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Abstract
This paper presents a modification of a Michigan-style fuzzy rule based classifier by applying the Choquet-
like Copula-based aggregation function, which is based on the minimum t-norm and satisfies all the
conditions required for an aggregation function. The proposed new version of the algorithm aims at
improving the accuracy in comparison to the original algorithm and involves two main modifications:
replacing the fuzzy reasoning method of the winning rule by the one based on Choquet-like Copula-
based aggregation function and changing the calculus of the fitness of each fuzzy rule. The modification
proposed, as well as the original algorithm, uses a (1+1) evolutionary strategy for learning the fuzzy rule
base and it shows promising results in terms of accuracy, compared to the original algorithm, over ten
classification datasets with different sizes and different numbers of variables and classes.
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1. Introduction

We face classification problems in a wide range of real-world problems and research areas. For
example, cancer classification [1], text classification [2], emotion classification [3], so on.

Many researchers have proposed machine learning-based techniques to solve the classification
task, for instance, decisions trees [4], neural networks [5], deep learning [6] and Fuzzy Rule-
Based Classification Systems (FRBCSs) [7].

FRBCSs, a type of Fuzzy Rule-based Systems (FRBSs), have demonstrated to be an effective
technique to tackle classification problems [8]. Additionally, a FRBCS contains fuzzy rules
(if-then) with linguistic labels (represented by fuzzy sets) that model natural language and have
high interpretability, offering the possibility to understand in detail how the system works [9].

Evolutionary Computation is studied since the beginning of the 1990s to automatic learn or
tune all components of FRBSs and FRBCSs. This hybridization is named Evolutionary Fuzzy
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Systems (EFSs) [10]. The proposed algorithm in this paper is an EFS to automatic learn the Rule
Base (RB), that is, the set of fuzzy rules composing the FRBCS.

There are four main approaches to learn a RB in EFS: Pittsburgh [11], Michigan [12], iterative
rule learning [13] and genetic cooperative competitive learning [14]. This paper is focused on
the Michigan approach where an individual represents a single fuzzy rule, thus, a RB is defined
by all individuals of the population in the evolutionary optimization process.

Another important component of a FRBCS is the Fuzzy Reasoning Method (FRM), which is
responsible for performing the classification of new examples based on the RB and the Data
Base (DB - that specifies the definitions of fuzzy sets for the variables).

The classification of new instances made by the FRM is based on an aggregation function.
Several FRBCSs use the Winning Rule (WR) as aggregation function, where, the class assigned
to a new instance is determined by the fired fuzzy rule with the maximum compatibility with
the new instance, i.e., the WR uses the maximum aggregation function, considered as averaging.
Thus, the information provided by the other fired fuzzy rules are ignored.

To avoid this problem, other FRBCSs use additive combination as aggregation function in
the FRM, where, the information of all fired fuzzy rules for each class is taken into account in
the aggregation step to determine the class for a new instance. This aggregation operator is
considered as non-averaging.

In order to mix the characteristic of two aggregation functions mentioned above and to
improve the results of FRMs, Barrenechea et al. [15] introduced the usage of an averaging
operator named Choquet integral. Different generalizations of the Choquet integral are proposed
in [16] [17]. The use and extension of the Choquet Integral-based operators applied to improve
the performance FRBCs is a field of current interest for researchers and a future research
direction for the aggregations operators [18].

The main contribution of this paper is to use the generalization called Choquet-like Copula-
based aggregation function (CC-integral) [16] in a Michigan-style fuzzy rule generation algo-
rithm [19] to improve the classification rate of the learned fuzzy rules.

The remainder of this paper is outlined as follows: Section 2 presents the concept of FRBCSs
and details of each stage in a FRM. In section 3 the proposed algorithm are detailed step by
step. Then, Section 4 shows the experimental results to evaluate the accuracy of the proposed
algorithm. Finally, in Section 5, the conclusions are drawn and some future works are proposed.

2. Fuzzy Rule-Based Classification Systems
Any classification problem considers a set of examples 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑝} and a set of classes
𝐶𝑙𝑎𝑠𝑠 = {𝐶𝑙𝑎𝑠𝑠1, 𝐶𝑙𝑎𝑠𝑠2, . . . , 𝐶𝑙𝑎𝑠𝑠𝑚}, and the objective is to assign a class 𝐶𝑙𝑎𝑠𝑠𝑗 ∈ 𝐶𝑙𝑎𝑠𝑠
to each example 𝑒𝑏 ∈ 𝐸 . Each 𝑒𝑏 is defined by a set of features 𝑒𝑏 = {𝑒𝑏1, 𝑒𝑏2, . . . , 𝑒𝑏𝑛} and
each feature is defined by a linguistic term 𝑎.

In a FRBCS, the FRM uses a set of 𝐿 fuzzy rules in the RB and fuzzy sets in the DB to assign a
class to each example. Usually, the fuzzy rules follow the format:

𝑅𝑖: IF 𝑒𝑏1 IS 𝑎𝑖1 AND 𝑒𝑏2 IS 𝑎𝑖2 AND ... AND 𝑒𝑏𝑛 IS 𝑎𝑖𝑛 THEN Class = 𝐶𝑙𝑎𝑠𝑠𝑗𝑖 WITH 𝑅𝑊𝑖

The FRM follow four stages [20]:

1. Matching degree (𝑀 ): For each fuzzy rule 𝑖 in the RB, the if-part is compared with the
example to be classified 𝑒𝑏 using a t-norm (𝑇 ) as conjunction operator for all membership



degrees (𝜇) obtained.

𝑀𝑖(𝑒𝑏) = 𝑇 (𝜇𝑎𝑖1(𝑒𝑏1), . . . , 𝜇𝑎𝑖𝑛(𝑒𝑏𝑛)) (1)

2. Association degree (𝐴): For each fuzzy rule 𝑖 in the RB, 𝑀𝑖 is weighted by its rule weight
according the 𝐶𝑙𝑎𝑠𝑠𝑗𝑖

𝐴
𝐶𝑙𝑎𝑠𝑠𝑗𝑖
𝑖 (𝑒𝑏) = 𝑀𝑖(𝑒𝑏) ·𝑅𝑊𝑖 (2)

3. Example classification soundness degree for all classes (𝑆): At this point, for each class,
𝐶𝑙𝑎𝑠𝑠𝑗 , the positive information, 𝐴

𝐶𝑙𝑎𝑠𝑠𝑗𝑖
𝑖 (𝑒𝑏) > 0, given by the fired fuzzy rules of the

previous step, is aggregated by an aggregation function A.

𝑆𝐶𝑙𝑎𝑠𝑠𝑗𝑖
(𝑒𝑏) = A

(︁
𝐴

𝐶𝑙𝑎𝑠𝑠𝑗𝑖
1 (𝑒𝑏), . . . , 𝐴

𝐶𝑙𝑎𝑠𝑠𝑠𝑗𝑖
𝐿 (𝑒𝑏)

)︁
(3)

The key point in the FRM is how the information given by the fired fuzzy rules is
aggregated. Following, three different aggregation functions are presented:

a) Winning Rule (WR): For each class, it only considers the rule having the maximum
compatibility with the example.

𝑆𝐶𝑙𝑎𝑠𝑠𝑗𝑖
(𝑒𝑏) = 𝑚𝑎𝑥{𝐴𝐶𝑙𝑎𝑠𝑠𝑗𝑖

𝑖 (𝑒𝑏)} (4)

b) Additive Combination (AC): It aggregates all the fired rules, for each class 𝐶𝑙𝑎𝑠𝑠𝑗 ,
by using the normalized sum.

𝑆𝐶𝑙𝑎𝑠𝑠𝑗𝑖
(𝑒𝑏) =

∑︀𝐿
𝑖=1𝐴

𝐶𝑙𝑎𝑠𝑠𝑗𝑖
𝑖 (𝑒𝑏)

𝑚𝑎𝑥𝑗=1,...,𝑚
∑︀𝐿

𝑖=1𝐴
𝐶𝑙𝑎𝑠𝑠𝑗𝑖
𝑖 (𝑒𝑏)

(5)

c) Choquet-like Copula-based aggregation function (CC-integral): It is an aggregation
function supported by solid theory, proposed and detailed in [16].

𝑆𝐶𝑙𝑎𝑠𝑠𝑗𝑖
(𝑒𝑏) = C𝐶

m𝑗

(︁
𝐴

𝐶𝑙𝑎𝑠𝑠𝑗𝑖
1 (𝑒𝑏), . . . , 𝐴

𝐶𝑙𝑎𝑠𝑠𝑗𝑖
𝐿 (𝑒𝑏)

)︁
(6)

The C𝐶
m𝑗

is the constructed CC-integral for the copula 𝐶 : [0, 1]2 → [0.1] and fuzzy
measure m𝑗 :

C𝐶
m𝑗
(𝑥⃗) =

𝐿∑︁
𝑖=1

(︁
𝑚𝑖𝑛{𝑥(𝑖),m𝑗(𝐴(𝑖))} −𝑚𝑖𝑛{𝑥(𝑖−1),m𝑗(𝐴(𝑖))}

)︁
(7)

m𝑗(𝑋) =

(︂
|𝑋|
𝑛

)︂𝑞𝑗

, 𝑤𝑖𝑡ℎ 𝑞𝑗 > 0 (8)

where 𝑥⃗ = 𝐴
𝐶𝑙𝑎𝑠𝑠𝑗𝑖
1 (𝑒𝑏), . . . , 𝐴

𝐶𝑙𝑎𝑠𝑠𝑗𝑖
𝐿 (𝑒𝑏) and 𝑋 ⊆ 𝑁 . In the proposed algorithm,

the CC integral is constructed using the minimum and the cardinality as the copula
(C) and fuzzy measure (𝑚𝑗), respectively.

4. Classification: The final decision is made in this step. To do so, a function 𝐹 : [0, 1] →
{1, . . . ,𝑚} is applied over the results obtained by example classification soundness
degrees of all classes:

𝐹
(︀
𝑆𝐶𝑙𝑎𝑠𝑠𝑗 , . . . , 𝑆𝐶𝑙𝑎𝑠𝑠𝑗

)︀
= 𝑚𝑎𝑥𝑗=1,...,𝑚

(︀
𝑆𝐶𝑙𝑎𝑠𝑠𝑗

)︀
(9)

An example of the behavior of three aggregation functions mentioned above is presented
in [16].



3. Proposed Algorithm
The proposed modified algorithm in this paper is based on the algorithm proposed in [19] (it
is called in this paper as Michigan_EE). Basically, we propose an algorithm that modifies the
calculation of fitness of each fuzzy rule, the calculation of the classification rate of the RB based
on the CC-integral aggregation function (explained in the previous section) and the evolutional
optimization of the values of the exponents 𝑞. We call the proposed algorithm Michigan_EE_CC
and it is detailed in Algorithm 1.

Algorithm 1 Proposed Algorithm Michigan_EE_CC

Output: 𝑃𝑏𝑒𝑠𝑡 and 𝑞𝑏𝑒𝑠𝑡

1: Create the DB
2: Generate 𝑁𝑟𝑢𝑙𝑒 fuzzy rules by the MPB to make an initial population 𝑃0

3: Calculate the fitness of each rule 𝑅𝑖 in 𝑃0

4: Generate an encoded individual 𝑞0 and 𝑞𝑏𝑒𝑠𝑡 = 𝑞0

5: Calculate the Classification Rate (𝐶𝑅) by 𝑃0 using 𝑞𝑏𝑒𝑠𝑡 and 𝐶𝑅𝑏𝑒𝑠𝑡 = 𝐶𝑅
6: for 𝑡 = 1 to 𝑇𝑄 do
7: Generate a randomly 𝑞𝑡

8: Calculate the CR by 𝑃0 using 𝑞𝑡

9: if (𝐶𝑅 > 𝐶𝑅𝑏𝑒𝑠𝑡) then
10: 𝐶𝑅𝑏𝑒𝑠𝑡 = 𝐶𝑅; 𝑞𝑏𝑒𝑠𝑡 = 𝑞𝑡

11: end if
12: end for
13: 𝑃𝑏𝑒𝑠𝑡 = 𝑃0

14: for 𝑖𝑡𝑒𝑟 = 0 to 𝐼𝑡𝑒𝑟 do
15: 𝑃𝑖𝑡𝑒𝑟 = 𝑃𝑏𝑒𝑠𝑡

16: Generate 𝑁𝑟𝑒𝑝𝑙𝑎𝑐𝑒/2 fuzzy rules by genetic operations in 𝑃𝑖𝑡𝑒𝑟 and 𝑁𝑟𝑒𝑝𝑙𝑎𝑐𝑒/2 fuzzy rules
by the MPB

17: Replace the worst 𝑁𝑟𝑒𝑝𝑙𝑎𝑐𝑒 fuzzy rules in 𝑃𝑖𝑡𝑒𝑟 with the newly generated 𝑁𝑟𝑒𝑝𝑙𝑎𝑐𝑒 fuzzy
rules to make a new population 𝑃𝑖𝑡𝑒𝑟

18: Calculate the fitness of each rule 𝑅𝑖 in 𝑃𝑖𝑡𝑒𝑟

19: Calculate the 𝐶𝑅 by 𝑃𝑖𝑡𝑒𝑟 using 𝑞𝑏𝑒𝑠𝑡

20: for 𝑡 = 1 to 𝑇𝑄 do
21: Generate a randomly 𝑞𝑡

22: Calculate the 𝐶𝑅 by 𝑃𝑖𝑡𝑒𝑟 using 𝑞𝑡

23: if (𝐶𝑅 > 𝐶𝑅𝑏𝑒𝑠𝑡) then
24: 𝐶𝑅𝑏𝑒𝑠𝑡 = 𝐶𝑅; 𝑞𝑏𝑒𝑠𝑡 = 𝑞𝑡; 𝑃𝑏𝑒𝑠𝑡 = 𝑃𝑖𝑡𝑒𝑟

25: end if
26: end for
27: end for

In line 1, for each attribute, the minimum and maximum value are obtained. After, 𝑛𝐹𝑆
triangular fuzzy sets are defined uniformly distributed on the attribute domain, i.e. each fuzzy
set has the same support and they cover all the range between maximum and minimum values.

In line 2, 𝑁𝑟𝑢𝑙𝑒 fuzzy rules are generated based on the format mentioned in Section 2, and



inserted into the population 𝑃0. Each fuzzy rule is encoded as a chromosome with three parts:
the first part represents the antecedent part where each gene represents an index of a fuzzy
set (or linguistic term) for each attribute (value zero represents a don’t care condition, what
means that the respective attribute does not appear in the rule). The second part (only one
gene) represents the class or consequent of the fuzzy rule. Finally, the third part (only one gene)
represents the rule weight. Figure 1 illustrates the representation used in this step.

Figure 1: Encoding a Fuzzy Rule

Each fuzzy rule in 𝑃0 is generated by Multi-Pattern-Based rule generation (MPB), where, for
a single rule generation, one base example and some (𝐻 − 1) support examples are randomly
selected from the training data of the same class as the base example. More details of MPB can
be found in [19].

One of the proposed modification is performed in line 3. In Michigan_EE algorithm, the
fitness of each fuzzy rule is calculated by the number of correctly classified training patterns by
the fuzzy rule, which is more appropriate for using WR. In the proposed algorithm, that uses
CC-integral, the fitness of each rule 𝑅𝑖 (with a class 𝐶𝑅𝑖 ) is calculated by the difference between:
the average degree of association (> 0) of all examples with a class 𝐶+, where 𝐶𝑅𝑖 = 𝐶+, and
twice the average degree of association (> 0) of all examples with a class 𝐶−, where 𝐶𝑅𝑖 ̸= 𝐶−.
That difference refers to the idea of obtaining rules covering the maximum number of examples
(completeness degree) with the minimum number of negative examples (consistency degree)
proposed in [21]. The next equation shows that difference:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑅𝑖) =

∑︀𝑝
𝑏=1𝐴

𝐶𝑙𝑎𝑠𝑠𝑗𝑖
𝑖 (𝑒𝑏)+

|𝐴𝐶𝑙𝑎𝑠𝑠𝑗𝑖
𝑖 (𝑒𝑏) + |

− 2×
∑︀𝑝

𝑏=1𝐴
𝐶𝑙𝑎𝑠𝑠𝑗𝑖
𝑖 (𝑒𝑏)−

|𝐴𝐶𝑙𝑎𝑠𝑠𝑗𝑖
𝑖 (𝑒𝑏)− |

(10)

In line 4, an encoded individual 𝑞0 is generated, which contains the values of the exponents
for each class used in the CC-integral aggregation method (see Secction 2-3-c) and it is stored
as 𝑞𝑏𝑒𝑠𝑡. The value of 1.00 is assigned to each exponent so that the classical cardinality measure
is represented. Figure 2 illustrates the representation used in these steps.

Figure 2: Encoding the values of the exponents used in CC-integral aggregation function
Another modification in the proposed algorithm is performed in line 5. In Michigan_EE

algorithm the classification rate (𝐶𝑅) of all the fuzzy rules in the population or RB is calculated
based on a FRM with WR aggregation function for each training example. In the proposed
algorithm, the 𝐶𝑅 of the RB is based on a FRM with CC-integral aggregation function for each
training example, using 𝑞𝑏𝑒𝑠𝑡. After that, 𝐶𝑅 is stored as 𝐶𝑅𝑏𝑒𝑠𝑡.

In lines 6-12, new better values for each exponent are searched with a small value of 𝑇𝑄
because the calculation of the CR is computationally expensive. In line 7, a new 𝑞𝑡 is randomly



generated. The values of the exponents 𝑞𝑗 are generated in the range [0.01, 1.99]. However,
according to [15], the suggested final values of the exponents are in the range [0.01, 100], for
that, the values used in the calculation of 𝐶𝑅 are adapted as:

𝑞𝑗 =

{︃
𝑞𝑗 𝑖𝑓 0.00 < 𝑞𝑗 ≤ 1.00
1

2−𝑞𝑗
𝑖𝑓 1.00 < 𝑞𝑗 < 2.00

(11)

In line 8, 𝑞𝑡 is used in the calculation of 𝐶𝑅 using 𝑃0. After that, the new 𝑞𝑡 is stored as 𝑞𝑏𝑒𝑠𝑡

and 𝐶𝑅 is stored as 𝐶𝑅𝑏𝑒𝑠𝑡 if the 𝐶𝑅 is better than 𝐶𝑅𝑏𝑒𝑠𝑡.
In lines 14-27, the Michigan approach is performed to learn evolutionarily the RB. In each

iteration the worst 𝑁𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (= 𝑁𝑟𝑢𝑙𝑒/2) fuzzy rules in the population 𝑃𝑖𝑡𝑒𝑟 (copy of 𝑃𝑏𝑒𝑠𝑡 or
population with the best 𝐶𝑅) are replaced by fuzzy rules genetically created or MPB, in order
to found a better population (or a population with better 𝐶𝑅).

In line 16, for generating the first 𝑁𝑟𝑒𝑝𝑙𝑎𝑐𝑒/2 fuzzy rules are used a parent selection operator,
a crossover operator (with 𝑐𝑟𝑜𝑠𝑠𝑃𝑟𝑜𝑏 probability) and a mutation operator (with 𝑚𝑢𝑡𝑎𝑃𝑟𝑜𝑏
probability and a random replacement of each membership function with 𝑚𝑢𝑡𝑎𝑃𝑟𝑜𝑏𝑀𝐹
probability) based on population 𝑃𝑖𝑡𝑒𝑟. For the remaining 𝑁𝑟𝑒𝑝𝑙𝑎𝑐𝑒/2 fuzzy rules, the MPB is
performed, where, for a single rule generation, the base example is randomly selected from
the misclassified examples by 𝑃𝑖𝑡𝑒𝑟 . If misclassified examples do not exist, base examples are
selected from the whole training data.

In line 17, the 𝑁𝑟𝑒𝑝𝑙𝑎𝑐𝑒 worst fuzzy rules are replaced in 𝑃𝑖𝑡𝑒𝑟 by the newly-generated 𝑁𝑟𝑒𝑝𝑙𝑎𝑐𝑒

fuzzy rules. Then, the fitness of all fuzzy rules in 𝑃𝑖𝑡𝑒𝑟 are calculated (using the fitness function
proposed) in line 18 and the 𝐶𝑅 of 𝑃𝑖𝑡𝑒𝑟 using 𝑞𝑏𝑒𝑠𝑡 are calculated in line 19.

Finally, new better values of each exponent are searched in lines 20-26 (similar to lines 6-12),
where, a randomly generated 𝑞𝑡 and 𝑃𝑖𝑡𝑒𝑟 are stored as 𝑞𝑏𝑒𝑠𝑡 and 𝑃𝑏𝑒𝑠𝑡, respectively, if the
calculus of 𝐶𝑅 using both is better than previous one.

The final outputs 𝑃𝑏𝑒𝑠𝑡 and 𝑞𝑏𝑒𝑠𝑡 are the best population and the best values of exponents
found during the evolution process.

4. Experiments
In this section, we present a computational experiment aimed to assess the performance of
proposed Michigan_EE_CC algorithm modification when it is applied on ten datasets with
varied numbers of examples, attributes and classes. Table 1 show the datasets used in this paper,
which are available at KEEL dataset repository [22].
Table 1
Datasets used in this study

Dataset Examples Attributes Classes Dataset Examples Attributes Classes

appendicitis 106 7 2 newthyroid 215 5 3
bupa 345 6 2 pima 768 8 2
glass 214 9 7 segment 2310 19 7
hayes-roth 160 4 3 tae 151 5 3
heart 270 13 2 wine 178 13 3

The parameters and genetic operators of the proposed Michigan_EE_CC algorithm modifica-
tion used in this paper are listed in Table 2.



Table 2
Parameters and genetic operators used in this study

Parameter Value Parameter Value

Population size (𝑁𝑟𝑢𝑙𝑒) 30 Crossover probability
(𝑐𝑟𝑜𝑠𝑠𝑃𝑟𝑜𝑏) 0.9

Number of replaced
rules (𝑁𝑟𝑒𝑝𝑙𝑎𝑐𝑒) 6 Mutation probability

(𝑚𝑢𝑡𝑎𝑃𝑟𝑜𝑏)
1/𝑛 (𝑛: Number
of attributes)

Number of Fuzzy
Set (𝑛𝐹𝑆) 5 Function membership mutation

probability (𝑚𝑢𝑡𝑎𝑃𝑟𝑜𝑏𝐹𝑆) 0.1

MPB (𝐻) 2 𝑇𝑄 5
Parent selection Binary tournament

selection 𝐼𝑡𝑒𝑟 100000
Crossover Uniform crossover Number of runs 50

Table 3 shows the achieved results by the proposed Michigan_EE_CC algorithm modification
for training and testing, each line describes the mean of the accuracy obtained after 50 runs
(10-fold cross validation × five times) and the standard deviations in brackets.

In order to show the quality of the proposed Michigan_EE_CC algorithm, we compare it with
the Michigan_EE algorithm. The parameters used in Michigan_EE algorithm are the same as
Michigan_EE_CC algorithm, except for the 𝑇𝑄 parameter that is not used. The results obtained
by the Michigan_EE algorithm are shown in Table 3.

Table 3
Accuracy rate in training and testing for the proposed Michigan_EE_CC algorithm modification vs
Michigan_EE algorithm base

Dataset
Michigan_EE Michigan_EE_CC

Training Testing Training Testing

appendicitis 0.9287 (0.0109) 0.8024 (0.0473) 0.9382 (0.0104) 0.8209 (0.0801)
bupa 0.7307 (0.0217) 0.5943 (0.0631) 0.7264 (0.0119) 0.6425 (0.0478)
glass 0.7498 (0.0250) 0.6281 (0.0662) 0.7155 (0.0149) 0.6133 (0.0899)
hayes-roth 0.8163 (0.01510) 0.7063 (0.0557) 0.8832 (0.0062) 0.7825 (0.0812)
heart 0.8915 (0.0116) 0.7756 (0.0627) 0.8697 (0.0106) 0.7763 (0.0467)
newthyroid 0.9008 (0.03180) 0.8230 (0.0376) 0.9775 (0.0050) 0.9370 (0.0291)
pima 0.7515 (0.0075) 0.6941 (0.0333) 0.7795 (0.0033) 0.7363 (0.0276)
segment 0.8555 (0.0305) 0.8428 (0.0366) 0.8570 (0.0104) 0.8480 (0.0173)
tae 0.6248 (0.0295) 0.5114 (0.0802) 0.6574 (0.0123) 0.5161 (0.1004)
wine 0.9889 (0.0106) 0.8805 (0.0368) 0.9938 (0.0035) 0.8895 (0.0472)

AVG 0.8239 0.7259 0.8398 0.7562

Table 3 shows that the proposed Michigan_EE_CC algorithm obtains better results than
Michigan_EE algorithm in seven out of the ten training data and nine out of the ten testing data.
We also consider the use of the Wilcoxon test [23] in order to perform pair-wise comparison on
test results for the two algorithms.

Table 4 shows that the null hypothesis for the Wilcoxon’s test has been rejected (p-value
⩽ 𝛼) and we may conclude that proposed Michigan_EE_CC algorithm presents better results
than previous version.

The source code of the proposed Michigan_EE_CC algorithm (GitHub) and our implementa-
tion of Michigan_EE (GitHub) algorithm are available on GitHub.

https://github.com/Edward-Hinojosa-Cardenas/Michigan_EE_CC
https://github.com/Edward-Hinojosa-Cardenas/Michigan_EE


Table 4
Wilcoxon’t Test (𝛼 = 0.05)

Comparison 𝑅+ 𝑅− Hypothesis p-value

Michigan_EE_CC vs. Michigan_EE 0.3187 0.0148 Rejected 0.025

5. Conclusions
In this paper, we proposed the Michigan_EE_CC algorithm, which is a modification of the
Michigan-style fuzzy rule generation algorithm proposed in [19], using a Choquet-like Copula-
based aggregation function. Michigan_EE_CC algorithm was applied to ten standard classifica-
tion datasets and compared to the prominent original algorithm, named Michigan_EE, that uses
winning rule aggregation function in the fuzzy reasoning method. The experimental results
showed that the Michigan_EE_CC algorithm is able to increase the accuracy over the training
and testing dataset.

We foresee different avenues for future work, they include: 1) using other generalizations
of the Choquet integral and, 2) evaluating the performance with challenging datasets, i.e.,
imbalanced and high dimensional datasets.
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