [a, b], the following properties complete the
set POa,b :

(OAB1) Oa,b is symmetric;

(OAB2) Oa,b(x1, . . . , xn) = a if and only if
∏n
i=1(xi − a) = 0;

(OAB3) Oa,b(x1, . . . , xn) = b if and only if
∏n
i=1(

xi−a
b−a ) = 0;

(OAB4) Oa,b is increasing;

(OAB5) Oa,b is continuous.

One can observe that (OAB2) and (OAB3) are equivalent to (O2) and (O3), respectively, when a = 0 and b = 1,
since the relevant properties of the product operation are respected in [0, 1]. The other three properties were just
relabelled to not mix the notation. Thus, the set of properties POa,b = {(OAB1), (OAB2), (OAB3), (OAB4), (OAB5)}
is O-shiftable.
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Based on the set of properties POa,b defined in Example 3.4, one can define the class of n-dimensional (a, b)-
overlap functions.

Definition 3.6. The class Oa,b of n-dimensional (a, b)-overlap functions Oa,b is given by:

Oa,b = {Oa,b : [a, b]n → [a, b]| Oa,b satisfies all the properties in POa,b} (17)

where POa,b = {(OAB1), (OAB2),(OAB3), (OAB4), (OAB5)}.

Proposition 3.2. Consider the class of n-dimensional (a, b)-overlap functions Oa,b (Definition 3.6). Then, Oa,b is
O-shifted.

PROOF. Immediate, since O ⊆ A and, as shown in Example 3.4, POa,b is O-shiftable. 2

Example 3.5. i) The function MIN : [a, b]n → [a, b], given, for all ~x ∈ [a, b]n, by

MIN(~x) = min{x1, . . . , xn}, (18)

is an n-dimensional (a, b)-overlap function;

ii) The geometric mean, given by Equation (6), is only an n-dimensional (a, b)-overlap function when a = 0 and
b > 0. In Section 4, we present a construction method to obtain an n-dimensional (a, b)-overlap function Oa,b

based on a given n-dimensional overlap function O (e.g., the geometric mean), for any arbitrary a, b ∈ R, such
that a < b.

Since n-dimensional (a, b)-overlap functions are defined by shifting the properties of Definition 2.4 from [0, 1] to
[a, b], then some other properties of n-dimensional overlap functions that are not explicitly stated on their definition
can also be shifted in a similar manner. The next two results exemplify that the properties expressed by Theorem 2.1
and Corollary 2.1 can be shifted from [0, 1] to [a, b]:

Theorem 3.1. Consider a continuous (a, b)-aggregation function Aa,b : [a, b]m → [a, b], such that

(PA*) Aa,b(~x) = a if and only if xi = a, for some i ∈ {1, . . . ,m};

(PB*) Aa,b(~x) = b if and only if xi = b, for all i ∈ {1, . . . ,m};

and a tuple
−−→
Oa,b = (Oa,b1 , . . . , Oa,bm ) of n-dimensional (a, b)-overlap functions. Then, the mapping Aa,b−−→

Oa,b
: [a, b]n →

[a, b], defined for all ~x ∈ [a, b]n, by

Aa,b−−→
Oa,b

(~x) = Aa,b(Oa,b1 (~x), . . . , Oa,bm (~x)), (19)

is an n-dimensional (a, b)-overlap function.

PROOF. It is immediate that Aa,b−−→
Oa,b

is well defined. Then, by (O1), (O4) and (O5), we have that Aa,b−−→
Oa,b

respects con-

ditions (OAB1), (OAB4) and (OAB5). Now, let us prove that Aa,b−−→
Oa,b

respects the remaining conditions of Definition

3.6:

(OAB2) Suppose that Aa,b−−→
Oa,b

(~x) = a, for some ~x ∈ [a, b]n. Then, by Equation (19) and (PA*), we have that:

Oa,bj (~x) = a for some j ∈ {1, . . . ,m} ⇔ xi = a for some i ∈ {1, . . . , n} by (OAB2).

On the other hand, if we take ~x ∈ [a, b]n, such that ~x = (x1, . . . , xi, . . . , xn) with xi = a for some i ∈
{1, . . . , n}, then, by (OAB2), (PA*) and Equation (19), we have that Aa,b−−→

Oa,b
(~x) = a.
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(OAB3) Suppose that Aa,b−−→
Oa,b

(~x) = b, for all ~x ∈ [a, b]n. Then, by Equation (19) and (PB*), it follows that:

Oa,bj (~x) = b for all j ∈ {1, . . . ,m} ⇔ ~x = (b, . . . , b) by (OAB3).

Conversely, if ~x = (b, . . . , b), then, by (OAB3), (A2*) and Equation (19), we have that Aa,b−−→
Oa,b

(~x) = b.

2

Corollary 3.2. Consider an m-dimensional (a, b)-overlap function OCa,b : [a, b]m → [a, b] and a tuple
−−→
Oa,b =

(Oa,b1 , . . . , Oa,bm ) of n-dimensional (a, b)-overlap functions. Then, the mapping OC−−→
Oa,b

: [a, b]n → [a, b], defined for
all ~x ∈ [a, b]n, by

OC−−→
Oa,b

(~x) = OCa,b(Oa,b1 (~x), . . . , Oa,bm (~x)), (20)

is an n-dimensional (a, b)-overlap function.

PROOF. Immediate, since OCa,b is a continuous (a, b)-aggregation function that respects (PA*) and (PB*).

Corollary 3.3. Consider the weighted arithmetic mean AW a,b : [a, b]m → [a, b] given, for all ~x ∈ [a, b]n, by

Equation (4), with ~w ∈ [0, 1]m, such that
∑m
i=1 wi = 1, and a tuple

−−→
Oa,b = (Oa,b1 , . . . , Oa,bm ) of n-dimensional

(a, b)-overlap functions. Then, the mapping AW−−→
Oa,b

: [a, b]n → [a, b], defined, for all ~x ∈ [a, b]n, by

AW−−→
Oa,b

(~x) = AW a,b(Oa,b1 (~x), . . . , Oa,bm (~x)) (21)

= Oa,b1 (~x) · w1 + . . .+Oa,bm (~x) · wm,

is an n-dimensional (a, b)-overlap function.

PROOF. Immediate, since AW a,b is a continuous (a, b)-aggregation function that respects (PA*) and (PB*).

Remark 3.2. Notice that, by Corollary 3.2, one can state that the class of (a, b)-overlap functions is self closed with
respect to the generalized composition, and, by Corollary 3.3, one can observe that the convex sum of n-dimensional
(a, b)-overlap functions is also an n-dimensional (a, b)-overlap function. These properties are especially useful in
practical applications, since one can combine different (a, b)-overlap functions to obtain new functions with the same
behaviour.

Remark 3.3. In a similar manner in which n-dimensional (a, b)-overlap functions were defined as a counterpart for
n-dimensional overlap functions, one could define n-dimensional (a, b)-grouping functions as a counterpart for n-
dimensional grouping functions. Since n-dimensional grouping functions are the dual notion of n-dimensional overlap
functions, properties such as the one expressed in Corollary 3.2 can also be obtained in the context of n-dimensional
(a, b)-grouping functions.

Other A′-shifted class of (a, b)-aggregation functions can be defined in a similar manner as presented in Example
3.4 and Definition 3.6. To exemplify that, in the following we define (a, b)-t-norms and (a, b)-uninorms.

Definition 3.7. Consider a bivariate (a, b)-fusion function T a,b : [a, b]2 → [a, b] and the following properties:

(TAB1) T a,b is symmetric;

(TAB2) T a,b is associative;

(TAB3) T a,b has b as its neutral element;

(TAB4) T a,b is increasing.
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Then, the class T a,b of (a, b)-t-norms T a,b is given by:

T a,b = {T a,b : [a, b]2 → [a, b]| T a,b satisfies all the properties in PT a,b} (22)

where PT a,b = {(TAB1), (TAB2),(TAB3),(TAB4)}.

The following result is immediate:

Proposition 3.3. Consider the class of t-norms T (Definition 2.5) and the class of (a, b)-t-norms T a,b (Definition
3.7). Then, the class T a,b is T -shifted.

Example 3.6. i) The (a, b)-fusion function T a,bL : [a, b]2 → [a, b], given, for all x, y ∈ [a, b], by

T a,bL (x, y) = max{x+ y − b, a}, (23)

is an (a, b)-t-norm. When a = 0 and b = 1, T a,bL = TL, which is the Łukasiewicz t-norm, given in Equation (9);

ii) The function TH : [a, b]2 → [a, b], such that b > 1, given by

TH(x, y) =

{
a if x = y = a,

xy
x+y−xy otherwise,

was inspired by the Hamacher product t-norm, defined in Equation (46), but cannot be an (a, b)-t-norm, since
it is not well defined. It is not trivial to define an “Hamacher product-like” (a, b)-t-norm, so we show in Section
4 a construction method to obtain an (a, b)-t-norm T a,b based on any given core t-norm T .

Remark 3.4. Observe that there is not an analogous result for (a, b)-t-norms as the ones stated in Theorem 3.1 and
Corollary 3.2 for n-dimensional (a, b)-overlap functions. Those results derive from the fact that the generalized com-
position of n-dimensional overlap functions provides an n-dimensional overlap function (Theorem 2.1 and Corollary
2.1), but the same property does not necessarily hold for t-norms.

Remark 3.5. In a similar discussion from the one in Remark 3.3, by the duality between t-norms and t-conorms, one
can define (a, b)-t-conorms in an analogous way as done with (a, b)-t-norms. In an attempt to keep this paper concise,
we will reserve such developments for future works.

Definition 3.8. Consider a bivariate (a, b)-fusion function Ua,b : [a, b]2 → [a, b] and the following properties:

(UAB1) Ua,b is symmetric;

(UAB2) Ua,b is associative;

(UAB3) Ua,b has a neutral element;

(UAB4) Ua,b is increasing.

Then, the class Ua,b of (a, b)-uninorms Ua,b is given by:

Ua,b = {Ua,b : [a, b]2 → [a, b]| Ua,b satisfies all the properties in PUa,b} (24)

where PUa,b = {(UAB1), (UAB2),(UAB3),(UAB4)}.

The following result is immediate:

Proposition 3.4. Consider the class of uninorms U (Definition 2.6) and the class of (a, b)-uninorms Ua,b (Definition
3.8). Then, the class Ua,b is U-shifted.
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Example 3.7. i) Consider q ∈ [a, b]. Then, the function Ua,bC : [a, b]2 → [a, b], given, for all x, y ∈ [a, b], by

UC(x, y) =

{
max{x, y} if x, y ∈ [q, b],
min{x, y} otherwise, (25)

is an (a, b)-uninorm with q as its neutral element. One may observe that Ua,bC is a counterpart on [a, b] for the
uninorm UC (Equation (11));

ii) As discussed on Examples 3.5 and 3.6, some aggregation functions are not trivially transposed to obtain an anal-
ogous definition on [a, b]. That is the case of the UP uninorm, given by Equation (12). So, in Section 4, we
present a construction method to obtain (a, b)-unimorms, based on a choice of any core unimorm, such as UP .

Remark 3.6. In the same manner that uninorms can be seen as a generalization of t-norms and t-conorms, it is
immediate that (a, b)-uninorms are a generalization of (a, b)-t-norms and (a, b)-t-conorms.

4. Construction methods for F -shifted (a, b)-fusion functions

In [54], Wang et al. introduced a construction method for overlap functions on a lattice L based on a “generator
triple” composed of an overlap function (which is bivariate) on some lattice M and two complete homomorphisms
from L to M , under several constraints. Here, we develop construction methods for any n-dimensional (a, b)-fusion
function, with focus on (a, b)-aggregation functions and their subclasses, based on a core fusion function and an
increasing bijective function, without imposing any additional constraints.

Consider a fusion function F : [0, 1]n → [0, 1] and an increasing and bijective function φ : [a, b]→ [0, 1] and the
(a, b)-fusion function F a,bφ : [a, b]n → [a, b] given, for all x1, . . . , xn ∈ [a, b], by

F a,bφ (x1, . . . , xn) = φ−1 (F (φ(x1), . . . , φ(xn))) . (26)

Then, F is said to be the core function of F a,bφ . Equation (26) place an important role in the following construction
methods. In the remainder of the paper, we denote F a,bφ simply by F a,b.

Theorem 4.1. Consider a fusion function A : [0, 1]n → [0, 1], an increasing and bijective function φ : [a, b]→ [0, 1]
and an (a, b)-fusion function Aa,b : [a, b]n → [a, b] given, for all x1, . . . , xn ∈ [a, b], by

Aa,b(x1, . . . , xn) = φ−1 (A (φ(x1), . . . , φ(xn))) . (27)

Then, Aa,b is an (a, b)-aggregation function if and only if A is an aggregation function.

PROOF. It is immediate that Aa,b is well defined.
(⇐) Suppose that A is an aggregation function. Then, let us prove that Aa,b has all properties from P a,bA :

(A1*) Let ~x, ~y ∈ [a, b]n be such that ~x ≤ ~y. Since φ and A are increasing, then it follows that

~x ≤ ~y ⇒ Aa,b(~x) ≤ Aa,b(~y);

(A2*) Consider ~a = (a, . . . , a) and~b = (b, . . . , b). Then:

Aa,b(~a) = φ−1 (A (φ(a), . . . , φ(a)))

= φ−1 (A (0, . . . , 0)) since φ is bijective and increasing
= φ−1(0) by (A2)
= a,
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and

Aa,b(~b) = φ−1 (A (φ(b), . . . , φ(b)))

= φ−1 (A (1, . . . , 1)) , since φ is bijective and increasing
= φ−1(1) by (A2)
= b.

(⇒) Suppose that Aa,b is an (a, b)-aggregation function. Now, let us prove that A respects all conditions from
Definition 2.3:

(A1) Let ~x, ~y ∈ [0, 1]n be such that ~x ≤ ~y. Then, it holds that φ−1(xi) ≤ φ−1(yi), for all i ∈ {1, . . . , n}, since φ−1

is increasing. From (A1*), one has that:

Aa,b(φ−1(x1), . . . , φ
−1(xn)) ≤ Aa,b(φ−1(y1), . . . , φ−1(yn))

⇒ φ−1(A(φ(φ−1(x1)), . . . , φ(φ
−1(y1)))) ≤ φ−1(A(φ(φ−1(x1)), . . . , φ(φ−1(y1)))), by Equation (27)

⇒ A(x1, . . . , xn) ≤ A(y1, . . . , yn), since φ−1 is bijective and increasing.

(A2) From (A2*), one has that:

Aa,b(a, . . . , a) = a

⇒ φ−1 (A (φ(a), . . . , φ(a))) = a

⇒ φ−1 (A (0, . . . , 0)) = a

⇒ A (0, . . . , 0) = 0,

and

Aa,b(b, . . . , b) = b

⇒ φ−1 (A (φ(b), . . . , φ(b))) = b

⇒ φ−1 (A (1, . . . , 1)) = b

⇒ A (1, . . . , 1) = 1.

2

Example 4.1. A basic increasing bijection φA : [b, a] → [0, 1] is the only affine transform between [a, b] and [0, 1],
defined, for all x ∈ [a, b], by

φA(x) =

(
x− a
b− a

)
. (28)

More generally, one may consider φpA : [a, b]→ [0, 1], defined, for all x ∈ [a, b], by

φpA(x) =

(
x− a
b− a

)p
. (29)

Then, let GM : [0, 1]n → [0, 1] be the geometric mean, given by Equation (6). Thus, the (a, b)-fusion function
GMa,b : [a, b]n → [a, b], given, for all x1, . . . , xn ∈ [a, b], by

GMa,b(x1, . . . , xn) = (φpA)
−1 (GM (φpA(x1), . . . , φ

p
A(xn))) = φA

−1 (GM (φA(x1), . . . , φA(xn))) , (30)

is an (a, b)-aggregation function. We can rewrite Equation (30) as follows:

GMa,b(x1, . . . , xn) = GM

(
x1 − a
b− a , . . . ,

xn − a
b− a

)
· (b− a) + a.
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Remark 4.1. It is immediate that any aggregation function A : [0, 1]n → [0, 1] can be the core function of the
construction method presented in Theorem 4.1, as it was the case with the geometric mean in Example 4.1. By
applying the construction method, one can obtain an analogous (a, b)-aggregation function for any given aggregation
function.

Remark 4.2. In the context of Theorem 4.1, when considering the basic increasing bijection φA, shown in Example
4.1, some (a, b)-aggregation functions and their respective core aggregation functions share the same formula. This
is the case for positively homogeneous and shift invariant aggregation functions [29], like the Choquet integral [13].
In fact, the (a, b)-Choquet integral, constructed by this method, corresponds to the asymmetric Choquet integral
introduced by Denneberg [16]. Hence, all the special instances of this function, such as the minimum, maximum,
arithmetic mean, weighted mean and OWA [57], preserve their formulas when applied as the core of the construction
method for defining analogous (a, b)-aggregation functions.

Remark 4.3. In Theorem 4.1, one could also obtain an (a, b)-aggregation function by considering φ as a decreasing
bijection. However, for this and the following construction methods, we focus only on applying increasing bijections
to facilitate the shifting of properties of the core aggregation function from [0, 1] to [a, b].

Remark 4.4. More complex ways could be considered for constructing (a, b)-fusion functions based on increasing
(or decreasing) bijections, instead of just φ and φ−1, as defined on Equation (26). For instance, one could consider
the monotonic bijections η, φ1, . . . , φn : [a, b] → [0, 1] and a fusion function F : [0, 1]n → [0, 1] to construct an
(a, b)-fusion F a,b : [a, b]n → [a, b], defined, for all ~x ∈ [a, b]n, by

F a,b(~x) = η−1F (φ1(x1), . . . , φn(xn)).

With this approach, some shifted properties from F are preserved for F a,b (e.g., F a,b is an (a, b)-aggregation func-
tion if and only if F is an aggregation function) but others properties may not be preserved (e.g., symmetry and
associativity).

Similar construction methods from the one in Theorem 4.1 can be obtained for different subclasses of (a, b)-
aggregation functions.

Theorem 4.2. Consider a fusion function O : [0, 1]n → [0, 1], an increasing and bijective function φ : [a, b]→ [0, 1]
and an (a, b)-fusion function Oa,b : [a, b]n → [a, b] given, for all x1, . . . , xn ∈ [a, b], by

Oa,b(x1, . . . , xn) = φ−1 (O (φ(x1), . . . , φ(xn))) , (31)

Then, Oa,b is an n-dimensional (a, b)-overlap function if and only if O is an n-dimensional overlap function.

PROOF. (⇒) Suppose thatOa,b is an n-dimensional (a, b)-overlap function. Then, it is immediate thatO is increasing,
symmetric and continuous. Let us prove that O respects the remaining conditions of Definition 2.4:

(O2)

O(x1, . . . , xn) = 0

⇔ O(φ(φ−1(x1)), . . . , φ(φ
−1(xn))) = 0, since φ is bijective

⇔ φ−1(O(φ(φ−1(x1)), . . . , φ(φ
−1(xn)))) = φ−1(0)

⇔ Oa,b(φ−1(x1), . . . , φ
−1(xn)) = a, by Equation (31)

⇔ φ−1(xi) = a, for some i ∈ {1, . . . , n}, by (OAB2)
⇔ xi = 0, for some i ∈ {1, . . . , n}.
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(O3)

O(x1, . . . , xn) = 1

⇔ O(φ(φ−1(x1)), . . . , φ(φ
−1(xn))) = 1, since φ is bijective

⇔ φ−1(O(φ(φ−1(x1)), . . . , φ(φ
−1(xn)))) = φ−1(1)

⇔ Oa,b(φ−1(x1), . . . , φ
−1(xn)) = b, by Equation (31)

⇔ φ−1(xi) = a, for all i ∈ {1, . . . , n}, by (OAB3)
⇔ xi = 1, for all i ∈ {1, . . . , n}.

(⇐) Suppose that O is an n-dimensional overlap function. From (O1), (O4) and (O5), we also have that Oa,b is
symmetric, increasing and continuous. Now, let us prove that it respects the remaining conditions of Definition 3.6:

(OAB2) Suppose that Oa,b(~x) = a, for some ~x ∈ [a, b]n. Then, from Equation (31), we have that:

a = φ−1 (O (φ(x1), . . . , φ(xn)))⇔ 0 = O (φ(x1), . . . , φ(xn)) ,

since φ is increasing and bijective. From (O2), it follows that:

φ(xi) = 0 for some i ∈ {1, . . . , n} ⇔ xi = a for some i ∈ {1, . . . , n}.

(OAB3) Suppose that Oa,b(~x) = b, for all ~x ∈ [a, b]n. Then, from Equation (31), we have that:

b = φ−1 (O (φ(x1), . . . , φ(xn)))⇔ 1 = O (φ(x1), . . . , φ(xn)) ,

since φ is increasing and bijective. From (O3), it follows that:

φ(xi) = 1 for all i ∈ {1, . . . , n} ⇔ xi = b for all i ∈ {1, . . . , n}.

2

Example 4.2. The (a, b)-aggregation function GMa,b : [a, b]n → [a, b] defined in Example 4.1 is an n-dimensional
(a, b)-overlap function.

In the next theorem, we show that one can obtain the same n-dimensional (a, b)-overlap function from two distinct
methods, both based on a tuple of core n-dimensional overlap functions

−→
O = (O1, . . . , Om) . One method consists

in first obtaining the n-dimensional overlap function A−→
O

by the generalized composition of the core n-dimensional
overlap functions by an aggregation function A (as in Theorem 2.1), followed by the application of the construction
method of Theorem 4.2 takingA−→

O
as the core function. The other method consists in first applying both the construc-

tion method of Theorem 4.2 m times, one for each core overlap function from
−→
O , as well as the construction method

of Theorem 4.1 with an aggregation function A as the core function, followed by the generalized composition of the
m resulting n-dimensional (a, b)-overlap functions (Oa,b1 , . . . , Oa,bm ) by the resulting (a, b)-aggregation functionAa,b.

Theorem 4.3. Consider a continuous aggregation function A : [0, 1]m → [0, 1], such that

(PA) A(~x) = 0 if and only if xi = 0, for some i ∈ {1, . . . ,m};

(PB) A(~x) = 1 if and only if xi = 1, for all i ∈ {1, . . . ,m};

a tuple
−→
O = (O1, . . . , Om) of n-dimensional overlap functions and the n-dimensional overlap function A−→

O
:

[0, 1]n → [0, 1], defined, for all ~x ∈ [0, 1]n, by

A−→
O
(~x) = A(O1(~x), . . . , Om(~x)). (32)
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−→
O

Th. 4.2 //

Th. 2.1

��

−−→
Oa,b

Th. 3.1

��
A−→
O Th. 4.1

// Aa,b−→
O

= OCa,b

Figure 1: Commutative diagram of the construction methods of an n-dimensional (a, b)-overlap function based on a tuple of n-dimensional overlap
functions.

Also, consider an increasing and bijective function φ : [a, b] → [0, 1], the n-dimensional (a, b)-overlap function
Aa,b−→
O

: [a, b]n → [a, b] given, for all ~y ∈ [a, b]n, by

Aa,b−→
O
(~y) = φ−1

(
A−→
O
(φ(y1), . . . , φ(yn))

)
, (33)

the (a, b)-aggregation function Aa,b : [a, b]m → [a, b], given, for all ~z ∈ [a, b]m, by

Aa,b(~z) = φ−1 (A(φ(z1), . . . , φ(zm))) , (34)

the n-dimensional (a, b)-overlap functions Oa,b1 , . . . , Oa,bm : [a, b]n → [a, b], given, for all ~y ∈ [a, b]n, by

Oa,bi (~y) = φ−1 (Oi(φ(y1), . . . , φ(yn))) , i ∈ {1, . . . ,m}, (35)

and the n-dimensional (a, b)-overlap function OCa,b : [a, b]n → [a, b], defined, for all ~y ∈ [a, b]n by

OCa,b(~y) = Aa,b(Oa,b1 (~y), . . . , Oa,bm (~y)). (36)

Then, it holds that Aa,b−→
O

= OCa,b.

PROOF. Consider ~x ∈ [0, 1]n and ~y ∈ [a, b]n such that xi = φ(yi) for all i ∈ {1, . . . , n}. As φ is bijective, it is
immediate that yi = φ−1(xi) for all i ∈ {1, . . . , n}. Then, it follows that:

Aa,b−→
O
(~y) = φ−1

(
A−→
O
(φ(y1), . . . , φ(yn))

)
, by Equation (33)

= φ−1
(
A−→
O
(x1, . . . , xn)

)

= φ−1 (A(O1(~x), . . . , Om(~x))) , by Equation (32)
= φ−1

(
A(φ(φ−1(O1(~x))), . . . , φ(φ

−1(Om(~x))))
)
, since φ is bijective

= Aa,b
(
φ−1(O1(~x)), . . . , φ

−1(Om(~x))
)
, by Equation (34)

= Aa,b
(
φ−1(O1(φ(y1), . . . , φ(yn))), . . . , φ

−1(Om(φ(y1), . . . , φ(yn)))
)

= Aa,b
(
Oa,b1 (y1, . . . , yn), . . . , O

a,b
m (y1, . . . , yn)

)
, by Equation (35)

= OCa,b(~y), by Equation (36).

2

Theorem 4.3 shows that the diagram of Figure 1 commutes, where
−→
O = (O1, . . . , Om) and

−−→
Oa,b = (Oa,b1 , . . . , Oa,bm ).

Theorem 4.4. Consider a bivariate fusion function T : [0, 1]2 → [0, 1], an increasing and bijective function φ :
[a, b]→ [0, 1] and a bivariate (a, b)-fusion function T a,b : [a, b]2 → [a, b] given, for all x, y ∈ [a, b], by

T a,b(x, y) = φ−1 (T (φ(x), φ(y))) , (37)

Then, T a,b is an (a, b)-t-norm if and only if T is a t-norm.
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PROOF. (⇒) Suppose that T a,b is an (a, b)-t-norm. Then, it is immediate that T is symmetric (T1) and increasing
(T4). Let us prove the remaining conditions:

(T2) From (TAB2), one has that, for all x, y, z ∈ [0, 1]:

T a,b(T a,b(φ−1(x), φ−1(y)), φ−1(z)) = T a,b(φ−1(x), T a,b(φ−1(y), φ−1(z)))

⇒ T a,b(φ−1(T (φ(φ−1(x)), φ(φ−1(y)))), φ−1(z)) = T a,b(φ−1(x), φ−1(T (φ(φ−1(y)), φ(φ−1(z))))),

by Equation (37)
⇒ φ−1(T (T (x, y), z)) = φ−1(T (x, T (y, z))), since φ is bijective
⇒ T (T (x, y), z) = T (x, T (y, z)),

which means that T is associative.

(T3) From (TAB3), one has that, for all x ∈ [0, 1]:

T a,b(φ−1(x), b) = T a,b(b, φ−1(x)) = φ−1(x)

⇒ φ−1(T (φ(φ−1(x)), φ(b))) = φ−1(x), by Equation (37)
⇒ φ−1(T (x, 1)) = φ−1(x), since φ is bijective
⇒ T (x, 1) = x,

which implies that T has 1 as its neutral element. Since T is symmetric and increasing, the result follows.

Thus, T is a t-norm.
(⇐) Suppose that T is a t-norm. From (T1) and (T4), we also have that T a,b is symmetric and increasing. Now,

let us prove the remaining conditions:

(TAB2) For all x, y, z ∈ [a, b], one has that:

T a,b(T a,b(x, y), z) = φ−1(T (φ(T a,b(x, y)), φ(z))) by Equation (37)
= φ−1(T (T (φ(x), φ(y)), φ(z))) since φ is bijective
= φ−1(T (φ(x), T (φ(y), φ(z)))) by (T2)
= φ−1(T (φ(x), φ(T a,b(y, z))))

= T a,b(x, T a,b(y, z)),

showing that T a,b is associative.

(TAB3) For all x ∈ [a, b], it holds that:

T a,b(x, b) = φ−1(T (φ(x), φ(b))), by Equation (37)
= φ−1(T (φ(x), 1)), since φ is bijective
= φ−1(φ(x)) by (T3)
= x.

Since T a,b is symmetric, it follows that b is its neutral element. 2

Example 4.3. Consider the Hamacher product TH : [0, 1]2 → [0, 1], given by Equation (46), and φpA : [a, b]→ [0, 1],
defined in Equation (29). Then, the (a, b)-fusion function T a,bH : [a, b]2 → [a, b], given, for all x, y ∈ [a, b], by

T a,bH (x, y) = (φpA)
−1 (TH (φpA(x), φ

p
A(y))) , (38)

is an (a, b)-t-norm. By taking p = 1, we can rewrite Equation (38) as follows:

T a,bH (x, y) = TH

(
x− a
b− a ,

y − a
b− a

)
· (b− a) + a.
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Remark 4.5. It is clear that, in the context of Theorem 4.4, when a = 0 and b = 1, Equation (37) provides a t-norm.
In this case, if T = TP (the product t-norm), then the constructed t-norm T 0,1 is a continuous strict t-norm (strictly
increasing in (0, 1]). If T = TL (Łukasiewicz t-norm, given in Equation (9)), then the constructed T 0,1 is a continuous
nilpotent t-norm.

Theorem 4.5. Consider e ∈ [0, 1], q ∈ [a, b], a bivariate fusion function U : [0, 1]2 → [0, 1], an increasing and
bijective function φ : [a, b] → [0, 1], such that φ(q) = e, and a bivariate (a, b)-fusion function Ua,b : [a, b]2 → [a, b]
given, for all x, y ∈ [a, b], by

Ua,b(x, y) = φ−1 (U (φ(x), φ(y))) , (39)

Then, Ua,b is an (a, b)-uninorm with q as its neutral element if and only if U is an uninorm with e as its neutral
element.

PROOF. Analogous to the proof of Theorem 4.4.

Example 4.4. Consider the unimorm UP : [0, 1]2 → [0, 1], given by Equation (12), and φpA : [a, b] → [0, 1], defined
in Equation (29). Then, the (a, b)-fusion function Ua,bP : [a, b]2 → [a, b], given, for all x, y ∈ [a, b], by

Ua,bP (x, y) = (φpA)
−1 (UP (φpA(x), φ

p
A(y))) , (40)

is an (a, b)-uninorm. By taking p = 1, we can rewrite Equation (40) as follows:

Ua,bP (x, y) = UP

(
x− a
b− a ,

y − a
b− a

)
· (b− a) + a.

Remark 4.6. In the same manner that uninorms were defined as a generalization of t-norms and t-conorms [58], it
is immediate that (a, b)-uninorms are a generalization of (a, b-t-norms and (a, b-t-conorms.

5. Study of some properties of (a, b)-aggregation functions

In this section, we analyze some properties of (a, b)-aggregation functions, in particular, the cases in which the
properties of the core aggregation functions are preserved/shifted when constructing an analogous (a, b)-aggregation
functions via the previously introduced construction methods.

5.1. Idempotency and averaging properties
A fusion function F : [0, 1]n → [0, 1] is idempotent [29] if, for all x ∈ [0, 1], it holds that:

F (x, . . . , x) = x. (41)

Clearly, idempotency can be analogously defined for (a, b)-fusion functions.

Proposition 5.1. Let Aa,b ∈ Aa,b be an (a, b)-aggregation function. Then, Aa,b |[c,d] is a (c, d)-aggregation function
for all [c, d] ⊆ [a, b] if and only if Aa,b is idempotent.

PROOF. (⇒) Suppose that Aa,b |[c,d] is a (c, d)-aggregation function for all [c, d] ⊆ [a, b]. Then, for all [c, d] ⊆ [a, b],
it holds that Aa,b(c, . . . , c) = c and Aa,b(d, . . . , d) = d, meaning that Aa,b(x, . . . , x) = x, for all x ∈ [a, b];

(⇐) Now, suppose that Aa,b is idempotent. Then, it is immediate that Aa,b |[c,d] is increasing and idempotent.
Moreover, for all [c, d] ⊆ [a, b], it follows that Aa,b |[c,d] (c, . . . , c) = c and Aa,b |[c,d] (d, . . . , d) = d, meaning that
Aa,b |[c,d] is a (c, d)-aggregation function. 2

Theorem 5.1. Let A : [0, 1]n → [0, 1] be an aggregation function, φ : [a, b] → [0, 1] an increasing bijective
function and Aa,b : [a, b]n → [a, b] an (a, b)-aggregation function defined, for all ~x ∈ [a, b]n, by Aa,b(~x) =
φ−1(A(φ(x1), . . . , φ(xn))). Then, Aa,b is idempotent if and only if A is idempotent.
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PROOF. (⇒) Suppose that Aa,b is idempotent. So, for all x ∈ [0, 1], it follows that:

Aa,b(φ−1(x), . . . , φ−1(x)) = φ−1(x)

⇒ φ−1(A(φ(φ−1(x)), . . . , φ(φ−1(x)))) = φ−1(x), by Equation (27)
⇒ A(x, . . . , x) = x, since φ is bijective,

showing that A is idempotent.
(⇐) Suppose that A is idempotent. Thus, for all x ∈ [a, b]n, it holds that:

Aa,b(x, . . . , x) = φ−1(A(φ(x), . . . , φ(x))), by Equation (27)
= φ−1(φ(x)), since A is idempotent,
= x, since φ is bijective,

which means that Aa,b is idempotent. 2

A fusion function F : [0, 1]n → [0, 1] is averaging when, for all ~x ∈ [0, 1]n, it holds that:

min{~x} ≤ F (~x) ≤ max{~x}.

In the context of aggregation functions, since they are increasing, the idempotency and averaging properties are
equivalent [29]. The same holds for (a, b)-aggregation functions, since they are also increasing, and the averaging
property can be naturally shifted from [0, 1] to [a, b] (the same holds for idempotency). Therefore, the following result
is immediate.

Corollary 5.1. Let A : [0, 1]n → [0, 1] be an aggregation function, φ : [a, b] → [0, 1] an increasing bijective
function and Aa,b : [a, b]n → [a, b] the (a, b)-aggregation function defined, for all ~x ∈ [a, b]n, by Aa,b(~x) =
φ−1(A(φ(x1), . . . , φ(xn))). Then, Aa,b is averaging if and only if A is averaging.

Example 5.1. i) The arithmetic mean is an idempotent and averaging (a, b)-aggregation function;

ii) The n-dimensional (a, b)-overlap function GMa,b, given by Equation (30), is also idempotent and averaging.

5.2. Generalized migrativity
Consider α ∈ [0, 1]. A bivariate fusion function F : [0, 1]2 → [0, 1] is said to be α-migrative [21] if, for all

x, y ∈ [0, 1], it holds that:

F (α · x, y) = F (x, α · y). (42)

In [25], α-migrativity was generalized by replacing both product operations on Equation (42) by a t-norm T ,
obtaining the concept of (α, T )-migrativity. Humberto et al. [10] generalized this concept by considering an aggre-
gation function B, instead of a t-norm, introducing the (α,B)-migrativity. Qiao and Hu [50] studied the migrativity
property for an overlap function O, rewriting Equation (42), with F = O and replacing the first product operation
by an overlap function O1 and the second product operation by an overlap function O2, resulting in the concept of
(α,O1, O2)-migrativity for overlap functions. More recently, Qiao [49] introduced a similar definition of migrativity
for overlap functions on lattices, where O1 and O2 are replaced, respectively, by binary operators A,B on a lattice L,
with α ∈ L, named (α,A,B)-migrativity of overlap functions. Inspired by such developments, here we introduce the
concept of (α, F1, F2)-migrativity of a fusion function F , as follows:

Definition 5.1. Consider α ∈ [0, 1] and two fusion functions F1, F2 : [0, 1]n → [0, 1]. A fusion function F : [0, 1]n →
[0, 1] is said to be (k, α, F1, F2)-migrative if, for all ~x ∈ [0, 1]n, it holds that:

F (F1(α, x1), x2, . . . , xn) = F (x1, . . . , F2(α, xk), . . . , xn), (43)

for some k ∈ {2, . . . , n}. Whenever, F is (k, α, F1, F2)-migrative for all k ∈ {2, . . . , n}, then it is said to be
(α, F1, F2)-migrative.
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However, when constructing an (a, b)-aggregation function as a counterpart of a (generalized) migrative aggrega-
tion function, the constructed function, most likely, does not respect any definitions of migrativity that are made in
the context of the unit interval. So, here we shift the property of (α, F1, F2)-migrativity (Definition 5.1) from [0, 1] to
[a, b], which results in the following definition:

Definition 5.2. Consider δ ∈ [a, b] and two (a, b)-fusion functions F a,b1 , F a,b2 : [a, b]n → [a, b]. An (a, b)-fusion
function F a,b : [a, b]n → [0, 1] is said to be (k, δ, F a,b1 , F a,b2 )-migrative if, for all ~x ∈ [a, b]n, it holds that:

F a,b(F a,b1 (δ, x1), x2, . . . , xn) = F a,b(x1, . . . , F
a,b
2 (δ, xk), . . . , xn), (44)

for some k ∈ {2, . . . , n}. Whenever, F a,b is (k, δ, F a,b1 , F a,b2 )-migrative for all k ∈ {2, . . . , n}, then it is said to be
(δ, F a,b1 , F a,b2 )-migrative.

Theorem 5.2. Let φ : [a, b]→ [0, 1] be an increasing bijective function, F a,b1 , F a,b2 : [a, b]2 → [a, b] be two bivariate
(a, b)-fusion functions defined, for all ~x ∈ [a, b]2, by Equation (26), with F1, F2 : [0, 1]2 → [0, 1] as their respective
core fusion functions, and Aa,b : [a, b]n → [a, b] be an (a, b)-aggregation function defined, for all ~y ∈ [a, b]n, by
Equation (27), with A : [0, 1]n → [0, 1] as its core aggregation function. Then, for δ ∈ [a, b], Aa,b is (δ, F a,b1 , F a,b2 )-
migrative if and only if A is (φ(δ), F1, F2)-migrative.

PROOF. (⇒) Suppose that Aa,b is (δ, F a,b1 , F a,b2 )-migrative. So, for all δ ∈ [a, b], ~x ∈ [0, 1]n and i ∈ {2, . . . , n}, by
Definition 5.2, it follows that:

Aa,b(F a,b1 (δ, φ−1(x1)), φ
−1(x2), . . . , φ

−1(xn)) = Aa,b(φ−1(x1), . . . , F
a,b
2 (δ, φ−1(xi)), . . . , φ

−1(xn))

⇒ Aa,b(φ−1(F1(φ(δ), φ(φ
−1(x1)))), φ

−1(x2), . . . , φ
−1(xn)) =

Aa,b(φ−1(x1), . . . , φ
−1(F2(φ(δ), φ(φ

−1(xi)))), . . . , φ
−1(xn)), by Equation (26)

⇒ φ−1(A(φ(φ−1(F1(φ(δ), φ(φ
−1(x1))))), φ(φ

−1(x2)), . . . , φ(φ
−1(xn)))) =

φ−1(A(φ(φ−1(x1)), . . . , φ(φ
−1(F2(φ(δ), φ(φ

−1(xi))))), . . . , φ(φ
−1(xn)))), by Equation (27)

⇒ A(F1(φ(δ), x1), x2, . . . , xn) = A(x1, . . . , F2(φ(δ), xi), . . . , xn), since φ−1 is bijective,

showing that A is (φ(δ), F1, F2)-migrative.
(⇐) Suppose that A is (φ(δ), F1, F2)-migrative. Thus, for all δ, x, . . . , xn ∈ [a, b] and i ∈ {2, . . . , n}, it holds

that:

Aa,b(F a,b1 (δ, x1), x2, . . . , xn) = Aa,b(φ−1(F1(φ(δ), φ(x1))), x2, . . . , xn), by Equation (26)
= φ−1(A(φ(φ−1(F1(φ(δ), φ(x1)))), φ(x2), . . . , φ(xn))),

by Equation (27)
= φ−1(A(F1(φ(δ), φ(x1)), φ(x2), . . . , φ(xn))), since φ is bijective,
= φ−1(A(φ(x1), . . . , F2(φ(δ), φ(xi)), . . . , φ(xn))),

since A is (φ(δ), F1, F2)-migrative,
= φ−1(A(φ(x1), . . . , φ(φ

−1(F2(φ(δ), φ(xi)))), . . . , φ(xn))),

since φ is bijective,
= Aa,b(x1, . . . , φ

−1(F2(φ(δ), φ(xi))), . . . , xn), by Equation (27)

= Aa,b(x1, . . . , F
a,b
2 (δ, xi), . . . , xn), by Equation (26)

which means that Aa,b is (δ, F a,b1 , F a,b2 )-migrative. 2

Corollary 5.2. Let φ : [a, b]→ [0, 1] be an increasing bijective function, F a,b1 , F a,b2 : [a, b]2 → [a, b] be two bivariate
(a, b)-fusion functions defined, for all ~x ∈ [a, b]2, by Equation (26), with F1, F2 : [0, 1]2 → [0, 1] as their respective
core fusion functions, and Aa,b : [a, b]n → [a, b] be an (a, b)-aggregation function defined, for all ~y ∈ [a, b]n, by
Equation (27), with A : [0, 1]n → [0, 1] as its core aggregation function. Then, for δ ∈ [a, b] and k ∈ {2, . . . , n},
Aa,b is (k, δ, F a,b1 , F a,b2 )-migrative if and only if A is (k, φ(δ), F1, F2)-migrative.
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Example 5.2. i) Let A = {Ak : [0, 1]n → [0, 1] |k ∈ {2, . . . , n}}, where Ak is defined, for all ~x ∈ [0, 1]n, by

Ak(~x) =

{
0, if xk = 0,∏n

i=1 x
2
i

xk
, otherwise,

(45)

be a family of aggregation functions and F1, F2 : [0, 1]2 → [0, 1] be two bivariate fusion functions, defined, for
all x, y ∈ [0, 1], respectively, by

F1(x, y) = x · y,

and

F2(x, y) = x2 · y,

It is immediate that each aggregation function Ak ∈ A is (k, α, F1, F2)-migrative, with α ∈ [0, 1]. Now, con-
sidering an increasing and bijective function φ : [a, b] → [0, 1], define the (a, b)-fusion functions F a,b1 , F a,b2 :
[a, b]2 → [a, b], through Equation (26), with F1 and F2 as their respective core aggregation functions. Also,
define the (a, b)-aggregation functions Ak : [a, b]n → [a, b], through Equation (27), with Ak as their core ag-
gregation functions and k ∈ {2, . . . , n}. Thus, for δ = φ−1(α), one has that every Aa,bk is a (k, δ, F a,b1 , F a,b2 )-
migrative function. Observe that this result does not imply that, for some specific k ∈ {2, . . . , n}, Aa,bk is
(δ, F a,b1 , F a,b2 )-migrative.

ii) Consider δ ∈ [a, b], the product overlap OP , given by Equation (5), and let Oa,bP : [a, b]n → [a, b] be the n-
dimensional (a, b)-overlap function obtained by Theorem 4.2, based on OP as its core n-dimensional overlap
function and an increasing and bijective function φ : [a, b]→ [0, 1]. Then, one has that Oa,bP is (δ,Oa,bP , Oa,bP )-
migrative. If n = 2, (δ,Oa,bP , Oa,bP )-migrativity is the result of shifting the traditional α-migrativity property
from [0, 1] to [a, b];

iii) Consider α ∈ (0, 1), the overlap functionOq : [0, 1]2 → [0, 1], defined, for all x, y ∈ [0, 1], byOq(x, y) = xq ·yq ,
with q > 0, and the aggregation function A : [0, 1]n → [0, 1], given, for ~x ∈ [0, 1]n, by

A(~x) =

{ ∏n
i=1 xi, if xj ∈ [0, α] for some j ∈ {1, . . . , n}

1, otherwise. (46)

Then, A is (α,Oq, Oq)-migrative. Observe that, if n = 2, A coincides with the function O(α), presented in
[50] (Example 3.1), which is an example of a function that is (α,O1, O2) migrative, with O1 = O2 = Oq .
Considering an increasing and bijective function φ : [a, b] → [0, 1], define the (a, b)-overlap function Oa,bq :
[a, b]2 → [a, b], through Equation (31), with Oq as its core overlap function. Also, define the (a, b)-aggregation
function Aa,b : [a, b]n → [a, b], through Equation (27), with A as its core aggregation function. Then, for
δ = φ−1(α), Aa,b is a (δ,Oa,bq , Oa,bq )-migrative function;

iv) Consider α ∈ [0, 1], the projection function PROJ2 : [0, 1]2 → [a, b], given, for all x, y ∈ [0, 1], by F2(x, y) = y,
the bivariate arithmetic mean BAM : [0, 1]2 → [0, 1] given, for all x, y ∈ [0, 1], by BAMa,b(x, y) = x+y

2
and the projection function PROJ1 : [0, 1]n → [0, 1], given, for all ~x ∈ [0, 1]n, by PROJ1(~x) = x1. Then,
one has that PROJ1 is (α, PROJ2, BAM)-migrative. Considering δ ∈ [a, b], if we define the functions
PROJa,b1 : [a, b]n → [a, b] and PROJa,b2 , BAMa,b : [a, b]2 → [a, b] analogously, then, it is immediate that
PROJa,b1 is (δ, PROJa,b2 , BAMa,b)-migrative.

5.3. Generalized homogeneity
A fusion function F : [0, 1]n → [0, 1] is said to be homogeneous of order γ ∈ [0,+∞) if, for any α, x1, . . . , xn ∈

[0, 1], it holds that:

F (α · x1, . . . , α · xn) = αγ · F (x1, . . . , xn), (47)
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considering 00 = 0. This property was generalized in [52], in the form of abstract homogeneity of order 1, by replacing
the product operations in Equation (47) by another bivariate fusion function g and applying an automorphism on the
parameter α, with γ = 1. When this automorphism is the identity function, we obtain the g-homogeneity property,
defined as follows:

Definition 5.3. [52] Consider a bivariate fusion function g : [0, 1]2 → [0, 1]. A fusion function F : [0, 1]n → [0, 1] is
said to be g-homogeneous if, for any α, x1, . . . , xn ∈ [0, 1], it holds that:

F (g(α, x1), . . . , g(α, xn)) = g(α, F (x1, . . . , xn)). (48)

As discussed for the generalized migrativity property, (a, b)-aggregation functions constructed based on g-homogeneous
aggregation functions are not expected to be g-homogeneous, since g is not an (a, b)-fusion function. So, let us shift
the g-homogeneity property from [0, 1] to [a, b], as follows:

Definition 5.4. Consider a bivariate (a, b)-fusion function ga,b : [a, b]2 → [a, b]. An (a, b)-fusion function F a,b :
[a, b]n → [a, b] is said to be ga,b-homogeneous if, for any δ, x1, . . . , xn ∈ [a, b], it holds that:

F a,b(ga,b(δ, x1), . . . , g
a,b(δ, xn)) = ga,b(δ, F a,b(x1, . . . , xn)). (49)

Theorem 5.3. Let φ : [a, b] → [0, 1] be an increasing bijective function, ga,b : [a, b]n → [a, b] be an (a, b)-fusion
function defined, for all ~x ∈ [a, b]n, by Equation (26), with g : [0, 1]2 → [0, 1] as its core fusion function, and
Aa,b : [a, b]n → [a, b] be an (a, b)-aggregation function defined, for all ~x ∈ [a, b]n, by Equation (27), with A :
[0, 1]n → [0, 1] as its core aggregation function. Then, Aa,b is ga,b-homogeneous if and only if A is g-homogeneous.

PROOF. (⇒) Suppose that Aa,b is ga,b-homogeneous. So, for all δ ∈ [a, b] and ~x ∈ [0, 1]n, it follows that:

Aa,b(ga,b(δ, φ−1(x1)), . . . , g
a,b(δ, φ−1(xn))) = ga,b(δ, Aa,b(φ−1(x1), . . . , φ

−1(xn)))

⇒ Aa,b(φ−1(g(φ(δ), φ(φ−1(x1)))), . . . , φ
−1(g(φ(δ), φ(φ−1(x1)))))

= φ−1(g(φ(δ), φ(Aa,b(φ−1(x1), . . . , φ
−1(xn))))) by Equation (26)

⇒ φ−1(A(φ(φ−1(g(φ(δ), φ(φ−1(x1))))), . . . , φ(φ
−1(g(φ(δ), φ(φ−1(x1)))))))

= φ−1(g(φ(δ), φ(φ−1(A(φ(φ−1(x1)), . . . , φ(φ
−1(xn))))))), by Equation (27)

⇒ A(g(φ(δ), x1), . . . , g(φ(δ), xn)) = g(φ(δ), A(x1, . . . , xn)), since φ is bijective,

showing that A is g-homogeneous.
(⇐) Suppose that A is g-homogeneous. Thus, for all δ, x1, . . . , xn ∈ [a, b], it holds that:

Aa,b(ga,b(δ, x1), . . . , g
a,b(δ, xn)) = Aa,b(φ−1(g(φ(δ), φ(x1))), . . . , φ

−1(g(φ(δ), φ(xn)))),

by Equation (26)
= φ−1(A(φ(φ−1(g(φ(δ), φ(x1)))), . . . , φ(φ

−1(g(φ(δ), φ(xn)))))),

by Equation (27)
= φ−1(A(g(φ(δ), φ(x1)), . . . , g(φ(δ), φ(xn)))) since φ is bijective,
= φ−1(g(φ(δ), A(φ(x1), . . . , φ(xn)))), since A is g-homogeneous,
= φ−1(g(φ(δ), φ(φ−1(A(φ(x1), . . . , φ(xn)))))), since φ is bijective,
= φ−1(g(φ(δ), φ(Aa,b(x1, . . . , xn)))) by Equation (27)
= ga,b(δ, Aa,b(x1, . . . , xn)), by Equation (26)

which means that Aa,b is ga,b-homogeneous. 2

Example 5.3. i) Consider the bivariate arithmetic mean BAMa,b : [a, b]2 → [a, b] given, for all x, y ∈ [a, b] by
BAMa,b(x, y) = x+y

2 . Then, the (n-ary) arithmetic mean, given by Equation (3), is a BAMa,b-homogeneous
(a, b)-aggregation function;
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ii) Consider the (a, b)-overlap function BGMa,b, constructed via Theorem 4.2 with the overlap function BGM :
[0, 1]2 → [0, 1], given, for all x, y ∈ [0, 1], by BGM(x, y) =

√
x · y, as its core function. Also, consider

the (a, b)-aggregation functions MIN : [a, b]n → [a, b], given by Equation (18) (minimum operator), and
MAX : [a, b]n → [a, b], given, for all ~x ∈ [a, b]n, by

MAX(~x) = max{x1, . . . , xn}.

Then, MIN , MAX are BGMa,b-homogeneous (a, b)-aggregation functions.

6. Towards F -shifted (a, b, c, d)-fusion functions

In Section 3, we presented a framework to define new classes of functions with domain [a, b]n and codomain [a, b]
based on functions with domain [0, 1]n and codomain [0, 1]. That is, we showed how to define (a, b)-fusion functions
based on fusion functions, by shifting their defining properties. Here, we discuss the concepts necessary to develop
a similar framework to define classes of functions with domain [a, b]n and codomain [c, d], such that c, d ∈ R and
c < d. We call those functions as (a, b, c, d)-fusion functions.

Definition 6.1. An (a, b, c, d)-fusion function is an arbitrary function F c,da,b : [a, b]n → [c, d].

It is immediate that every fusion function is an (a, b, c, d)-fusion function for a = c = 0 and b = d = 1. Also,
every (a, b)-fusion function is an (a, b, c, d)-fusion function when a = c and b = d. So, every (0, 1, 0, 1)-fusion
function is called just as fusion function and every (a, b, a, b)-fusion function is called just as (a, b)-fusion function.

Properties from either fusion functions or (a, b)-fusion functions can be shifted to the context of (a, b, c, d)-fusion
functions, by taking into consideration the domain [a, b]n and codomain [c, d].

Example 6.1. Suppose that we intend to shift the property (A2’) (see Example 3.1) that conveys the boundary con-
ditions of an (−10, 10)-aggregation function F : [−10, 10]n → [−10, 10] to obtain an analogous property for a
(−10, 10, 0, 10)-fusion function H : [−10, 10]n → [0, 10]. The shifted property (A2†) is defined as follows:

(A2†) A(−10, . . . ,−10) = 0 and A(10, . . . , 10) = 10.

Based on Definition 3.4, one we define (a, b, c, d)-aggregation functions in the following.

Definition 6.2. An (a, b, c, d)-aggregation function is any function Ac,da,b ∈ A
c,d
a,b, such that:

Ac,da,b = {A
c,d
a,b : [a, b]

n → [c, d]| Ac,da,b satisfies all the properties in P †A}

where

P †A = {(A1†), (A2†)},

and

(A1†) Ac,da,b is increasing;

(A2†) Ac,da,b(a, . . . , a) = c and Ac,da,b(b, . . . , b) = d.

Example 6.2. The bivariate (−10, 10, 0, 10)-fusion functionH : [−10, 10]2 → [0, 10], given, for all x, y ∈ [−10, 10],
by

H(x, y) =
x+ y + 20

4

is a bivariate (−10, 10, 0, 10)-aggregation function.
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The construction method for (a, b)-aggregation functions presented in Theorem 4.1 can be adapted to obtain a
construction method for (a, b, c, d)-aggregation functions based on a core aggregation function.

Theorem 6.1. Consider a fusion function A : [0, 1]n → [0, 1], an increasing and bijective function φ : [a, b]→ [0, 1],
an increasing and bijective function ψ : [0, 1]→ [c, d] and an (a, b, c, d)-fusion function Ac,da,b : [a, b]

n → [c, d] given,
for all x1, . . . , xn ∈ [a, b], by

Ac,da,b(x1, . . . , xn) = ψ (A (φ(x1), . . . , φ(xn))) . (50)

Then, Ac,da,b is an (a, b, c, d)-aggregation function if and only if A is an aggregation function.

PROOF. Analogous to the proof of Theorem 4.1. 2

Remark 6.1. Observe that Equation (50) is more general than Equation (27), even in the particular case when
[a, b] = [c, d], since ψ does not need to be the inverse of φ.

Example 6.3. Consider the geometric meanGM : [0, 1]n → [0, 1], given by Equation (6), an increasing and bijective
function φ : [a, b]→ [0, 1], defined, for all x ∈ [a, b], by

φ(x) =

(
x− a
b− a

)p
, p > 0,

and an increasing and bijective function ψ : [0, 1]→ [c, d], defined, for all y ∈ [0, 1], by

ψ(y) = y
1
q · (d− c) + c, q > 0.

Then, the (a, b, c, d)-fusion function GM c,d
a,b : [a, b]

n → [c, d], given, for all x1, . . . , xn ∈ [a, b], by

GM c,d
a,b(x1, . . . , xn) = ψ (GM (φ(x1), . . . , φ(xn))) , (51)

is an (a, b, c, d)-aggregation function. By taking p = q = 1, we can rewrite Equation (51) as follows:

GM c,d
a,b(x1, . . . , xn) = GM

(
x1 − a
b− a , . . . ,

xn − a
b− a

)
· (d− c) + c. (52)

In the following, we present a construction method for (a, b, c, d)-aggregation function based on a core (a, b)-
aggregation function.

Theorem 6.2. Consider an (a, b)-fusion function Aa,b : [a, b]n → [a, b], an increasing and bijective function θ :

[a, b]→ [c, d] and an (a, b, c, d)-fusion function Ac,da,b : [a, b]
n → [c, d] given, for all x1, . . . , xn ∈ [a, b], by

Ac,da,b(x1, . . . , xn) = θ
(
Aa,b (x1, . . . , xn)

)
. (53)

Then, Ac,da,b is an (a, b, c, d)-aggregation function if and only if Aa,b is an (a, b)-aggregation function.

PROOF. Analogous to the proof of Theorem 4.1. 2

Example 6.4. Consider the aggregation functionGM : [0, 1]n → [0, 1], given by Equation (6), the (a, b)-aggregation
function GMa,b : [a, b]n → [a, b], given by Equation (30), and increasing and bijective function θ : [a, b] → [c, d],
defined, for all x ∈ [a, b], by

θ(x) =

(
x− a
b− a

)
· (d− c) + c. (54)

Then, the (a, b, c, d)-fusion function GM c,d
a,b : [a, b]

n → [c, d], given, for all x1, . . . , xn ∈ [a, b], by

GM c,d
a,b(x1, . . . , xn) = θ

(
GMa,b (x1, . . . , xn)

)
, (55)

is an (a, b, c, d)-aggregation function. From Equations (30), (54) and (55), one has that:

GM c,d
a,b(x1, . . . , xn) = GM

(
x1 − a
b− a , . . . ,

xn − a
b− a

)
· (d− c) + c. (56)
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A : [0, 1]n → [0, 1]
Th. 4.1 //

Th. 6.1 **

Aa,b : [a, b]n → [a, b]

Th. 6.2tt
ARc,da,b = ASc,da,b : [a, b]

n → [c, d]

Figure 2: Commutative diagram of the construction methods of an n-dimensional (a, b, c, d)-aggregation function based on a core aggregation
function A.

One can observe that Equations (52) and (56) coincide. This fact is derived from the following theorem.

Theorem 6.3. Let ARc,da,b : [a, b]
n → [c, d] be an (a, b, c, d)-aggregation function constructed via Theorem 6.1 using

increasing and bijective functions φ : [a, b] → [0, 1] and ψ : [0, 1] → [c, d], and a core aggregation function A :

[0, 1]n → [0, 1]. Let ASc,da,b : [a, b]
n → [c, d] be an (a, b, c, d)-aggregation function constructed via Theorem 6.2 using

an increasing and bijective function θ : [a, b]→ [c, d] and the core (a, b)-aggregation function Aa,b : [a, b]n → [a, b],
which, in turn, is constructed via Theorem 4.1 using φ and the core aggregation function A. Thus, if ψ = θ ◦φ−1 then
ARc,da,b = ASc,da,b .

PROOF. For all ~x ∈ [a, b]n, one has that:

ψ = θ ◦ φ−1
⇒ ψ (A (φ(x1), . . . , φ(xn))) = (θ ◦ φ−1)(A(φ(x1), . . . , φ(xn)))
⇒ ψ (A (φ(x1), . . . , φ(xn))) = θ

(
φ−1(A(φ(x1), . . . , φ(xn)))

)

⇒ ψ (A (φ(x1), . . . , φ(xn))) = θ
(
Aa,b (x1, . . . , xn)

)
, by Equation (27)

⇒ ARc,da,b = ASc,da,b , by Equations (50) and (53).

2

Theorem 6.3 shows that the diagram presented in Figure 2 commutes, whenever ψ = θ ◦ φ−1.

7. Conclusion

In this paper, we sought to provide a theoretical tool set to support the definition of new classes of fusion operators
that can aggregate data from any real closed interval, based on analogous known classes of such operators that are
defined, specifically, on the unit interval. There are many practical applications that can benefit from the developed
concepts, in particular with the assurance that the advantageous properties of known aggregation functions can be
preserved (shifted) when applying the newly developed functions, even on problems that do not necessarily involve
fuzzy modeling.

Here, we review our main contributions:

• The introduction of the concept property shifting, which is a novel denomination for the action of properly trans-
posing properties from one domain to another without sacrificing their fundamental characteristics;

• The development of a general framework for defining (a, b)-fusion functions, possibly in intervals other then [0, 1],
by shifting the defining properties of known fusion functions;

• The introduction of construction methods for different subclasses of (a, b)-fusion functions, based on choices of a
core fusion function and an increasing bijective function, which makes them highly adaptable and prone to be
applied in different practical problems;

• The study of both known and newly defined properties of aggregation functions, along with their shifted counter-
parts in [a, b], and how they are related when we construct (a, b)-aggregation functions via our construction
methods;
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• The development of a general framework for defining (a, b, c, d)-fusion functions, which is designed in an analo-
gous manner as the one for (a, b)-fusion functions;

• The introduction of construction methods for (a, b, c, d)-aggregation functions, highlighting the different ways one
can obtain a given (a, b, c, d)-aggregation function.

Backed by the developed concepts, in an ongoing work, we intend to use (a, b)-aggregation functions in the
pooling process of a convolutional neural network, since the aggregated values do not come from the unit interval, to
be applied in classification and image processing problems. Also, we see promise in applying (a, b)-fusion functions
to generalize the discrete Choquet Integral, defined in any interval [a, b], with possible applications in recurrent neural
networks. Future works, regarding the theoretical standpoint, may include a deeper study of particular classes of (a, b)-
fusion functions, defined through our framework, with special interest in cases in which the shifting of properties may
not be trivial.
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Abstract. Some aggregation functions that are not necessarily associative, namely
overlap and grouping functions, have called the attention of many researchers in
the recent past. This is probably due to the fact that they are a richer class of
operators whenever one compares with other classes of aggregation functions,
such as t-norms and t-conorms, respectively. In the present work we introduce a
more general proposal for disjunctive n-ary aggregation functions entitled gen-
eral grouping functions, in order to be used in problems that admit n dimensional
inputs in a more flexible manner, allowing their application in different contexts.
We present some new interesting results, like the characterization of that operator
and also provide different construction methods.

Keywords: Grouping functions · n-dimensional grouping functions · General
grouping functions · General overlap functions.

1 Introduction

Overlap functions are a kind of aggregation functions [3] that are not required to be
associative, and they were introduced by Bustince et al. in [4] to measure the degree
of overlapping between two classes or objects. Grouping functions are the dual notion
of overlap function. They were introduced by Bustince et al. [5] in order to express the
measure of the amount of evidence in favor of either of two alternatives when perform-
ing pairwise comparisons [1] in decision making based on fuzzy preference relations
[6]. They have also been used as the disjunction operator in some important problems,
such as image thresholding [17] and the construction of a class of implication functions
for the generation of fuzzy subsethood and entropy measures [8].

Santos H. et al. (2020) General Grouping Functions. In: Lesot MJ. et al. (eds) Information 
Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2020. 
Communications in Computer and Information Science, vol 1238. Springer, Cham. 
https://doi.org/10.1007/978-3-030-50143-3_38



2 H. Santos et al.

Overlap and grouping have been largely studied since they are richer than t-norms
and t-conorms [18], respectively, in many aspects, considering, for example, some
properties like idempotency, homogeneity, and, mainly, the self-closeness feature with
respect to the convex sum and the aggregation by generalized composition of over-
lap/grouping functions [9,10,12,7]. For example, there is just one idempotent t-conorm
(namely, the maximum t-conorm) and two homogeneous t-conorms (namely, the max-
imum and the probabilistic sum of t-conorms). On the contrary, there are uncountable
numbers of idempotent, as well as homogenous, grouping functions [2,13]. For com-
parisons among properties of grouping functions and t-conorms, see [2,5,17]

However, grouping functions are bivariate functions. Since they may be non asso-
ciative, they can only be applied in bi-dimensional problems (that is, when just two
classes or objects are considered). In order to solve this drawback, Gómez et al. [16] in-
troduced the concept of n-dimensional grouping functions, with an application to fuzzy
community detection.

Recently, De Miguel et al. [20] introduced general overlap functions, by relaxing
some boundary conditions, in order to apply to an n-ary problem, namely, fuzzy rule
based classification systems, more specifically, in the determination of the matching
degree in the fuzzy reasoning method. Then, inspired on the paper by De Miguel et al.
[20], the objective of this present paper is to introduce the concept of general grouping
functions, providing their characterization and different construction methods. The aim
is to define the theoretical basis of a tool that can be used to express the measure of
the amount of evidence in favor of one of multiple alternatives when performing n-
ary comparisons in multi-criteria decision making based on n-ary fuzzy heterogeneous,
incomplete preference relations [14,19,26], which we let for future work.

The paper is organized as follows. Section 2 presents some preliminary concepts. In
Sect. 3, we define general grouping functions, studying some properties. In Sect. 4, we
study the characterization of general grouping functions, providing some construction
methods. Section 5 is the Conclusion.

2 Preliminary concepts

In this section, we highlight some relevant concepts used in this work.

Definition 1. A function N : [0, 1] → [0, 1] is a fuzzy negation if it holds: (N1) N is
antitonic, i.e. N(x) ≤ N(y) whenever y ≤ x and (N2) N(0) = 1 and N(1) = 0.

Definition 2. [3] An n-ary aggregation function is a mapping A : [0, 1]n → [0, 1] sat-
isfying: (A1) A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1; (A2) increasingness: for each
i ∈ {1, . . . , n}, if xi ≤ y then A(x1, . . . , xn) ≤ A(x1, . . . , xi−1, y, xi+1, . . . , xn).

Definition 3. An n-ary aggregation functionA : [0, 1]n → [0, 1] is called conjunctive if,
for any #„x = (x1, . . . , xn) ∈ [0, 1]n, it holds thatA( #„x ) ≤ min( #„x ) = min{x1, . . . , xn}.
And A is called disjunctive if, for any #„x = (x1, . . . , xn) ∈ [0, 1]n, it holds that
A( #„x ) ≥ max( #„x ) = max{x1, . . . , xn}.

Definition 4. [4] A binary functionO : [0, 1]2 → [0, 1] is said to be an overlap function
if it satisfies the following conditions, for all x, y, z ∈ [0, 1]:



General grouping functions 3

(O1) O(x, y) = O(y, x);
(O2) O(x, y) = 0 if and only if x = 0 or y = 0;
(O3) O(x, y) = 1 if and only if x = y = 1;
(O4) if x ≤ y then O(x, z) ≤ O(y, z);
(O5) O is continuous;

Definition 5. [5] A binary functionG : [0, 1]2 → [0, 1] is said to be a grouping function
if it satisfies the following conditions, for all x, y, z ∈ [0, 1]:

(G1) G(x, y) = G(y, x);
(G2) G(x, y) = 0 if and only if x = y = 0;
(G3) G(x, y) = 1 if and only if x = 1 or y = 1;
(G4) If x ≤ y then G(x, z) ≤ G(y, z);
(G5) G is continuous;

For all properties and related concepts on overlap functions and grouping functions,
see [2,5,9,11,12,21,23,24,25].

Definition 6. [22] A function G : [0, 1]2 → [0, 1] is a 0-grouping function if the second
condition in Def. 5 is replaced by: (G2′) If x = y = 0 then G(x, y) = 0. Analogously,
a function G : [0, 1]2 → [0, 1] is a 1-grouping function if the third condition in Def. 5 is
replaced by: (G3′) If x = 1 or y = 1 then G(x, y) = 1.

Both notions were extended in several ways and some of them are presented in the
following definitions.

Definition 7. [15] An n-ary function G : [0, 1]n → [0, 1] is called an n-dimensional
grouping function if for all #„x = (x1, ..., xn) ∈ [0, 1]n:

1. G is commutative;
2. G( #„x ) = 0 if and only if xi = 0, for all i = 1, . . . , n;
3. G( #„x ) = 1 if and only if there exists i ∈ {1, . . . , n} with xi = 1;
4. G is increasing;
5. G is continuous.

Definition 8. [20] A function GO : [0, 1]n → [0, 1] is said to be a general overlap
function if it satisfies the following conditions, for all #„x = (x1, . . . , xn) ∈ [0, 1]n:

(GO1) GO is commutative;

(GO2) If
n∏
i=1

xi = 0 then GO( #„x ) = 0;

(GO3) If
n∏
i=1

xi = 1 then GO( #„x ) = 1;

(GO4) GO is increasing;
(GO5) GO is continuous.
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3 General grouping functions

Following the ideas given in [20], we can also generalize the idea of general group-
ing functions as follows.

Definition 9. A function GG : [0, 1]n → [0, 1] is called a general grouping function if
the following conditions hold, for all #„x = (x1, . . . , xn) ∈ [0, 1]n:

(GG1) GG is commutative;

(GG2) If
n∑
i=1

xi = 0 then GG( #„x ) = 0;

(GG3) If there exists i ∈ {1, . . . , n} such that xi = 1 then GG( #„x ) = 1;
(GG4) GG is increasing;
(GG5) GG is continuous.

Note that (GG2) is the same of saying that 0 is an anhilator of the general grouping
function GG.

Proposition 1. If G : [0, 1]n → [0, 1] is an n-dimensional grouping function, then G is
also a general grouping function.

Proof. Straighforward. ut

From this proposition, we can conclude that the concept of general grouping func-
tions is a generalization of n-dimensional grouping functions, which on its turn is a
generalization of the concepts of 0-grouping functions and 1-grouping functions.

Example 1. 1. Every grouping function G : [0, 1]2 → [0, 1] is a general grouping
function, but the converse does not hold.

2. The function GG(x, y) = min{1, 2 − (1 − x)2 − (1 − y)2} is a general grouping
function, but it is not a bidimensional grouping function, since GG(0.5, 0.5) = 1.

3. Consider G(x, y) = max{1− (1− x)p, 1− (1− y)p}, for p > 0 and SL(x, y) =
min{1, x + y}. Then, the function GGSL(x, y) = G(x, y)SL(x, y) is a general
grouping function.

4. Take any grouping function G, and a continuous t-conorm S. Then, the gener-
alization of the previous item is the binary general grouping function given by:
GG(x, y) = G(x, y)S(x, y)

5. Other examples are:

Prod S Luk(x1, . . . , xn) =

(
1−

n∏

i=1

(1− xi)
)
∗
(
min

{
n∑

i=1

xi, 1

})

GM S Luk(x1, . . . , xn) =


1− n

√√√√
n∏

i=1

(1− xi)


 ∗

(
min

{
n∑

i=1

xi, 1

})
.

The generalization of the third item of Example 1 can be seen as follows.

Proposition 2. Take any grouping function G, and any t-conorm S. Then, the binary
general grouping function given by: GG(x, y) = G(x, y)S(x, y).
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Proposition 3. Let F : [0, 1]n → [0, 1] be a commutative and continuous aggregation
function. Then the following statements hold:

(i) If F is disjunctive, then F is a general grouping function.
(ii) IfF is conjunctive, thenF is neither a general grouping function nor an n-dimensional

grouping function.

Proof. Consider a commutative and continuous aggregation function F : [0, 1]n →
[0, 1]. It follows that:
(i) Since F is commutative (GG1), continuous (GG5) and clearly increasing (GG4), then
it remains to prove the following:

(GG2) Suppose that
n∑
i=1

xi = 0. Then, since F is an aggregation function, it holds that

F (0, . . . , 0) = 0.
(GG3) Suppose that, for some #„x = (x1, . . . , xn) ∈ [0, 1]n, there exists i ∈ {1, . . . , n}
such that xi = 1. Then, sinceF is disjunctive, thenF ( #„x ) ≥ max{x1, . . . , 1, . . . , xn} =
1, which means that F ( #„x ) = 1.
(ii) Suppose that F is a conjunctive aggregation function and it is either a general
grouping function or an n-dimensional grouping function. Then, by either (GG3) or
(G3), if for some #„x = (x1 . . . , xn) ∈ [0, 1]n, there exists i ∈ {1, . . . , n} such that
xi = 1, then F ( #„x ) = 1. Take #„x = (1, 0 . . . , 0), it follows that F (1, 0 . . . , 0) = 1 =
max{1, 0 . . . , 0} 6≤ 0 = min{1, 0 . . . , 0}, which is a contradiction with the conjunctive
property. Thus, one concludes that F is neither a general grouping function nor an n-
dimensional grouping function. ut

We say that an element a ∈ [0, 1] is a neutral element of GG if for each x ∈ [0, 1],
GG(x, a, . . . , a︸ ︷︷ ︸

(n−1)

) = x.

Proposition 4. Let GG : [0, 1]n → [0, 1] be a general grouping function with a neutral
element a ∈ [0, 1]. Then, a = 0 if and only if GG satisfies, for all #„x = (x1, . . . , xn) ∈
[0, 1]n, the following condition:

(GG2′) If GG( #„x ) = 0, then
n∑
i=1

xi = 0.

Proof. (⇒) Suppose that (i) the neutral element of GG is a = 0 and (ii) GG(x1, . . . , xn)
= 0. Then, by (i), one has that, for each x1 ∈ [0, 1], it holds that x1 = GG(x1, 0 . . . , 0).
By (ii) and since GG is increasing, it follows that

x1 = GG(x1, 0 . . . , 0) ≤ GG(x1, . . . , xn) = 0.

Similarly, one shows that x2, . . . , xn = 0, that is
n∑
i=1

xi = 0.

(⇐) Suppose that GG satisfies (GG2′) and that GG(x1, . . . , xn) = 0, for (x1, . . . , xn) ∈
[0, 1]n. Then, by (GG2′), it holds that

n∑
i=1

xi = 0. Since a is the neutral element of GG,

one has that GG(0, a, . . . , a) = 0, which means that a = 0, by (GG2′). ut
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Remark 1. Observe that the result stated by Proposition 4 does not mean that when a
general general grouping function has a neutral element, then it is necessarily equal
to 0. In fact, for each a ∈ (0, 1), the function GG : [0, 1]n → [0, 1], for all #„x =
(x1 . . . , xn) ∈ [0, 1]n, defined by:

GG( #„x ) =





min{ #„x}, if max{ #„x} ≤ a
max{ #„x}, if min{ #„x} ≥ a
min{ #„x }+max{ #„x }

(
1−min{ #„x }

)
−a

1−a , if min{ #„x} < a < max{ #„x}

is a general grouping function with a as neutral element.

Proposition 5. If 0 is the neutral element of a general grouping function GG : [0, 1]n →
[0, 1] and GG is idempotent, then GG is the maximum.

Proof. Since GG is idempotent and increasing in each argument, then one has that for
all #„x = (x1, . . . , xn) ∈ [0, 1]n: (1) GG(x1, . . . , xn) ≤ GG(max( #„x ), . . . ,max( #„x )) =
max{ #„x}. Then we have that xk = max{ #„x} for some k = 1, . . . , n; so we have
xk = GG(0, . . . , xk, . . . , 0) ≤ GG(x1, . . . , xk, . . . , xn) and then (2) GG(x1, . . . , xn) ≥
xk = max{ #„x}. So, from (1) and (2) one has that GG(x1, . . . , xn) = max{ #„x}, for each
#„x ∈ [0, 1]n. ut

3.1 General grouping functions on lattices

Following a similar procedure described in [20] for general overlap functions on
lattices, it is possible to characterize general grouping functions. In order to do that,
first we introduce some properties and notations.

Let us denote by Gn the set of all general grouping functions. Define the ordering
relation ≤Gn∈ Gn ×Gn, for all GG1,GG2 ∈ Gn by:

GG1 ≤Gn GG2 ⇔ GG1( #„x ) ≤ GG2( #„x ), for all #„x = (x1, . . . , xn) ∈ [0, 1]n.

The supremum and infimum of two arbitrary general grouping functions GG1,GG2 ∈
Gn are, respectively, the general grouping functions GG1 ∨GG2,GG1 ∧GG2 ∈ Gn, de-
fined, for all #„x = (x1, . . . , xn) ∈ [0, 1]n by: GG1∨GG2( #„x ) = max{GG1( #„x ),GG2( #„x )}
and GG1 ∧ GG2( #„x ) = min{GG1( #„x ),GG2( #„x )}.

The following result is immediate:

Theorem 1. The ordered set (Gn,≤Gn) is a lattice.

Remark 2. Note that the supremum of the lattice (Gn,≤Gn) is given, for all #„x =
(x1, . . . , xn) ∈ [0, 1]n, by:

GGsup(
#„x ) =




0, if

n∑
i=1

xi = 0

1, otherwise.

On the other hand, the infimum of (Gn,≤Gn) is given, for all #„x = (x1, . . . , xn) ∈
[0, 1]n, by:
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GGinf(
#„x ) =

{
1, if ∃i ∈ {1, . . . , n} : xi = 1

0, otherwise.
.

However, neither GGsup nor GGinf are general grouping functions, since they are not
continuous. Thus, in the lattice (Gn,≤Gn) there is no bottom neither top elements.
Then, similarly to general overlap functions, the lattice (Gn,≤Gn ) is not complete.

4 Characterization of General Grouping Functions and
Construction Methods

In this section we provide a characterization and some constructions methods for
general grouping functions.

Theorem 2. The mapping GG : [0, 1]n → [0, 1] is a general grouping function if and
only if

GG( #„x ) =
f( #„x )

f( #„x ) + h( #„x )
(1)

for some f, h : [0, 1]n → [0, 1] the following properties hold, for all #„x ∈ [0, 1]n:

(i) f and h are commutative;
(ii) f is increasing and h is decreasing.

(iii) If
n∑
i=1

xi = 0, then f( #„x ) = 0.

(iv) If there exists i ∈ {1, . . . , n} such that xi = 1, then h( #„x ) = 0.
(v) f and h are continuous.
(vi) f( #„x ) + h( #„x ) 6= 0 for any #„x ∈ [0, 1]n.

Proof. It follows that:
(⇒) Suppose that GG is a general grouping function, and take f( #„x ) = GG( #„x ) and
h( #„x ) = 1 − f( #„x ). Then one always have f( #„x ) + h( #„x ) 6= 0, and so Equation (1) is
well defined. Also, conditions (i)-(v) trivially hold.
(⇐) Consider f, h : [0, 1]n → [0, 1] satisfying conditions (i)-(v). We will show that GG
defined according to Equation (1) is a general grouping function. It is immediate that GG
is commutative (GG1) and continuous (GG5). To prove (GG2), notice that if

n∑
i=1

xi = 0

then f( #„x ) = 0 and thus GG( #„x ) = 0. Now, let us prove that (GG3) holds. For that,
observe that if there exists i ∈ {1, . . . , n} such that xi = 1, then h( #„x ) = 0, and, thus,
it is immediate that GG( #„x ) = 1. The proof of (GG4) is similar to [20, Theorem 3]. ut

Example 2. Observe that Theorem 2 provides a method for constructing general group-
ing functions. For example, take the maximum powered by p, defined by:

maxp( #„x ) = max1≤i≤n{xpi },

with p > 0. So, if we take the function Tmaxpα : [0, 1]n → [0, 1], called α-truncated
maximum powered by p, given, for all #„x ∈ [0, 1]n and α ∈ (0, 1), by:

Tmaxpα(
#„x ) =

{
0, if maxp( #„x ) ≤ α
maxp( #„x ), if maxp( #„x ) > α

(2)
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then it is clear that Tmaxpα is not continuous. However, one can consider the function
CTmaxpα,ε : [0, 1]

n → [0, 1], called the continuous truncated maximum powered by p,
for all #„x ∈ [0, 1]n, α ∈ [0, 1] and ε ∈ (0, α], which is defined by:

CTmaxpα,ε(
#„x ) =





0, if maxp( #„x ) ≤ α− ε
α
ε (maxp( #„x )− (α− ε)) , if α− ε < maxp( #„x ) < α

maxp( #„x ), if maxp( #„x ) ≥ α.
(3)

Observe that taking f = CTmaxpα,ε, then f satisfies conditions (i)-(iii) and (v) in
Theorem 2. Now, take h( #„x ) = min1≤i≤n{1 − xi}, which satisfies conditions (i)-(ii)
and (iv)-(v) required in Theorem 2. Thus, this assures that

GG( #„x ) =
CTmaxpα,ε(

#„x )

CTmaxpα,ε(
#„x ) + min1≤i≤n{1− xi}

is a general grouping function.

Remark 3. Observe that the maximum powered by p is an n-dimensional grouping
function [15] and that CTmaxpα,ε is a general grouping function. However, CTmaxpα,ε
is not an n-dimensional grouping function, for α − ε > 0, since CTmaxpα,ε(α −
ε, . . . , α− ε) = 0.

Corollary 1. Consider the functions f, h : [0, 1]n → [0, 1] and let GG : [0, 1]n → [0, 1]
be a general grouping function constructed according to Theorem 2, and taking into
account functions f and h. Then GG is idempotent if and only if, for all x ∈ [0, 1), it
holds that:

f(x, . . . , x) =
x

1− xh(x, . . . , x).

Proof. (⇒) If GG is idempotent, then by Theorem 2 it holds that:

GG(x, . . . , x) = f(x, . . . , x)

f(x, . . . , x) + h(x, . . . , x)
= x.

It follows that: f(x, . . . , x) = x(f(x, . . . , x) + h(x, . . . , x))

(1− x)f(x, . . . , x) = x h(x, . . . , x)

f(x, . . . , x) =
x

1− x h(x, . . . , x).

(⇐) It is immediate. ut

Example 3. Take the function αβ-truncated maximum powered by p, Tmaxpαβ : [0, 1]
n

→ [0, 1], for all #„x ∈ [0, 1]n; α, β ∈ (0, 1) and α < β, defined by:

Tmaxpαβ(
#„x ) =





0, maxp( #„x ) ≤ α
maxp( #„x ), α < maxp( #„x ) < β

1, maxp( #„x ) ≥ β
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It is clear that Tmaxpαβ is not continuous. However, we can define its continuous ver-
sion, CTmaxpαβ,εδ : [0, 1]

n → [0, 1], for all #„x ∈ [0, 1]n; α ∈ [0, 1); β, ε, δ ∈ (0, 1];
α+ ε, β − δ ∈ (0, 1) and α+ ε < β − δ, as follows:

CTmaxpαβ,εδ(
#„x ) =





0, maxp( #„x ) ≤ α
1−(α+ε)

ε
(α−maxp( #„x )), α < maxp( #„x ) < α+ ε

1−maxp( #„x ), α+ ε ≤ maxp( #„x ) ≤ β − δ
1− (β − δ)− β−δ

δ
(β − δ −maxp( #„x )), β − δ < maxp( #„x ) < β

1, maxp( #„x ) ≥ β

Observe that CTmaxpαβ,εδ satisfies conditions (GG1)-(GG5) from Def. 9, and then it
is a general grouping function. But, whenever α 6= 0 or β 6= 1, then CTmaxpαβ,εδ is
not an n-dimensional grouping function, once CTmaxpαβ,εδ(α− ε, . . . , α− ε) = 0, for
α− ε > 0, because maxp(α− ε, . . . , α− ε) = α− ε < α.

The following Theorem generalizes Example 3 providing a construction method for
general grouping functions from truncated n-dimensional grouping functions.

Theorem 3. Consider α ∈ [0, 1); β, ε, δ ∈ (0, 1]; α + ε, β − δ ∈ (0, 1) and α < β,
α + ε < β − δ. Let G be an n-dimensional grouping function, whose αβ-truncated
version is defined, for all #„x = (x1, . . . , xn) ∈ [0, 1]n, by:

TGαβ( #„x ) =





0, G( #„x ) ≤ α
G( #„x ), α < G( #„x ) < β

1, G( #„x ) ≥ β

Then, the continuous version of TGαβ , for all #„x = (x1, . . . , xn) ∈ [0, 1]n, is given by:

CTGαβ,εδ( #„x ) =





0, G( #„x ) ≤ α
1−(α+ε)

ε (α− G( #„x )), α < G( #„x ) < α+ ε

1− G( #„x ), α+ ε ≤ G( #„x ) ≤ β − δ
1− (β − δ)− β−δ

δ (β − δ − G( #„x )), β − δ < G( #„x ) < β

1, G( #„x ) ≥ β

and it is a general grouping function. Besides that, whenever α = 0 and β = 1, then
CTGαβ,εδ is an n-dimensional grouping function.

The following proposition shows a construction method of general grouping func-
tions that generalizes Example 1(4).

Proposition 6. Let G : [0, 1]n → [0, 1] be an n-dimensional grouping function and let
F : [0, 1]n → [0, 1] be a commutative and continuous aggregation function such that,
for all #„x = (x1, . . . , xn) ∈ [0, 1]n, if there exists i ∈ {1, . . . , n} such that xi = 1, then
F ( #„x ) = 1. Then GGGF ( #„x ) = G( #„x )F ( #„x ) is a general grouping function.
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Proof. It is immediate that GGGF is well defined, (GG1) commutative, (GG4) increasing
and (GG5) continuous, since G, F and the product operation are commutative, increas-

ing and continuous. To prove (GG2), whenever
n∑
i=1

xi = 0, then by (G2), it holds that

G( #„x ) = 0, and, thus, GGGF ( #„x ) = G( #„x )F ( #„x ) = 0. For (GG3), whenever there exists
i ∈ {1, . . . , n} such that xi = 1, then, by (G3), one has that G( #„x ) = 1, and, by the
property of F , it holds that F ( #„x ) = 1. It follows that: GGGF ( #„x ) = G( #„x )F ( #„x ) = 1.

ut

The following result is immediate.

Corollary 2. Let GH : [0, 1]n → [0, 1] be a general grouping function and let F : [0, 1]
→ [0, 1] be a commutative and continuous aggregation function such that, for all #„x =
(x1, . . . , xn) ∈ [0, 1]n, if there exists i ∈ {1, . . . , n} such that xi = 1, then F ( #„x ) = 1.
Then GGGH,F ( #„x ) = GH( #„x )F ( #„x ) is a general grouping function.

Note that Gn is closed with respect to some aggregation functions, as stated by the
following results, which provide a construction methods of general grouping functions.

Theorem 4. Consider M : [0, 1]2 → [0, 1]. For any GG1,GG2 ∈ Gn, define the map-
ping MGG1,GG2

: [0, 1]n → [0, 1], for all #„x ∈ [0, 1]n, by:

MGG1,GG2
( #„x ) =M(GG1( #„x ),GG2( #„x )).

Then, MGG1,GG2
∈ Gn if and only if M is a continuous aggregation function.

Proof. It follows that:
(⇒) Suppose that MGG1,GG2

∈ Gn. Then it is immediate that M is continuous and

increasing (A2). Now consider #„x = (x1, . . . , xn) ∈ [0, 1]n and suppose that
n∑
i=1

xi =

0. Then, by (GG2), one has that: MGG1,GG2
( #„x ) = M(GG1( #„x ),GG2( #„x )) = 0 and

GG1( #„x ) = GG2( #„x ) = 0. Thus, it holds that M(0, 0) = 0. Now, consider #„x =
(x1, . . . , xn) ∈ [0, 1]n, such that there exists i ∈ {1, . . . , n} such that xi = 1. Then,
by (GG3), one has that: MGG1,GG2

( #„x ) = M(GG1( #„x ),GG2( #„x )) = 1 and GG1( #„x ) =
GG2( #„x ) = 1. Therefore, it holds that M(1, 1) = 1. This proves that M also satisfies
(A1), and, thus, M is a continuous aggregation function.
(⇐) Suppose that M is a continuous aggregation function. Then it is immediate that
MGG1,GG2

is (GG1) commutative, (GG4) increasing and (GG5) continuous. For (GG2),

consider #„x = (x1, . . . , xn) ∈ [0, 1]n such that
n∑
i=1

xi = 0. Then, by (GG2), one has that

GG1( #„x ) = GG2( #„x ) = 0. It follows that: MGG1,GG2
( #„x ) = M(GG1( #„x ),GG2( #„x ))=

M(0, 0) = 0, by (A1), since M is an aggregation function. Finally, for (GG3) consider
that there exists i ∈ {1, . . . , n} such that xi = 1 for some #„x = (x1, . . . , xn) ∈
[0, 1]n. Then, it holds that GG1( #„x ) = GG2( #„x ) = 1. It follows that: MGG1,GG2

( #„x )=
M(GG1( #„x ),GG2( #„x )) = M(1, 1) = 1, by (A1), since M is an aggregation function.
This proves that MGG1,GG2

∈ Gn. ut

Example 4. In the sense of Theorem 4, Gn is closed under any bidimensional overlap
functions, grouping functions and continuous t-norms and t-conorms [18].
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Corollary 3. Consider M : [0, 1]2 → [0, 1]. For any n-dimensional grouping functions
G1,G2 : [0, 1]n → [0, 1], define the mapping MG1,G2 : [0, 1]

n → [0, 1], for all #„x =
(x1, . . . , xn) ∈ [0, 1]n, by:

MG1,G2(
#„x ) =M(G1( #„x ),G2( #„x )).

Then, MG1,G2 ∈ Gn if and only if M is a continuous aggregation function.

Proof. It follows from Theorem 4, since any n-dimensional grouping function is a gen-
eral grouping function. ut

Theorem 4 can be easily extended for n-ary functions Mn : [0, 1]n → [0, 1]:

Theorem 5. Consider Mn : [0, 1]n → [0, 1]. For any GG1, . . . ,GGn ∈ Gn, define the
mapping MGG1,...,GGn

: [0, 1]n → [0, 1], for all #„x ∈ [0, 1]n, by:

MGG1,...,GGn
( #„x ) =Mn(GG1( #„x ), . . . ,GGn( #„x )).

Then, MGG1,...,GGn
∈ Gn if and only if Mn : [0, 1]n → [0, 1] is a continuous n-ary

aggregation function.

Proof. Analogous to the proof of Theorem 4. ut

This result can be extended for n-dimensional grouping functions.

Corollary 4. Consider Mn : [0, 1]n → [0, 1] and fr any n-dimensional grouping func-
tions G1, . . . ,Gn define the mappingMG1,...,Gn : [0, 1]

n → [0, 1], for all #„x = (x1, . . . , xn)
∈ [0, 1]n, by:

MG1,...,Gn(
#„x ) =Mn(G1( #„x ), . . . ,Gn( #„x )).

Then, MG1,...,Gn is a general grouping function if and only if Mn : [0, 1]n → [0, 1] is a
continuous n-ary aggregation function.

Corollary 5. Let GG1, . . . ,GGm : [0, 1]n → [0, 1] be general grouping functions and

consider weights w1, . . . , wm ∈ [0, 1] such that
m∑
i=1

wi = 1. Then the convex sum

GG =
m∑
i=1

wiGGi is also a general grouping function.

Proof. Since the weighted sum is a continuous commutative n-ary aggregation func-
tion, the result follows from Theorem 5. ut

It is possible to obtain general grouping functions from the generalized composition
of general grouping functions and aggregation functions satisfying especial conditions:

Theorem 6. Let GG2 : [0, 1]n → [0, 1] be a general grouping function and let the
n-ary aggregation functions A1, . . . , An : [0, 1]

n → [0, 1] be continuous, commuta-
tive and disjunctive. Then, the function GG1 : [0, 1]n → [0, 1] defined, for all #„x =
(x1, . . . , xn) ∈ [0, 1]n, by: GG1( #„x ) = GG2(A1(

#„x ), . . . , An(
#„x )) is a general group-

ing function.
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Proof. Since GG2, A1, . . . , An are commutative, increasing and continuous functions,
then GG1 satisfies conditions (GG1), (GG4) and (GG5). So, it remains to prove:

(GG2) Let #„x = (x1, . . . , xn) ∈ [0, 1]n be such that
n∑
i=1

xi = 0. Then, since A1 is

disjunctive, we have that A1(
#„x ) ≥ max( #„x ) = 0, that is A1(

#„x ) = 0. Equivalently, one
obtains A2(

#„x ), . . . , An(
#„x ) = 0. Thus, since GG2 is a general grouping function, one

has that GG1( #„x ) = GG2(A1(
#„x ), . . . , An(

#„x )) = GG2(0, . . . , 0) = 0.
(GG3) Suppose that, for some #„x = (x1, . . . , xn) ∈ [0, 1]n, there exists i ∈ {1, . . . , n}
such that xi = 1. So, since A1 is disjunctive then A1(

#„x ) ≥ max( #„x ) = 1, that is
A1(

#„x ) = 1. Since GG2 is a general grouping function, it follows that GG1( #„x ) =
GG2(A1(

#„x ), . . . , An(
#„x )) = GG2(1, A2(

#„x ), . . . , An(
#„x )) = 1. ut

Next proposition uses the n-duality property.

Proposition 7. Consider a continuous fuzzy negation N : [0, 1]→ [0, 1] and a general
overlap function GO : [0, 1]n → [0, 1], then for all #„x = (x1, . . . , xn) ∈ [0, 1]n:

GG( #„x ) = N(GO(N(x1), . . . , N(xn))) (4)

is a general grouping function. Reciprocally, if GG : [0, 1]n → [0, 1] is a general group-
ing function, then for all #„x = (x1, . . . , xn) ∈ [0, 1]n:

GO( #„x ) = N(GG(N(x1), . . . , N(xn))) (5)

is a general overlap function.

Proof. Since we have a continuous fuzzy negation and bearing in mind that general
overlap functions and general grouping functions are commutative, increasing and con-
tinuous functions according to Def. 8 and Def. 9, respectively, then GO and GG satisfy
conditions (GO1), (GG1); (GO4), (GG4) and (GO5), (GG5). So, it remains to prove:
(GG2) For Eq. (4), take xi = 0, for all i ∈ {1, . . . , n}. Therefore,

GG( #„x ) = N(GO(N(0), . . . , N(0)))
N2
= N(GO(1, . . . , 1)) GO3

= N(1)
N2
= 0.

(GG3) If there exists a xi = 1, for some i ∈ {1, . . . , n}, then
GG( #„x ) = N(GO(N(x1), . . . , N(1), . . . , N(xn)))

N2
= N(GO(N(x1), . . . , 0, . . . , N(xn)))
GO2
= N(0)

N2
= 1.

(GO2) Similarly, for Eq. (5), take a xi = 0 for some i ∈ {1, . . . , n}. So,
GO( #„x ) = N(GG(N(x1), . . . , N(0), . . . , N(xn)))

N2
= N(GG(N(x1), . . . , 1, . . . , N(xn)))
GG3
= N(1)

N2
= 0.

(GO3) Now, consider that xi = 1, for all i ∈ {1, . . . , n}. Then,

GO( #„x ) = N(GG(N(1), . . . , N(1)))
N2
= N(GG(0, . . . , 0)) GG2= N(0)

N2
= 1.

ut
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5 Conclusions

In this paper, we first introduced the concept of general grouping functions and
studied some of their properties. Then we provide a characterization of general grouping
functions and some construction methods.

The theoretical developments presented here allow for a more flexible approach
when dealing with decision making problems with multiple alternatives. Immediate fu-
ture work is concerned with the development of an application in multi-criteria decision
making based on n-ary fuzzy heterogeneous, incomplete preference relations.
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Abstract
Overlap functions are a class of aggregation functions that measure the overlapping degree between two
values. They have been successfully applied in several problems in which associativity is not required,
such as classification and image processing. Some generalizations of overlap functions were proposed
for them to be applied in problems with more than two classes, such as 𝑛-dimensional and general
overlap functions. To measure the overlapping of interval data, interval-valued overlap functions were
defined, and, later, they were also generalized in the form of 𝑛-dimensional and general interval-valued
overlap functions. In order to apply some of those concepts in problems with interval data considering
the use of admissible orders, which are total orders that refine the most used partial order for intervals,
𝑛-dimensional admissibly ordered interval-valued overlap functions were recently introduced, proving
to be suitable to be applied in classification problems. However, the sole construction method presented
for this kind of function do not allow the use of the well known lexicographical orders. So, in this work
we combine previous developments to introduce general admissibly ordered interval-valued overlap
functions, while also presenting different construction methods and the possibility to combine such
methods, showcasing the flexibility and adaptability of this approach, while also being compatible with
the lexicographical orders.

1. Introduction

Overlap functions are aggregation functions, initially introduced in the context of image pro-
cessing problems, to measure the overlapping between classes [1, 2, 3]. Since then, they have
been studied in the literature by many authors, mainly because of either the advantages they
present over the popular t-norms [4, 5] or their great applicability, as in: fuzzy rule-based

WILF 2021: The 13th International Workshop on Fuzzy Logic and Applications, December 20–22, 2021, Vietri sul Mare,
Italy
" tiago.dacruz@unavarra.es (T. d. C. Asmus); gracalizdimuro@furg.br (G. P. Dimuro);
joseantonio.sanz@unavarra.es (J. A. Sanz); jonatacw@gmail.com (J. Wieczynski); giancarlolucca@furg.br
(G. Lucca); bustince@unavarra.es (H. Bustince)
� 0000-0002-7066-7156 (T. d. C. Asmus); 0000-0001-6986-9888 (G. P. Dimuro); 0000-0002-1427-9909 (J. A. Sanz);
0000-0002-1279-6195 (H. Bustince)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)



classification [6, 7, 8, 9, 10], decision making [11, 12], wavelet -fuzzy power quality diagnosis
system [13], forest fire detection [14], among others.

The concept of 𝑛-dimensional overlap functions was introduced [15] in order to allow the
application of overlap functions, which were originally defined as bivariate functions that do not
need to be associative, in problems with multiple classes. By relaxing the boundary conditions
of n-dimensional overlap functions, general overlap functions were defined, also showing good
behaviour when applied in classification problems [16].

Now observe that, when working with fuzzy systems, one may face the problem regarding
the uncertainty in assigning the values of the membership degrees or defining the membership
functions that are adopted in the system. In the literature, a proposed solution is given by the use
of interval-valued fuzzy sets (IVFSs) [17, 18, 19], where the membership degrees are represented
by intervals, whose widths represent such uncertainty [20, 21, 22]. IVFSs have been successfully
applied in many different fields, such as classification [23, 24, 25], image processing [26, 27],
game theory [28], multicriteria decision making [29], pest control [30], irrigation systems [31]
and collaborative clustering [32].

To avoid a stalemate when comparing interval data, Bustince et al. [33] introduced the concept
of admissible orders for intervals, that is, total order relations that refine the usual product order
[34], which is a partial order. Since their introduction, several works were developed taking
admissible orders into account, such as [35, 36, 37, 38].

Qiao and Hu [39] and Bedregal et al. [40] defined, independently, the concept of interval-
valued overlap functions. By extending and generalizing interval-valued overlap functions,
Asmus et al. [23] introduced the concepts of n-dimensional interval-valued overlap functions
and general interval-valued overlap functions, both concepts taking into account the usual
increasingness with respect to the product order.

Allowing for a broader practical application of (𝑛-dimensional) interval-valued overlap
functions, Asmus et al. [35] introduced the concept of n-dimensional admissibly ordered
interval-valued overlap functions, which are n-dimensional interval-valued overlap functions
that are increasing with respect to an admissible order. They also presented a construction
method, which, however, cannot generate n-dimensional interval-valued overlap functions that
are increasing with respect to the well known lexicographical orders [33]. Although this is not
a serious problem, with the initial motivation to overcome this drawback, in this present work
we combine the recent developed concepts on (𝑛-dimensional, general) interval-valued overlap
functions and admissible orders to introduce general admissibly ordered interval-valued overlap
function. However, the resulting definition proved to be much more flexible and adaptable,
allowing for the development of different construction methods, and even the composition of
functions constructed through those methods.

The paper is organized as follows. Section 2 presents some preliminary concepts. In Section
3, we introduce the concept of general admissibly ordered iv-overlap functions, studying its
representation and relation with 𝑛-dimensional admissibly ordered iv-overlap function. In
section 4, we present some construction methods for general admissibly ordered iv-overlap
functions. Section 5 is the Conclusion.



2. Preliminaries

In this section, we recall some concepts on general overlap functions, interval mathematics,
admissible orders and (admissibly ordered) interval-valued overlap functions.

2.1. General Overlap Functions

Definition 1. [41] An aggregation function is a mapping 𝐴 : [0, 1]𝑛 → [0, 1] that is increasing
in each argument and satisfying: (A1) 𝐴(0, . . . , 0) = 0; (A2) 𝐴(1, . . . , 1) = 1.

Definition 2. [42, 15] A function 𝑂𝑛 : [0, 1]𝑛 → [0, 1] is said to be an n-dimensional overlap
function if, for all �⃗� ∈ [0, 1]𝑛: (On1) 𝑂𝑛 is commutative; (On2) 𝑂𝑛(�⃗�) = 0 ⇔ ∏︀𝑛

𝑖=1 𝑥𝑖 = 0;
(On3) 𝑂𝑛(�⃗�) = 1 ⇔∏︀𝑛

𝑖=1 𝑥𝑖 = 1; (On4) 𝑂𝑛 is increasing; (On5) 𝑂𝑛 is continuous.

When 𝑂𝑛 is strictly increasing in (0, 1], it is called a strict n-dimensional overlap function. A
2-dimensional overlap function is just called overlap function [43, 1].

By changing the boundaries conditions (On2) and (On3) to obtain a less restrictive definition,
general overlap functions were introduced as follows:

Definition 3. [16] A function 𝐺𝑂 : [0, 1]𝑛 → [0, 1] is said to be a general overlap function
if, for all �⃗� ∈ [0, 1]𝑛: (GO1) 𝑂𝑛 is commutative; (GO2) ∏︀𝑛

𝑖=1 𝑥𝑖 = 0 ⇒ 𝐺𝑂(�⃗�) = 0 (GO3)∏︀𝑛
𝑖=1 𝑥𝑖 = 1 ⇒ 𝐺𝑂(�⃗�) = 1; (GO4) 𝐺𝑂 is increasing; (GO5) 𝐺𝑂 is continuous.

Proposition 1. [16] If 𝑂𝑛 : 𝐿([0, 1])𝑛 → [0, 1] is an 𝑛-dimensional overlap function, then 𝑂𝑛
is also a general overlap function, but the converse may not hold.

Example 1. The following are all examples of general overlap functions, defined for all �⃗� ∈ [0, 1]𝑛:

a) The product 𝐺𝑂𝑃 , given by 𝐺𝑂𝑃 (�⃗�) =
∏︀𝑛

𝑖=1 𝑥𝑖, which is a strict 𝑛-dimensional overlap
function, and, whenever 𝑛 = 2, it is the product t-norm [44].

b) The function 𝐺𝑂𝐿, given by 𝐺𝑂𝐿(�⃗�) = max {(∑︀𝑛
𝑖=1 𝑥𝑖)− (𝑛− 1), 0}, which is not neither

an 𝑛-dimensional overlap function nor strictly increasing. For 𝑛 = 2, it is the Lukasiewicz
t-norm [44].

c) The geometric mean𝐺𝑂𝐺𝑚, given by𝐺𝑂𝐺𝑚(�⃗�) = 𝑛
√︀∏︀𝑛

𝑖=1 𝑥𝑖, which is a strict 𝑛-dimensional
overlap function, but it is not a t-norm, when 𝑛 = 2 [1].

For properties on (𝑛-dimensional) overlap functions, general overlap functions and related
concepts, see also: [16, 45, 4, 46, 47, 15, 48, 49, 50].

2.2. Interval Mathematics and Admissible Orders
Let us denote as 𝐿([0, 1]) the set of all closed subintervals of the unit interval [0, 1]. Denote
�⃗� = (𝑥1, . . . , 𝑥𝑛) ∈ [0, 1]𝑛 and �⃗� = (𝑋1, . . . , 𝑋𝑛) ∈ 𝐿([0, 1])𝑛. Given any 𝑋 = [𝑥1, 𝑥2] ∈
𝐿([0, 1]), 𝑋 = 𝑥1 and 𝑋 = 𝑥2 denote, respectively, the left and right projections of 𝑋 , and



𝑤(𝑋) = 𝑋−𝑋 denotes the width of𝑋 . The interval product is defined for all𝑋,𝑌 ∈ 𝐿([0, 1])
by:

𝑋 ≤𝑃𝑟 𝑌 ⇔ 𝑋 ≤ 𝑌 ∧ 𝑋 ≤ 𝑌 .

We call as ≤𝑃𝑟-increasing a function that is increasing with respect to the product order ≤𝑃𝑟 . The
projections 𝐹−, 𝐹+ : [0, 1]𝑛 → [0, 1] of 𝐹 : 𝐿([0, 1])𝑛 → 𝐿([0, 1]) are defined, respectively, by:

𝐹−(𝑥1, . . . , 𝑥𝑛) = 𝐹 ([𝑥1, 𝑥1], . . . , [𝑥𝑛, 𝑥𝑛]); (1)

𝐹+(𝑥1, . . . , 𝑥𝑛) = 𝐹 ([𝑥1, 𝑥1], . . . , [𝑥𝑛, 𝑥𝑛]). (2)

Given two functions 𝑓, 𝑔 : [0, 1]𝑛 → [0, 1] such that 𝑓 ≤ 𝑔, we define the function ̂︂𝑓, 𝑔 : 𝐿([0, 1])𝑛 →
𝐿([0, 1]) as

̂︂𝑓, 𝑔(�⃗�) = [𝑓(𝑋1, . . . , 𝑋𝑛), 𝑔(𝑋1, . . . , 𝑋𝑛)]. (3)

Definition 4. [21] Let 𝐼𝐹 : 𝐿([0, 1])𝑛 → 𝐿([0, 1]) be an ≤𝑃𝑟-increasing interval function. 𝐼𝐹 is said to
be representable if there exist increasing functions 𝑓, 𝑔 : [0, 1]𝑛 → [0, 1] such that 𝑓 ≤ 𝑔 and 𝐹 =̂︂𝑓, 𝑔.

The functions 𝑓 and 𝑔 are the representatives of the interval function 𝐹 . When 𝐹 = ̂︂𝑓, 𝑓 , we denote
simply as ̂︀𝑓 .

The interval-product is defined, for all 𝑋,𝑌 ∈ 𝐿([0, 1]), by 𝑋 · 𝑌 = [𝑋 · 𝑌 ,𝑋 · 𝑌 ].
The notion of admissible orders for intervals came from the interest in refining the product order ≤𝑃𝑟

to a total order.

Definition 5. [33] Let (𝐿([0, 1]),≤𝐴𝐷) be a partially ordered set. The order ≤𝐴𝐷 is called an admissible
order if

(i) ≤𝐴𝐷 is a total order on (𝐿([0, 1]),≤𝐴𝐷);

(ii) For all 𝑋,𝑌 ∈ 𝐿([0, 1]), 𝑋 ≤𝐴𝐷 𝑌 whenever 𝑋 ≤𝑃𝑟 𝑌 .

In other words, an order ≤𝐴𝐷 on 𝐿([0, 1]) is admissible, if it is total and refines the order ≤𝑃𝑟 [33].

Example 2. Examples of admissible orders on 𝐿([0, 1]) are the lexicographical orders with respect to the
first and second coordinate, defined, respectively, by:

𝑋 ≤𝐿𝑒𝑥1 𝑌 ⇔ 𝑋 < 𝑌 ∨ (𝑋 = 𝑌 ∧𝑋 ≤ 𝑌 );

𝑋 ≤𝐿𝑒𝑥2 𝑌 ⇔ 𝑋 < 𝑌 ∨ (𝑋 = 𝑌 ∧𝑋 ≤ 𝑌 ).

Definition 6. [33] For 𝛼, 𝛽 ∈ [0, 1] such that 𝛼 ̸= 𝛽, the relation ≤𝛼,𝛽 is defined by

𝑋 ≤𝛼,𝛽 𝑌 ⇔ 𝐾𝛼(𝑋,𝑋) < 𝐾𝛼(𝑌 , 𝑌 ) or
(𝐾𝛼(𝑋,𝑋) = 𝐾𝛼(𝑌 , 𝑌 ) and 𝐾𝛽(𝑋,𝑋) ≤ 𝐾𝛽(𝑌 , 𝑌 )),

where 𝐾𝛼,𝐾𝛽 : [0, 1]2 → [0, 1] are aggregation functions defined, respectively, by

𝐾𝛼(𝑥, 𝑦) = 𝑥+ 𝛼 · (𝑦 − 𝑥), (4)

𝐾𝛽(𝑥, 𝑦) = 𝑥+ 𝛽 · (𝑦 − 𝑥).

Then, the relation ≤𝛼,𝛽 is an admissible order.



Remark 1. By varying the values of 𝛼 and 𝛽 one can recover some of the known admissible orders, e.g.,
the lexicographical orders ≤𝐿𝑒𝑥1 and ≤𝐿𝑒𝑥2 can be recovered by ≤0,1 and ≤1,0, respectively.

Whenever we apply the mapping𝐾𝛼 on the endpoints of an interval𝑋 ∈ [0, 1], we denote𝐾𝛼(𝑋,𝑋)
simply as 𝐾𝛼(𝑋).

We denote an interval-valued function that is increasing with respect to an admissible order ≤𝐴𝐷

as ≤𝐴𝐷-increasing. Obviously, every ≤𝐴𝐷-increasing function is also ≤𝑃𝑟-increasing, since every
admissible order ≤𝐴𝐷 refines ≤𝑃𝑟 .

2.3. General Interval-valued Overlap Functions
Definition 7. [51] A function 𝐼𝐴 : 𝐿([0, 1])𝑛 → 𝐿([0, 1]) is an interval-valued (iv) aggregation function
whenever: (IA1) 𝐼𝐴 is≤𝑃𝑟-increasing; (IA2) 𝐼𝐴 satisfies: 𝐼𝐴([0, 0], . . . , [0, 0]) = [0, 0] and 𝐼𝐴([1, 1], . . . , [1, 1]) =
[1, 1].

Definition 8. [23] A function 𝐼𝑂𝑛 : 𝐿([0, 1])𝑛 → 𝐿([0, 1]) is an n-dimensional interval-valued (iv)
overlap function if, for all �⃗� ∈ 𝐿([0, 1])𝑛, it satisfies: (IOn1) 𝐼𝑂𝑛 is commutative; (IOn2) 𝐼𝑂𝑛(�⃗�) =

[0, 0] ⇔∏︀𝑛
𝑖=1𝑋𝑖 = [0, 0]; (IOn3) 𝐼𝑂𝑛(�⃗�) = [1, 1] ⇔∏︀𝑛

𝑖=1𝑋𝑖 = [1, 1]; (IOn4) 𝐼𝑂𝑛 is≤𝑃𝑟-increasing;
(IOn5) 𝐼𝑂𝑛 is Moore continuous [34].

For 𝑛 = 2, 𝐼𝑂𝑛 is just called iv-overlap function [40, 39].

Theorem 1. [23] Let 𝑂𝑛1, 𝑂𝑛2 : [0, 1]𝑛 → [0, 1] be 𝑛-dimensional overlap functions such that 𝑂𝑛1 ≤
𝑂𝑛2. Then, the function 𝐼𝑂𝑛 : 𝐿([0, 1])𝑛 → 𝐿([0, 1]) given, for all �⃗� ∈ 𝐿([0, 1])𝑛, by 𝐼𝑂𝑛(�⃗�) =
ˆ︂𝑂𝑛1, 𝑂𝑛2(�⃗�), as defined in Eq. (3), is an 𝑛-dimensional iv-overlap function.

Regarding Theo. 1, 𝐼𝑂𝑛 is a representable interval-valued function. As both its representatives are
𝑛-dimensional overlap functions, it is said to be 𝑜-representable [23].

By changing (IOn2) and (IOn3) in Def. 8, general interval-valued overlap functions were defined as
follows:

Definition 9. [23] A function 𝐼𝐺𝑂 : 𝐿([0, 1])𝑛 → 𝐿([0, 1]) is said to be a general interval-valued (iv)
overlap function if, for all �⃗� ∈ 𝐿([0, 1])𝑛: (IGO1) 𝐼𝐺𝑂 is commutative; (IGO2) If

∏︀𝑛
𝑖=1𝑋𝑖 = [0, 0] then

𝐼𝐺𝑂(�⃗�) = [0, 0]; (IGO3) If
∏︀𝑛

𝑖=1𝑋𝑖 = [1, 1] then 𝐼𝐺𝑂(�⃗�) = [1, 1]; (IGO4) 𝐼𝐺𝑂 is ≤𝑃𝑟-increasing;
(IGO5) 𝐼𝐺𝑂 is Moore continuous.

Proposition 2. [23] If 𝐼𝑂𝑛 : 𝐿([0, 1])𝑛 → 𝐿([0, 1]) is an 𝑛-dimensional iv-overlap function, then it is
also a general iv-overlap function, but the converse may not hold.

Theorem 2. [23] Let 𝐺𝑂1, 𝐺𝑂2 : [0, 1]𝑛 → [0, 1] be two general overlap functions such that 𝐺𝑂1 ≤
𝐺𝑂2. Then, the function 𝐼𝐺𝑂 : 𝐿([0, 1])𝑛 → 𝐿([0, 1]) given, for all �⃗� ∈ 𝐿([0, 1])𝑛, by 𝐼𝐺𝑂(�⃗�) =

ˆ︂𝐺𝑂1, 𝐺𝑂2(�⃗�), is a (representable) general iv-overlap function.

In order to apply 𝑛-dimensional iv-overlap functions in problems where admissible orders must be
considered, the following definition was introduced:

Definition 10. [35] A function 𝐴𝑂𝑛 : 𝐿([0, 1])𝑛 → 𝐿([0, 1]) is an n-dimensional admissibly ordered
interval-valued overlap function for an admissible order ≤𝐴𝐷 (n-dimensional ≤𝐴𝐷-overlap function) if it
satisfies (IOn1), (IOn2) and (IOn3) from Def. 8, and the following condition holds:



(AOn4) 𝐴𝑂𝑛 is ≤𝐴𝐷-increasing.

Remark 2. Observe that condition (IOn5) was not considered in Def. 10, as the continuity condition of
overlap functions was only a requirement in order for them to be applied in image processing problems,
which was not the case in [35].

Theorem 3. [35] Let 𝐼𝑂𝑛 : 𝐿([0, 1])𝑛 → 𝐿([0, 1]) be an 𝑜-representable n-dimensional iv-overlap
function and 𝛼, 𝛽 ∈ [0, 1], 𝛼 ̸= 𝛽. Then, 𝐼𝑂𝑛 is ≤𝛼,𝛽-increasing if and only if 𝛼 = 1 and 𝐼𝑂𝑛+ is a strict
n-dimensional overlap function.

The following Theorem presents a construction method for 𝑛-dimensional ≤𝛼,𝛽-overlap functions:

Theorem 4. [35] Let 𝑂𝑛 be a strict n-dimensional overlap function, 𝛼 ∈ (0, 1) and 𝛽 ∈ [0, 1] such that
𝛼 ̸= 𝛽. Then 𝐴𝑂𝑛𝛼 : 𝐿([0, 1])𝑛 → 𝐿([0, 1]) defined, for all �⃗� ∈ 𝐿([0, 1])𝑛, by

𝐴𝑂𝑛𝛼(�⃗�) = [𝑂𝑛(𝐾𝛼(𝑋1), . . . ,𝐾𝛼(𝑋𝑛))− 𝛼𝑚,

𝑂𝑛(𝐾𝛼(𝑋1), . . . ,𝐾𝛼(𝑋𝑛)) + (1− 𝛼)𝑚],

where

𝑚 = min{𝑋1 −𝑋1, . . . , 𝑋𝑛 −𝑋𝑛, 𝑂𝑛(𝐾𝛼(𝑋1), . . . ,𝐾𝛼(𝑋𝑛)),

1−𝑂𝑛(𝐾𝛼(𝑋1), . . . ,𝐾𝛼(𝑋𝑛))},

is an 𝑛-dimensional ≤𝛼,𝛽-overlap function.

Remark 3. Notice that (IOn2) and (IOn3) are both necessary and sufficient conditions. For that reason, the
construction method presented in Theo. 4 must consider 𝛼 ∈ (0, 1) and, consequently, cannot be applied to
obtain neither an 𝑛-dimensional ≤0,1-overlap function nor an 𝑛-dimensional ≤1,0-overlap function, that is,
𝑛-dimensional admissibly ordered iv-overlap functions that are increasing with respect to the lexicographical
orders ≤𝐿𝑒𝑥1 and ≤𝐿𝑒𝑥2, respectively. This drawback is going to be addressed in our developments in
this work. Furthermore, the chosen 𝑛-dimensional overlap function 𝑂𝑛 must be strict, to ensure that the
constructed function is ≤𝛼,𝛽-increasing.

Here, we recall some concepts presented in [37] that were used to introduce a construction method
for iv-aggregation functions that are ≤𝛼,𝛽-increasing.

Definition 11. [37] Let 𝑐 ∈ [0, 1] and 𝛼 ∈ [0, 1]. We denote by 𝑑𝛼(𝑐) the maximal possible width of an
interval 𝑍 ∈ 𝐿([0, 1]) such that 𝐾𝛼(𝑍) = 𝑐. Moreover, for any 𝑋 ∈ 𝐿([0, 1]), define

𝜆𝛼(𝑋) =
𝑤(𝑋)

𝑑𝛼(𝐾𝛼(𝑋))
,

where we set 0
0 = 1.

Proposition 3. [37] For all 𝛼 ∈ [0, 1] and 𝑋 ∈ 𝐿([0, 1]) it holds that

𝑑𝛼(𝐾𝛼(𝑋)) = min

{︂
𝐾𝛼(𝑋)

𝛼
,
1−𝐾𝛼(𝑋)

1− 𝛼

}︂
,

where we set 𝑟
0 = 1, for all 𝑟 ∈ [0, 1].



Theorem 5. [37] Let 𝛼, 𝛽 ∈ [0, 1], such that, 𝛼 ̸= 𝛽. Let 𝐴1, 𝐴2 : [0, 1]𝑛 → [0, 1] be two aggregation
functions where 𝐴1 is strictly increasing. Then 𝐼𝐹𝛼 : 𝐿([0, 1])𝑛 → 𝐿([0, 1]) defined by:

𝐼𝐹𝛼
𝐴1,𝐴2(�⃗�) = 𝑅, where,

{︂
𝐾𝛼(𝑅) = 𝐴1(𝐾𝛼(𝑋1), . . . ,𝐾𝛼(𝑋𝑛)),
𝜆𝛼(𝑅) = 𝐴2(𝜆𝛼(𝑋1), . . . , 𝜆𝛼(𝑋𝑛)),

for all �⃗� ∈ 𝐿([0, 1])𝑛, is an ≤𝛼,𝛽-increasing iv-aggregation function.

As 𝑛-dimensional overlap functions are a class of aggregation functions, the following result is
immediate.

Corollary 1. Let 𝛼, 𝛽 ∈ [0, 1], such that, 𝛼 ̸= 𝛽. Let 𝑂𝑛 : [0, 1]𝑛 → [0, 1] be a strict 𝑛-dimensional
overlap function and 𝐴 : [0, 1]𝑛 → [0, 1] be an aggregation function. Then 𝐼𝐹𝛼

𝑂,𝐴 : 𝐿([0, 1])𝑛 → 𝐿([0, 1])
defined by:

𝐼𝐹𝛼
𝑂𝑛,𝐴(�⃗�) = 𝑅, where,

{︂
𝐾𝛼(𝑅) = 𝑂𝑛(𝐾𝛼(𝑋1), . . . ,𝐾𝛼(𝑋𝑛)),
𝜆𝛼(𝑅) = 𝐴(𝜆𝛼(𝑋1), . . . , 𝜆𝛼(𝑋𝑛)),

for all �⃗� ∈ 𝐿([0, 1])𝑛, is an ≤𝛼,𝛽-increasing iv-aggregation function.

Remark 4. Concerning Coro. 1, observe that although we apply an n-dimensional overlap function as
part of the construction method, the resulting iv-aggregation function 𝐼𝐹𝛼

𝑂,𝐴 may not be an ≤𝛼,𝛽-overlap
function, as one can only guarantee that condition (AOn4) is satisfied.

3. General admissibly ordered interval-valued overlap functions
By combining the concepts of general iv-overlap functions and 𝑛-dimensional admissibly ordered iv-
overlap functions, we introduce the following definition:

Definition 12. A function 𝐴𝐺𝑂 : 𝐿([0, 1])𝑛 → 𝐿([0, 1]) is a general admissibly ordered interval-valued
overlap function for an admissible order ≤𝐴𝐷 (general ≤𝐴𝐷-overlap function) if it satisfies the conditions
(IGO1), (IGO2) and (IGO3) of Def. 3, and the following condition holds:

(AGO4) 𝐴𝐺𝑂 is ≤𝐴𝐷-increasing.

The following result is immediate:

Proposition 4. If 𝐴𝑂𝑛 : 𝐿([0, 1])𝑛 → 𝐿([0, 1]) is an 𝑛-dimensional ≤𝐴𝐷-overlap function, then it is
also a general ≤𝐴𝐷-overlap function, but the converse may not hold.

Here we present some results regarding representable general iv-overlap functions and their increas-
ingness with respect to a particular admissible order. In the following result, consider that a strict general
overlap function is a general overlap function that is strictly increasing in (0, 1].

Lemma 1. Let 𝐺𝑂 : [0, 1]𝑛 → [0, 1] be a strict general overlap function. Then, 𝐺𝑂 is an 𝑛-dimensional
overlap function.

Proof. It is immediate that 𝐺𝑂 respects conditions (On1), (On4) and (On5) and, by (GO2) and (GO3), it
respects the necessary conditions (⇐) of (On2) and (On3). It remains to prove the sufficient conditions (⇒)
of (On2) and (On3):



(On2) (⇒) Suppose that𝐺𝑂 is strict and does not respect (On2) (⇒). Take �⃗� ∈ (0, 1]𝑛 such that𝐺𝑂(�⃗�) =
0. Then, there exist �⃗� ∈ (0, 1]𝑛 such that �⃗� < �⃗� and, by (GO4), 𝐺𝑂(�⃗�) = 𝐺𝑂(�⃗�) = 0, which is a
contradiction since 𝐺𝑂 is strict. Thus, 𝐺𝑂 respects (On2).

(On3) (⇒) Suppose that 𝐺𝑂 is strict and does not respect (On3) (⇒). By (GO2), one has that �⃗� =
(1, . . . , 1) ⇒ 𝐺𝑂(�⃗�) = 1. Now, take �⃗� ∈ [0, 1]𝑛 such that 𝑦𝑖 ̸= 1 for some 𝑖 ∈ {1, . . . , 𝑛} and
𝐺𝑂(�⃗�) = 1. Then, one has that �⃗� < �⃗� and 𝐺𝑂(�⃗�) = 𝐺𝑂(�⃗�) = 1, which is a contradiction since
𝐺𝑂 is strict. Thus, 𝐺𝑂 respects (On3).

Theorem 6. Let 𝐼𝐺𝑂 : 𝐿([0, 1])𝑛 → 𝐿([0, 1]) be a representable general iv-overlap function and 𝛼, 𝛽 ∈
[0, 1], 𝛼 ̸= 𝛽. Then, 𝐼𝐺𝑂 is ≤𝛼,𝛽-increasing if and only if 𝛼 = 1 and 𝐼𝐺𝑂+ is a strict n-dimensional
overlap function.

Proof. Analogous to the proof of Theo. 3 in [35], taking into account Lem. 1.
Then, the following result is immediate:

Corollary 2. Let 𝑂𝑛 : [0, 1]𝑛 → [0, 1] be an 𝑛-dimensional overlap function and 𝐼𝐺𝑂 : 𝐿([0, 1])𝑛 →
𝐿([0, 1]) be a general iv-overlap function such that 𝐼𝐺𝑂 = ̂︁𝑂𝑛, and 𝛼, 𝛽 ∈ [0, 1], 𝛼 ̸= 𝛽. Then, 𝐼𝐺𝑂 is a
general ≤𝛼,𝛽-overlap if and only if 𝛼 = 1 and 𝑂𝑛 is a strict n-dimensional overlap function.

Example 3. Consider the general overlap function 𝐺𝑂𝑃 as defined in Ex. 1 for 𝑛 = 2. As it is a strict
general overlap function, then, by Lem. 1, it is also a strict overlap function. Then, the interval-valued
function 𝐴𝐺𝑂𝑃 : 𝐿([0, 1])2 → 𝐿([0, 1]) defined, for all �⃗� ∈ 𝐿([0, 1])2, by

𝐴𝐺𝑂𝑃 (�⃗�) = ˆ︁𝐺𝑂𝑃 (�⃗�)

is a general ≤1,0-overlap function, and also an 2-dimensional ≤1,0-overlap function.

4. Construction methods
The first construction method for general ≤𝐴𝐷-overlap functions is an adaptation of Theo. 4, by taking
𝛼 ∈ [0, 1], obtaining a general ≤𝛼,𝛽-overlap function.

Theorem 7. Let 𝑂𝑛 be a strict n-dimensional overlap function, 𝛼, 𝛽 ∈ [0, 1] such that 𝛼 ̸= 𝛽. Then
𝐴𝐺𝑂𝛼 : 𝐿([0, 1])𝑛 → 𝐿([0, 1]) defined, for all �⃗� ∈ 𝐿([0, 1])𝑛, by

𝐴𝐺𝑂𝛼(�⃗�) = [𝑂𝑛(𝐾𝛼(𝑋1), . . . ,𝐾𝛼(𝑋𝑛))− 𝛼𝑚,

𝑂𝑛(𝐾𝛼(𝑋1), . . . ,𝐾𝛼(𝑋𝑛)) + (1− 𝛼)𝑚],

where

𝑚 = min{𝑋1 −𝑋1, . . . , 𝑋𝑛 −𝑋𝑛, 𝑂𝑛(𝐾𝛼(𝑋1), . . . ,𝐾𝛼(𝑋𝑛)),

1−𝑂𝑛(𝐾𝛼(𝑋1), . . . ,𝐾𝛼(𝑋𝑛))},

is a general ≤𝛼,𝛽-overlap function.

Proof. Analogous to the proof of Theo. 4 in [35].

Remark 5. Observe that (IGO2) and (IGO3) are only sufficient conditions, allowing for 𝛼 ∈ [0, 1] in the
construction method presented in Theo. 7, differently than in Theo. 4, in which 𝛼 ∈ (0, 1). This means that,
through Theo. 7, one can obtain general ≤𝐴𝐷-overlap functions that are increasing with respect to either
one of the lexicographical orders.



Remark 6. Regarding Theo. 7, one could think that it could be based on a general overlap function 𝐺𝑂
instead of a 𝑛-dimensional overlap function 𝑂𝑛, for it to be even more broad of a method. However, as the
base function needs to be strictly increasing in order to the constructed interval-valued function 𝐴𝐺𝑂𝛼 to
be ≤𝛼,𝛽-increasing, by Lem. 1, one has that every strict general overlap function is also an 𝑛-dimensional
overlap function, and that is why we chose to maintain 𝑂𝑛 in Theo. 7 to reinforce this fact.

Example 4. Consider the general overlap function 𝐺𝑂𝑃 as defined in Ex. 1. Then, for 𝛼 = 1 and 𝛽 = 0,
the interval-valued function 𝐴𝐺𝑂1

𝑃 : 𝐿([0, 1])𝑛 → 𝐿([0, 1]) defined for all �⃗� ∈ 𝐿([0, 1])𝑛, by

𝐴𝐺𝑂1
𝑃 (�⃗�) = [𝐺𝑂𝑃 (𝑋1, . . . , 𝑋𝑛)−𝑚, ,𝐺𝑂𝑃 (𝑋1, . . . , 𝑋𝑛)],

where

𝑚 = min{𝑋1 −𝑋1, . . . , 𝑋𝑛 −𝑋𝑛, 𝐺𝑂𝑃 (𝑋1, . . . , 𝑋𝑛),

1−𝐺𝑂𝑃 (𝑋1, . . . , 𝑋𝑛)},

is a general ≤1,0-overlap function, or in other words, a general ≤𝐿𝑒𝑥2-overlap function. It is noteworthy
that 𝐴𝐺𝑂1

𝑃 is not an 𝑛-dimensional ≤1,0-overlap function.

The next construction methods are inspired on Theo. 5. First, we will present a more restrictive construction
method for 𝑛-dimensional ≤𝛼,𝛽-overlap functions:

Theorem 8. Let𝛼, 𝛽 ∈ (0, 1), such that, 𝛼 ̸= 𝛽. Let𝑂𝑛 : [0, 1]𝑛 → [0, 1] be a strict 𝑛-dimensional overlap
function and 𝐴 : [0, 1]𝑛 → [0, 1] be a commutative aggregation function. Then 𝐴𝑂𝑛𝛼𝐴 : 𝐿([0, 1])𝑛 →
𝐿([0, 1]) defined by:

𝐴𝑂𝑛𝛼𝐴(�⃗�) = 𝑅, where,
{︂
𝐾𝛼(𝑅) = 𝑂𝑛(𝐾𝛼(𝑋1), . . . ,𝐾𝛼(𝑋𝑛)),
𝜆𝛼(𝑅) = 𝐴(𝜆𝛼(𝑋1), . . . , 𝜆𝛼(𝑋𝑛)),

for all �⃗� ∈ 𝐿([0, 1])𝑛, is an 𝑛-dimensional ≤𝛼,𝛽-overlap function.

Proof. From Theo. 5, it is immediate that 𝐴𝑂𝑛𝛼𝐴 is well defined and ≤𝛼,𝛽-increasing, thus, respecting
condition (AOn4). Now, let us verify if 𝐴𝑂𝑛𝛼𝐴 respects the remainder conditions from Def. 10:

(IOn1) Immediate, since 𝑂𝑛 and 𝐴 are commutative.
(IOn2) (⇒) Take �⃗� ∈ 𝐿([0, 1])𝑛 and suppose that 𝐴𝑂𝑛𝛼𝐴(�⃗�) = 𝑅 = [0, 0]. Then, we have that

𝐾𝛼(𝑅) = 𝐾𝛼([0, 0]) = 0 = 𝑂𝑛(𝐾𝛼(𝑋1), . . . ,𝐾𝛼(𝑋𝑛)),

for all 𝛼 ∈ (0, 1). Thus, by condition (On2), 𝐾𝛼(𝑋𝑖) = 0 for some 𝑖 ∈ {1, . . . , 𝑛}, for all 𝛼 ∈ (0, 1), and,
therefore,

∏︀𝑛
𝑖=1𝑋𝑖 = [0, 0];

(⇐) Consider �⃗� ∈ 𝐿([0, 1])𝑛 such that
∏︀𝑛

𝑖=1 = [0, 0]. So,𝐾𝛼(𝑋1)·. . .·𝐾𝛼(𝑋𝑛) = 0, for all𝛼 ∈ (0, 1).
Then, by (On2), one has that

𝐾𝛼(𝑅) = 𝑂𝑛(𝐾𝛼(𝑋1), . . . ,𝐾𝛼(𝑋𝑛)) = 0,

for all 𝛼 ∈ (0, 1), meaning that 𝐴𝑂𝑛𝛼𝐴(�⃗�) = 𝑅 = [0, 0];

(IOw3) (⇒) Take �⃗� ∈ 𝐿([0, 1])𝑛 such that 𝐴𝑂𝑛𝛼𝐴(�⃗�) = 𝑅 = [1, 1]. Then, one has that

𝐾𝛼(𝑅) = 𝐾𝛼([1, 1]) = 1 = 𝑂𝑛(𝐾𝛼(𝑋1), . . . ,𝐾𝛼(𝑋𝑛)).



By (On3), 𝐾𝛼(𝑋1) · . . . ·𝐾𝛼(𝑋𝑛) = 1, for all 𝛼 ∈ (0, 1), meaning that
∏︀𝑛

𝑖=1𝑋𝑖 = [1, 1];
(⇐) Consider �⃗� ∈ 𝐿([0, 1])𝑛 such that

∏︀𝑛
𝑖=1𝑋𝑖 = [1, 1]. So, 𝐾𝛼(𝑋1) · . . . · 𝐾𝛼(𝑋𝑛) = 1, for all

𝛼 ∈ (0, 1). Then, by (i) and (O3), one has that

𝐾𝛼(𝑅) = 𝑂𝑛(𝐾𝛼(𝑋1), . . . ,𝐾𝛼(𝑋𝑛)) = 1,

for all 𝛼 ∈ (0, 1), meaning that 𝐴𝑂𝑛𝛼𝐴(�⃗�) = 𝑅 = [1, 1].
The following result is immediate, as it derives from a similar situation as discussed in Remarks 5 and 6.

Theorem 9. Let 𝛼, 𝛽 ∈ [0, 1], such that, 𝛼 ̸= 𝛽. Let𝑂𝑛 : [0, 1]𝑛 → [0, 1] be a strict 𝑛-dimensional overlap
function and 𝐴 : [0, 1]𝑛 → [0, 1] be a commutative aggregation function. Then 𝐴𝐺𝑂𝛼

𝐴 : 𝐿([0, 1])𝑛 →
𝐿([0, 1]) defined by:

𝐴𝐺𝑂𝛼
𝐴(�⃗�) = 𝑅, where,

{︂
𝐾𝛼(𝑅) = 𝑂𝑛(𝐾𝛼(𝑋1), . . . ,𝐾𝛼(𝑋𝑛)),
𝜆𝛼(𝑅) = 𝐴(𝜆𝛼(𝑋1), . . . , 𝜆𝛼(𝑋𝑛)),

for all �⃗� ∈ 𝐿([0, 1])𝑛, is an general ≤𝛼,𝛽-overlap function.

Example 5. Consider the general overlap functions 𝐺𝑂𝐿 and 𝐺𝑂𝐺𝑚 as defined in Ex. 1. Then, for 𝛼 = 1

and 𝛽 = 0, the interval-valued function 𝐴𝐺𝑚1
𝐺𝑂𝐿

: 𝐿([0, 1])𝑛 → 𝐿([0, 1]) defined for all �⃗� ∈ 𝐿([0, 1])𝑛,
by

𝐴𝐺𝑚1
𝐺𝑂𝐿

(�⃗�)=𝑅, where,
{︂
𝐾1(𝑅)=𝐺𝑂𝐺𝑚(𝑋1, . . ., 𝑋𝑛),
𝜆1(𝑅)=𝐺𝑂𝐿(𝜆1(𝑋1), . . ., 𝜆1(𝑋𝑛)),

is a general ≤1,0-overlap function, but not an 𝑛-dimensional ≤1,0-overlap function.

The following method allow the construction of general ≤𝐴𝐷-overlap functions by the generalized
composition of general ≤𝐴𝐷-overlap functions by an ≤𝐴𝐷-increasing iv-aggregation function.

Theorem 10. Consider 𝐼𝑀 : 𝐿([0, 1])𝑚 → 𝐿([0, 1]). For a tuple
−−−→
𝐴𝐺𝑂 = (𝐴𝐺𝑂1, . . . , 𝐴𝐺𝑂𝑚) of

general ≤𝐴𝐷-overlap functions, define the mapping 𝐼𝑀−−−→
𝐴𝐺𝑂

: 𝐿([0, 1])𝑛 → 𝐿([0, 1]), for all �⃗� ∈
𝐿([0, 1])𝑛, by:

𝐼𝑀−−−→
𝐴𝐺𝑂

(�⃗�) = 𝐼𝑀(𝐴𝐺𝑂1(�⃗�), . . . , 𝐴𝐺𝑂𝑚(�⃗�)).

Then, 𝐼𝑀−−−→
𝐴𝐺𝑂

is a general ≤𝐴𝐷-overlap function if and only if 𝐼𝑀 is an ≤𝐴𝐷-increasing iv-aggregation
function.

Proof.It follows that:
(⇒) Suppose that 𝐼𝑀−−−→

𝐴𝐺𝑂
is a general ≤𝐴𝐷-overlap function. Then it is immediate that 𝐼𝑀 ≤𝐴𝐷-

increasing, and, also, ≤𝑃𝑟-increasing (IA2). Now consider �⃗� ∈ 𝐿([0, 1])𝑛 such that
∏︀𝑛

𝑖=1𝑋𝑖 = [0, 0]. Then,
by (IGO2), one has that: 𝐼𝑀−−−→

𝐴𝐺𝑂
(�⃗�) = 𝐼𝑀(𝐴𝐺𝑂1(�⃗�), . . . , 𝐴𝐺𝑂𝑚(�⃗�)) = [0, 0] and 𝐴𝐺𝑂1(�⃗�) =

. . . = 𝐴𝐺𝑂𝑚(�⃗�) = [0, 0]. Thus, it holds that 𝐼𝑀([0, 0], . . . , [0, 0]) = [0, 0]. Now, consider �⃗� ∈
𝐿([0, 1])𝑛, such that 𝑋𝑖 = [1, 1] for all 𝑖 ∈ {1, . . . , 𝑛}. Then, by (IGO3), one has that: 𝐼𝑀−−−→

𝐴𝐺𝑂
(�⃗�) =

𝐼𝑀(𝐴𝐺𝑂1(�⃗�), . . . , 𝐴𝐺𝑂𝑚(�⃗�)) = [1, 1] and 𝐴𝐺𝑂1(�⃗�) = . . . = 𝐴𝐺𝑂𝑚(�⃗�) = [1, 1]. Therefore, it
holds that 𝐼𝑀([1, 1], . . . , [1, 1]) = [1, 1]. This proves that 𝐼𝑀 also satisfies condition (IA1), and, thus, an
≤𝐴𝐷-increasing iv-aggregation function.

(⇐) Suppose that 𝐼𝑀 is an ≤𝐴𝐷-increasing iv-aggregation function. Then it is immediate that 𝐼𝑀−−−→
𝐴𝐺𝑂

is commutative (by (IGO1)), and respects (AGO4). It remains to prove:



(IGO2) Consider �⃗� ∈ 𝐿([0, 1])𝑛 such that
∏︀𝑛

𝑖=1𝑋𝑖 = [0, 0]. Then, by (IGO2), one has that𝐴𝐺𝑂1(�⃗�) =

. . . = 𝐴𝐺𝑂𝑚(�⃗�) = [0, 0]. It follows that: 𝐼𝑀−−−→
𝐴𝐺𝑂

(�⃗�) = 𝐼𝑀(𝐴𝐺𝑂1(�⃗�), . . . , 𝐴𝐺𝑂𝑚(�⃗�)) =
𝐼𝑀([0, 0], . . . , [0, 0]) = [0, 0], by condition (IA1), since 𝐼𝑀 is an iv-aggregation function.

(IGO3) Take �⃗� ∈ 𝐿([0, 1])𝑛 such that 𝑋𝑖 = [1, 1] for all 𝑖 ∈ {1, . . . , 𝑛}. Then, (IGO3), it holds that
𝐴𝐺𝑂1(�⃗�) = . . . = 𝐴𝐺𝑂𝑚(�⃗�) = [1, 1]. It follows that: 𝐼𝑀−−−→

𝐴𝐺𝑂
(�⃗�) = 𝐼𝑀(𝐴𝐺𝑂1(�⃗�), . . . , 𝐴𝐺𝑂𝑚(�⃗�)) =

𝐼𝑀([1, 1], . . . , [1, 1]) = [1, 1], by condition (IA1). This proves that 𝐼𝑀−−−→
𝐴𝐺𝑂

(�⃗�) is a general ≤𝐴𝐷-
overlap function.

Example 6. Consider the general ≤1,0-overlap functions 𝐴𝐺𝑂𝑃 , 𝐴𝐺𝑂1
𝑃 and 𝐴𝐺𝑚1

𝐺𝑂𝐿
, from Ex.s 3, 4

and 5. Then, the interval-valued function 𝐴𝐺𝑂 : 𝐿([0, 1])𝑛 → 𝐿([0, 1]) defined, for all �⃗� ∈ 𝐿([0, 1])𝑛, by

𝐴𝐺𝑂(�⃗�) = 𝐴𝐺𝑂𝑃 (𝐴𝐺𝑂
1
𝑃 (�⃗�), 𝐴𝐺𝑚1

𝐺𝑂𝐿
(�⃗�)),

is a general ≤1,0-overlap function.

5. Conclusion
In this paper we presented the concept of general admissibly ordered interval-valued overlap functions, a
more flexible definition of 𝑛-dimensional interval-valued overlap functions that are increasing with respect
to an admissible order. This new definition allowed us to construct several interval-valued overlap operations
taking into account different admissible orders, in particular, ≤𝛼,𝛽 orders with any 𝛼, 𝛽 ∈ [0, 1] such that
𝛼 ̸= 𝛽. Finally, those constructed functions can be combined by generalized composition to obtain new
general admissibly ordered interval-valued overlap functions, showcasing their adaptability.

Most construction methods for ≤𝛼,𝛽-increasing functions are based on the aggregation of the 𝐾𝛼 values
of the inputs by strictly increasing aggregation functions, which is a restriction that could be interesting to
overcome in our future work. We also intend to apply the developed functions (with different combination of
construction methods) in classification problems with interval-valued data.
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Abstract. Interval-Valued fuzzy rule-based classifier with TUning and Rule Se-
lection, IVTURS, is a state-of-the-art fuzzy classifier. One of the key point of
this method is the usage of interval-valued restricted equivalence functions be-
cause their parametrization allows one to tune them to each problem, which leads
to obtaining accurate results. However, they require the application of the expo-
nentiation several times to obtain a result, which is a time demanding operation
implying an extra charge to the computational burden of the method.
In this contribution, we propose to reduce the number of exponentiation opera-
tions executed by the system, so that the efficiency of the method is enhanced
with no alteration of the obtained results. Moreover, the new approach also al-
lows for a reduction on the search space of the evolutionary method carried out in
IVTURS. Consequently, we also propose four different approaches to take advan-
tage of this reduction on the search space to study if it can imply an enhancement
of the accuracy of the classifier. The experimental results prove: 1) the enhance-
ment of the efficiency of IVTURS and 2) the accuracy of IVTURS is competitive
versus that of the approaches using the reduced search space.

Keywords: Interval-Valued Fuzzy Rule-based Classification Systems · Interval-
Valued Fuzzy Sets · Interval Type-2 Fuzzy Sets · Evolutionary Fuzzy Systems.

1 Introduction

Classification problems [10], which consist of assigning objects into predefined groups
or classes based on the observed variables related to the objects, have been widely
studied in machine learning. To tackle them, a mapping function from the input to the
output space, called classifier, needs to be induced applying a learning algorithm. That
is, a classifier is a model encoding a set of criteria that allows a data instance to be
assigned to a particular class depending on the value of certain variables.

Fuzzy Rule-Based Classification Systems (FRBCSs) [16] are applied to deal with
classification problems, since they obtain accurate results while providing the user with
a model composed of a set of rules formed of linguistic labels easily understood by hu-
mans. Interval-Valued FRBCSs (IVFRBCSs) [21], are an extension of FRBCSs where
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some (or all) linguistic labels are modelled by means of Interval-Valued Fuzzy Sets
(IVFSs) [19].

IVTURS [22] is a state-of-the-art IVFRBCS built upon the basis of FARC-HD [1].
First, the two first steps of FARC-HD are applied to learn an initial fuzzy rule base,
which is augmented with IVFSs to represent the inherent ignorance in the definition
of the membership functions [20]. One of the key components of IVTURS is its Fuzzy
Reasoning Method (FRM) [6], where all the steps consider intervals instead of numbers.
When the matching degree between an example and the antecedent of a rule has to be
computed, IVTURS makes usage of Interval-Valued Restricted Equivalence Functions
(IV-REFs) [18]. These functions are introduced to measure the closeness between the
interval membership degrees and the ideal ones, [1, 1]. Their interest resides in their
parametric construction method, which allows them to be optimized for each specific
problem. In fact, the last step of IVTURS applies an evolutionary algorithm to find the
most appropriate values for the parameters used in their construction.

However, the accurate results obtained when using IV-REFs comes at the price of
the computational cost. To use an IV-REF it is necessary to apply several exponentiation
operations, which are very time demanding. Consequently, the aim of this contribution
is to reduce the run-time of IVTURS by decreasing the number of exponentiation oper-
ations required to obtain the same results. To do so, we propose two modifications:

– A mathematical simplification of the construction method of IV-REFs, which al-
lows one to reduce to half the number of exponentiation operations.

– Add a verification step to avoid making computations both with incompatible interval-
valued fuzzy rules as well as with do not care labels.

Moreover, the mathematical simplification also offers the possibility of reducing
the search space of the evolutionary process carried out in IVTURS. This reduction
may imply a different behaviour of the classifier, which may derive to an enhancement
of the results. In this contribution, we propose four different approaches to explore the
reduced search space for the sake of studying whether they allow one to improve the
system’s performance or not.

We use the same experimental framework that was used in the paper where IVTURS
was defined [22], which consist of twenty seven datasets selected from the KEEL data-
set repository [2]. We will test whether our two modifications reduce the run-time of
IVTURS and the reduction rate achieved as well as the performance of the four different
approaches considered to explore the reduced search space. To support our conclusions,
we conduct an appropriate statistical study as suggested in the literature [7,13].

The rest of the contribution is arranged as follows: in Section 2 we recall some
preliminary concepts on IVFSs, IV-REFs and IVTURS. The proposals for speeding IV-
TURS up and those to explore the reduced search space are described in Section 3. Next,
the experimental framework and the analysis of the results are presented in Sections 4
and 5, respectively. Finally, the conclusions are drawn in Section 6.

2 Preliminaries

In this section, we review several preliminary concepts on IVFSs (Section 2.1), IV-REFs
(Section 2.2) and IVFRBCSs (Section 2.3).
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2.1 Interval-Valued Fuzzy Sets

This section is aimed at recalling the theoretical concepts related to IVFSs. We start
showing the definition of IVFSs, whose history and relationship with other type of FSs
as interval type-2 FSs can be found in [4].

Let L([0, 1]) be the set of all closed subintervals in [0, 1]:
L([0, 1]) = {x = [x, x]|(x, x) ∈ [0, 1]2 and x ≤ x}.

Definition 1. [19] An interval-valued fuzzy set A on the universe U 6= ∅ is a mapping
AIV : U → L([0, 1]), so that

AIV (ui) = [A(ui), A(ui)] ∈ L([0, 1]), for all ui ∈ U.

It is immediate that [A(ui), A(ui)] is the interval membership degree of the element
ui to the IVFS A.

In order to model the conjunction among IVFSs we apply t-representable interval-
valued t-norms [9] without zero divisors, that is, they verify that T(x, y) = 0L if and
only if x = 0L or y = 0L. We denote them TTa,Tb , since they are represented by Ta and
Tb, which are the t-norms applied over the lower and the upper bounds, respectively.
That is, TTa,Tb(x,y) = [Ta(x,y),Tb(x,y].

Furthermore, we need to use interval arithmetical operations [8] to make some com-
putations. Specifically, the interval arithmetic operations we need in the work are:

– Addition: [x, x] + [y, y] = [x+ y, x+ y].
– Multiplication: [x, x] ∗ [y, y] = [x ∗ y, x ∗ y].
– Division: [x,x]

[y,y] = [min(min(xy ,
x
y ), 1),min(max(xy ,

x
y ), 1)] with y 6= 0.

where [x, x], [y, y] are two intervals in R+ so that x is larger than y.
Finally, when a comparison between interval membership degrees is necessary, we

use the total order relationship for intervals defined by Xu and Yager [23] (see Eq.( 1)),
which is also an admissible order [5].

[x, x] ≤ [y, y] if and only if x+ x < y + y or x+ x = y + y and x− x ≥ y − y (1)

Using Eq.( 1) it is easy to observe that 0L = [0, 0] and 1L = [1, 1] are the smallest
and largest elements in L([0, 1]), respectively.

2.2 Interval-Valued Restricted Equivalence Functions

In IVTURS [22], one of the key components are the IV-REFs [11,18], whose aim is
to quantify the equivalence degree between two intervals. They are the extension on
IVFSs of REFs [3] and their definition is as follows:

Definition 2. [11,18] An Interval-Valued Restricted Equivalence Function (IV-REF)
associated with a interval-valued negation N is a function

IV -REF : L([0, 1])2 → L([0, 1])

so that:
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(IR1) IV -REF (x, y) = IV -REF (y, x) for all x, y ∈ L([0, 1]);
(IR2) IV -REF (x, y) = 1L if and only if x = y;
(IR3) IV -REF (x, y) = 0L if and only if x = 1L and y = 0L or x = 0L and y = 1L;
(IR4) IV -REF (x, y) = IV -REF (N(x), N(y)) with N an involutive interval-valued

negation;
(IR5) For all x, y, z ∈ L([0, 1]), if x ≤L y ≤L z, then IV -REF (x, y) ≥L IV -REF (x, z)

and IV -REF (y, z) ≥L IV -REF (x, z).

In this work we use the standard negation, that is, N(x) = 1− x.
An interesting feature of IV-REFs is the possibility of parametrize them by means

of automorphisms as follows.

Definition 3. An automorphism of the unit interval is any continuous and strictly in-
creasing function φ : [0, 1]→ [0, 1] so that φ(0) = 0 and φ(1) = 1.

An easy way of constructing automorphisms is by means of a parameter λ ∈ (0,∞):
ϕ(x) = xλ, and hence, ϕ−1(x) = x1/λ. Some automorphims constructed using differ-
ent values of the parameter λ are shown in Figure 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

φ(
x)

φ(x) = x0.01

φ(x) = x0.5

φ(x) = x

φ(x) = x2

φ(x) = x100

Fig. 1: Example of different automorphisms generated by different values of λ.

Then, the construction method of IV-REFs used in IVTURS can be seen in Eq.(2):

IV -REF (x, y) = [T (φ−1
1 (1− |φ2(x)− φ2(y)|), φ−1

1 (1− |φ2(x)− φ2(y)|)),
S(φ−1

1 (1− |φ2(x)− φ2(y)|), φ−1
1 (1− |φ2(x)− φ2(y)|))]

(2)

where T is the minimum t-norm, S is the maximum t-conorm and ϕ1, ϕ2 are two
automorphisms of the interval [0, 1] parametrized by λ1 and λ2, respectively. Therefore,
the IV-REFs used in IVTURS are as follows:

IV -REF (x, y) = [min((1− |xλ2 − yλ2 |)1/λ1 , (1− |xλ2 − yλ2 |)1/λ1),

max((1− |xλ2 − yλ2 |)1/λ1 , (1− |xλ2 − yλ2 |)1/λ1)]
(3)



Enhancing the efficiency of IVTURS 5

2.3 Interval-Valued Fuzzy Rule-Based Classification Systems

Solving a classification problem consists in learning a mapping function called classifier
from a set of training examples, named training set, that allows new examples to be
classified. The training set is composed of P examples, xp = (xp1, . . . , xpn, yp), where
xpi is the value of the i-th attribute (i = 1, 2, . . . , n) of the p-th training example. Each
example belongs to a class yp ∈ C = {C1, C2, ..., Cm}, where m is the number of
classes of the problem.

IVFRBCSs are a technique to deal with classification problems [20], where each of
the n attributes is described by a set of linguistic terms modeled by their corresponding
IVFSs. Consequently, they provide an interpretable model as the antecedent part of the
fuzzy rules is composed of a subset of these linguistic terms as shown in Eq. (4).

Rule Rj : If x1 is Aj1 and . . . and xn is Ajn then Class = Cj with RWj (4)

where Rj is the label of the jth rule, x = (x1, . . . , xn) is an n-dimensional pattern
vector, Aji is an antecedent IVFS representing a linguistic term, Cj is the class label,
and RWj is the rule weight [17].

IVTURS [22] is an state-of-the-art IVFRBCSs, whose learning process is composed
of two steps:

1. To build an IV-FRBCS. This step involves the following tasks:
– The generation of an initial FRBCS by applying FARC-HD [1].
– Modelling the linguistic labels of the learned FRBCS by means of IVFSs.
– The generation of an initial IV-REF for each variable of the problem.

2. To apply an optimization approach with a double purpose:
– To learn the best values of the IV-REFs’ parameters, that is, the values of the

exponents of the automorphisms (λ1 and λ2).
– To apply a rule selection process in order to decrease the system’s complexity.

In order to be able to classify new examples, xp = (xp1, . . . , xpn), IVTURS considers
an Interval-Valued Fuzzy Reasoning Method [22] (IV-FRM), which uses the L interval-
valued fuzzy rules composing the model as follows:

1. Interval matching degree: It quantifies the strength of activation of the if-part for
all rules (L) in the system with the example xp:

[Aj(xp), Aj(xp)] = TTa,Tb(IV -REF ([Aj1(xp1), Aj1(xp1)], [1, 1]), . . . ,
IV -REF ([Ajn(xpn), Ajn(xpn)], [1, 1])), j = 1, . . . , L.

(5)

2. Interval association degree: for each rule,Rj , the interval matching degree is weighted
by its rule weight RWj = [RWj , RWj ]::

[bj(xp), bj(xp)] = [µAj (xp), µAj (xp)]∗[RWj , RWj ] j = 1, . . . , L. (6)



6 J. Sanz et al.

3. Interval pattern classification soundness degree for all classes. The positive interval
association degrees are aggregated by class applying an aggregation function f.

[Yk, Yk] = fRj∈RB; Cj=k([bj(xp), bj(xp)]|[bj(xp), bj(xp)] > 0L), k = 1, . . . ,m.
(7)

4. Classification. A decision function F is applied over the interval soundness de-
grees:

F ([Y1, Y1], ..., [Ym, Ym]) = arg max([Yk, Yk])
k=1,...,m

(8)

3 Enhancing the efficiency of IVTURS

IVTURS provides accurate results when tackling classification problems. However, we
are concerned about its computational burden as it may be an obstacle to use it in real-
world problems. The most computationally expensive operation in IVTURS is the ex-
ponentiation operation required when computing the IV-REFs, which are constantly
used in the IV-FRM (Eq. (5)). Though there are twelve exponentiation operations in
Eq. (3), only four of them need to be computed because: 1) y = y = 1, implying that
the computation of yλ2 and yλ2 can be avoided as one raised to any number is one; 2)
the lower and the upper bound of the resulting IV-REF are based on the minimum and
maximum of the same operations, which reduces the number of operations to the half.

The aim of this contribution is to reduce the number of exponentiation operations
needed to execute IVTURS, which will imply an enhancement of the system’s effi-
ciency. To do so, we propose two modifications to the original IVTURS: 1) to apply
a mathematical simplification of the IV-REFs that reduces to half the number of expo-
nentiation operations (Section 3.1) and 2) to avoid applying IV-REFs with both do not
care labels and incompatible interval-valued fuzzy rules (Section 3.2).

Furthermore, the mathematical simplification of IV-REFs, besides reducing the num-
ber of exponentiation operations while obtaining the same results, would also allow us
to also reduce the search space of the evolutionary algorithm, possibly implying in a dif-
ferent behavior in the system. We will study whether this reduction of the search space
could result in a better performance of the system by using four different approaches to
explore it (Section 3.3).

3.1 IV-REFs simplification

IV-REFs are used to measure the degree of closeness (equivalence) between two in-
tervals. In IVTURS, they are used to compute the equivalence between the interval
membership degrees and the ideal membership degree, that is, IV-REF([x, x], [1, 1]).
Precisely, because one of the input intervals is [1, 1], we can apply the following math-
ematical simplification.

IV−REF ([x, x], [1, 1]) = [(1−|xλ2−1λ2 |)1/λ1 , (1−|xλ2−1λ2 |)1/λ1 ] = [xλ2/λ1 , xλ2/λ1 ]
(9)
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Therefore, we can obtain the same result by just raising the value of the interval
membership degree to the division of both exponents (λ2/λ1), which imply reducing to
half the number of operations.

3.2 Avoiding incompatible rules and do not care labels

When the inference process is applied to classify a new example, the interval match-
ing degree has to be obtained for each rule of the system. The maximum number of
antecedents of the interval-valued fuzzy rules used in IVTURS is limited to a certain
hyper-parameter of the algorithm, kt, whose default value is 3. This fact implies that in
almost all the classification problems the usage of do not care labels is necessary, since
the number of input attributes is greater than that of kt. In order to program this fea-
ture of IVTURS, a do not care label is considered as an extra membership function that
returns the neutral element for the t-representable interval-valued t-norm used ([1, 1] in
this case as the product is applied). In this manner, when performing the conjunction of
the antecedents the usage of do not care labels do not change the obtained result. How-
ever, this fact implies that when having a do not care label, it returns [1, 1] as interval
membership degree and IV-REF([1, 1], [1, 1]) needs to be computed ([x, x] = [1, 1]).
Consequently, a large number of exponentiation operations can be saved if we avoid
computing IV-REF in this situations as the result is always [1, 1].

On the other hand, we also propose to avoid obtaining the interval matching degree
and thus computing the associated IV-REFs when the example is not compatible with
the antecedent of the interval-valued fuzzy rule. To do so, we need to perform an initial
iteration where we check whether the example is compatible with the rule. Then, the
interval matching degree is only computed when they are compatible. This may see to
be an extra charge for the run-time but we take advantage of this first iteration to obtain
the interval matching degrees, avoiding the do not care labels, and we send them to the
function that computes the interval matching degree.

These two modifications could have a huge impact on the run-time of IVTURS
because do not care labels are very common in the interval-valued fuzzy rules of the
system and the proportion of compatible rules with an example is usually small.

3.3 Reducing the search space in the evolutionary process of IVTURS

In Section 3.1 we have presented a mathematical simplification of the IV-REFs that al-
lows one to reduce the number of exponentiation operations obtaining exactly the same
results than that obtained in the original formulation of IVTURS. However, according
to Eq. (9) we can observe that both parameters of the simplified IV-REF (λ1, λ2) can be
collapsed into a unique one (λ) as shown in Eq. (10).

IV −REF ([x, x], [1, 1]) = [xλ2/λ1 , xλ2/λ1 ] = [xλ, xλ] (10)

In this manner, the search space of the evolutionary process carried out in IVTURS,
where the values of λ1 and λ2 are tuned to each problem, can be also reduced to half
because only the value of λ needs to be tuned. Consequently, the behaviour of the
algorithm can change and we aim at studying whether this reduction is beneficial or
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not. Specifically, the structure of the chromosome is: Ci = (gλ1
, gλ2

, . . . , gλn), where
gλi , i = 1, . . . , n, are the genes representing the value of λi and n is the number of
input variables of the classification problem.

The parameter λ can vary theoretically between zero and infinity. However, in IV-
TURS, λ1 and λ2 are limited to the interval [0.01, 100]. On the other hand, in the
evolutionary process, those genes used to encode them are codified in [0.01, 1.99],
gλi ∈ [0.01, 1.99], in such a way that the chances of learning values in [0.01, 1] and
in (1, 100] are the same. Consequently, these genes have to be decoded so that they are
in the range [0.01, 100] when used in the corresponding IV-REF. The decoding process
is driven by the following equation:

gλi =

{
gλi , if 0 < gλi ≤ 1

1
2−gλi

, if 1 < gλi < 2
(11)

In [12], Galar et. al use REFs (the numerical counterpart of IV-REFs) to deal with
the problem of difficult classes applying the OVO decomposition strategy. In this method,
on the one hand, those genes used for representing the parameter λ are coded in the
range (0, 1). On the other hand, the decoding process of the genes is driven by Eq.12.

λi =




(2 · gλi)2 if gλi ≤ 0.5

1

(1− 2 · (gλi − 0.5))2
otherwise.

(12)

There are two main differences between these two methods: 1) the decoded value
by Eq. (11) is in the range [0.01, 100], whereas when using Eq. (12) the values are in
(0,∞) and 2) the search space is explored in a different way as can be seen in the two
first rows of Figure 2, where the left and the right columns show how the final values
when λi ≤ 1.0 and λi > 1.0 are obtained, respectively.

Looking at these two methods, we propose another two new ones:

– Linear exploration of the search space: we encode all the genes in the range [0.01, 1.99]
and we decode them using a linear normalization in the ranges [0.0001, 1.0] and
(1.0, 10000] for the genes in [0.01, 1.0] and (1.0, 1.99], respectively.

– Mixture of Eq. (11) and Eq. (12). Genes are encoded in (0, 1) and they are decoded
using Eq. (11) for genes in (0, 0.5] (linear decoding: 2 · gλi )and Eq. (12) for genes
in (0.5, 1.0].

4 Experimental Framework

We have considered the same datasets which were used in the paper where IVTURS was
proposed. That is, we select twenty-seven real world data-sets from the KEEL data-set
repository [2]. Table 1 summarizes their properties: number of examples (#Ex.), at-
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Fig. 2: Effect of the decoding method of the parameter gλ on the way how the search
space is explored.

Table 1: Description of the selected data-sets.

Id. Data-set #Ex. #Atts. #Class.

aus Australian 690 14 2
bal Balance 625 4 3
cle Cleveland 297 13 5
con Contraceptive 1,473 9 3
crx Crx 653 15 2
der Dermatology 358 34 6
eco Ecoli 336 7 8
ger German 1,000 20 2
hab Haberman 306 3 2
hay Hayes-Roth 160 4 3
hea Heart 270 13 2
ion Ionosphere 351 33 10
iri Iris 150 4 3

mag Magic 1,902 10 2

Id. Data-set #Ex. #Atts. #Class.

new New-Thyroid 215 5 3
pag Page-blocks 548 10 5
pen Penbased 1,992 16 10
pim Pima 768 8 2
sah Saheart 462 9 2
spe Spectfheart 267 44 2
tae Tae 151 5 3
tit Titanic 2,201 3 2

two Twonorm 740 20 2
veh Vehicle 846 18 4
win Wine 178 13 3
wiR Winequality-Red 1,599 11 11
wis Wisconsin 683 9 2

tributes (#Atts.) and classes (#Class.)4. We apply a 5-fold cross-validation model using
the standard accuracy rate to measure the performance of the classifiers.

4 We must recall that, as in the IVTURS’ paper, the magic, page-blocks, penbased, ring, satim-
age and shuttle data-sets have been stratified sampled at 10% in order to reduce their size for
training. In the case of missing values (crx, dermatology and wisconsin), those instances have
been removed from the data-set
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In this contribution we use the configuration of IVTURS that was used in the paper
were it was defined:

– Fuzzy rule learning:
• Minsup: 0.05.
• Maxconf : 0.8.
• Depthmax: 3.
• kt: 2.

– Evolutionary process
• Population Size: 50 individuals.
• Number of evaluations: 20,000.
• Bits per gene for the Gray codification (for incest prevention): 30 bits.

– IVFSs construction:
• Number of linguistic labels per variable: 5 labels.
• Shape: Triangular membership functions.
• Upper bound: 50% greater than the lower bound (W = 0.25).

– Configuration of the initial IV-REFs:
• T-norm: minimum.
• T-conorm: maximum.
• First automorphism: φ1(x) = x1 (a = 1).
• Second automorphism: φ2(x) = x1 (b = 1).

– Rule weight: fuzzy confidence (certainty factor) [17].
– Fuzzy reasoning method: additive combination [6].
– Conjunction operator: product interval-valued t-norm.
– Combination operator: product interval-valued t-norm.

5 Analysis of the obtained results

This section is aimed at showing the obtained results having a double aim:

1. To check whether the two modifications proposed for enhancing the run-time of
IVTURS allow one to speed it up or not.

2. To study if the reduction of the search space made possible by the mathematical
simplification of the IV-REFs allows one to improve the results of IVTURS.

In first place we show in Table 2 the run-time in seconds of the three versions of
IVTURS5, namely, the original IVTURS, IVTURS using the mathematical simplifi-
cation of the IV-REFs (IV TURSv1) and IVTURS avoiding the usage of incompati-
ble interval-valued fuzzy rules and do not care labels (IV TURSv2). For IV TURSv1,
the number in parentheses is the reduction rate achieved versus the original IVTURS,
whereas in the case of IV TURSv2 it is the reduction rate achieved with respect to
IV TURSv1.

Looking at the obtained results we can conclude that the two versions allow IV-
TURS to be more efficient. In fact, IV TURSv1 allows one to reduce to half the run-
time of IVTURS as expected, since the number of exponentiation operations is also

5 We do not show the accuracy of the methods because they obtain the same results.
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Table 2: Run-time in seconds of IVTURS besides the two versions developed for speed-
ing it up. The number in parentheses shows the reduction rate of the method in the
column versus the method in its respective left column.

Dataset IVTURS IV TURSv1 IV TURSv2

aus 2032.22 1019.17 (x1.99) 288.22 (x3.54)
bal 909.98 463.19 (x1.96) 193.64 (x2.39)
cle 1460.90 720.98 (x2.03) 133.24 (x5.41)
con 5572.14 2896.43 (x1.92) 971.67 (x2.98)
crx 1781.01 885.32 (x2.01) 227.00 (x3.90)
der 2167.93 1087.80 (x1.99) 107.32 (x10.14)
eco 466.07 244.90 (x1.90) 87.32 (x2.80)
ger 9462.10 4894.81 (x1.93) 838.09 (x5.84)
hab 97.28 53.69 (x1.81) 31.78 (x1.69)
hay 99.16 52.54 (x1.89) 32.75 (x1.60)
hea 764.16 388.49 (x1.97) 102.06 (x3.81)
ion 1314.86 663.30 (x1.98) 81.15 (x8.17)
iri 35.10 19.61 (x1.79) 7.40 (x2.65)
mag 3840.45 1976.30 (x1.94) 581.34 (x3.40)
new 96.94 51.98 (x1.87) 22.77 (x2.28)
pag 571.19 293.44 (x1.95) 66.80 (x4.39)
pen 6417.29 3273.78 (x1.96) 511.53 (x6.40)
pim 1433.95 700.68 (x2.05) 306.43 (x2.29)
sah 963.71 485.20 (x1.99) 181.29 (x2.68)
spe 1319.11 647.94 (x2.04) 117.44 (x5.52)
tae 141.29 76.32 (x1.85) 40.33 (x1.89)
tit 490.51 261.57 (x1.88) 141.57 (x1.85)
two 2426.83 1203.81 (x2.02) 225.71 (x5.33)
veh 4264.57 2162.36 (x1.97) 416.60 (x5.19)
win 231.12 117.65 (x1.96) 23.41 (x5.02)
wiR 5491.86 2807.14 (x1.96) 842.27 (x3.33)
wis 726.39 360.51 (x2.01) 91.74 (x3.93)

Mean 2021.41 1029.96 (x1.95) 247.07 (x4.02)

reduced to half. On the other hand, IV TURSv2 exhibits a huge reduction on the run-
time with respect to that of the original IVTURS as it is 7.839 times faster (1.95*4.02).
These modifications allow IVTURS to be applied in a wider range of classification
problems as its efficiency has been notably enhanced. The code of the IVTURS method
using the two modification for speeding it up can be found at: https://github.
com/JoseanSanz/IVTURS.

The second part of the study is to analyze whether the reduction of the search space
enabled by the mathematical simplification if the IV-REFs allows one to improve the
accuracy of the system or not. As we have explained in Section 3.3, we propose four
approaches to codify and explore the reduced search space: 1) the same approach than
that used in the original IVTURS but using the reduced search space (IVTURSRed.); 2)
the approach defined by Galar et al. [12] but extended on IVFSs (IVTURSGalar); 3) the
mixture of the two previous approaches (IVTURSMix.) and 4) the linear exploration of
the search space (IVTURSLinear).

In Table 3 we show the results obtained in testing by these four approach besides
those obtained by the original IVTURS. We stress in bold-face the best result for each
dataset. Furthermore, we also show the averaged performance in the 27 datasets (Mean).

According to the results shown in Table 3, we can observe that both methods using
the approach defined by Galar et. al (IVTURSGalar and IVTURSMix.) allows one to
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Table 3: Testing results provided by IVTURS and the four approaches using the reduced
search space.

Dataset IVTURS IVTURSRed. IVTURSGalar IVTURSLinear IVTURSMix.

aus 85.80 85.07 84.20 84.64 85.36
bal 85.76 85.28 85.28 85.60 85.12
cle 59.60 58.24 58.58 56.22 58.93
con 53.36 53.02 53.16 53.97 53.57
crx 87.14 85.91 86.68 85.92 85.15
der 94.42 93.58 94.13 93.02 94.14
eco 78.58 78.28 80.96 82.13 80.07
ger 73.10 72.00 72.90 73.10 73.30
hab 72.85 73.17 72.19 71.55 73.50
hay 80.23 75.70 81.00 78.66 81.77
hea 88.15 85.93 87.41 86.67 88.15
ion 89.75 90.60 92.60 91.46 92.04
iri 96.00 97.33 96.00 96.00 96.00

mag 79.76 79.07 80.28 80.91 80.49
new 95.35 95.81 95.35 96.74 97.21
pag 95.07 94.16 94.70 95.43 94.89
pen 92.18 89.91 92.64 91.73 91.64
pim 75.90 74.48 74.87 76.04 74.61
sah 70.99 70.13 69.05 71.20 70.56
spe 80.52 79.39 81.26 80.15 80.16
tae 50.34 58.30 57.66 53.68 57.01
tit 78.87 78.87 78.87 78.87 78.87

two 92.30 90.95 92.43 91.22 92.70
veh 67.38 64.54 66.43 64.43 67.26
win 97.19 94.37 95.48 94.94 96.06
wiR 58.28 59.47 59.04 59.66 59.16
wis 96.49 96.63 96.63 96.34 96.34

Mean 80.57 80.01 80.73 80.38 80.89

improve the averaged accuracy of IVTURS. The reduction of the search space using
the original approach defined in IVTURS, IVTURSRed., does not provide competitive
results whereas the approach using a linear exploration of the search space also obtains
worse results than those of the original IVTURS.

In order to give statistical support to our analysis we have carried out the Aligned
Friedman’s ranks test [14] to compare these five methods, whose obtained p-value is
1.21E-4 that implies the existence of statistical differences among them. For this reason,
we have applied the Holm’s post hoc test [15] to compare the control method (the one
associated with the less rank) versus the remainder ones. In Table 4, we show both the
ranks of the methods computed by the Aligned Friedman’s test as well as the Adjusted
P-Value (APV) obtained when applying the Holm’s test.

Table 4: Results obtained by the Aligned Friedman’s rank test and the Holm’s test.
Method Rank APV

IVTURSMix. 52.48
IVTURS 58.00 0.76

IVTURSGalar 61.85 0.76
IVTURSLinear 74.91 0.11

IVTURSRed. 92.76 6.19E-4
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Looking at the results of the statistical study we can conclude that IVTURS, IVTURSMix.

and IVTURSGalar. are statistically similar. However, there are statistical differences
with respect to IVTURSRed. and a trend in favour to the three former methods when
compared versus IVTURSLinear. All in all, we can conclude that the approach de-
fined in the original IVTURS provides competitive results even when compared against
methods whose search space is reduced to half.

6 Conclusion

In this contribution we have proposed two modifications over IVTURS aimed at en-
hancing its efficiency. On the one hand, we have used a mathematical simplification of
the IV-REFs used in the inference process. On the other hand, we avoid making compu-
tations with both incompatible interval-valued fuzzy rules and do not care labels, since
they do not affect the obtained results and they entail a charge to the computational
burden of the method. Moreover, we have proposed a reduction of the search space of
the evolutionary process carried out in IVTURS using four different approaches.

The experimental results have proven the improvement of the run-time of the method,
since it is almost eight times faster that the original IVTURS when applying the two
modifications. Regarding the reduction of the seach space we have learned the follow-
ing lessons: 1) the new methods based on the approach defined by Galar et. all allow
one to improve the results without statistical differences versus IVTURS; 2) the sim-
plification of the search space using the same setting defined in IVTURS does not pro-
vide competitive results, possibly due to the limited range where the genes are decoded
when compared with respect the remainder approaches and 3) the linear exploration of
the search space does not provide good results neither, which led us think that the most
proper values are closer to one than to∞.

Acknowledgments. This work was supported in part by the Spanish Ministry of Sci-
ence and Technology (project TIN2016-77356-P (AEI/FEDER, UE) and the Public
University of Navarre under the project PJUPNA1926.

References

1. Alcala-Fdez, J., Alcala, R., Herrera, F.: A fuzzy association rule-based classification model
for high-dimensional problems with genetic rule selection and lateral tuning. IEEE Transac-
tions on Fuzzy Systems 19(5), 857–872 (2011)
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formation Science, páginas 252–261. Springer International Publishing.

[DBB+16] Dimuro G. P., Bedregal B., Bustince H., Asiáin M. J., and Mesiar R. (2016) On
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Rychlik T. (Eds.) Copula Theory and Its Applications, páginas 237–254. Springer
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