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ABSTRACT:  

Quality control in manufacturing is a recurrent topic as the ultimate goals are to produce high quality products with less cost. 
Mostly, the problems related to manufacturing processes are addressed focusing on the process itself putting aside other 
operations that belong to the part’s history. This research work presents a Machine Learning-based analysis engine for non-
expert users which identifies relationships among variables throughout the manufacturing line. The developed tool was used to 
analyze the installation of blind fasteners in aeronautical structures, with the aim of identifying critical variables for the quality of 
the installed fastener, throughout the fastening and drilling stages.  The results provide evidence that drilling stage affects to the 
fastening, especially to the formed head’s diameter. Also, the most critical phase in fastening, which is when the plastic 
deformation occurs, was identified. The results also revealed that the chosen process parameters, thickness of the plate and the 

faster type influence on the quality of the installed fastener. Keywords: Analysis Engine, Multi-Stage Processes, Critical Variables, 

Machine Learning, Blind Fasteners.  

 

1.- INTRODUCTION 

Recent advances in the manufacturing industry have triggered out the capacity of acquiring, storage and processing of the data. 
Furthermore, thanks to the sophisticated analysis techniques, the machines can perform in a more efficient, collaborative and 
communicative way [1]. There are innumerable investigations [2,3,4] that make use of Artificial Intelligence methods to model and 
optimize manufacturing processes. Thus, there is a vast amount of research work regarding to machining operations that uses 
Machine Learning (ML) models to generate knowledge of the process and extract information about the performance of the process 
based on the collected data. It is possible to find relatively simple models, from Polynomial or Multiple Regression [5,6] to more 
sophisticated ones, such as Neural Networks [3,4], Bayesian Networks [7], Decision Trees [8] or Support Vector Machines [9].  

One of the manufacturing processes where ML techniques are applied is machining. The optimization of machining parameters was 
the subject of diverse [10,11] research as proper optimization of the process has become a challenging task, mainly because 
machining plays an important role in the economic aspects of metal cutting operations. For instance, in a turning process the cutting 
parameters of cutting speed, feed force and depth of cut should be optimized for achieving minimum cost of machining and minimum 
production time [12] Nonetheless, for efficient optimization, it is necessary to understand how the cutting parameters influence the 
process, thus this can be posed as a prediction problem.  

Some authors carried out a survey about the application of soft computing techniques in machining to make predictions [13].  Soft 
computing techniques were applied to machining processes as they are preferable compared to physics-based, models, due to the 
complexity and uncertainty of the machining process. Among the reviewed techniques there were Fuzzy Logic [14] and Neural 
Networks [15] to make predictions in the machining processes of turning, milling, grinding and drilling. The prediction was focused to 
surface roughness, tool wear and tool life, wheel wear, cutting force, grinding force and drilling force. The optimization techniques of 
Genetic Algorithm [16], Simulated Annealing [17], Ant Colony Optimization [18] and Particle Swarm Optimization [19] were used to 
optimizing the neural network parameters.  
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Moreover, there are other research works that make use of statistical techniques, such as statistical testing [10], correlation analysis 
or variance analysis (ANOVA) [20] to detect the most influencing variables in manufacturing processes. Although these statistics 
methods offer the opportunity to interpret the results easier than the methods based on ML, there is an increase in the number of 
investigations [21,22] that draw on ML techniques. Decision Trees for instance, offer the chance to know how each input variable 
affects to the output, by interpreting the rules of the generated tree or knowing the weights of the input variables in the generated 
tree.  

Most of the investigations that make use of ML techniques to analyze data are focused on a single stage of the manufacturing 
process and are less abundant those that take into account the overall effect of the whole line production [23,24]. These research 
works mostly focus on developing models for the generation and propagation in time of the errors for specific cases, but do not offer 
a generalist approach to the line analysis. In addition, these models should offer an understanding about the relationship between 
variables, to interpret what is happening in the process.  

In this investigation, an analysis engine based on ML techniques for non-experts in data analysis was developed to detect the critical 
process variables in a production line. The analysis can be focused in a particular process or consider previous processes of the 
line. For that purpose, Random Forests are used, that are based on Decision Trees, to interpret the relationship generated between 
input variables and the output variable.   

The fastening process is a complex task that involves multiple fields of knowledge such as metallic materials, composite materials, 
classical mechanics, machining and manufacturing among others. It should be noted that it is not easy to develop a predictive model 
for fastener’s quality prediction, including the effect of process parameters and installation diagram, due to non-linear behavior of the 
fastening mechanism. For this reason, this problem is suitable to be deal with ML techniques and was chosen as a case study. 
Though blind fasteners are an interesting joining solution for the aerospace industry due to their advantages for automation the in-
line inspection of their installation is not yet feasible [25]. Up to date, fastener installation and immediately previous drilling have 
analyzed and attempted to be controlled separately [26, 27]. By analyzing the two consecutive stages together drilling variables 
affecting to the installation could be identified and taken into consideration. This represents a meaningful and simple case for the tool 
developed. 

 

2.- METHODS 

The analysis engine aims to detect dependence relationships between process variables and variables related to the quality of the 
part done to identify critical variables. For that purpose, an analysis engine, was created for non-expert users in data analysis field. 
The main advantage that offers the tool is that it is not necessary for non-expert users to have programming skills. The tool is 
intuitive due to the user-friendly interface, where the user configures the input and output variables, and some other parameters 
related to the validation of the model by typing them or joining the arrows of the boxes.  

 

2.1. DEVELOPED TOOL 

The developed tool offers two different functionalities, the generation of the model and the verification of the model. The first aims 
learning a function f and validating the quality of it. Also offers the opportunity to interpret most significant variables in the model to 
identify the critical variables in the process. The second functionality is to use a previously learnt model with new data. Depending on 
the current quality of the model, the user can decide whether the model still fits well, or it is necessary to train it again.  

There are some stages, such as exploratory data analysis, pre-processing or data cleaning, that are considered previous stages to 
ML, that are not included in the tool. There are specific tools for that purposes such as Machine Learning Studio module from Azure 
or libraries of R and Python programming languages.  

For training the data in the corresponding regression and classification tasks, the Random Forest [28,29] algorithm is used. It 
belongs to the family of the ensemble learning [30] algorithms that combines Decision Trees with majority voting (classification) or 
computing the average (regression). The following measurements are used to perform the validation of the generated model: R2 for 
both regression and classification, accuracy for classification and RMSE for regression.  

R2: Measures how well are replicated the observed values, based on the total proportion of variance of the values explained by the 
model [31].  

Accuracy: Proportion of correct classified instances by the model, against all instances.  

Root Mean Squared Error (RMSE): Is the standard deviation of the residuals, prediction errors, defined in Equation (1). 
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𝑅MSE =  √
∑ (ŷt−yt)2n

t=1

n
  (1) 

Where n is the number of instances, 𝑦𝑡 the real observed value and 𝑦̂t the predicted value by the model.  

2.1.1. Integration of the analysis engine 

The analysis engine was integrated in an on-line platform developed in collaboration with other partners of the European project 
ForZDM [32]. The platform offers algorithms integrated in services of web REST, allowing the use from other tools, such as the 
access to the data from different sources, other REST services or data uploaded directly to the platform. This architecture offers as a 
novelty, the integration of the process data in real time with the off-line quality measurements of the final part.  

The generated models in the learning stage are saved in the server. Thus, it is possible to verify the model with new data whenever 
the user wants. The platform has a user interface where each developed algorithm is presented as a stage that includes some 
entries and exits. These stages can be connected among them in a cascade, where finally appears a visualization component that 
allows to access to a table with results or to a figure. The functionalities of the tool were programmed using scikit-learn [33] module 
of Python programming language. 

 

3.- INSTALLATION OF BLIND FASTENERS: A CASE STUDY 

Blind fastening is a particular type of mechanical fastening where the fastener is introduced from the front face of the assembly. The 
scientific community has made a big effort in understanding and modelling [30] the fastening process, as well as developing methods 
to evaluate the unions joined by fasteners.  

 

3.1. DESCRIPTION OF THE DATABASE 

The database used for the study is compound of 463 fastener installation cases and 112 variables, obtained from real experimental 
procedure.  Table I shows the main test conditions where the “Test N” is the number of tests, “Thickness” indicates the thickness of 
the plate, the “Theoretical Grip” is a range of thicknesses in which a grip can be installed, the “Installed Grip” indicates the thickness 
in which the fastener was installed, and the “Batch” is the batch used, A or B.  

Table I also shows the outcome of the tests. Regarding to the “Grip-code selection”, AIR is a fastener installed without the presence 
of a plate, LARGE is a fastener whose grip (related to fastener length) is much longer than is desirable for the thickness of the plate, 
NOK is an incorrectly selected fastener with a slightly inappropriate grip for the plate thickness, OK is a correctly selected fastener, 
and SMALL is a fastener whose grip is much smaller than desirable for the plate thickness. The “Inst. outcome” indicates if the 
fastener was not installed (NO INSTALLED), if the fastener was installed correctly (OK) or the fastener was installed but not correctly 
(NOK).  The “Group” classifies the installation outcomes based on the fastener made selection and the resulting quality of the 
installation and “Inst. N.” refers the quantity of fasteners belonging to each of the groups.  

 

Experimental procedure’s conditions Outcome of the tests 

Test N Thickness Theoretical 
Grip 

Installed Grip Batch Grip-code 
selection 

Inst. outcome      Group 

 

Inst. N.  

0-59 0 G0 G300/G350/G400 A/B AIR NO INSTALLED 1 60 

60-119 2,3 G100 G300/G350/G400 A/B LARGE OK 2 0 

120-179 3,2 G150 G300/G350/G400 A/B LARGE NOK 3 120 

180-219 8,89 G350 G350/G400 A/B NOK OK 4 53 

220-279 8,26 G350 G300/G350/G400 A/B NOK NOK 5 47 

280-319 7,62 G350 G300/G350 A/B OK OK 6 96 

320-359 10,16 G400 G350/G400 A/B OK NOK 7 4 

360-399 11,43 G450 G350/G400 A/B SMALL OK 8 0 

     SMALL NOK 9 20 

 

Table I. Summary of the main test conditions and outcome of the tests.  
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The variables used in the analysis are classified in different groups as shown in Table II. The input variables are the ones related to 
the hole measurements, descriptors of the signal and test conditions. The output variables are the fastener’s measurements and the 
group of the fastener (variable “Group” of Table I.).  

Before the analysis, some pre-processing of the monitored signals was performed by: filtering the signals, lining them up, 
normalizing the X and Y axis and extracting descriptors. Fig.1. (a) shows one of the torque-angle curves monitored.   

The torque-curved signal was split into six segments, in which different descriptors were extracted. These sections correspond to the 
different stages of the blind fastener installation: 1- installation start (change on the slope), 2- stop of sleeve rotation (calculated as 
the maximum of the detrend signal), 3- sleeve contact (change on the slope positive values), 4- sleeve formation (slope increasing), 
5- installation completed (maximum torque value) and 6- spindle turn off (torque value reaches almost zero). Table III. shows the 
extracted descriptors per segment, as they are six segments and 15 descriptors, in total 90 descriptors are considered.  

Concerning the holes, the average diameter, the depth of the drill and the depth of the countersink are measured. On the other hand, 
as far as the final quality of the fastener is concerned, it is evaluated by measuring the dimensions (diameter and height) of the 
formed head, as well as the steam’s break-off that stands out from the front face of the assembly. Fig.1. (b) and Fig.1. (c) show the 
representation of a blind threaded fastener as the ones used for the study after completing the installation, where the measurement J 
indicates the diameter of the head from the back face, and measurement K indicates the length of the head from the back side.  

 

 Group of variables Number of variables Variables 

Input variables Test conditions 4 Plate thickness 

Fastener type 

Fastener grip code 

Batch 

 Descriptors from the monitored 
signal 

90 Details in Table III 

 Hole measurements 3 Hole diameter 

Hole depth 

Countersink depth 

Output variables Fastener’s measurements 3 Head’s diameter 

Head’s height 

Steam’s height 

 Fastener’s groups 1 Details in Table I 

Table II. Classification of the variables used in the analysis. 
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(a) (b) (c) 

 Fig. 1. (a) Example of a monitored torque-angle curve; (b) diameter of the formed head (J) and height of the formed head (K); (c) 
breaking-off length of the steam (X). 

 

Number  Type Name 

1, 2 Maximum and minimum of the torque in the segment Tmaxi-Tmini 

3, 4 Angular displacements corresponding to the 
maximum and minimum torque values in segment i 

AngDispMaxi, AngDispMini 

5 Area under the torque-angle curve within segment i AUCi 

6-10 Parameters associated to linear correlation (slope, 
intercept, R, R2, mean square error (MSE)) 

From [ax+b]i  a, b, R, R2 and MSE 

11-15 Parameters associated to third order polynomial 
correlation (parameters of the model and MSE) 

From [ax3+bx2+cx+d]i a, b, c, d and MSE 

Table III. Descriptors extracted from the torque-angle signals. 

 

3.2. RESULTS AND DISCUSSION 

To study the critical variables in the blind fastening three different scenarios are proposed: 1) The influence of hole measurements in 
the quality of the fastener; 2) Influence of the monitored signal in the quality of the fastener; 3) Influence of the test conditions in the 
quality of the fastener.  

 

3.2.1. Hole measurements 

In this section, the influence that have the three variables related to the hole’s measurement (hole diameter, hole depth and 
countersink depth) in each of the variables related to the quality of the fastener’s installation (head diameter, head height and steam 
break-off) is performed. As the three variables are quantitative, regression models are built and corresponding measurements to 
perform the quality of the models are used. Table VI. shows the measurements obtained for the generated models for each variable. 
As can be observed, the R² is lower in the models regarding to hole measurements than the models related to test conditions, being 
the highest for the head’s diameter (0.53). That is, the variables related to the hole’s measurement can predict better the head’s 
diameter than the head’s height and steam’s height. 

The RMSE indicates the standard deviation of the residuals (prediction errors), being the lowest for the head’s diameter (0.31 mm) 
continued by head’s height (0.5 mm) and steam’s height (0.53 mm). From these results it can be concluded that despite the low R2 
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values the measurements of the hole have some influence in the final quality of the installed fastener, in particular on the formed 
head values.  

 

 Hole measurements Test conditions 

 R2 RMSE R2 RMSE 

Head’s diameter  0.53 0.31 0.75 0.2 

Head’s height  0.42 0.5 0.64 0.36 

Steam’s height  0.46 0.53 0.67 0.36 

Table IV. R2and RMSE measurements for the three models generated regarding the installed fastener quality checks, using as 
predictive variables hole measurements and test conditions. 

 

Regarding to how the input variables affect to the output variable, a similar pattern was found in the three built models. Fig.2. a) 
shows the importance of the predictive or input variables for the head’s diameter. As it can be seen, the order of relevance is: the 
depth of the countersink, depth of the hole and diameter of the hole. That is, to have a suitable head’s diameter, a bigger emphasis 
must be put on the depth of the countersink and depth of the hole. This pattern is repeated for the steam’s break-off, however, for 
the head’s height, the drilling thickens has more influence than the depth of the countersink. In order to have a better understanding 
of the quality of the predictions, Fig. 2. b) shows the real values versus the predicted values for the fastener formed head diameter. 
Those points that are closer to the regression line, were predicted more accurately than the others that are farther.   

The lower contribution of the hole diameter can be explained by the fact that the fasteners used do not expand radially along the 
installation. Hole diameter should not be therefore a critical variable for the resulting installation. Regarding the other two variables 
analyzed, countersink depth and depth of the hole, they define together the grip length which determines the fastener grip code to 
use, so they should be expected to have an influence on the quality of the installed fastener. 

From the results shown in this section, it is worth noting that the drilling process has an influence on the union in terms of its static 
resistance and fatigue as suggested in [35], but also that it significantly affects the correct performance of the fastening process. 

 

3.2.2. Descriptors of the monitored signal 

In this section the influence that have the 90 descriptors obtained from the torque-angle monitored signal on the variable group is 
analyzed. This variable differentiates the fasteners in 9 classes or categories depending on the type of installation and the quality of 
the installation. As the variable is qualitative, classification models will be built and corresponding measurements to perform the 
quality of the models will be used. In this case, the R2= 0.78 is higher than the R2 scores obtained from the previous section, though 
it is usual to obtain better results in classification models than in regression models for Decision Trees. The accuracy obtained is of 
86%, that is, 86% of the fasteners were classified in the correct group that they belong. It is noticeable that the monitored signal 
corresponding to a fastener has a big influence on its quality.  
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(a) (b) 

Fig. 2. (a)The weight of the input variables, depth of the countersink, depth of the hole and the hole diameter, in the generated model 
for the fastener formed head diameter; (b) Real and predicted values in the model generated for the fastener formed head diameter.  

 

Fig.3 shows the importance of the input variables depending on the weight that they have in the generated model. As can be 

observed, there are 5 variables that predominate over the rest of the variables: maximum time (segment 5), coefficient b of [ax+b] 
(segment 6), MSE of [ax+b] (segment 5), area (segment 5), coefficient a of [ax+b] (segment 6), minimum angular 
displacement (segment 5) and R of [ax+b] (segment 5). It can be concluded that segment 5 and 6 are more important to 
determine the quality of the fastener, that the other segments. Certainly, segments 5 and 6 should be expected to provide the 
highest amount of information on the quality of the installations, since it is within the period, they cover that the plastic deformation 
takes place, so the fastener head forms and the steam breaks off. 

 

3.2.3. Test conditions 

In this section, the influence that have the variables related to test conditions on the measurements of the installed fasteners is 
studied. As the three variables are quantitative, regression models will be built and corresponding measurements to perform the 
quality of the models will be used. Table IV. shows the R2 and RMSE measurements for the three generated models. In this case, 
the R2 scores are higher than the ones obtained for hole measurements. Also, in this case, the highest one is for the head’s diameter 
(0.75) followed by steam’s break-off (0.67) and head’s height (0.64).  

Regarding to the RMSE, the lowest one was obtained for the head’s diameter (0.2 mm), while for the head’s height and steam’s 
height the same measurement was achieved (0.36 mm). Regarding to the input variables relevance, similar pattern was obtained for 
the three generated models: plate thickness, fastener type, fastener grip code and batch. Above all, the plate thickness and the 
fastener type are the most critical ones as can be observed in Fig.4.a), as they have much higher weights than the rest of the 
variables. Fig. 4.b) shows the predicted versus real values for the fastener formed head diameter.  
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Fig. 3. The weight of the input variables in the generated model. The first two variables correspond to coefficients a and b of the 
equation ax+b of the segment 6.  

 
 

(a) (b) 

Fig. 4. (a) The weight of the input variables, plate thickness, fastener type, fastener grip code and batch, in the generated model for 
model for the fastener formed head diameter; (b)Real and predicted values in the generated model for model for the fastener formed 
head diameter.    

 

The methodology proposed in this article allows us to discriminate the variables that have the greatest correlation with the correct 
fastener installation in this use case. The influence on the process of the relationship between the thickness of the plate and the type 
of fastener is demonstrating its criticality as it has been discussed in previous works [35]. In other researching work, Camacho et al. 
[26] carries out a monitoring system based on the determination of the correct selection of the type of rivet for the sheet thickness in 
which the operation is to be carried out. 

 

4.- CONCLUSIONS 

In this research work, an analysis engine was developed to identify critical variables in a multi-stage industrial process using ML-
based techniques. A blind fasteners installation process was used as a case study, as it is a multi-stage process, in which variables 
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of different stages can affect to the final quality of the installed fastener. The analysis engine is divided into multiple categories, 
following a common workflow in ML. Moreover, it is user-friendly, and it is oriented to a non-expert user in data analytics.  

Regarding to the studied use case, three different scenarios were posed to study critical variables in the process. In the first one, the 
measurements of the holes are related to the fasteners’ measurements, that is, the influence that a previous stage of drilling has on 
fastening. It was found that the hole measurements from drilling do affect to the quality of the fastener, especially to the formed 
head’s diameter, being the most critical variables the steam’s depth and the thickness of the drilling part. The hole’s diameter lower 
contribution to the model is related with the fact that the employed fasteners do not expand radially along the installation. 

In the second posed scenario, the descriptors of the monitored signal were related to the final quality of the fastener, a single stage 
analysis. From this analysis, it can be concluded that the segments 5 and 6 are critical to classify which kind of fastener, depending 
on its quality, will be obtained. These parts of the segment are more critical because within that period, the plastic deformation takes 
place, so that, the fastener head is formed and the steam breaks off. 

Finally, in the third scenario the influence that test conditions have in the fasteners’ measurements is analyzed. It was found that 
variables related to test condition affects to the final quality of the fastener, and as it happens in the first scenario, especially, to the 
formed head’s diameter. In this case, the most critical variables are the plate thickness and the fastener type.  
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