
Simulation models to support Intensive 

Care Unit decision-making in pandemic 

and non-pandemic times 

Daniel García de Vicuña Bilbao 

Department of Statistics, Computer Science and Mathematics 

Public University of Navarre 

Advisor: Prof. Fermín Mallor Giménez 

December 2021 

https://doi.org/10.48035/Tesis/2454/42572

https://doi.org/10.48035/Tesis/2454/42572


upna 
Universidad Pública de Navarra 

NofarrookoUni:lertsitatePl..tlllkoo 



 

 

 

 

 

 

 

 

To my parents, 

my siblings, 

my family, 

my friends, 

and 

Maite. 

 

 

 

 

 

 

 

 





Acknowledgements 

I would like to acknowledge all the people who have helped me during this journey, especially 

Maite, and all my family and friends. 

First, I would like to express my sincere gratitude to my advisor, Prof. Fermin Mallor for his 

unevaluable continuous support, help, and guidance since I started in the research field 

developing my Master Thesis until the final stage of this dissertation. 

I also wish to thank 

 Laida Esparza, an experienced physician at the Intensive Care Unit (ICU), who has

been my travel companion in the analysis of the ICU management problems. She has

helped me to understand the work carried out by physicians in the ICU and then to

keep the mathematical models developed in this thesis connected with reality and

therefore, making the results useful to improve the management of the ICU.

 the Department of Statistics, Computer Science and Mathematics of the Public

University of Navarre, in particular to Dr. Cristina Azcárate for her unconditional

support.

 all my colleagues at my department at the Public University of Navarre, especially

Dr. Marta Cildoz, with whom I shared many unforgettable hours.

 Dr Pedro Mateo, from the University of Zaragoza, who initiated and accompanied me

into the Java programming language world.

 Prof. Ana Póvoa, Dr. Daniel Santos, Mariana, Edgar, and all my colleagues at the

Instituto Superior Técnico at the University of Lisbon for their infinity hospitality

during my research stay that made the experience wonderful.

 Juan María Guergue and Juan Pedro Tirapu, Heads of service of the ICU of the

Navarre Hospital Compound, for facilitating my access to the ICU and collaborating

with the development and validation of the ICU simulation models.

 René Peña, software engineer responsible for the implementation of Metavision®

software (iMDsoft, Tel Aviv, Israel) and the development of a communication

interface capable of integrating iMDsoft's Healthcare Management System with the

rest of the applications of the Navarre Health Service, as well as extending the



vi Acknowledgements 

 

functionalities of the management system itself. Thanks to this system, a lot of data 

has been collected from real ICU patients. 

 Isabel Rodrigo, who works at the Servicio de Apoyo a la Gestión Clínica y la 

Subdirección de Procesos de Hospitalización y Urgentes, del Complejo Hospitalario 

de Navarra, infinite source of real management problems arising in the Navarre 

Hospital Compound. 

 Sergio Santana, responsible for patient data management in Navarre, for providing us 

with all the information on COVID-19 patients and helping in the improvement and 

validation of the simulation model. Also for discussing with us the functionalities of 

the COVIDSIM programme developed for the prediction of hospital resources during 

the pandemic. 

 Carlos Miguel Artundo, General Director of Health of the Government of Navarre, 

for his support and authorization to access the data and resources necessary for the 

development of this research. He has followed up on the information and results 

obtained during the pandemic. 

 Juan Carlos Oliva, Director of Healthcare Innovation in La Rioja, for his interest in 

the implementation of the COVIDSIM software at the San Pedro hospital. 

 Alberto Lafuente, Manager of the Health Service of La Rioja, who was informed of 

the results and saw how useful it would be to have these predictions in the hospital 

service of La Rioja. 

 Ángel Moreno and Beatriz Martínez, responsible for patient data management in La 

Rioja. 

 all the people in the CCAES group led by Fernando Simón, and in particular to Susana 

Monge, for their follow-up of the reports provided on a daily basis during the 

pandemic. 

 Navarre Hospital Compound, García Orcoyen Hospital, and Reina Sofia Hospital in 

Navarre; Guipúzcoa Polyclinic in the Basque Country; and San Pedro Hospital in La 

Rioja for their collaboration in the research carried out in this thesis, both in providing 

patient data for analysis and for its interest in participating in the use of the interactive 

ICU simulator. 

 all the people who have tested and used the ICU simulator, especially the ICU 

practitioners for lending their time to this study. We have successfully collected a 

large number of simulations to compare the different ways of managing the ICU. 

 the Public University of Navarre for its Ph.D. grant that allowed me to enter the 

exceptional world of research. 

 the ORAHS community and their experienced professors and researchers for their 

stimulating atmosphere which encourages fellowship and intellectual 

communication. 

 



 

 

Abstract 

The aim of this thesis is the construction of simulation models to analyse and improve patient 

admission and inpatient discharge decisions in an Intensive Care Unit (ICU). These decisions 

are especially relevant in situations of high ICU occupancy because they can lead to the early 

discharge of an admitted patient or the redirection of a newcomer. Exceptional circumstances, 

such as the global COVID-19 pandemic that broke out in 2019, increase the need for ICU beds, 

making this type of study even more relevant. The development of two interactive simulators 

has enabled us to understand and support ICU decision-making, both in and out of pandemics. 

The first part of this thesis describes the development of the first ICU Management Flight 

Simulator, which enables the analysis of physician decision-making in relation to patient 

admission and discharge issues, while also serving as a useful learning-training tool. The 

developed Discrete Event Simulation (DES) model mimics real ICU admission and discharge 

processes, and recreates patients' health status from real clinical data instead of using a single 

length of stay (LoS) value. This flexible tool, which enables the recreation of ICUs with 

different characteristics (numbers of beds, patient arrival types, congestion levels...), has been 

used and validated by ICU physicians and nurses in four hospitals. Preliminary results reveal 

variability in the decision-making of physicians faced with the dilemma of the last bed, an issue 

which is addressed in broad terms, paying attention not only to the allocation of the last 

available ICU bed, but also to the evolving decision-making process surrounding patient 

admission and discharge as ICU occupancy increases. The simulator is freely available on the 

internet to be used by anyone interested (https://icusimulator.unavarra.es); only the username 

(ICU-simulator) and the password (ICU_S1mulat0r*) are required in order to access it. The 

sequence of decisions made by the simulator users constitute a new type of data for which new 

distance measures were developed to enable the characterization and clustering of users based 

on their ICU management approach. 

The second part of this thesis presents a DES model to support decision-making for the short-

term planning of hospital resource needs, especially ICU beds, to cope with outbreaks, such as 

the COVID-19 pandemic. Given its purpose as a short-term forecasting tool, the simulation 

model requires an accurate representation of the current system state and high fidelity in 

mimicking the system dynamics from that state. The two main components of the simulation 

model are the stochastic modelling of patient admission and patient flow processes. The patient 

https://icusimulator.unavarra.es/
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arrival process is modelled using a Gompertz growth model, which enables representation of 

the exponential growth in patient arrivals caused by the initial spread of the virus, followed by 

a period during which the arrival rate peaks before gradually declining until the wave subsides. 

An empirical study showed that the Gompertz model provides a better fit to pandemic-related 

data (positive cases and hospitalization numbers) and is superior in prediction capacity to other 

sigmoid models based on Richards, Logistic, and Stannard functions. We also propose a new 

parameterization of the Gompertz growth model to facilitate the creation of patient arrival 

scenarios in a pandemic simulation. A methodology is proposed for the simulation of future 

patient arrivals. Patient flow modelling considers different pathways and dynamic LoS 

estimation in several healthcare stages using patient-level data. We propose an estimation 

method based on an Expectation-Maximisation algorithm using data from all patients admitted 

to the hospital to date. Different pandemic waves are simulated in order to compare the 

performance of this method with that of two other statistical estimators that work only with 

complete data. Results collected to measure the accuracy of the parameter estimates and their 

influence when forecasting healthcare resource needs for pandemic patients reveal the superior 

performance of the new estimation method. We report on the application of the simulation 

model in two Autonomous Regions of Spain (Navarre and La Rioja) during the two COVID-

19 waves experienced in 2020. The simulation model was employed on a daily basis to inform 

the regional logistic health care planning team, who programmed the ward and ICU beds based 

on the resulting predictions. 
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1 Introduction 

This thesis includes the study and development of simulation models and simulators for 

studying, understanding, and supporting decision-making in Intensive Care Units (ICUs) in 

pandemic and non-pandemic times. These decisions are especially relevant in high occupancy 

situations because they can lead to an admitted patient being discharged earlier than planned 

or to a new patient being denied admission. Therefore, these simulators need to generate an 

ICU environment similar to what a physician might find in real life where he or she needs to 

consult the monitoring screens of admitted patients to decide which have to be discharged. 

The research group q-UPHS (www.unavarra.es/quphs) of the Department of Statistics, 

Computer Science and Mathematics at the Public University of Navarre has been collaborating 

for more than 10 years with the Navarre Hospital Compound’s ICU medical staff. This makes 

it possible to bring together two different views on the ICU bed management problem and thus 

consider both the clinical and technical aspects of ICU operations. The medical knowledge 

provided by the ICU staff has been fundamental to provide the necessary background for the 

models and methodology developed in this thesis. 

The rest of this chapter is organized as follows. Section 1.1 begins with a contextualization 

of this research, specifically concerning ICUs and the global COVID-19 pandemic. The 

research objectives of this thesis are indicated in Section 1.2. Finally, Section 1.3 concludes 

with an overview of the chapters and appendices. 

1.1 Contextualization 

ICUs are essential for the care of patients combining high levels of severity with reasonable 

expectations of substantial recovery. Factors such as the advent of multiple organ support 

systems or the population ageing process have led to an increase both in the number of patients 

being admitted, and increased demand expectations. 

http://www.unavarra.es/quphs


2 Chapter 1 Introduction 

 

However, the cost of an ICU bed is much higher than that of a standard hospital bed, due to 

the high tech equipment that is required and, above all, the large number of professionals 

needed to staff these Units. For this reason, ICU bed management is a double-edged problem. 

On the one hand, there is the costliness of the service, due mainly to the high fixed costs of the 

beds (regardless of the occupancy level), which means that the economic aim is to maximise 

ICU bed occupancy to avoid under-utilisation. On the other hand, there is the high risk to public 

health from a potential bed shortage, such that, clinically speaking, high occupancy is 

something to be avoided. 

On a daily basis, ICU medical staff have to balance the demand for beds with the capacity of 

the service. The stochastic nature of both patient arrivals and ICU length of stay (LoS) 

inevitably creates a periodic need to shorten some patients’ stay in order to cope with high 

occupancy. However, early discharge carries the risk of possible readmission in the future, 

while the denial of intensive care to patients who need it, whether due to a bed shortage or for 

any other reason, is associated with a poorer prognosis. In these cases, physicians opt to cancel 

scheduled surgeries preventing the admission of emergency patients arriving at the ICU. 

Therefore, early discharge decisions are up to the individual criterion of the physician in 

charge, who has to balance the expected outcome for the discharged patient against the 

potential benefit of ICU treatment for the one newly admitted. In other words, these decisions 

are based both on the clinical evaluation of the patients already admitted, and the perceived 

risk to a patient in transit who might derive more benefit from intensive care than one of the 

patients already admitted. This risk perception has a subjective component that leads to 

different patient discharge decisions. 

In addition to the above high-pressure scenario due to bed shortage, other factors impact on 

patient discharge. One is physicians varying in their assessments of the stability of the patient 

for transfer to another unit (an issue usually discussed among the medical staff during daily 

clinical sessions). Meanwhile, non-clinical factors also come into play, such as the availability 

of beds in the unit to which the patient is to be referred, or the day of the week on which the 

decision is being made. Analysing this variability is a necessary step in assessing the 

effectiveness and efficiency of the health service provided and thus determining its quality. 

Variability is not necessarily and not always negative, but it can lead to inefficiencies in the 

quality of care. Therefore, its causes need to be analysed in order to improve patient care quality 

and standardise criteria. 

Variability in clinical practice can occur for one or a combination of different reasons: lack 

of standardised clinical criteria in certain processes, change in clinical criteria or 

recommendations, differences in the experience of physicians, increase in the rate of 

admissions (increase in scheduled surgery, epidemics...), increase in the level of occupancy, 

etc. Through simulation, it is possible to control some of the contributing factors of this 
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variability, and thus enable the analysis of others that are either more subjective or impossible 

to control. 

ICU healthcare practitioners frequently confront ethical dilemmas. In situations of ICU 

saturation, physicians must decide which patient is allocated the last available bed. They assess 

which patient stands to benefit most from ICU care and analyse the consequences of the three 

bed control actions (BCA) available to ICU managers: shortening the stay of admitted patients, 

cancelling scheduled surgeries, and diverting emergency patients to another facility. These are 

daily decisions in ICUs but they become more problematic in exceptional circumstances, such 

as the global pandemic caused by a novel virus from the coronavirus family that appeared in 

central China in December 2019 (COVID-19), and remains prevalent at the time of writing this 

thesis. 

In this context, shortage of beds is no longer an individual problem but a collective one. Bed 

allocation is managed collectively, and can involve the cancellation of all surgical operations, 

which are not imminently life-saving, or stricter triage criteria in ICUs based on the patient's 

condition and chances of recovery. Thus, over and above expected bed occupancy 

requirements, there is a need for forecasting tools to predict hospital and ICU admissions of 

COVID-19 patients several days ahead. With this information, healthcare managers can better 

plan hospital resources such as ward and ICU beds for these patients, and medical staff to care 

for them. 

1.2 Research objectives 

The overall aim of this thesis is the development and application of data analysis and 

computational simulation techniques and methods to contribute to improving the understanding 

of medical decision-making, in general, and in particular as it affects ICU triage. 

Decision-making in the field of healthcare presents greater difficulty since it is not guided by 

purely economic criteria and/or reliability standards, but is mainly motivated by the health 

status of the patients, which sometimes raises ethical concerns, such as deciding how to allocate 

scarce resources (beds, in the ICU case) among different patients requiring them. The aim with 

this thesis is to develop a more accurate simulator than is currently available for reproducing 

ICU conditions, that is, a virtual environment that ICU physicians can accept as offering a true 

reflection of a real ICU, and with which they can interact. 

Performing a comparative analysis of the physician decisions on the admission and discharge 

of ICU patients helps to investigate all this. Retrospective statistical analysis of ICU 

administrative records can prove very difficult. Not only is every decision-making scenario 

unique; there is not always a record of the circumstances surrounding the decision or the 

physician responsible for making it. However, simulation techniques enable the reproduction 
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of scenarios and the control of all factors influencing the dynamics and decision making in 

complex systems. 

Within the general objective set out above, we can highlight the following specific objectives, 

which will apply to any ICU: 

1. Development of an interactive simulator capable of creating a virtual environment in 

which the operation of an ICU is represented. This includes the collection of 

information on decision-making through simulator use by medical staff and the design 

of scenarios likely to generate disparity in medical decision-making. 

2. Quantitative analysis of medical decisions, by seeking patterns in ICU decision-

making, using mathematical modelling to learn how decisions are made, and 

developing new metrics to enable the comparison of decision-making sequences across 

different circumstances. 

3. Development of a mathematical methodology for real-time prediction of hospital 

and ICU admissions and occupancy levels several days ahead during the COVID-19 

pandemic. Development of a methodology for simulating the health system in its 

transitory phase and improved statistical estimators capable of capturing all data on 

patients who are still hospitalized. 

4. Validation of the methodology in a real context by supporting healthcare authorities 

during the pandemic with daily forecast reports to help them to respond quickly and 

effectively in managing and planning public health resources. 

In summary, this thesis, based on a multidisciplinary research framework for the analysis of 

real problems, aims to contribute to academic advances in the solution of these problems, while 

making a real impact in the improvement of ICUs. 

1.3 Thesis structure 

This thesis is structured in two main parts, each addressing a different research topic. After two 

initial chapters, the two parts are presented separately, each with its own chapters. The last 

chapter presents the overall conclusions and possibilities for future research. The thesis ends 

with the list of references used and eight appendices are also attached. 

Chapter 1 presents the research setting and describes the general and specific aims of the 

thesis. 

Chapter 2 describes the background to each part of this thesis, beginning with aspects such 

as the definition of ICUs and the management problems they entail, and proceeding with a 

chronological account of the global pandemic produced by COVID-19. 
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Part I of this thesis, which includes Chapters 3, 4, and 5, is dedicated to developing an 

interactive simulator mimicking actual ICU conditions. Also included is a proposal for a 

methodology to analyse decision-making in the ICU. 

Chapter 3 deals with one of the great ethical dilemmas arising in healthcare, namely, the last 

bed dilemma. The problems associated with bed shortages are described, and an example with 

real patients illustrates the different views of ICU professionals regarding admission and 

discharge decisions in conflicting situations. 

Chapter 4 presents the development of the first ICU Management Flight Simulator (MFS), 

which enables analysis of ICU management and decision-making processes, by presenting 

scenarios that cause discrepancies between ICU practitioners. It can also be used as a learning-

training tool. 

Chapter 5 defines statistical methods for the analysis of a new type of data, i.e., decision-

making sequences as influenced by contextual factors. Proposals for clustering methods aimed 

at identifying different ICU management strategies are also provided. 

Part II, which contains Chapters 6 and 7, addresses the issue of hospital preparedness during 

epidemics, focusing on the development of simulation models to better support Health Service 

managers. 

Chapter 6 presents a Discrete Event Simulation (DES) decision-making support model for 

short-term hospital resource planning, especially in relation to ICU beds, to cope with 

outbreaks, such as the COVID-19 pandemic. 

Chapter 7 describes the use of the simulation model by two Autonomous Regions in Spain 

(Navarre and La Rioja) during the two waves of the pandemic that struck Spain in 2020. The 

simulation model was used on a daily basis to inform healthcare managers in both regions about 

the number of predicted COVID-19 admissions and provide several-days-ahead bed occupancy 

forecasts both for wards and ICUs. 

Chapter 8 summarises the conclusions drawn from previous sections, discusses research 

limitations and points to possible future extensions to this work. The contributions of this thesis 

are also highlighted in this chapter and some final remarks are presented. 

Appendix A provides an alphabetical list of the 63 acronyms used in this thesis, with their 

definitions. In order to preserve the independence of the different parts of this thesis, acronyms 

are defined separately in each part the first time they appear. 

Appendix B gives the clinical description of the six real patients considered in the example 

used to illustrate the last bed dilemma in Section 3.3 and a table with the 57 possible 

combinations of the proposed dilemma. 
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Appendix C presents the set of patient variables included in the MFS to represent patients’ 

clinical evolution. 275 clinical variables are collected in addition to general patient data. 

Appendix D contains the ICU simulator user guide. The DES model used in its development 

is explained in Chapter 4. This interactive simulator has been used to capture users' decisions 

when faced with ICU bed allocation problems. 

Appendix E shows the results obtained with the MSF of the ICU. Firstly, the reviews of some 

users of the simulator are presented, followed by the global performance results, the global 

results considering the ICU pressure level, and the temporal evolution of the number of 

manageable beds. Tables and graphs are used to visualize the results. 

Appendix F explains the aggregation of neighbouring components in distance calculation 

introduced in Section 5.3.3. The mathematical expression of the proposed Euclidean-

Aggregate distance is discussed and the number of aggregations considered according to their 

size is indicated. Tables with generic and particularized expressions at certain sizes are 

included. 

Appendix G gives a graphic representation of the evolution of the COVID-19 pandemic using 

Population Growth (PG) models. Through a statistical analysis of the 20 most-affected 

countries until June 15, 2020, the suitability of different PG models is elucidated (Logistic, 

Gompertz, Richards, and Stannard). The predictive capacity of each PG model at different 

phases of the pandemic and with different time horizons is also studied. Tables and graphs are 

included to illustrate the results obtained. 

Appendix H contains a user's guide to the COVIDSIM software, the pandemic resource 

simulator, which integrates the simulation model developed in Chapter 6. This guide explains 

all the features of the software and the steps for its use. The data used in the guide were provided 

by the main hospital of La Rioja (San Pedro Hospital). 
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2 Background 

This chapter describes the motivational background to each part of the thesis. Section 2.1 

provides a description and extended definition of ICUs and an indication of the undesirable 

consequences of bed shortages. This section is related to the simulator developed in Part I to 

study decision-making in the ICU. Secondly, Section 2.2 describes the evolution and impact 

of the COVID-19 pandemic worldwide, including the social, economic, and healthcare 

consequences. Some of the new and emerging challenges involved in managing this outbreak 

are mentioned in this section and further explained in Part II, which presents the simulation 

model developed to predict hospital occupancy of COVID-19 patients. 

2.1 Intensive Care Units 

There is a large amount of medical literature relating to ICUs. As these Units are one of a 

hospital’s most expensive and complex resources, most of the research deals with patient 

admission and discharge policies. This subsection begins with a conceptual description of an 

ICU, followed by an account of the associated management problems. 

2.1.1 ICU definition 

ICUs are special sections of the hospital for providing intensive medical care and are therefore 

fundamental for high severity patients and those likely to recover under complex monitoring. 

These Units have emerged with the development of technology for creating multiple organ 

support systems. However, although the purpose of ICUs is well defined, it is less clear which 

patients should benefit from this highly specialised care, especially in contexts of scarce 

resources. In an attempt to clarify this issue, the Working Group on Quality Improvement 

(WGQI) of the European Society of Intensive Care Medicine (ESICM) established in 2011 

(Valentin et al. 2011) a set of criteria to determine which patients might benefit from admission 

to an ICU: 
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 Patients requiring monitoring and treatment because one or more vital functions are 

threatened by an acute (or an acute on chronic) disease (e.g., sepsis, myocardial 

infarction, gastrointestinal haemorrhage) or by the sequelae of surgical or other 

intensive treatment (e.g., percutaneous interventions) leading to life-threatening 

conditions. 

 Patients with failure in one vital function (cardiovascular, respiratory, renal, metabolic, 

or cerebral) but with a reasonable chance of meaningful functional recovery. As a rule, 

patients known to be in the terminal stage of an untreatable disease are not admitted. 

Sometimes patients in need of palliative care requiring intensive care measures may be 

considered. 

 Patients with brain death or in whom brain death is expected to occur and in whom 

organ donation is considered may be admitted. 

From a normative point of view, in Spain, the “Real Decreto 1277/2003”, which establishes 

the general rules for the approval of health centres, services and facilities, defines Intensive 

Medicine as “a healthcare Unit in which an intensive medical specialist is responsible for 

providing accurate, continuous and immediate health care to patients with pathophysiological 

alterations that have reached a level of severity representing a current or potential threat to their 

life but still have potential for recovery”. In 2010, the Ministry of Health and Social Policy of 

Spain issued a report on ICUs (Palanca et al. 2011), proposing a definition of ICU as “an 

organisation of health professionals offering multidisciplinary assistance in a specific hospital 

ward satisfying the necessary functional, structural and organisational requirements to 

guarantee the conditions of safety, quality and efficiency needed to assist patients who, while 

having potential for recovery, require full or basic respiratory support along with dual or 

multiple organ support, and any complex patient with multi-organ failure. The ICU can also 

care for patients requiring a lower level of care”. Thus, both from the care and regulatory 

perspective, there is a need for clarity with respect to the characteristics of patients eligible for 

admission to ICU (high severity, complex monitoring, and reasonable expectations of 

recovery). 

Despite these efforts to define  ICU admission eligibility characteristics, in practice, few 

hospitals use admission criteria (Barnato et al. 2007). This is partly because they are usually 

very general and susceptible to subjective interpretation. In addition, concepts such as 

“reasonable chance of recovery”, “expected prognosis”, and “quality of life after discharge” 

have not been fully defined for all the pathologies that motivate ICU admission, and are 

therefore used differently among physicians. Furthermore, there is no precise definition of what 

is covered by the term “ICU bed”. In some regions it is related to the severity of the disease 

and the possibility of sustaining the various organic dysfunctions, while, in others, it is based 

on the intensity of the allocated medical and nursing support (Murthy and Wunsch 2012). 

Globally speaking, however, the ICU bed is where the patient satisfying ICU admission criteria 

is treated. 
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2.1.2 ICU bed management 

It is the lack of a strict admission protocol and the subjective component in the decision-making 

process that motivate the research on patient admission and discharge policies in the medical 

literature. Several studies show that when there is a shortage of beds in the ICU, both admission 

and discharge are subject to triage processes (Shmueli et al. 2003; Dobson et al. 2010; 

Anderson et al. 2011). Costa et al. (2003) observe changes in ICU management policy as bed 

occupancy rises, such that physicians try to limit admissions or resort to early discharge for 

patients whose condition permits it. Ridge et al. (1998) report early discharge and transfer to a 

less ICU of more fully recovered patients as a typical solution when there is a bed shortage in 

the ICU. In general, a high ICU bed occupancy level increases the number of rejected 

admission requests and the severity threshold for admission, while shortening patients’ LoS 

(Sinuff et al. 2004; Walter et al. 2008). The main objective is often to free up ICU beds 

(Capuzzo et al. 2010; Kramer et al. 2012; Robert et al. 2012; Sprung et al. 2012; Marmor et al. 

2013). Other consequences of an excessive bed occupancy rate are scheduled surgery 

cancellations and interhospital patient transfers. Therefore the patient discharge process is 

influenced not only by patient health factors but also by environmental and organisational 

issues (Lin et al. 2009). 

Another factor influencing ICU bed management is the cost per bed, which is much higher 

than for a standard hospital bed, due to the high-tech equipment, and, more especially, the large 

number of staff required to run these Units. According to Halpern and Pastores (2015), ICU 

costs per day in 2010 amounted to $4,300 in the US, while the total annual cost of critical care 

medicine amounted to $108 billion. In a previous study, Halpern and Pastores (2010) estimated 

that critical care accounted for 13.4% of total hospital costs, 4.1% of the national health budget, 

and 0.66% of the gross domestic product. In highly developed European healthcare systems, 

the mean actual cost per ICU patient was estimated at €17,000 in Greece (Geitona et al. 2010), 

whereas the calculated average cost per ICU patient was €1,200 per day in Germany, Italy, the 

Netherlands, and the United Kingdom (Tan et al. 2012). Lefrant et al. (2015) estimated the 

daily cost of ICU stays on a sample of 23 ICUs in French National Hospitals as €1,425 (95% 

CI = €1,323 to €1,526). Mahomed and Mahomed (2018) conducted a study of intensive care 

services at a central hospital in the South African public sector, including a retrospective cost 

analysis for the 2015/16 financial year across two ICUs, a 10-bed trauma ICU and an 18-bed 

combined neurosurgical / medical / general surgical ICU. The estimated cost per patient day in 

the combined ICU was 58% higher than in the trauma ICU (ZAR26,954 v. ZAR17,021 or the 

equivalent of €1,642 v. €1,037). 

Therefore, the efficient use of these resources in ICU management and, by extension, general 

hospital management is essential. According to the latest guidelines of the Society of Critical 

Care Medicine (SCCM) for ICU admission, discharge, and triage (Nates et al. 2016), more 

research is needed on all aspects of critical care rationing to address current deficiencies. 

Furthermore, the bed occupancy rate is highly variable and rather unpredictable, since it 
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depends both on programmed factors, such as surgery requiring post-operative referral to the 

ICU, and random factors such as emergency admissions. This implies that too strong a focus 

on high occupancy, to avoid wasting costly resources, can mean that there is no free bed for a 

newcomer requiring it. 

Most ICU costs are fixed (irrespective of the occupancy level); thus, from an economic point 

of view, it is preferable for an ICU to maintain high bed occupancy and thus avoid the underuse 

of an extremely costly service (Halpern and Pastores 2010). However, bed shortages trigger 

the undesirable consequences listed previously: cancellation of scheduled surgeries, delayed or 

refused admissions to the ICU, and early or inadequate discharges of patients to free up beds, 

all of which are associated with poorer prognosis (Chalfin et al. 2007; Cardoso et al. 2011) and 

a higher risk of mortality (Young et al. 2003; Iapichino et al. 2004; Bing-Hua 2014). Thus, 

from a clinical point of view, high occupancies will be avoided. 

2.2 The COVID-19 pandemic 

The coronavirus disease 2019 (COVID-19) pandemic is a crisis caused by severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2). The first outbreak was detected in the city 

of Wuhan, Hubei Province, China, in early December 2019, and it soon spread to the rest of 

Hubei and all the country’s remaining provinces. Within mainland China, the epidemic was 

largely under control by mid to late March 2020, having generated more than 81,000 cases 

(cumulative incidence on March 20, 2020). This was primarily due to intensive quarantine and 

social distancing (SD) measures (Novel 2020; Wang et al. 2020). These measures included, 

among others, isolation of detected cases, tracing and management of close contacts, and 

closure of potential zoonotic sources of SARS-CoV-2. There were also strict traffic restrictions 

and quarantine of entire provinces, including suspension of public transport, closures of 

airports, railway stations and inner-city highways. Mass gathering events were also cancelled; 

and various other measures were introduced to reduce transmission of infection. 

Despite unprecedented national control measures, COVID-19 was not completely contained 

and the disease reached other countries. By January 31, 2020, the number of confirmed cases 

reached 9,776 worldwide with a death toll of 213, and the World Health Organization (WHO) 

recognised the epidemic as a Public Health Emergency of International Concern (PHEIC) 

(WHO 2020a). By February 9, 2020, the global death toll had risen to 811, surpassing the total 

death toll of the 2003 SARS epidemic, and the confirmed cases continued to climb globally. 

On March 11, 2020, the WHO finally declared the outbreak a pandemic (WHO 2020b). The 

effects of the COVID-19 pandemic have rapidly spilled over from the healthcare sector into 

the international trade, tourism, travel, energy, and finance sectors, causing severe economic 

and social repercussions (Lenzen et al. 2020). Although other worldwide public health 

emergencies, such as the swine flu pandemic of 2009, have been brought under control in the 
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past (Ferguson et al. 2005; Longini et al. 2005; Nsoesie et al. 2012, 2014), the socio-economic 

repercussions of the COVID-19 pandemic are of a magnitude unparalleled in recent history. 

In healthcare terms, the COVID-19 pandemic poses a major global threat to human health. 

Since the outbreak in China, more than 270 million confirmed cases, and more than five million 

deaths from COVID-19 infection (up to the end of December 2021 

https://coronavirus.jhu.edu/map.html) have been recorded. Regular updates on the COVID-19 

outbreak are available on the websites of the European Centre for Disease Prevention and 

Control (ECDC), the European Commission (EC), and the WHO. This outbreak has brought 

changes in health care delivery, and in hospital systems stretched by the sudden increase in 

demand. The treatment of COVID-19 patients requires dedicated resources, material, and 

personnel. The pandemic has had a particularly intense impact on ICUs, which require highly 

specialised personnel and costly technical equipment. Accurate planning requires accurate 

prediction of resource needs. In addition, hospitalised COVID-19 patients need to be isolated 

from other types, making advance preparation of wards necessary. Therefore, the management 

of both ICU and ward beds for COVID-19 patients benefits from accurate short-term demand 

forecasting. Other resource needs, such as personnel requirements, can be calculated from bed 

demand numbers. Usually, the hospitalisation bed is still widely used as a hospital (ICU) 

management parameter both at the strategic and operational levels. 

The number of hospitalised COVID-19 patients needs to be forecast in order to determine the 

allocation of resources to COVID-19 and non-COVID-19 patients. The health status of a 

COVID- 19 patient can change rapidly and unexpectedly (Murk et al. 2020). As a result, it is 

not possible to accurately forecast the resource needs of COVID-19 patients many days in 

advance (Ioannidis et al. 2020). With COVID-19 patient data becoming increasingly available, 

it is possible to predict the infection rate a few days in advance (Wu et al. 2020), and also the 

LoS (Ebinger et al. 2021). Predictions of the number of hospitalized COVID-19 based on 

regression methods can be found, for example, in (Manca et al. 2020; Farcomeni et al. 2021; 

Goic et al. 2021). Methods for estimating LoS for patients with COVID-19 infection in the UK 

using both a nationally collected dataset and local data from a large inner city hospital are 

proposed in (Vekaria et al. 2021). 

Hospitals are complex systems evolving in a stochastic environment with a level of 

uncertainty which intensifies during pandemics due to lack of knowledge about the spread of 

the disease and its consequences for those infected. In this unsettled context, simulation 

emerges as a suitable tool of analysis, since it is able to reproduce both the complexity of the 

system and the variability and uncertainty of the environment, as well as being eligible for use 

in combination with other analytical techniques. The literature contains numerous 

bibliographical references relating to the use of simulation models for decision making in the 

healthcare context (Salleh et al. 2017). Most applications use simulation to support strategic 

decisions, usually for resource sizing, scheduling or management. All these cases require the 

design of a simulation model to reproduce stationary state healthcare system performance and 

https://coronavirus.jhu.edu/map.html
https://www.ecdc.europa.eu/en/novel-coronavirus-china
https://www.ecdc.europa.eu/en/novel-coronavirus-china
https://ec.europa.eu/health/coronavirus_en
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
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evaluate resource levels, patient flow management policies, and the long-term decision making 

process. The recommendations obtained from the simulation analysis are intended for a pre-

determined implementation period. 

However, a simulation model designed to enable tactical decisions for the provision of 

specialist health resources during the current outbreak needs to focus on the transition period 

if it is to generate a short-term projection of the current state of the hospital. To achieve this 

goal, the simulation model must account for non-stationary and non-periodic patient input to 

the hospital, the evolution in the recovery of patients currently admitted to the hospital, 

variation in patients’ hospital LoS patterns and censored data. Tools for real-time forecasting 

of COVID-19 ward and ICU bed occupancy, such as the data-driven model developed by Baas 

et al. (2021), enable hospitals to make informed decisions about whether or not to admit 

additional COVID-19 patients into their ward or ICU. 
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3 The dilemma of the last bed 

Faced with a full Intensive Care Unit (ICU), physicians need to decide between diverting a new 

patient in need of critical care to another facility or freeing up a bed by prematurely discharging 

an already admitted patient. This dilemma is discussed extensively in the medical literature, 

where the influencing factors are identified, the patient discharge process is described and the 

consequences for patient health are analysed. 

This chapter is organized as follows. We first begin with an introduction in Section 3.1 

describing the dilemma of the last bed and including some literature focused on this problem. 

The problems inherent in the shortage of beds are shown in Section 3.2, in terms of triage of 

patients admitted to the ICU or for possible ICU admission, referral to other centres, 

cancellation of surgeries and stress in medical staff. Section 3.3 describes an illustrative 

example of the last bed dilemma, showing the differences in decision-making by ICU 

professionals in this specific situation with real patients. Finally, Section 3.4 ends the chapter 

with some conclusions. 

3.1 Introduction 

Teres (1993) posed as one of the great ethical dilemmas a situation that he described as the 

ritual of the last bed. This situation occurs when the occupancy of the ICU is at the limit, and 

the physicians must decide on the admission of a new patient. The increase in the ICU 

occupancy rate and access block rates are leading to complete or even overwhelmed ICUs 

(Duke et al. 2009; Hall 2013). The average occupancy rate of ICUs in the US is 90% (Pronovost 

et al. 2004), where it is reported that 90% of ICUs cannot provide beds when required (Green 

2002). In this chapter we consider a broad definition of the dilemma of the last bed, as it is 

discussed in (Azcarate et al. 2020); it is not only how to assign the last available bed but how 

is the physician decision making respect to the admission and discharge of patients as the ICU 

is getting full. Physicians have to assess the benefits that receive patients already at the ICU 

and confront them with the benefits that could receive future patients coming from scheduled 
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surgeries and other potential emergency patients. Clearly, no physician wants neither to divert 

an emergency patient nor cancel a surgery nor to discharge in advance a patient, but these 

decisions may be inevitable in high bed-occupancy situations. 

The discharge decision problem has been addressed by developing optimization models 

trying to minimize the number of rejected admissions and the LoS shortened for patients in the 

ICU (Mallor et al. 2015, 2016). They formulate a stochastic optimization problem that is solved 

by using a simulation-based optimization methodology. The solutions determine the service 

rates at which the queue model representing the ICU should work to achieve the goals and they 

are interpreted as probabilities of discharging patients in advance, which are dependent on the 

bed-occupancy level. These models provide normative policies that can be classified into three 

types (Mallor et al. 2015): aggressive, equitable, and cautious. 

Mathematical models usually propose “aggressive” discharge policies, that is, no actions are 

taken until there are no free beds and one of them must be released to admit a new incoming 

patient. Nevertheless, physicians consider another more “cautious” policy, which is more 

representative of the decision-making that occurs in practice. They claim that early discharge 

of patients is more frequent as more beds are occupied, but these decisions are made before the 

ICU is complete. In situations of high occupancy, they advance the discharge of a patient in 

time in order to anticipate future emergency and scheduled patients’ arrivals. In this way, 

physicians avoid extreme occupancies in which patients are discharged at unconventional 

hours, which increases mortality if the discharge occurs at night (Azevedo et al. 2015). Mallor 

et al. (2016) propose a queuing model with LoS dependent on occupancy level. However, in 

this model, the exchange between a patient who is discharged and another who enters is 

considered instantaneous. 

3.2 The problems inherent in the shortage of ICU beds 

The ICU bed is a very costly resource, as it is exposed in Section 2.1.2. So low occupancy 

means under-utilization of an excessively expensive service since most of the costs do not 

depend on the degree of bed occupancy (Carrasco et al. 2006). However, occupancy is highly 

variable and unpredictable, as it depends on both programmed factors, such as surgery 

requiring post-operative referral to the ICU, and random factors such as urgent patient 

admissions. This implies that some management policies focus on high occupancy to avoid 

wasting an expensive resource. And in certain circumstances, the problem of a lack of a bed 

for a patient who requires it arises. In the following subsections, the problems related to bed 

shortages are described. 

3.2.1 Triage of patients admitted to the ICU 

One of the procedures, when a bed is urgently required, is the triage of admitted patients. That 
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patient with better clinical status is transferred to another area of the hospital with less care, in 

order to free up a bed. Since ICU discharge management is complicated, this triage process 

occurs not in situations of imminent need, but in situations of high occupation, when new 

admissions are planned. 

Patients can be early discharged if the physician who treats them and is responsible for 

assigning discharges, has the conviction that there are guarantees to attend them properly in 

another ward of less assistance. Thus other patients of greater severity can benefit from 

admission to the ICU (Ouanes et al. 2012). The consequences of these discharges have been 

evaluated concerning one or several markers of the evolution of patients who suffer from them: 

hospital mortality, readmission to the ICU and hospital length stay (Kramer et al. 2013). 

Most of the published papers in this regard find a relationship between early discharges and 

an unfavourable result for the patient. However, some studies on this subject do not find a 

relationship between non-scheduled discharge and mortality (Singer et al. 1983; Strauss et al. 

1986), perhaps because their mortality rates are lower than in the rest of the papers and the 

impact of early discharge on it would also be lower. In turn, (Campbell et al. 2008) determine 

that non-scheduled discharges at night are not related to a higher admission rate or higher 

mortality. 

3.2.2 Triage of patients for possible ICU admission 

Another consequence of high bed occupancy levels in an ICU is the triage of patients 

susceptible to admission. This fact has been analysed by medical literature from two points of 

view. On the one hand, some studies focus on the increase of admitted patients’ severity when 

the availability of beds is low, and on the other hand, some papers analyse the consequences 

of patients who in situations of greater availability of resources would have been admitted to 

the ICU. 

Regarding the first point of view, Sinuff et al. (2004) conclude that, in situations of high 

occupancy, admitted patients are more severe, reducing the number of patients admitted for 

monitoring. Authors propose the possibility of Intermediate Care Units for patients who require 

monitoring and minor care to those provided in the ICU. In this way, the use of ICU beds would 

be rationalized. 

Regarding the second point of view, Robert et al. (2012) conduct a study on patients whose 

admission to the ICU was initially denied. The study is conducted in 10 ICUs in France, during 

two 45-day periods. The admission to the ICU is denied due to lack of beds, either initially or 

permanently, to 193 out of 1,332 patients. It is observed that mortality is higher among patients 

who are not admitted or those who have a delayed admission, compared to those who are 

admitted in the first instance. 
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The European Society of Intensive Care Medicine’s (ESICM) ethics section establishes 

principles on which decisions should be made (Sprung et al. 2013), in order to help in the triage 

process (both of patients already admitted and of patients that are susceptible to be admitted). 

These principles are based on the consensus of 37 professionals related to Critical Medicine, 

getting an agreement of at least 80% of the participants for each of the discussed points. 

However, despite these recommendations and the implications of triage, there are hardly any 

scales that facilitate these decisions (Sprung et al. 2012). 

3.2.3 Referral to other centres 

When there is a shortage of beds in the ICU, it is necessary to divert patients to another nearby 

centre where there are available beds and patients can be admitted there. The referral of patients 

involves two types of problems. The first one is the risk inherent in the referral itself, and the 

second one is the delay in the adequate care of patients caused by the time they remain outside 

the hospital. 

On the first problem, Ligtenberg et al. (2005) analyse in Netherlands the risks associated with 

the inter-hospital transport of 100 consecutive patients. They observe that adverse effects 

occurred in 34% of these referrals, of which 30% were due to technical problems. There are no 

published papers that study the relationship between the result of the diverted patient and the 

medical staff and equipment used in such referral. For instance, in Navarre, these transports of 

critical patients are carried out by specific personnel for this task that is highly qualified. So, it 

is assumed that the risks associated with the referral are low. 

However, more important than the implicit risk of the referral is the delay that this may cause 

to the appropriate treatment of patients. There are pathologies such as acute myocardial 

infarction (AMI), sepsis, or cerebral stroke, in which early treatment is very necessary. (Chalfin 

et al. 2007), after analysing 50,322 patients who required admission to the ICU, conclude that 

those whose admission is delayed more than 6 hours present greater hospital length of stay 

(LoS) and higher mortality in ICU and hospital. In addition to this, other studies recognize an 

increase in mortality when admission to the ICU is delayed (Combes et al. 2005). 

3.2.4 Cancelation of scheduled surgeries 

Another response to the lack of ICU beds consists of cancelling the scheduled activity, usually 

highly complex surgeries. Although this seems the most feasible and intuitive solution, it faces 

two important problems. On the one hand, the possibility that patients worsen their health status 

or even die while they are on the waiting list and, on the other hand, the administrative pressure 

to meet response deadlines (Colmenero 2011). 

Scheduled patients who have been cancelled have a priority position on the waiting list, but 

both they and other patients in subsequent positions on the list have an additional risk of health 



3.3 An illustrative example of the dilemma of the last bed 19 

 

deterioration. For instance, Sobolev et al. (2013) analyse the evolution of 12,030 patients 

awaiting surgery for coronary revascularization, of whom 104 die and 382 have to undergo 

emergency surgery. 

3.2.5 Stress in medical staff due to work overload 

The work overload, the unavailability of beds, which results in a rapid exchange of patients, 

and situations in which patient triage is necessary are factors that have been associated with a 

higher level of stress among medical personnel of the ICU (Embriaco et al. 2007; Verdon et al. 

2008; Halpern et al. 2013). 

Different studies associate this stress with medical errors. Valentin et al. (2009) conduct an 

extensive study in 113 Units of 27 countries about errors made in parenteral drug 

administration. They report 74.5 error events per 100 patients per day (95% confidence interval 

69.5 to 79.4). Most of these errors are due to medication omissions or supplies at the wrong 

time, although 0.9% of the patients studied die or experienced permanent harm because of these 

errors. In 32% of all errors, Unit staff admits workload, stress, or fatigue as a contributing 

factor. 

In conclusion, given a standard situation in which the medical staff is under stress, work 

overload and bed shortages represent an additional stress factor. In these situations, medical 

errors are more frequent, resulting in worse results for patients admitted to the ICU. 

3.3 An illustrative example of the dilemma of the last bed 

The problem of the last bed is not just a theoretical concept, but it occurs many times at 

hospitals: whenever several patients need treatment at the ICU at the same time, but there are 

no available beds for everyone. A specific situation is presented below, with real patients, to 

illustrate better this problem. The chosen scenario is a real situation that ICU physicians usually 

face. 

An ICU with only 4 beds is assumed, and 3 of them are occupied by three patients who have 

different diseases and ages, which are not totally recovered. In the first bed, there is a 56-years 

old patient (Peter) who has a brain infection due to a virus. In the second bed, a 73-years old 

cardiac surgery patient (Phil) is allocated. In the third bed, there is a 63-years old patient (Cate) 

with a lung infection due to a bacterium. 

ICU physicians, during the clinical morning session, must discuss whether these patients 

continue to be treated in the ICU or are early discharged. At that moment, physicians are 

informed about an ambulance that is coming to the ICU with another patient (Harvey, 28), who 

has suffered a traffic accident and he has head trauma. Besides this, two scheduled surgeries 
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need admission for the ICU that day. The first one is to treat a patient (Anne, 37) with a brain 

tumour, and the second one is for a patient (Paul, 52) who has suffered a heart attack. So, in 

this situation, not only discharge decisions have to be made, but physicians also must decide 

whether the incoming patient is accepted or diverted to another hospital, and which surgery is 

confirmed or cancelled. In summary, what physicians have to decide is which patients must be 

treated in these four beds. Table 3.1 shows all the relevant information of patients that must be 

managed at that moment (detailed clinical information of these patients is provided in 

Appendix B.1). 

Table 3.1. Patients to manage in the example of the dilemma of the last bed. 

Location Patient Age Principal diagnostic Icon 

Bed 1 Peter 56 Acute viral meningoencephalitis due to 

Herpes Simplex Virus I 
 

Bed 2 Phil 78 Postoperative control of aortic valve 

replacement cardiac surgery 
 

Bed 3 Cate 63 Severe community-acquired pneumonia 

due to Streptococcus pneumoniae 
 

Bed 4 - - - 

 

Ambulance Harvey 28 Polytrauma with severe traumatic brain 

injury secondary to a car accident 
 

Waiting for Operating Room 1 Anne 37 Postoperative course of glioblastoma 

multiforme 
 

Waiting for Operating Room 2 Paul 52 Postoperative cardiac surgery for coronary 

artery bypass grafting 
 

 

Over this situation, an ICU physician can differentiate 21 reasonable decisions based on 

clinic, as it is sown in Table 3.2 (if all combinations were considered, the possibilities would 

rise to 57, which are provided in Appendix B.2, but many of them are unlikely in a real context, 

as discharging all inpatients and admitting no new patient). For example, decision number 2 

consists of admitting only the emergency patient that is coming in the ambulance, and both 

surgeries are cancelled. In addition, no inpatient is early discharged with this election. 

However, decision number 12 is based on confirming both surgeries. Now, the incoming 

patient is diverted to another hospital, because only one inpatient has been early discharged 

(bed 2). Decisions number 15, 19, and 20 consist of admitting one out of the three patients 

requiring admission (emergency patient and both scheduled surgeries) and assigning one early 

discharge (bed 2). With these elections, physicians would reserve a free bed for future 

emergency patients considered in more severe conditions. Therefore, it is clear that in order to 

manage these situations, physicians can (1) refer patients to other hospitals, (2) cancel 

scheduled surgeries, and (3) shorten the inpatients’ LoS. 
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Table 3.2. Selected decisions based on clinics in the example of the dilemma of the last bed. The last column 

includes the number of practitioners out of 90 that would make each decision in a real ICU. 

Decision ICU occupancy Deviations/Cancellations Early discharges Practitioners 

1 
 

 

- - 

2 

  

- 7 

3 

  

- - 

4 

  

- - 

5 

  

 
- 

6 

  

 
1 

7 

   
29 

8 

   
26 

9 

   
1 

10 

   
1 

12 

   
4 

15 

   
6 

19 

   
1 

20 

   
1 

24 
   

- 

26 

 

- 
 

1 

28 

 

- 
 

10 

29 

   
- 

30 

   
- 

33 

   
1 

34 

   
1 
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This situation was presented to 90 different practitioners working in the ICU (31 physicians, 

40 nurses, 18 nurse technicians, and 1 resident). As it is exposed in Table 3.2, they made 

different decisions to manage the situation. Slightly more than 60% of the practitioners (55 out 

of 90) decided to admit the emergency patient and one of the surgeries, discharging the patient 

located in bed 2 (decisions number 7 and 8). 3 more people opted for the same decision 

although they discharged a different patient (decisions number 6, 9, and 10). A group of 15 

individuals confirmed the two scheduled surgeries, with the difference that 11 of them also 

admitted the emergency patient (decisions number 26 and 28) and the other 4 diverted him 

(decision number 12). There were also a total of 10 people who reserved a free bed for future 

admissions. 8 of these persons admitted one out of the three patients requiring admission 

(decisions number 15, 19, and 20) while the other 2 cancelled only one scheduled surgery 

(decisions number 33 and 34). Finally, 7 practitioners decided not to discharge any patient and 

to admit only the emergency patient (decision number 2). Table 3.3 shows the decisions made 

in this situation by all professionals separated by type of employment. 

Table 3.3. Decisions made by the 90 professionals separated by type of employment in the ICU. 

Decision Physician Nurse Nurse tech Resident 

2 3 2 2 0 

6 0 1 0 0 

7 6 16 7 0 

8 14 11 1 0 

9 0 1 0 0 

10 0 1 0 0 

12 3 1 0 0 

15 3 1 2 0 

19 0 1 0 0 

20 0 0 1 0 

26 1 0 0 0 

28 1 4 4 1 

33 0 0 1 0 

34 0 1 0 0 

Total 31 40 18 1 

 

The differences in decision-making observed in Table 3.2 and Table 3.3 motivate us to 

develop statistical methods for their analysis in the future. The definition of distances to 

compare the results would allow the graphical representation of each of the decisions. By 

applying clustering methods, it would be possible to identify the most similar decisions to each 

other and characterised them in order to determine the type of strategy followed in each case. 
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3.4 Conclusions 

The medical literature reviewed in this chapter highlights the existing ICU saturation problem 

and its patient health implications, and describes the triage of current ICU patients. The 

dilemma of the last bed is a real and relevant, continuously occurring problem in the ICU and 

its importance multiplies in a time of pandemic. States of saturation must be included in 

mathematical models intended for use in the analysis and improvement of hospital 

management. These situations are worth studying both from the clinical and the quantitative 

point of view and cannot be ignored in any mathematical model that is intended for decision-

making analysis. 

Early patient discharge has become an ICU management tool. With it, physicians try to 

balance the percentage of admission refusals due to a full ICU and the degree of LoS reduction 

for patients already admitted. The patient discharge process, as described in the literature, can 

take several hours, because it involves physicians from other units and the patient's family. 

These factors are important in guarding against the instantaneous substitution of one patient 

with another in an ICU bed. 

However, most of the mathematical models found in the literature treat ICU patient transfer 

as an instantaneous event. These models neglect the entire discharge process, despite their 

focus on obtaining an accurate representation of the stochasticity of the patient arrival process 

and patient LoS. This is no minor issue, as it implies a misrepresentation of the discharge 

decisions made prior to the arrival of a newcomer needing the bed that would be freed up by 

discharging some inpatient. None of the queuing theory models or other stochastic models in 

the mathematical literature include this anticipatory process. Thus, the management policies 

examined in the mathematical models consider only the triage of the last bed, while ignoring 

the pressure on physicians working close to full capacity. Existing ICU simulation models with 

these characteristics are reviewed in more detail in Chapter 4. Any model of ICU physician 

discharge decisions must include the bed requirements of planned elective surgery arrivals, 

which requires that early discharge decisions be made prior to full occupancy. 

Regarding the example of the dilemma of the last bed given in Section 3.3, we can note that 

the responses to this simple realistic example reveal variability in decision making relating to 

patient admission and discharge and motivate the need to create a tool to facilitate the analysis 

of such decisions. The tool presented in Chapter 4 not only generates scenarios of the type 

described, it represents the evolving ICU system over time by implementing the decisions 

suggested by the users. In this way, users are able to observe the consequences of their decisions 

and learn by doing. The success of the interactive simulator stems from its ability to recreate 

this environment by mimicking real ICU dynamics and including all the information required 

to support the decision making. 
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4 Management Flight Simulator of an Intensive 

Care Unit 

This chapter presents a computational tool useful for the analysis of the decisions made by 

physicians related to the admission and discharge of patients in an ICU. The analysis of patient-

admission and inpatient-discharge decisions can be done safely in virtual environments that 

reproduce with high fidelity the characteristics and dynamics of an ICU. In this chapter, a 

Management Flight Simulator (MFS) that mimics a real ICU is presented. The main features 

that distinguish this simulator from others are the simulation of the patients’ stay by evolving 

their health status (instead of using a single LoS value) and the recreation of real discharge and 

admission processes. Both elements are determinant for creating credible virtual scenarios 

allowing the users the management of the ICU as they would do in a real ICU, that is, with the 

same information and environment. 

The simulator records all the admission/discharge decisions made by users. The analysis of 

the recorded data about cancelled surgeries, early discharged inpatients, admissions delayed, 

diverted patients, etc. can be used to characterize bed management policies implemented by 

users. Furthermore, differences among users can be detected and quantified as well as the 

identification of scenarios in which decisions differ the most. These controversial scenarios are 

of special interest for physicians because they support the discussion to elaborate consensus 

protocols for triage decisions in the hospital that can help to reduce variability in medical 

practice. Therefore, the purpose of the developed MSF is double: firstly, to characterize how 

physicians made decisions and to assess the variability among physicians in making such 

decisions; secondly, providing a training tool for the management of ICUs. 

This chapter is organized as follows. In Section 4.1 related literature is reviewed about the 

use of simulation models in ICUs, as well as the use of MFS. The mathematical modelling of 

the ICU dynamics and its implementation in a DES is presented in Section 4.2. Section 4.3 

focuses on the simulator itself, detailing different features of this tool such as the definition of 
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virtual ICUs, the initialization process, the interface, and the recorded data. Finally, this chapter 

closes with a discussion and the conclusions in Section 4.4. 

4.1 Literature review 

In this section, we review relevant literature related to the use of simulation models in ICUs, 

as well as the use of MFS (flight/virtual/serious game simulators) in general and in health care 

services in particular. 

4.1.1 Simulation in ICU 

Simulation is a very suitable tool to study stochastic and complex systems such as hospitals 

and, in particular, ICUs. Since Fetter and Thompson (1965) published a paper about the 

simulation of various subsystems of a hospital, simulation models for decision-making in 

healthcare context have been developed in order to study problems related to patient flow bed-

planning, waiting list management, health service design, medical staff scheduling, operating 

theatre management, etc. Bibliography about reviews of these simulation models can be found 

in (Fone et al. 2003; Brailsford et al. 2009; Günal and Pidd 2010; Katsaliaki and Mustafee 

2011; Rais and Vianaa 2011; Mielczarek and Uziałko-Mydlikowska 2012; Zhang et al. 2018). 

With regard to the ICUs, sizing and management problems have been studied through 

simulation models. Bai et al. (2018) review Operations Research (OR) methods used in ICU 

management, which include simulation. The medical literature uses simulation to propose 

mathematical solutions to ICU capacity problems in (Costa et al. 2003; Nguyen et al. 2003; 

McManus et al. 2004; Shahani et al. 2008; Pearson et al. 2012; Zhu et al. 2012; Steins and 

Walther 2013) and the need to optimize surgery admissions and the distribution of beds (Kolker 

2009; Troy and Rosenberg 2009; Yang et al. 2013). 

Mathematical studies also include simulation models for analysing ICU capacity problems 

(Ridge et al. 1998; Masterson et al. 2004; Litvak et al. 2008) and ICU admission and discharge 

processes (Kim et al. 1999). Furthermore, Kim et al. (2000) compare bed allocation rules using 

bi-objective optimization and Griffiths et al. (2013) propose a bed management optimization 

making a distinction between emergency and scheduled surgery patients. Other studies analyse 

changes in the patient-flow circuit with the use of intermediate care wards (Marmor et al. 2013; 

Rodrigues et al. 2018). Griffiths et al. (2005), given a current bed occupancy, present a 

simulation model to adjust staffing; and Steins and Walther (2013) asses bed occupancy and 

patient transfers to other ICU facilities in view of a shortage of resources. All these models 

have the ultimate goal of minimizing the rejection of patients arriving at the ICU while 

maintaining a manageable occupancy level. 
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There are also some studies (Ridge et al. 1998) in which early discharge is suggested as a bed 

management tool, but they are not explicitly modelled. In order to obtain valid simulation 

models, it is necessary to include the process of physicians’ patient-discharge decision-making 

(Barado et al. 2012; Mallor and Azcárate 2014). These authors embedded the simulation model 

in an optimization framework in order to mimic the physicians’ decisions through the 

calibration of patient discharge parametric rules. Azcárate et al. (2012) perform a sensitivity 

analysis of the effects of such discharge decisions on ICU rejection rates and LoS of patients. 

They implemented their discharge decision models in a simulation framework with no time-

consuming discharge processes. Mallor et al. (2015) asses by simulation modelling the optimal 

discharge strategies obtained in (Mallor et al. 2016). 

The literature reviewed shows that some researches can propose mathematical solutions to 

problems associated with ICU capacity and bed management. However, as far as we know, 

there are no papers that provide an analysis of how physicians’ decisions are really made in 

ICUs. 

4.1.2 The use of management flight simulators 

MFS, also known in the literature as virtual simulations, can be used both as a learning-training 

tool and for research (Lamé and Simmons 2018). For research, this kind of simulators enables 

to analyse key processes, detect biases, and recreate decision-making processes, testing 

theories about them. As a learning-training tool, these MFS have a close connection with 

serious games, which are not only intended to entertain but are also used for pedagogical 

purposes (Sawyer and Rejeski 2002). According to Zyda (2005), a serious game is “a mental 

contest, played with a computer in accordance with specific rules, that uses entertainment to 

further government or corporate training, education, health, public policy, and strategic 

communication objectives.” Long before the term "serious game" began to be used, some 

games were already developed with a purpose other than entertainment. 

An example of this is The Beer Game (or the Beer Distribution Game), which was developed 

in the 1960s at the Massachusetts Institute of Technology’s (MIT) Sloan School of 

Management. Since Sterman (1989a, 1992) popularized this simulation game, one of the most 

popular games used in logistics management and production management class, many 

applications have appeared in which The Beer Game has been utilized in order to research the 

behaviour of participants (Snider et al. 2010; Jin 2015; Alfieri and Zotteri 2017). In other cases, 

the original game has been modified to investigate new approaches (Goodwin and Franklin 

1994; D’Atri et al. 2009; Sarkar and Chaki 2012). 

In addition to The Beer Game, there are more management games in the economic context 

in which researchers analyse the behaviour of a group of people, as well as the participants 

learn from the experience (Joseph 1965; Dolbear, Jr. et al. 1968; Sterman 1989b; van 

Miltenburg 1989; Lengwiler 2004; Borrajo et al. 2010; Pozo-Barajas et al. 2013). Besides, the 
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use of this type of simulations as a learning tool is usual in other contexts such as politics 

(Sawyer and Rejeski 2002; Kahn and Perez 2009) and environmental care (Moxnes and Saysel 

2009; Worm et al. 2010; Bathke et al. 2019; Kim et al. 2019). All these applications focus on 

management learning for general situations, and new concepts acquired by participants can be 

applied at any time in the real processes. Furthermore, there are other types of simulators, 

designed for specific situations as defence, aviation, and construction, where decision-making 

processes are crucial for specific situations. Virtual Reality (VR) simulators are developed here 

to include a real description of the environment. 

In defence area, Chung and Huda (1999) developed a simulator to better respond to bomb 

threats; Wahl et al. (2020) present a simulator-based training of professional maritime deck 

officers so as to improve critical operations at sea; and Goldberg and Knerr (1997) and 

Saastamoinen et al. (2019) use training simulators for army and marine cadets respectively. VR 

simulators are also useful to train firefighters as it is proved in (Cha et al. 2012). 

In aviation, apart from traditional flight simulators used to capture flight skills, new types of 

simulators are arising. Koglbauer (2015) designed a simulator training for students to improve 

the estimation of collision parameters; Kraemer et al. (2019) analyse the behaviour of four 

different pilots during the take-off after managing a flight simulator developed by Aeronautics 

Institute of Technology (ITA) and Embraer. Furthermore, Valentino et al. (2017) designed a 

VR flight simulator that simulates the environment of a real flight. This simulator is able to 

provide stronger sensations than traditional flight simulators. 

In terms of construction applications, both types of simulators have been found. On the one 

hand, Sherif and Mekkawi (2010) present in their work an Excavation Game, a computer-

aided-learning tool that focuses on improving students’ decision-making skills in the aspects 

of excavation and related activities. On the other hand, VR training systems are presented in 

(Oliveira et al. 2007; Vahdatikhaki et al. 2019) for industrial training. 

Although no articles have been found in which these methods are used in healthcare to learn 

about the complexity of the ICU management, many healthcare applications have been 

developed in which virtual simulation has a relevant role in order to teach students at 

universities and especially to learn from the experience of using (Lane et al. 2001). Most of 

these are traditional simulations, and they use patient care manikins or play-role patients. 

Sherwood and Francis (2018) made a systematic review of the effect of this kind of mannequins 

in terms of learning for nursing, midwifery, and allied healthcare practitioners. Other types of 

works, not as popular as previous ones, are those which develop VR simulators or implement 

a decision-making process in management games. Sauré and Puterman (2014) developed an 

easy to use teaching game to learn how to manage patients appointment scheduling, whereas 

Vliegen and Zonderland (2017) designed a classroom game to introduce Operations 

Management (OM) in healthcare. 



4.1 Literature review 29 

 

VR simulators developed in the healthcare context intend to transfer skills, as they do in other 

contexts Brown et al. (2012) designed and developed a virtual world for teaching and training 

Intensive Care nurses in the approach and method for shift handover. VR simulators are also 

used in urological training, replacing traditional training approaches (Aggarwal and Adhikary 

2017). But, where this tool is commonly used in healthcare is at operating rooms, with the 

objective not only for the learning of beginning surgeons but also as a training to reduce the 

operating time. Jain et al. (2019) developed a VR surgical simulator that facilitates trainees for 

functional endoscopic sinus surgery. The positive effect of these kinds of simulators is also 

demonstrated in (Seymour et al. 2002; Fried et al. 2010; Lopez-Beauchamp et al. 2020). 

Management games in healthcare, mainly known as hospital management games, gained 

importance because of the increment of health care costs due to expensive technology, ageing 

of the population, and the increasing number of demanding patients. This type of games first 

appeared during the 1970s and Kraus et al. (2010) made an extensive review of different 

hospital management games. These games simulate situations of the real world modelling 

complex decision-making processes, which are influenced by the external hospital 

environment. In the review, the authors distinguish functional games that are applied to specific 

hospital departments and general games, which focus on the main function of the hospital. As 

a functional game, Hans and Nieberg (2007) developed the “Operating Room Manager Game” 

illustrating operating room management, whereas Rauner et al. (2008) designed an internet-

based management game (“COREMAIN”) to illustrate the economic and organizational 

decision-making process in a hospital. 

We also found other examples of game-based simulators in the healthcare area not related to 

hospital management. Brown et al. (1997) designed an educational videogame to improve self-

care among young people with diabetes. Grunewald et al. (2003) developed an interactive Web-

based training program for radiology, which offers radiographic anatomy cases and exercises, 

with the possibility of selecting different levels of difficulty. The "HealthBound" model and 

game was developed to help people think widely about health reform options and discover for 

themselves a promising solution (Homer et al. 2007; Milstein and Hirsch 2009; Milstein et al. 

2010, 2011). Katsaliaki et al. (2014) developed a game that simulates the supply chain of donor 

blood units to patients based on a real case study. 

Finally, some studies have been revised that focus on the decision-making processes in 

resource management. Rodríguez et al. (2010) present a decision support system to help 

humanitarian NGOs better manage resources during a natural disaster response. Rauner et al. 

(2016) developed a policy management game to provide a learning-training tool for mass 

casualty incidents. Bean et al. (2019) programmed a patient flow simulator with which 

professionals and students can learn important concepts of patient flow and healthcare 

management. 
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Reviewing the literature about MFS we realized that those works that focus on management 

issues, then they are driven by theoretical concepts and models fail to reproduce with high 

fidelity characteristics of real situations. In these models, many assumptions are made in order 

to simplify them for the user and to avoid misunderstandings. By contrast, VR simulators, 

which transfer skills to the user, are very realistic, but then they do not present management-

related features in broad contexts. Just as flight simulators in the aviation sector generate in 

pilots exactly the same autonomic responses when faced up with an emergency, whether this 

is real or simulated, medical simulations must generate autonomic, cognitive and behavioural 

responses in participants equal to those observed around medical tasks in the real world 

(Streufert et al. 2001). Fidelity is very important if we want to recreate participant's experience 

with total realism. In this chapter, we present an ICU simulator that combines, for the first time, 

these two different approaches (management decision processes are implemented in a real 

simulation environment. 

4.2 Modelling an ICU 

In this section, the mathematical modelling of the ICU dynamics is presented. In the first 

subsection, the modelling of the patient flow is exposed, explaining the discharge and 

admission process, discharge decision times, and the patient’s health status. The second 

subsection focuses on the implementation of these features in a Discrete Event Simulation 

(DES) model, and the third subsection describes how to sample initial scenarios from the steady 

state. 

4.2.1 Modelling the patient flow and admission/discharge decisions 

An ICU can be mathematically modelled into the framework of queuing models. The queue 

model representation of the ICU considers that the servers are ICU beds, the clients are the 

patients that arrive randomly for emergency patients or according to a known schedule for those 

coming from elective surgeries, there is no waiting room and the queue discipline is “first come, 

first served”. The service is individually provided with duration modelled by a probability 

distribution. This description leads to a queuing model 𝐺/𝐺/𝑐/𝑐, where 𝑐 is the number of the 

beds in the ICU. 

Nevertheless, this model fails in modelling the dependence between patient LoS and the 

congestion level, allows for admissions and discharges at any time, the diversion of patients 

can occur only at full occupancy and the servers (beds) can switch instantaneously from one 

patient to the next one. In addition, the queueing model does not represent the real admission 

and discharge processes. These drawbacks preclude the use of this basic queue model to build 

the simulation model. Therefore, we extend the mathematical modelling of the ICU to represent 

more accurately both discharge and admission processes and to reproduce the patient’s health 
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status while their stay in the ICU. The purpose of the mathematical modelling is to be 

implemented in an interactive simulator allowing the users to make informed decisions in a 

virtual environment as physicians do in real practice. 

Discharge and admission process 

Both the discharge and the admission of a patient are complex and not automatic processes. 

The discharge process needs the coordination of the ICU medical staff with their counterpart 

in the destination ward. Moreover, the necessary time to free up the bed depends on its 

necessity. In cases of imminent patient admission, the process speeds up and the discharging 

process could take around one hour, for example. However, when there is no urgency, the entire 

discharge process with peace could last from three to four hours. 

The admission of the patient is virtually instantaneous when a patient arrives at the ICU and 

there is a totally cleaned and disinfected bed. When an admitted patient arrives at a full ICU 

and no recently freed up bed is ready yet, the patient is temporarily located in a special room 

where he or she can temporarily be treated. 

The flow diagram in Figure 4.1 shows the admission and the discharge processes as they are 

considered in the simulation model. On the left side, the emergency and scheduled patients’ 

arrivals are represented. Medical staff must decide whether to reject or admit them to the ICU. 

Scheduled patients first occupy a bed in the operating theater area (dark blue icon). Admitted 

patients occupy a free bed (white icon) in the ICU, when they are available, when not, the 

patient is placed in a bed in the above-mentioned special room (light blue icon). The right side 

represents the ICU where the beds can be in 7 different occupancy states: an occupied bed by 

a patient that is in the process of being discharged (dark grey icon); a bed occupied by a 

deceased patient (brown icon); bed under cleaning process (light grey icon); available bed 

(white icon); and occupied beds by patients in severe, stabilized and recovered health status 

(red, orange and green icons, respectively). 

 

Figure 4.1. Representation of the dynamics of an ICU through the change of the bed’s state. The two types of 

patients are distinguished (scheduled and emergency ones) and also the direct entry to the ICU from a delayed 

one. 

Discharge decision times 

Patient discharge decisions normally occur only at a few scheduled times of the day. These 

moments are denominated clinical sessions and depending on the ICU they can take place once, 



32 Chapter 4 Management Flight Simulator of an Intensive Care Unit 

 

twice, or even three times a day (morning, afternoon, and evening). During clinical sessions, 

physicians analyse the inpatients’ clinical conditions and decide which ones are going to be 

discharged. They also propose possible patients who would be discharged if an emergency 

patient had to be admitted and there were no beds available. At the same time, in the morning 

clinical session, physicians manage the surgeries of that day, by either confirming or cancelling 

them. 

Therefore, the patient cannot be discharged at any time, as it is implemented in classic 

queueing models. Essentially, the discharge decision process is periodic and throughout the 

day no more patients are discharged, except in the following case. When an emergency patient 

arrives at ICU, physicians decide on his or her admission, which in the case of admission in a 

situation of full ICU implies the discharge decision of an inpatient (the arriving patient is 

temporarily located in the special room). 

The simulator reproduces the dynamics of the ICU and stops at such decision times waiting 

for the discharge and/or admission decisions of the user. The simulator continues simulating 

the ICU assuming the decisions made. 

Patient’s health status 

Queuing models represent the LoS of a patient as a certain random variable with a probability 

distribution fitted usually by using historical data. Therefore, a sampled time from this 

probability distribution determines the event in which the patient is automatically discharged. 

However, the implementation of this approach in the simulator would not allow the users to 

make the discharge/admission decisions clinically grounded and informed. They should rely 

on probability properties of the probability distribution as for example the expected remaining 

time, as it is the case of many simulation models (see discussion in Azcarate et al. 2020). 

To overcome this strong drawback, we model the health status of a patient by using 275 

health indicators (medical and nursing reports included), all recorded by the software 

Metavision® software (iMDsoft, Tel Aviv, Israel), which is a dedicated software to monitor 

the health of admitted patients of ICU. These variables (described in Appendix C.2) give an 

extended and realistic description of the evolution of the patient health status. They provide 

enough information to assess the health condition of a patient in order to decide whether the 

patient is stable enough to be transferred to a lower level of care. These health indicators 

include neurological, hemodynamic, respiratory parameters among others such as provenance 

and principal diagnosis. All of them are presented to the user of the simulator mimicking the 

way in which their information systems do. 

4.2.2 The discrete event simulation model 

The proposed DES model is designed to incorporate the characteristics of a real ICU described 

in Section 4.2.1. A DES model is defined by the set of state variables, which provide at any 
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time a complete description of the simulated system, and the set of events, which modify 

through time the value of these state variables. We propose three different kinds of state 

variables to describe the ICU at any time, and a set of events grouped into four different 

categories. 

State variables 

The first set of variables is composed of three variables, 𝑋 = (𝑋1, 𝑋2, 𝑋3), which describe the 

number of patients in the ICU (𝑋1), the number of patients that are waiting in the special room 

to be admitted (𝑋2), and the number of patients coming from surgery already accepted but not 

admitted to the ICU yet (𝑋3). Observe that the number of total patients admitted (𝑁) in the ICU 

at time 𝑡 is the sum of these three state variables (𝑁 = 𝑋1 + 𝑋2 + 𝑋3). 

The second category describes the health status of patients and it is composed of 275 state 

variables per each inpatient, 𝑌ℎ𝑖 , ℎ = 1, … 275;  𝑖 = 1, … , 𝑋1. These variables can be 

continuous as the temperature (ºC) or the systolic blood pressure (mmHg), discrete as the heart 

rate (rpm), binary as being intubated (yes or no), or qualitative as those describing prognosis 

of physicians and nurses. During the simulation, these variables change in order to recreate the 

health status evolution of each patient. Therefore, they are considered important indicators to 

differentiate which patients can be discharged. 

Finally, the third group of state variables describes the bed occupancy state. Each one is 

associated with an ICU bed, 𝑍𝑗 , 𝑗 = 1, … , 𝑐. They are qualitative variables that can take the 

following values: 

 Free: the bed is completely available for the admission of a patient. 

 With a deceased patient: there is a patient who has just died and is waiting for discharge. 

 With a severe patient: there is a very serious patient who cannot be discharged under 

no circumstances. 

 With a stabilized patient: there is a stabilized patient who could be considered eligible 

to be discharged under circumstances of high occupancy pressure. 

 With a recovered patient: there is a patient who has recovered and is ready to be 

discharged. 

 With a discharged patient: there is a patient who is waiting for transfer to a lower level 

of care. A discharge decision has already been made. 

 Cleaning: the bed is undergoing cleaning tasks to condition it for the admission of a 

new patient. 

Therefore, the vector (𝑋, 𝑌, 𝑍) describes at any time 𝑡 the situation of the ICU (the number 

of patients admitted in the ICU, the number of patients waiting for an imminent admission, the 

health description of each one of these patients, and each bed occupancy state). 

Events 

There are four different types of events modifying through time the value of state variables. 
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The first set of events 𝐸𝐴 are associated with the patient’s arrival times classified in emergency 

and scheduled patients. The probability that a patient is of the emergency type is 𝑝𝐸, and of the 

scheduled type is 𝑝𝑆 (𝑝𝐸 + 𝑝𝑆 = 1). On the one hand, emergency patients’ arrivals occur 24/7, 

which are modelled by using a Poisson Process (PP) with arrival rate 𝜆𝐸. These patients are 

classified into illness groups whose percentages define the type of ICU that is being modelled. 

In our model we consider 6 different groups (𝐸1: urgent surgery, 𝐸2: polytrauma, 𝐸3: patient 

hospitalized in Medical Service, 𝐸4: patient hospitalized in Surgical Service, 𝐸5: 

emergency/observation patient, and 𝐸6: patient admitted for organ donation/others) and 

probabilities 𝑝𝐸𝑖
, 𝑖 = 1, … ,6 of belonging to each illness group, which determine the mix of 

emergency patients (∑ 𝑝𝐸𝑖

6
𝑖=1 = 𝑝𝐸). When an emergency patient arrives at time 𝑡𝑖, the next 

arrival occurs at time 𝑡𝑖+1 obtained from the equation (4.1). Aside from assigning the arrival 

time, the type of emergency patient who arrives is selected. The patient will belong to the type 

𝐸𝑖 with a probability of 𝑝𝐸𝑖
/𝑝𝐸. 

 
𝑡𝑖+1 =  𝑡𝑖 −  

1

𝜆𝐸
ln 𝑢𝑖  ; 𝑤𝑖𝑡ℎ 𝑢𝑖 ⤳ 𝑈(0,1) (4.1) 

On the other hand, once per week, the number of scheduled surgeries for each day of next 

week is simulated. It is assumed an average number of scheduled surgeries of 𝜆𝑆 per week. We 

distinguish patients that recover from standard surgery procedure, 𝑆1, with probability 𝑝𝑆1
, 

which can be in the ICU for an expected short stay, and patients that can be for an expected 

long stay due to a complicated surgery or critical condition of them, 𝑆2, with probability 𝑝𝑆2
 

(𝑝𝑆1
+ 𝑝𝑆2

= 𝑝𝑆). During the first clinical session in the morning scheduled patients are 

presented to physicians. Those patients who are admitted arrive at ICU when the surgery is 

finished (this time is previously defined for each scheduled patient). Under the assumption of 

the number of scheduled surgeries each working day is uniformly distributed throughout the 

week, and no surgeries are scheduled on weekends, the expected number of surgeries in each 

labour day is 𝜆𝑆∗ = 𝜆𝑆/5, and the expected number of arrivals for each type of scheduled 

patients is 𝜆𝑆∗𝑖
= 𝜆𝑆∗𝑝𝑆𝑖

/𝑝𝑆. From these expected values, we simulate the number of arrivals 

of each type of patient 𝑆𝑖 as ⌊𝜆𝑆∗𝑖
⌋ patients with probability ⌊𝜆𝑆∗𝑖

⌋ + 1 − 𝜆𝑆∗𝑖
, and ⌊𝜆𝑆∗𝑖

⌋ + 1 

with probability  𝜆𝑆∗𝑖
− ⌊𝜆𝑆∗𝑖

⌋ (where ⌊. ⌋ denotes the integer part of the number). These 

simulated arrivals represent the number of surgeries that the decision-maker must confirm or 

cancel. When the surgeries are confirmed, those patients are the ones who finally enter the ICU. 

The diagram of the two types of patients’ arrivals is shown in Figure 4.2. 
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Figure 4.2. Diagram of both emergency and scheduled patients’ arrivals. 

The second set of events 𝐸𝐵 produces changes in the value of the patient’s clinical variables. 

The sequence of these events describes the health status of each patient described by 275 

clinical variables recorded by the Metavision® software. Some of these variables, such as 

health indicators (the temperature, the heart rate, etc.), change their status every hour. Others 

related to Analytics, Gasometry, or physicians’ reports, change their status every day. 

The third category of events 𝐸𝐶 is associated with discharge/admission decision-making. 

These events stop the simulation when there is a clinical session programmed, and discharge 

and admission decisions must be made by the user in order to continue. Observe that these 

decisions also appear when an emergency patient arrives at the ICU. 

Finally, the last events 𝐸𝐷 modify the beds’ condition. Some of the previous events can trigger 

the change of an ICU bed’s state. Changes in patient clinical variables can generate that the 

patient transits to a stabilized health or a recovery condition and then his/her bed does too. The 

bed’s status also changes after the user´s admission or discharge decisions. In the first case, 

when a patient is admitted, the bed’s status change from free to with a severe patient (see Figure 

4.1). In the second case, if a patient is discharged, his or her bed associated changes to with 

discharged patient. However, two transitions are independent of the other events and must be 

simulated. On the one hand, once a patient has been discharged, the departure time of the ICU 

is simulated depending on whether the bed is urgently required or not. Also, in deceased 

patients, the transfer time may depend on whether the organs are to be previously removed for 

donation. On the other hand, when a patient leaves the ICU, a bed cleaning time is simulated 

until the bed is free again. Figure 4.3 outlines the simulation model of the ICU. 
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Figure 4.3. ICU simulation model. 

4.2.3 Sampling initial scenarios from the steady state 

The simulation starts at time zero by creating an initial scenario representative of the ICU 

stationary state, which means to assign value to all state variables and simulate the time for the 

first event of each type. The ICU is defined by the user through a set of parameters, as we 

expose in Section 4.3.2. The parameters necessary to generate the ICU scenario at time zero 

are the number 𝑐 of ICU beds, the probabilities 𝑝𝑖 that define the mix of patients, and the traffic 

intensity 𝜌. 
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The traffic intensity is the ratio of the arrival rate 𝜆 to the departure rate 𝜇, where 𝜆 is the 

number of arrivals per day and 𝜇 the number of departures per day. The traffic intensity is a 

measure of the congestion of the system. It is used to determine the patient arrival processes 

(for both emergency and scheduled patients) and the number of occupied beds at time zero. 

Determining patient arrival rates 

The total arrival rate is calculated as 𝜆 = 𝜌𝜇. The departure rate 𝜇𝑏 of one bed is estimated 

from the expected days in ICU of each category of patient, 𝐿𝑜𝑆(𝐸𝑖), 𝑖 = 1, … ,6, and 

𝐿𝑜𝑆(𝑆𝑖), 𝑖 = 1,2: 

 1

𝜇𝑏
= ∑ 𝑝𝐸𝑖

E(𝐿𝑜𝑆(𝐸𝑖))
6

𝑖=1
+ ∑ 𝑝𝑆𝑖

2

𝑖=1
E(𝐿𝑜𝑆(𝑆𝑖)) (4.2) 

where  E(𝐿𝑜𝑆(𝐸𝑖)) is estimated from historical data and the probabilities of each patient 

group are set by the simulator user to define the mix of patients. 

Therefore, the total ICU departure rate is 𝜇 = 𝑐𝜇𝑏, and 𝜆 = 𝜌𝜇. Then, the arrival rate is 

calculated for each category of patients as 𝜆𝐸 = 𝑝𝐸𝜆 and 𝜆𝑆 = 7𝑝𝑆𝜆 and the first arrival of 

patients can be simulated as it is explained in Section 4.2.2 (observe that 𝜆𝑆 refers to arrivals 

per week). 

Number of occupied beds at time zero 

It is determined from the expected value 𝜌𝑐 in the stationary state (assuming no early discharge 

is assigned, and no patient is diverted). To get an integer value for the number of occupied beds 

the lower or the upper integer is selected at random: ⌊𝜌𝑐⌋ occupied beds with probability ⌊𝜌𝑐⌋ +

1 − 𝜌𝑐, and ⌊𝜌𝑐⌋ + 1 with probability 𝜌𝑐 − ⌊𝜌𝑐⌋. When the congestion rate 𝜌 is greater or equal 

to 1, then the number of occupied beds at the beginning is 𝑐. 

Simulating the type of patient that occupies each bed at time zero 

The probability 𝜃𝑖 that a patient of a certain group of patients 𝑃𝑖 𝜖{𝐸1, … , 𝐸6, 𝑆1, 𝑆2 } occupies 

a bed is calculated as the expected time that a bed is occupied for that group of patients; that 

is, 𝜃𝑖 = 𝜆𝑖𝐿𝑜𝑆(𝑃𝑖)/ ∑ 𝜆𝑗𝐿𝑜𝑆(𝑃𝑗)𝑗 , where 𝜆𝑖 = 𝜆𝐸𝑖
=

𝑝𝐸𝑖

𝑝𝐸
𝜆𝐸 is the arrival rate for emergency 

patients of type 𝐸𝑖, and 𝜆𝑖 = 𝜆𝑆𝑖
=

𝑝𝑆𝑖

𝑝𝑆
𝜆𝑆 7⁄  is the arrival rate for scheduled patients of type 𝑆𝑖. 

Sampling the patient that occupies a bed at time zero 

Once the type of patients 𝑃𝑖 is assigned to occupy a bed, a specific patient 𝑗 is selected at random 

from the set of patients (see Section 4.3.2) according to a probability 𝜑𝑖𝑗 which is proportional 

to the LoS, that is, 𝜑𝑖𝑗 = 𝑡𝑖𝑗/ ∑ 𝑡𝑖𝑘𝑘 , where 𝑡𝑖𝑘  is the LoS of the 𝑘𝑡ℎ patient of type 𝑃𝑖. 
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Assigning values to the health status state variables 𝒀𝒉𝒋, 𝒉 = 𝟏, … , 𝟐𝟕𝟓 

Once the patient 𝑗𝑡ℎ of type 𝑃𝑖 is selected to occupy a bed, the LoS already consumed at time 

zero is considered uniformly distributed in his/her total LoS 𝑡𝑖𝑗. Therefore, the health status of 

the patient is described by the state variables recorded at time 𝑢𝑡𝑖𝑗 of the LoS of that patient, 

where 𝑢 ⤳ 𝑈(0,1). 

4.3 The ICU management flight simulator 

This section focuses on describing the MFS developed, detailing its main features, such as the 

definition of virtual ICUs, the interface, and the information recorded. 

4.3.1 Main features of the simulator 

The main purpose of this simulator is to mimic a real ICU, providing an extended and realistic 

description of the evolution of each patient and recreating real discharge and admission 

processes. To fulfil these characteristics, the simulator has to generate a familiar environment 

that is almost indistinguishable from that of the ICU physicians when consulting the monitoring 

screens of admitted patients' data. To achieve this level of similarity, the simulator presents the 

following features: 

 The simulator generates emergency and elective patients’ arrivals according to real 

arrivals patterns to the ICU. 

 For each patient, the simulator shows enough clinical information to make decisions 

about discharge. Specifically, information about the patient's antecedents, principal 

diagnostic, and system monitoring values are displayed (as we mentioned in Section 

4.2.1 and described in Appendix C.2). Information about scheduled surgeries for the 

following days is also shown in a calendar. The information displayed for each 

simulated patient corresponds to real patients, which have been completely 

anonymized. 

 The visualization of each patient’s data mimics the screen of Metavision® software 

presented in Figure 4.4, which is used in a real ICU. 

 The simulator moves the time forward generating the events described in Section 

4.2.2 and evolving the health of status of each admitted patient (vital signs, analytical 

parameters, life support measures, medications, etc.). When a decision-making type 

of event occurs, the simulation stops and waits for the user’s instructions about 

possible patient discharges or admissions. The simulator updates the status of the ICU 

according to these decisions and it moves the time forward until the next decision-

making event. 
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 The randomness of the simulation is controlled by the initial seed of the random 

generator and the use of the common random numbers technique. Therefore, the 

simulator can run the same scenario (identical sequence of patient arrivals and with 

the same typology) so that it can be evaluated by different users. 

 This simulator allows the definition of different ICUs by setting a set of parameters 

(see Section 4.3.2). Therefore, the simulator has enough flexibility to define numerous 

ICUs with different characteristics. 

 The simulator collects all decisions made by the users. 

 

Figure 4.4. Real ICU data screen of Metavision® software. 

To facilitate the medical staff using the simulator, it must be easily accessible, and also from 

different locations. Therefore, the simulator is freely available on the internet to be used by any 

interested user (https://icusimulator.unavarra.es); only the username (ICU-simulator) and the 

password (ICU_S1mulat0r*) are required in order to access it. 

4.3.2 Setting up the ICU characteristics 

The simulator is adaptable enough to create different ICUs according to its number of beds, the 

percentage of different types of patients, the congestion level, and the discharge/admission 

decision process. We can modify all these parameters as it is shown in Figure 4.5. Furthermore, 

it is possible to save all created scenarios and open them later. Thus, everyone faces the same 

situations and at the same moments during the simulation. 

The size of the ICU is defined by the number of beds. The mix of patients is established by 

assigning a percentage for emergency and scheduled patients as we mentioned in Section 4.2.2. 

https://icusimulator.unavarra.es/
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It would be necessary to select the appropriate percentages for each type of patient and fill in 

the ones that are not included with zeros. Patients’ health status is simulated using 200 clinical 

reports of 200 real patients treated in the ICU of Hospital Compound of Navarre, who have 

been completely anonymized. 112 out of the total are emergency patients, and they are 

distributed among the 6 categories mentioned in Section 4.2.2. The rest, 82 scheduled patients, 

are distinguished by their expected stay (short or long). 

 

Figure 4.5. Configuration screen of the simulation scenario. 

Three congestions levels are considered (high, very high, and extreme), which refers to the 

value of the traffic intensity (𝜌 = 𝜆/𝜇). The high congestion determines a traffic intensity 𝜌 =

0.85 and the very high congestion a value of 𝜌 = 0.95. The extreme level (𝜌 > 1) causes many 

situations in which the dilemma of the last bed occurs. This level has been selected to evaluate 

which decisions users make in each of those situations. Other complementary parameters that 

can be modified are the day of the week on which the simulation begins and the number of 

days that the simulation lasts. 

Finally, on the lower-left side of Figure 4.5, the discharge/admission decision process is 

defined. It is possible to configure different timetables of clinical sessions, as well as those 

moments in which physicians can assign a discharge. For example, the schedules in Figure 4.5, 

indicate that every day there is a clinical session at 8 a.m., in which it is assessed which patients 

are discharged and which surgeries are confirmed. Also, between 10 a.m. and 6 p.m., it is 

possible to discharge patients in situations of high occupation, to free up beds for future 

patients. The last defined schedule indicates that at any time it is possible to admit an incoming 

patient, even if there are no free beds in the ICU, as long as there is the possibility of assigning 

a discharge. 
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4.3.3 Interface 

The user must interact with the simulator in order to manage the ICU. At decision times, those 

patients who are occupying the ICU are presented to the user and he or she must make discharge 

decisions by using all data provided by the ICU information technologies. This information is 

based on the health status of the inpatients, the occupancy level, and the forecasted scheduled 

patients. 

The ICU simulator’s main screen is shown in Figure 4.6. In the lower part, there is a history 

of the number of emergency patient arrivals for the last days (left) and a panel with the 

scheduled surgeries of the following days (right). In the upper-right part, events related to the 

change of health of patients appear, as well as information about admissions and discharges. 

On the top left side, the occupancy of the ICU is shown in a panel that represents the beds with 

a color code. Clicking on a patient, all the clinical history to date is shown (the evolution of the 

275 variables describing the health status as well as the medical and nursery reports). In fact, 

the health status is reported on a different screen of the simulator that mimics and provides the 

same information that is displayed and recorded by the dedicated software Metavision® (see 

Figure 4.7). Thus, the simulator creates a totally realistic and credible ICU environment. Users 

will be able to access the values of these variables in the case of all stabilized and recovered 

patients. The volume of information provided is simplified by preventing the consultation of 

the data of those patients who finally die and those who remain in serious conditions since the 

data of the patients that clearly cannot be discharged is meaningless. 

 

Figure 4.6. ICU simulator’s main screen. 
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Figure 4.7. Information of patient’s clinical data, mimicking real screens of Metavision®. 

As we said previously, we have collected variables of 200 real patients of an ICU. The 

objective of the simulator is to collect information on how each user manages an ICU in which 

the congestion level is extreme. It is not intended to assess the user's medical knowledge. 

Consequently, some ICU physicians collaborating in the development of the simulator, to 

shorten the time to assess the clinical status of all inpatients, analysed the medical records of 

all patients to define three states along their stay, which help the user to make decisions. On 

the one hand, we consider in severe conditions to be discharge a patient who has just been 

admitted in the ICU (red color in Figure 4.1). On the other hand, patients who has finished their 

LoS are considered totally recovered and they should be discharged (green color in Figure 4.1). 

Finally, an intermediate state is established for each patient (orange color in Figure 4.1), which 

indicates the moment from which the patient is sufficiently stabilized to be discharged, 

although risks to his/her health are assumed. 

4.3.4 Information recorded 

When simulation finishes, all decisions and general results (number of patients admitted, 

number of surgeries cancelled, number of early discharges…) are recorded. Given that a well-

done simulation run could last many minutes, this simulator allows the user to save the 

simulation and finishing it later. 

Two documents are automatically sent to each user after a simulation is completed. The first 

one records general information regarding the number of emergency patients diverted, the 

number of surgeries that have been cancelled, the number of discharges assigned in an early 

way as well as the average time of shortened LoS in hours. The second document shows the 

evolution of the number of occupied beds along the simulation. It also has information about 
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those specific moments in which emergency patients are admitted or diverted, and the same for 

scheduled patients. 

The simulator, in addition to sending those two types of documents, also generates files that 

record all the information associated with the individual decisions of the users. The decisions 

consist of determining at what moment the user has decided to discharge each patient and if 

patients who need care in the ICU are admitted or diverted, both emergency and scheduled. 

These files, which can also be opened by the simulator, allow reproducing step by step one 

simulation that is already finished. As we already mentioned the simulator controls the 

randomness, so we can reproduce two different simulations in order to compare bed 

management with each other. 

4.4 Discussion and conclusions 

In ICU management and, by extension, in hospital management in general, it is essential to use 

all resources efficiently. The transfer of a patient to an area of less care should be carried out 

when he or she is stable enough, and the assessment should be fully based on clinical 

judgement. Clinicians are aware of the risks involved in discharging a patient in advance to be 

able to admit another when the ICU is full, however, these decisions depend not only on the 

patient's health status but also on organizational and teamwork issues (Lin et al. 2009). 

According to the Society of Critical Care Medicine (SCCM) guidelines for ICU admission, 

discharge, and triage (Nates et al. 2016), more research is needed on all aspects of critical care 

rationing to address current deficiencies. This chapter contributes to this research by 

developing, for the first time, an MFS of an ICU that reproduces the necessary operational 

processes to handle the patient flow and interacts with the user by presenting the same patient 

clinical information and in the same way as the ICU information technologies do in real ICUs. 

Specifically, the simulator allows representing the information related to the uncertain, 

complex, and dynamic features of the ICU and their patients' admission and discharge 

processes. The purpose of this simulator is to design a decision tool that collects informed 

decisions of the user to help in the analysis of the decision-making variability to reduce it. The 

simulator is able to present conflicting scenarios, that is, scenarios that generate discrepancies 

among physicians. 

The MFS is flexible to recreating any type of ICU, defined by its size, mix of patients, 

congestion level, etc. It is also possible to introduce bed-blocking from wards, although it has 

not been considered so far in the simulations performed by physicians. In situations of 

blockage, the patient cannot be discharged whether the user wants it or not. Therefore, we avoid 

these forced situations to collect the decisions that the user freely make. The simulator has been 

used and validated by ICU physicians and nurses of the three hospitals of the public network 
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of the Spanish Autonomous Community of Navarre (Pamplona, Tudela, and Estella) and of a 

private one of concerted management of Guipúzcoa. 

The study conducted by de Freitas (2006) demonstrated that these types of simulators have a 

learning function. Other more recent researches also show that the use of MFS has a positive 

effect on the learning of participants (Elsawah et al. 2017; Pennock et al. 2018). Based on this, 

we also propose this ICU simulator as a learning tool from two different points of view. 

On the one hand, both medical and nursing students could use this simulator at universities 

in order to learn how ICUs are managed. When students run the simulation, they will take part 

in the decision-making process of the ICU for the first time, but in a safe environment, in which 

their decision will not have bad consequences for patients. Apart from this, students can 

compare their own results with those that are supposed to be the best, that is, decisions about 

patients of simulations performed by experienced ICU physicians. They can also watch step by 

step how the simulation has been performed. The success of using this type of tools can be seen 

in (Grunewald et al. 2003). 

On the other hand, physicians who work in the ICU not only could use the simulator in order 

to improve their knowledge of bed management individually, but they could also learn in a 

collective way. Comparing all results of the decision-making process generated by simulations 

performed by many physicians of the same ICU, it would be possible to identify which 

situations cause the greatest disparity among them. These scenarios could be labelled as 

conflicting scenarios because the decisions that physicians make when managing these 

situations differ. In addition, it would be possible to detect which patients are complicated to 

treat, because there are no unified decisions about them (decision about admission, time to 

discharge...). 
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5 Methodologies for the analysis of decision-

making in the ICU 

This chapter shows the results obtained with the ICU simulator presented in Chapter 4, and 

also different metrics are studied and proposed to compare management decisions. The 

objective is to develop new methodologies that, based on the data collected by the simulator, 

allow us to detect discrepancies between users in ICU decision-making. Some tables and 

figures are shown as an illustration of the methodology developed here, but the large number 

of graphs that may result from applying this methodology is not be included. Discussions about 

them are beyond the scope of this chapter. 

Before showing the results and metrics, a descriptive study on the use of the simulator is 

carried out in Section 5.1. This analysis consists of describing the experiment carried out by 

the users, specifying the type of users who have used the simulator, and showing a qualitative 

assessment of the ICU Simulator by users. The results of these experiments are used to illustrate 

the methodology developed in the next sections to analyse ICU management decisions. Then 

four types of measures are proposed for the analysis of the user decision-making. During the 

simulation, users can manage the ICU through three bed control actions (BCA): admitting or 

diverting emergency patients, confirming or cancelling surgeries, and discharging ICU 

patients. Our first approach in Section 5.2 consists of determining global indicators that 

quantify each of the management actions. This section includes dissimilarity and statistical 

analysis to compare and graphically represent decision-making. 

The use of the three BCA to manage ICU occupancy depends on the number of beds available 

in the ICU. With our second approach, in Section 5.3 we calculate new indicators that account 

for the ICU pressure level. In Section 5.4 we analyse how decision-making evolves over time. 

Specifically, for each user, we define the trajectory of available beds over time, which is the 

direct effect of the three BCA discussed above. In our last approach, we consider the 

management at the patient level in Section 5.5, that is, we analyse users' decisions about 

individual patients. Users with very similar results in the previous measures may have 
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discrepancies in the patients to whom the decisions are applied. In these cases, the differences 

in decisions are due to the clinical characteristics of the patients only. Finally, this chapter 

closes with a discussion and some comments about the future work in Section 5.6. 

5.1 Descriptive study 

The main objective of MSF of the ICU described in Chapter 4 is to propose conflicting 

situations in the ICU in order to collect and compare how different users manage such 

situations. With this premise, we try to better understand how ICUs are managed and use this 

learning to develop more accurate mathematical models of the ICU. The ultimate goal is to 

apply the knowledge acquired to improve the management of a real ICU. This simulator allows 

analysing decisions about the discharge of patients in an ICU, through an interactive simulation 

with the user. These decisions are especially relevant in situations of high occupation, because 

they can lead to the anticipation of the discharge of a patient or to the rejection for ICU 

admission. The simulator can generate an environment similar to what a physician could find 

in the ICU so that he or she can consult the monitoring screens of the admitted patients on 

which the discharge decision has to be made. 

In our study, all users managed a 24-bed ICU with an extreme congestion level (see Section 

4.3.2), which was initialized on Monday with 23 patients in different health statuses. Over three 

weeks, 34 emergency patients and 23 scheduled patients arrived at the ICU. The ICU blocking 

discharge from wards was not included and during the simulation, there were regular 

programming sessions of discharges in the morning at 8 a.m. Every user runs the simulator 

with the same stochastic environment, that is, the patients have the same clinical profile and 

arrive at the same time. However, the total number of discharges by each user is different 

because it is influenced by the number of patients admitted to the ICU. 

5.1.1 Simulator users profiles 

Participants from different professional backgrounds have used the simulator. Since 20th May 

2019, more than 100 people have registered to use the simulator, of which 82 have completed 

the simulation to the end to analyse and compare their results. The vast majority of them was 

from Navarre (64), but there have also been responses from professionals from other parts of 

Spain such as the Basque Country (8), La Rioja (2), Catalonia (2), and Aragon (1), and even 

from Lisbon (5). 

Among the participants, we can find Physicians (18), Nurses (14), Nurse technicians (4), 

Residents (6), Medical students (6), Operation Management and/or Operational Research 

(OM-OR) researchers (11), Engineers (11) and Others (12). About 50% of the users have work 

experience in the ICU. On the one hand, it is not only interesting to study the differences 

between ICU professionals (Physicians, Nurses, and Nurse technicians), but also to incorporate 
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profiles, such as OM-OR researchers or Engineers, where resource management is also 

important. On the other hand, some users who have acquired theoretical knowledge of patient 

care in ICUs, without having the opportunity to have worked in these Units, such as Residents 

or Medical students, can provide other types of results. Finally, the Others group includes users 

who are not considered in any of the previous groups. 

5.1.2 User qualitative assessment of the simulator 

From the beginning, stakeholders were involved in the development of the simulator, providing 

feedback on how to implement all the features of a real ICU. Months before the final 

development, a pilot test of the program was presented at the ICU of the Navarre Hospital 

Compound, to the Head of Service and several physicians and nurses of the ICU. Thanks to 

their feedback, an enhanced version of the simulator was presented to professionals in this and 

other ICUs to collect information from users who may have a different way of managing the 

ICU. 

The program's interface is easy to use, and this is exposed by some users in their feedback 

after finishing the simulation. Appendix E.1 contains the reviews of 18 users. Furthermore, a 

questionnaire is provided at the end of the simulation. The users had to respond to four 

questions using a five-point agree/disagree scale (Likert scale survey). The following questions 

were used to gather this data: 

 Q1: “Did you find that the interactive simulator reflects in a real way how to manage 

the patients of an ICU?” 

 Q2: “To what extent do you agree that the simulator allows you to analyse the 

decision-making regarding the management of beds in your ICU?” 

 Q3: “To what extent do you agree that the simulator can be used as a better learning 

tool on the management of ICU beds compared to traditional methods such as reports 

or slide presentations?” 

 Q4: “Do you think that the simulator can help you better understand the management 

of beds in your unit and apply measures to improve it?” 

Figure 5.1 shows the main results of the evaluation, which includes all the participants 

mentioned in Section 5.1.1. The strongly agree and agree scores together have shown a more 

than 85% satisfaction from the users of the simulator in all questions. Almost all participants 

agree with the accuracy with which the simulator represents a real ICU (Q1, only 2.38% 

disagree), and the vast majority find useful this simulator in order to learn on the management 

of ICU beds (Q3, 66.67% strongly agree). 
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Figure 5.1. Main results of the questionnaire about the ICU simulator. 

In general, both Physicians and Nurses find it more feasible the fact that the simulator allows 

them to understand the management of ICU beds (Q4) rather than being able to use it to analyse 

the decisions made there (Q2). These responses reflect the fact that although it is possible to 

understand how an ICU is managed using the simulator, it is not obvious to carry out an analysis 

of the decisions made in the ICU in order to draw general conclusions about decision-making. 

This supports the fact that deeper statistical-mathematical analyses are required, which are 

carried out in the following sections. Completing the analysis, for each question (Q1-Q4) a chi-

square test of homogeneity has been conducted to determine whether frequency counts are 

distributed identically across different groups. In all cases, the test does not reject the 

hypothesis that the distribution of responses is the same in each type of participant (𝑝 > 0.05). 

5.2 Decision-making analysis by using global performance 

measures 

5.2.1 Definition of global management indicators 

During the simulation, the user performs three BCA to manage ICU occupancy: diverting 

emergency patients (𝐷), cancelling scheduled surgeries (𝐶), and shortening the stay of patients 

already admitted (𝑆). In this section, we compare the management carried out by decision-

makers by measuring the number of times each of the BCA is used to control de occupancy. 
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We define the manageable beds as the number of beds that the user keeps available to be 

assigned to a new patient in a short time if necessary. The number of manageable beds at time 

𝑡 in the ICU is defined as the number of those beds in any state but occupied with a severe 

patient, minus the number of patients already accepted but not yet occupying an ICU bed. (state 

variables 𝑋2 and 𝑋3 defined in Section 4.2.2). When a user keeps a low number of manageable 

beds, then he or she is assuming risks of having to divert emergency patients or cancelling 

surgeries. And the opposite, having a large number of manageable beds in the ICU can avoid 

the diversion of emergency patients and cancellation of some surgeries but would require the 

discharge in advance of some patients or the cancelation of some surgeries not considered as 

very urgent. The following variables and parameters are defined for the analysis: 

 𝑒𝐷𝑖: number of emergency patients diverted by user 𝑖. 

 𝑒𝑇: total number of emergency patients arrived at the ICU. 

 𝑠𝐶𝑖: number of scheduled surgeries cancelled by user 𝑖. 

 𝑠𝑇: total number of scheduled surgeries in the ICU. 

 𝑑𝑆𝑖: number of stays shortened by user 𝑖. 

 𝑑𝑇𝑖: total number of patients discharged by user 𝑖. 

 𝑇: total time of the simulation in hours. 

 𝑚𝑖(𝑡): number of manageable beds in the ICU of user 𝑖 at time 𝑡. 

 �̅�𝑖 = ∫ 𝑚𝑖(𝑡)𝑑𝑡
𝑇

0
𝑇⁄ : mean manageable beds in the ICU of user 𝑖. 

 𝑛𝐵: total ICU beds. 

The following global indicators are defined for each user 𝑖 based on these actions: 𝑃𝑖(𝐷) is 

the proportion of emergency patients diverted by user 𝑖 to another ICU, 𝑃𝑖(𝐶) is the proportion 

of scheduled surgeries cancelled by user 𝑖, and 𝑃𝑖(𝑆) is the proportion of stays shortened by 

user 𝑖. These ratios allow us to assess the intensity with which each user performs each type of 

action. In addition, we define 𝑃𝑖(𝑀) as the proportion of manageable beds in the ICU on 

average during the simulation of user 𝑖. The calculation of these four ratios are shown in 

equation (5.1). These ratios can be interpreted as probabilities, since 𝑃𝑖(𝐷), for example, can 

be interpreted as the probability that a patient is diverted by user 𝑖. The same can be deduced 

for 𝑃𝑖(𝐶) and 𝑃𝑖(𝑆) with cancelled surgeries and shortened stays respectively. Similarly, 𝑃𝑖(𝑀) 

indicates the probability that a bed is available (manageable) at any time during the simulation. 

 
𝑃𝑖(𝐷) =

𝑒𝐷𝑖

𝑒𝑇
, 𝑃𝑖(𝐶) =

𝑠𝐶𝑖

𝑠𝑇
, 𝑃𝑖(𝑆) =

𝑑𝑆𝑖

𝑑𝑇𝑖
, 𝑃𝑖(𝑀) =

�̅�𝑖

𝑛𝐵
 (5.1) 

Since users belong to different groups, it is possible to perform an aggregate calculation of 

the global management indicators in order to compare the results between types of users. Let 

us define 𝐺 as the number of different groups using the simulator and 𝑁𝑔 as the number of users 

in group 𝑔. The variables and ratios for each group 𝑔 are calculated according to equations 

(5.2) and (5.3) respectively. 
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𝑒𝐷𝑔 =

∑ 𝑒𝐷𝑖𝑖

𝑁𝑔
, 𝑠𝐶𝑔 =

∑ 𝑠𝐶𝑖𝑖

𝑁𝑔
, 𝑑𝑆𝑔 =

∑ 𝑑𝑆𝑖𝑖

𝑁𝑔
, 𝑑𝑇𝑔 =

∑ 𝑑𝑇𝑖𝑖

𝑁𝑔
,

�̅�𝑔 =
∑ �̅�𝑖𝑖

𝑁𝑔
 

(5.2) 

 
𝑃𝑔(𝐷) =

𝑒𝐷𝑔

𝑒𝑇
, 𝑃𝑔(𝐶) =

𝑠𝐶𝑔

𝑠𝑇
, 𝑃𝑔(𝑆) =

𝑑𝑆𝑔

𝑑𝑇𝑔
, 𝑃𝑔(𝑀) =

�̅�𝑔

𝑛𝐵
 (5.3) 

 

Methodology application 

Table 5.1 summarizes results recorded by Physicians. They performed the simulation under 

exactly the same ICU scenario, as it is mentioned in Section 5.1. The differences in the indicator 

values suggest that Physicians make decisions quite differently. Some of them cancelled few 

surgeries but following two different strategies: there are those who decide not to assign early 

discharges and not admit emergency patients (e.g., physician 7) and others decide to admit 

more patients assigning early discharges (e.g., physician 11). By contrast, several physicians 

decided to cancel more surgeries in order to admit more emergency patients (e.g., physician 4). 

Finally, some physicians try to maximize the number of patients admitted to the ICU (e.g., 

physician 16). Concerning the mean manageable beds in the ICU (�̅�𝑖), in all cases, the values 

are between 2 and 5. It can be observed that, in general, high values of 𝑑𝑆𝑖 correspond to low 

values of �̅�𝑖, and vice versa. Although there are cases where, on the one hand, similar values 

in variables 𝑒𝐷𝑖, 𝑠𝐶𝑖, and 𝑑𝑆𝑖 correspond to different values of �̅�𝑖 (e.g. physicians 1 and 12), 

and on the other hand, different values in these variables correspond to similar values of �̅�𝑖 

(e.g. physicians 13 and 17). 

A chi-square test of homogeneity has been conducted to compare these ratios among 

physicians. Results indicate that there are significant differences in the ratio of cancelling 

surgeries and shortening stays (𝑝 < 0.01), but no significant differences are found (𝑝 > 0.1) 

in the ratio of emergency patients diverted. Table 5.2 presents the aggregated results for each 

type of user. Here, the main differences observed are in variables 𝑒𝐷𝑔 and 𝑠𝐶𝑔. Nurse 

technicians, Nurses, and Physicians outstand for diverting more emergency patients and for 

cancelling fewer scheduled surgeries. In addition, it can be seen that Nurse technicians and 

Nurses shorten stays the least and maintain the highest value of mean manageable beds. The 

overall results for each user individually, and separated by group, are collected in Appendix 

E.2. 
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Table 5.1. Comparison of simulation global results recorded by 18 ICU physicians. Users faced a 24-bed ICU, 

which was initialized with 23 patients in different health statuses. Over three weeks, 34 emergency patients and 

23 scheduled patients arrived at the ICU. Each physician has a different number of total discharges (𝑑𝑇𝑖). Bold 

values represent the highest (red) and lowest (green) values. 

Physician 𝑒𝐷𝑖  𝑃𝑖(𝐷)  
 

𝑠𝐶𝑖  𝑃𝑖(𝐶)  
 

𝑑𝑆𝑖 (𝑑𝑇𝑖)  𝑃𝑖(𝑆)  
 

�̅�𝑖  𝑃𝑖(𝑀)  

Phy_1 13 0.3824  2 0.0870  4 (34) 0.1176  4.64 0.1933 

Phy_2 9 0.2647  6 0.2609  14 (33) 0.4242  3.06 0.1277 

Phy_3 9 0.2647  8 0.3478  14 (30) 0.4667  3.06 0.1277 

Phy_4 6 0.1765  7 0.3043  18 (34) 0.5294  3.00 0.1250 

Phy_5 7 0.2059  6 0.2609  11 (33) 0.3333  2.95 0.1231 

Phy_6 6 0.1765  4 0.1739  21 (38) 0.5526  2.98 0.1240 

Phy_7 16 0.4706  0 0.0000  0 (34) 0.0000  4.88 0.2033 

Phy_8 11 0.3235  3 0.1304  7 (35) 0.2000  4.06 0.1690 

Phy_9 7 0.2059  5 0.2174  16 (34) 0.4706  2.81 0.1172 

Phy_10 7 0.2059  3 0.1304  27 (39) 0.6923  2.57 0.1071 

Phy_11 9 0.2647  0 0.0000  23 (41) 0.5610  3.31 0.1378 

Phy_12 13 0.3824  3 0.1304  5 (32) 0.1563  3.67 0.1528 

Phy_13 12 0.3529  5 0.2174  8 (33) 0.2424  3.56 0.1484 

Phy_14 10 0.2941  1 0.0435  10 (35) 0.2857  3.15 0.1313 

Phy_15 10 0.2941  1 0.0435  21 (35) 0.6000  3.01 0.1253 

Phy_16 4 0.1176  4 0.1739  21 (37) 0.5676  2.45 0.1022 

Phy_17 10 0.2941  1 0.0435  24 (38) 0.6316  3.51 0.1463 

Phy_18 11 0.3235  2 0.0870  13 (35) 0.3714  4.23 0.1764 

 

Table 5.2. Global mean results of all users of the simulator divided by different groups. Bold values represent the 

highest and lowest values. 

Group 𝑁𝑔  𝑒𝐷𝑔  𝑃𝑔(𝐷)  𝑠𝐶𝑔  𝑃𝑔(𝐶)  𝑑𝑆𝑔 (𝑑𝑇𝑔)  𝑃𝑔(𝑆)  �̅�𝑔  𝑃𝑔(𝑀)  

Physicians 18 9.44 0.2778 3.39 0.1473 14.28 (35.00) 0.4079 3.38 0.1410 
Nurses 14 10.64 0.3130 3.50 0.1522 10.36 (34.29) 0.3021 4.25 0.1772 
Nurse techs 4 13.75 0.4044 1.25 0.0543 10.75 (36.00) 0.2986 4.70 0.1958 

Residents 6 5.50 0.1618 5.17 0.2246 18.33 (35.50) 0.5164 2.99 0.1244 
Medical students 6 4.67 0.1373 5.17 0.2246 15.00 (36.33) 0.4128 3.59 0.1494 
OM-OR researchers 11 6.64 0.1952 4.00 0.1739 19.00 (35.55)  0.5345 2.80 0.1168 

Engineers 11 5.73 0.1684 3.82 0.1660 17.27 (36.64) 0.4715 3.06 0.1274 

Others 12 8.17 0.2402 3.33 0.1449 12.50 (36.25) 0.3448 3.73 0.1554 

 

5.2.2 Dissimilarity analysis in the ICU decision-making 

The decision-making of a user 𝑖 is described by a by a vector of four components: 𝑃𝑖(𝐷), 𝑃𝑖(𝐶), 

𝑃𝑖(𝑆), and 𝑃𝑖(𝑀). The dissimilarity between the decision-making of two users is calculated by 

using a distance measure between vectors. Many methods of calculating the distance between 

vectors can be found in the literature when different variables have been measured for each 

observation (Anderberg 1973; Deza and Deza 2016). In this application, we propose the use of 

the Euclidean distance (note that the Pythagorean theorem in a Cartesian coordinate system in 

Euclidean space can be interpreted as a distance formula [Tabak 2014]) and the Mahalanobis 

distance (Mahalanobis 1936). 
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Let us denote 𝑢𝑖
′ =  (𝑢𝑖1, … , 𝑢𝑖𝑃 ) and 𝑢𝑗

′ =  (𝑢𝑗1, … , 𝑢𝑗𝑃 ) the observations of two objects or 

individuals resulting from measuring 𝑃 variables 𝑈1, … , 𝑈𝑃 on them. Euclidean distance (𝛿𝐸) 

and Mahalanobis distance (𝛿𝑀) are defined in equation (5.4) and (5.5) respectively. 

 

𝛿𝐸(𝑢𝑖 , 𝑢𝑗) =  √∑(𝑢𝑖𝑘 − 𝑢𝑗𝑘)
2

𝑃

𝑘=1

=  √(𝑢𝑖 − 𝑢𝑗)
′
(𝑢𝑖 − 𝑢𝑗) (5.4) 

 
𝛿𝑀(𝑢𝑖 , 𝑢𝑗) =  √(𝑢𝑖 − 𝑢𝑗)

′
𝛴𝑈

−1(𝑢𝑖 − 𝑢𝑗) (5.5) 

where 𝛴𝑈 is the variance-covariance matrix of 𝑈. 

Using (5.4) or (5.5) we can calculate the distance between two observations, with 𝑢𝑖
′ =

 [𝑃𝑖(𝐷), 𝑃𝑖(𝐶), 𝑃𝑖(𝑆), 𝑃𝑖(𝑀)]. On the one hand, the Euclidean distance is not invariant to 

changes in the scale of the variables and it does not take into account the correlation structure 

between variables. In this situation, all values of the variables belong to the interval [0,1], 

although there is some correlation between them and their variances are different. On the other 

hand, the Mahalanobis distance is invariant to non-singular linear transformations of the 

variables and takes into account the correlations between them. For example, the distance does 

not increase simply by increasing the number of observed variables, but it will only increase 

when the new variables are not redundant concerning the information provided by the previous 

ones. However, as the variance-covariance matrix is included in its calculation, with each new 

observation, the distances will be altered somewhat. Both distances could be validly used in 

this context. The difference between the two distances is greater when the 𝛴𝑈 matrix differs 

from the 𝜎2𝐼 matrix, where 𝜎2 represents the common value of the variance of the variables 

and 𝐼 is the identity matrix. 

Methodology application 

On the one hand, Table 5.3 shows the variance-covariance matrix calculated from the 

observations of all users. The differences observed in the main diagonal of this matrix imply 

that different results will be obtained in the calculation of the distance depending on the way 

they are calculated (Euclidean or Mahalanobis distance). On the other hand, Table 5.4 shows 

the correlation matrix obtained from the observations of all users.  

Table 5.3. Variance-covariance matrix obtained from the observations of all users of the ICU simulator. 

 𝑃(𝐷)  𝑃(𝐶)  𝑃(𝑆)  𝑃(𝑀)  

𝑃(𝐷) 0.0176 -0.0086 -0.0172 0.0049 

𝑃(𝐶) -0.0086 0.0118 0.0055 -0.0012 

𝑃(𝑆) -0.0172 0.0055 0.0383 -0.0072 

𝑃(𝑀) 0.0049 -0.0012 -0.0072 0.0025 
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Table 5.4. Correlation matrix obtained from the observations of all users of the ICU simulator. 

 𝑃(𝐷)  𝑃(𝐶)  𝑃(𝑆)  𝑃(𝑀)  

𝑃(𝐷) 1 -0.5968 -0.6636 0.7381 

𝑃(𝐶) -0.5968 1 0.2600 -0.2177 

𝑃(𝑆) -0.6636 0.2600 1 -0.7352 

𝑃(𝑀) 0.7381 -0.2177 -0.7352 1 

 

We can observe that the action of diverting emergency patients (𝐷) is opposite to the actions 

of cancelling scheduled surgeries (𝐶) and shortening inpatients’ stays (𝑆), as they are negatively 

correlated. Moreover, the more emergency patients are diverted, the higher the proportion of 

manageable beds is in the ICU. From this correlation matrix it can also be interpreted that in 

order to maintain a higher number of available manageable beds, the strategy followed is to 

divert emergency patients, without the need to cancel surgeries or shorten stays. Finally, a high 

proportion of shortened stays leads to a lower number of manageable beds and a lower 

proportion of diversions. Table 5.5 and Table 5.6 show the variance-covariance matrix and the 

correlation matrix calculated from the observations of Physicians respectively. We can note 

that the correlation within the same group is stronger than taking into account all users. 

Table 5.5. Variance-covariance matrix obtained from the observations of the 18 ICU physicians who have used 

the simulator. 

 𝑃(𝐷)  𝑃(𝐶)  𝑃(𝑆)  𝑃(𝑀)  

𝑃(𝐷) 0.0073 -0.0043 -0.0127 0.0021 

𝑃(𝐶) -0.0043 0.0103 0.0030 -0.0013 

𝑃(𝑆) -0.0127 0.0030 0.0370 -0.0041 

𝑃(𝑀) 0.0021 -0.0013 -0.0041 0.0008 

 

Table 5.6. Correlation matrix obtained from the observations of the 18 ICU physicians who have used the 

simulator. 

 𝑃(𝐷)  𝑃(𝐶)  𝑃(𝑆)  𝑃(𝑀)  

𝑃(𝐷) 1.0000 -0.4911 -0.7739 0.8769 

𝑃(𝐶) -0.4911 1.0000 0.1561 -0.4637 

𝑃(𝑆) -0.7739 0.1561 1.0000 -0.7807 

𝑃(𝑀) 0.8769 -0.4637 -0.7807 1.0000 

 

As an example of the methodology application, Table 5.7 and Table 5.8 show the Euclidean 

and Mahalanobis distances between Physicians respectively. In each table, the five lowest 

distances are marked in bold green and the five highest distances in bold red. As the distance 
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between physicians depends on the method used, the minimum and maximum distances 

correspond to different pairs of physicians. To observe how different the Euclidean distances 

are from Mahalanobis distances, we normalise the values obtained in each method between 

zero and one and calculate the ratio of the normalized distances (𝛿𝑀 𝛿𝐸⁄ ). Table 5.9 shows the 

ratios obtained (we define the indeterminate form 0 0⁄ = 1), where the five smaller values are 

marked in bold green and the five larger ones in bold red. Values that are less than 1 indicate 

that the Euclidean distance is larger while those greater than 1 indicate that the Mahalanobis 

distance is larger. Excluding distances that are zero, it is observed that the Mahalanobis 

distance is larger in 66% of the values. With this result, it is demonstrated that the distances 

obtained with each method are certainly different. And in view of the strong correlation 

between the observed variables, it would seem more appropriate to use the Mahalanobis 

distance in this case. 

Table 5.7. Euclidean distances between the 18 ICU physicians who have used the simulator. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 0.000 0.377 0.456 0.514 0.336 0.494 0.171 0.113 0.423 0.609 0.470 0.071 0.188 0.204 0.497 0.537 0.525 0.261 

2 0.377 0.000 0.097 0.144 0.108 0.178 0.544 0.269 0.087 0.305 0.295 0.321 0.208 0.259 0.281 0.224 0.302 0.197 

3 0.456 0.097 0.000 0.117 0.170 0.213 0.622 0.351 0.144 0.319 0.361 0.398 0.275 0.355 0.334 0.250 0.348 0.288 

4 0.514 0.144 0.117 0.000 0.203 0.132 0.682 0.403 0.109 0.241 0.319 0.461 0.349 0.376 0.295 0.150 0.305 0.311 

5 0.336 0.108 0.170 0.203 0.000 0.238 0.506 0.225 0.144 0.382 0.351 0.284 0.180 0.240 0.355 0.266 0.380 0.220 

6 0.494 0.178 0.213 0.132 0.238 0.000 0.655 0.387 0.098 0.150 0.196 0.450 0.360 0.320 0.182 0.064 0.194 0.254 

7 0.171 0.544 0.622 0.682 0.506 0.655 0.000 0.283 0.588 0.759 0.601 0.228 0.351 0.346 0.632 0.698 0.660 0.410 

8 0.113 0.269 0.351 0.403 0.225 0.387 0.283 0.000 0.312 0.510 0.390 0.075 0.103 0.131 0.413 0.429 0.442 0.177 

9 0.423 0.087 0.144 0.109 0.144 0.098 0.588 0.312 0.000 0.238 0.244 0.373 0.273 0.269 0.234 0.139 0.255 0.210 

10 0.609 0.305 0.319 0.241 0.382 0.150 0.759 0.510 0.238 0.000 0.197 0.566 0.483 0.426 0.156 0.159 0.143 0.351 

11 0.470 0.295 0.361 0.319 0.351 0.196 0.601 0.390 0.244 0.197 0.000 0.441 0.396 0.280 0.067 0.231 0.088 0.220 

12 0.071 0.321 0.398 0.461 0.284 0.450 0.228 0.075 0.373 0.566 0.441 0.000 0.126 0.180 0.462 0.494 0.491 0.228 

13 0.188 0.208 0.275 0.349 0.180 0.360 0.351 0.103 0.273 0.483 0.396 0.126 0.000 0.189 0.403 0.406 0.430 0.188 

14 0.204 0.259 0.355 0.376 0.240 0.320 0.346 0.131 0.269 0.426 0.280 0.180 0.189 0.000 0.314 0.358 0.346 0.110 

15 0.497 0.281 0.334 0.295 0.355 0.182 0.632 0.413 0.234 0.156 0.067 0.462 0.403 0.314 0.000 0.223 0.038 0.240 

16 0.537 0.224 0.250 0.150 0.266 0.064 0.698 0.429 0.139 0.159 0.231 0.494 0.406 0.358 0.223 0.000 0.233 0.306 

17 0.525 0.302 0.348 0.305 0.380 0.194 0.660 0.442 0.255 0.143 0.088 0.491 0.430 0.346 0.038 0.233 0.000 0.267 

18 0.261 0.197 0.288 0.311 0.220 0.254 0.410 0.177 0.210 0.351 0.220 0.228 0.188 0.110 0.240 0.306 0.267 0.000 

 

Table 5.8. Mahalanobis distances between the 18 ICU physicians who have used the simulator. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 0.000 2.526 3.550 2.718 2.017 2.268 0.998 0.584 2.055 3.053 2.839 1.651 2.253 1.420 2.809 2.393 3.181 1.610 

2 2.526 0.000 1.152 1.090 1.244 2.200 3.173 2.055 1.094 2.501 3.603 1.816 1.050 2.699 2.782 2.509 3.328 2.539 

3 3.550 1.152 0.000 1.667 2.174 3.146 4.176 3.124 2.167 3.274 4.576 2.719 1.709 3.846 3.653 3.507 4.106 3.512 

4 2.718 1.090 1.667 0.000 1.541 1.628 3.578 2.247 1.015 2.098 3.272 2.610 2.035 2.919 2.629 1.998 2.949 2.278 

5 2.017 1.244 2.174 1.541 0.000 2.140 2.703 1.460 1.079 2.905 3.602 1.518 1.336 2.134 3.136 2.147 3.686 2.519 

6 2.268 2.200 3.146 1.628 2.140 0.000 3.079 1.929 1.224 1.187 1.747 2.845 2.849 2.075 1.559 0.701 1.793 1.212 

7 0.998 3.173 4.176 3.578 2.703 3.079 0.000 1.414 2.814 3.687 3.268 1.773 2.650 1.588 3.260 3.143 3.710 2.323 

8 0.584 2.055 3.124 2.247 1.460 1.929 1.414 0.000 1.528 2.762 2.806 1.385 1.882 1.261 2.645 2.016 3.098 1.589 

9 2.055 1.094 2.167 1.015 1.079 1.224 2.814 1.528 0.000 1.830 2.721 1.919 1.726 1.943 2.136 1.425 2.674 1.811 

10 3.053 2.501 3.274 2.098 2.905 1.187 3.687 2.762 1.830 0.000 1.638 3.340 3.244 2.663 0.848 1.618 1.165 1.753 

11 2.839 3.603 4.576 3.272 3.602 1.747 3.268 2.806 2.721 1.638 0.000 3.722 4.033 2.375 1.217 1.900 1.103 1.534 

12 1.651 1.816 2.719 2.610 1.518 2.845 1.773 1.385 1.919 3.340 3.722 0.000 1.045 1.831 3.190 2.938 3.859 2.653 

13 2.253 1.050 1.709 2.035 1.336 2.849 2.650 1.882 1.726 3.244 4.033 1.045 0.000 2.581 3.295 3.074 3.911 2.860 

14 1.420 2.699 3.846 2.919 2.134 2.075 1.588 1.261 1.943 2.663 2.375 1.831 2.581 0.000 2.362 1.898 2.977 1.891 

15 2.809 2.782 3.653 2.629 3.136 1.559 3.260 2.645 2.136 0.848 1.217 3.190 3.295 2.362 0.000 1.937 0.898 1.549 

16 2.393 2.509 3.507 1.998 2.147 0.701 3.143 2.016 1.425 1.618 1.900 2.938 3.074 1.898 1.937 0.000 2.254 1.660 

17 3.181 3.328 4.106 2.949 3.686 1.793 3.710 3.098 2.674 1.165 1.103 3.859 3.911 2.977 0.898 2.254 0.000 1.642 

18 1.610 2.539 3.512 2.278 2.519 1.212 2.323 1.589 1.811 1.753 1.534 2.653 2.860 1.891 1.549 1.660 1.642 0.000 
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Table 5.9. Ratio between the normalized Mahalanobis and Euclidean distances (𝛿𝑀 𝛿𝐸⁄ ) of the 18 ICU physicians 

who have used the simulator. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 1.000 1.110 1.291 0.877 0.996 0.761 0.967 0.858 0.806 0.831 1.001 3.865 1.983 1.152 0.937 0.739 1.004 1.023 

2 1.110 1.000 1.974 1.255 1.904 2.045 0.967 1.266 2.080 1.362 2.027 0.937 0.838 1.725 1.641 1.854 1.825 2.135 

3 1.291 1.974 1.000 2.369 2.124 2.447 1.113 1.474 2.503 1.699 2.104 1.134 1.031 1.795 1.816 2.322 1.957 2.022 

4 0.877 1.255 2.369 1.000 1.259 2.037 0.869 0.925 1.540 1.445 1.702 0.938 0.968 1.287 1.479 2.211 1.605 1.216 

5 0.996 1.904 2.124 1.259 1.000 1.493 0.886 1.075 1.242 1.260 1.699 0.888 1.231 1.477 1.464 1.339 1.608 1.899 

6 0.761 2.045 2.447 2.037 1.493 1.000 0.780 0.826 2.080 1.311 1.480 1.049 1.311 1.076 1.421 1.803 1.534 0.790 

7 0.967 0.967 1.113 0.869 0.886 0.780 1.000 0.830 0.793 0.806 0.901 1.292 1.254 0.760 0.856 0.747 0.933 0.940 

8 0.858 1.266 1.474 0.925 1.075 0.826 0.830 1.000 0.812 0.898 1.194 3.058 3.024 1.594 1.063 0.780 1.163 1.488 

9 0.806 2.080 2.503 1.540 1.242 2.080 0.793 0.812 1.000 1.273 1.853 0.854 1.047 1.197 1.512 1.701 1.742 1.428 

10 0.831 1.362 1.699 1.445 1.260 1.311 0.806 0.898 1.273 1.000 1.381 0.978 1.114 1.037 0.904 1.688 1.347 0.827 

11 1.001 2.027 2.104 1.702 1.699 1.480 0.901 1.194 1.853 1.381 1.000 1.398 1.690 1.405 3.030 1.366 2.070 1.156 

12 3.865 0.937 1.134 0.938 0.888 1.049 1.292 3.058 0.854 0.978 1.398 1.000 1.375 1.682 1.146 0.987 1.303 1.925 

13 1.983 0.838 1.031 0.968 1.231 1.311 1.254 3.024 1.047 1.114 1.690 1.375 1.000 2.260 1.357 1.255 1.507 2.524 

14 1.152 1.725 1.795 1.287 1.477 1.076 0.760 1.594 1.197 1.037 1.405 1.682 2.260 1.000 1.246 0.878 1.426 2.846 

15 0.937 1.641 1.816 1.479 1.464 1.421 0.856 1.063 1.512 0.904 3.030 1.146 1.357 1.246 1.000 1.440 3.924 1.070 

16 0.739 1.854 2.322 2.211 1.339 1.803 0.747 0.780 1.701 1.688 1.366 0.987 1.255 0.878 1.440 1.000 1.605 0.898 

17 1.004 1.825 1.957 1.605 1.608 1.534 0.933 1.163 1.742 1.347 2.070 1.303 1.507 1.426 3.924 1.605 1.000 1.020 

18 1.023 2.135 2.022 1.216 1.899 0.790 0.940 1.488 1.428 0.827 1.156 1.925 2.524 2.846 1.070 0.898 1.020 1.000 

 

5.2.3 Clustering and 2D representation of management decision-making 

Using the distance matrix, clustering techniques can be applied to obtain homogeneous groups 

of users in terms of ICU management. The Agglomerative Hierarchical Clustering (AHC) 

algorithm is an important and well-established technique in statistics and machine learning 

(Müllner 2011) to build a cluster tree (a dendrogram) to represent data, where each cluster links 

to two or more successor clusters. From a distance matrix, the groups are nested and organised 

as a tree, which ideally ends up as a meaningful classification scheme. There are functions 

implemented in free software that perform AHC, for instance, the linkage() function in the 

cluster package of SciPy in Python. 

There are also statistical techniques such as Multidimensional Scaling (MDS) that allow the 

graphical representation of multidimensional data. MDS is used to transform the measured 

distances between pairs of a set of 𝑛 objects or individuals into a configuration of 𝑛 mapped 

points in an abstract Cartesian space (Mead 1992). Given a distance matrix with the distances 

between each pair of objects in a set, and a chosen number of dimensions, 𝑁, an MDS algorithm 

places each object into 𝑁-dimensional space (a lower-dimensional representation) such that the 

distances between objects are preserved as well as possible. For 𝑁 = 1, 2, and 3, the resulting 

points can be visualized in a scatter plot (Borg and Groenen 2005). Objects that are more 

similar (or have shorter distances) are closer together on the graph than objects that are less 

similar (or have longer distances). As well as interpreting dissimilarities as distances on a 

graph, MDS can also serve as a dimension reduction technique for high-dimensional data (Buja 

et al. 2008). Again, we can find functions implemented in free software that perform MDS, for 

instance, the MDS() function in the manifold module of Scikit-learn in Python. 

Methodology application 

As an illustration of this methodology Figure 5.2 shows the dendrogram obtained from the 
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distance matrix presented in Table 5.8. Ward variance minimization algorithm (Ward 1963) is 

used here for calculating the distance between the newly formed cluster. The dendrogram 

shows three differentiated clusters, two of them with 7 physicians each and the third with 4. 

The 2D scatter plot of the distance matrix presented in Table 5.8 is shown in Figure 5.3. The 

SMACOF (Scaling by MAjorizing a COmplicated Function) algorithm for metric MDS has 

been used. It minimizes an objective function (the stress) using a majorization technique. Stress 

majorization, also known as the Guttman Transform (Guttman 1968), guarantees a monotone 

convergence of stress, and is more powerful than traditional techniques such as gradient 

descent. With this 2D representation it is possible to visualize the three clusters obtained with 

the dendrogram. 

 

Figure 5.2. Dendrogram obtained from the distances between the 18 ICU physicians presented in Table 5.8. 
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Figure 5.3. 2D representation obtained from the distances between the 18 ICU physicians presented in Table 5.8. 

The 3 clusters obtained with the dendrogram are visualized. 

5.3 Analysis of decision-making conditioned by the ICU 

pressure level 

The results obtained and analysed in the Section 5.2 provide an overview of the performance 

of each user. It allows us to quantify each of the BCA used to manage the ICU. In this section, 

we extend our analysis considering that the use of the three BCA may depend on the level of 

pressure of the ICU. In the management of a real ICU, the same decisions are not made when 

the level of pressure is high or when bed occupancy is “under control”. 

5.3.1 Defining the ICU pressure level  

The ICU pressure level depends on the number of manageable beds (defined in Section 5.2.1). 

Medical decisions in the ICU are not only based on the current occupancy or the clinical 

condition of the current patients in the ICU, but also on the next known admissions. Let us 

denote 𝑁𝐷 as the total number of decision-making instants. Decision times 𝑡𝑑, with 𝑑 =

1, … , 𝑁𝐷, are fixed for all users. They coincide with the arrival times of emergency patients and 

with the general clinical sessions when the discharge of patients already admitted is assessed 

and decisions are made on the confirmation or cancellation of the scheduled surgeries for that 

day. At such times 𝑡𝑑, we define the concept of pressure level as the proportion of occupied 
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ICU beds resulting from admitting all known incoming patients and discounting the number of 

manageable beds at time 𝑡𝑑. The ICU pressure level 𝑝𝑖(𝑡𝑑) is used to analyse the application 

of the three BCA in a disaggregated manner. Its expression is shown in equation (5.6): 

 
𝑝𝑖(𝑡𝑑) =  

𝑛𝐵 + 𝑛𝑆𝑖(𝑡𝑑) + 𝑛𝐸𝑖(𝑡𝑑) − 𝑚𝑖(𝑡𝑑)

𝑛𝐵
          𝑑 = 1, … , 𝑁𝐷 (5.6) 

where, 

 𝑝𝑖(𝑡𝑑) is the ICU pressure level at time 𝑡𝑑 of user 𝑖. 

 𝑛𝐵: total ICU beds. 

 𝑛𝑆𝑖(𝑡𝑑) is the number of scheduled surgeries in the next 24 hours known at time 𝑡𝑑 by 

user 𝑖. 

 𝑛𝐸𝑖(𝑡𝑑) is the number of emergency patients arriving at time 𝑡𝑑 and for whom an 

admission decision has to be made by user 𝑖. 

 𝑚𝑖(𝑡𝑑) is the number of manageable beds in the ICU at time 𝑡𝑑 of user 𝑖. 

The ICU pressure level, defined for the decision instants 𝑡𝑑, may be less than or greater than 

unity. We consider five pressure levels with cut-off points suggested by ICU physicians. From 

lowest to highest ICU pressure level, each pressure level 𝐿𝑘 is defined as follows: 

 𝐿1: moderate level, with 𝑝𝑖(𝑡𝑑) < 0.8. 

 𝐿2: high level, with 𝑝𝑖(𝑡𝑑) ∈ [0.8,0.9). 

 𝐿3: very high level, with 𝑝𝑖(𝑡𝑑) ∈ [0.9,1). 

 𝐿4: extreme level, with 𝑝𝑖(𝑡𝑑) ∈ [1,1.05). 

 𝐿5: saturation level, with 𝑝𝑖(𝑡𝑑) ≥ 1.05. 

The ratios 𝑃𝑖(𝐷), 𝑃𝑖(𝐶), and 𝑃𝑖(𝑆) can be interpreted as probabilities (see Section 5.2.1), so 

we can also express the conditional probabilities on the pressure level. In equation (5.7) we 

calculate ratios depending on each pressure level 𝑘. The probability of diverting emergency 

patients conditional on pressure level 𝐿𝑘, 𝑃𝑖(𝐷|𝐿𝑘), is obtained by dividing the number of 

emergency patients diverted at level 𝐿𝑘, 𝑒𝐷𝑖(𝐿𝑘), by the total number of emergency patients 

who arrived at level 𝐿𝑘, 𝑒𝑇𝑖(𝐿𝑘). Similarly, the probability of cancelling scheduled surgeries 

conditional on pressure level 𝐿𝑘, 𝑃𝑖(𝐶|𝐿𝑘), is obtained by dividing the number of scheduled 

surgeries cancelled at level 𝐿𝑘, 𝑠𝐶𝑖(𝐿𝑘), by the total number of scheduled surgeries at level 𝐿𝑘, 

𝑠𝑇𝑖(𝐿𝑘). Finally, the probability of shortening stays conditional on pressure level 𝐿𝑘, 𝑃𝑖(𝑆|𝐿𝑘), 

is obtained by dividing the number of stays shortened at level 𝐿𝑘, 𝑑𝑠𝑖(𝐿𝑘), by the total number 

of patients discharged at level 𝐿𝑘, 𝑑𝑇𝑖(𝐿𝑘). 

 
𝑃𝑖(𝐷|𝐿𝑘) =

𝑒𝐷𝑖(𝐿𝑘)

𝑒𝑇𝑖(𝐿𝑘)
, 𝑃𝑖(𝐶|𝐿𝑘) =

𝑠𝐶𝑖(𝐿𝑘)

𝑠𝑇𝑖(𝐿𝑘)
, 𝑃𝑖(𝑆|𝐿𝑘) =

𝑑𝑆𝑖(𝐿𝑘)

𝑑𝑇𝑖(𝐿𝑘)
 (5.7) 
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Observe that 𝑒𝑇𝑖(𝐿𝑘) and 𝑠𝑇𝑖(𝐿𝑘) vary between users because each decision-making creates 

a different distribution of the ICU pressure levels. However, ∑ 𝑒𝑇𝑖(𝐿𝑘)𝑘 = 𝑒𝑇 and 

∑ 𝑠𝑇𝑖(𝐿𝑘)𝑘 = 𝑠𝑇 for every user 𝑖. 

In addition to detecting different ways of managing the ICU due to the disaggregated 

probabilities, these results may allow ICU practitioners to answer the following questions: 

 In the face of extreme situations, which is prioritised more, the cancellation of 

scheduled surgeries or the diversion of emergency patients? 

 Which BCA is more predominant among physicians? 

 Do these BCA depend on bed occupancy? 

 Can strategies be deduced to achieve a specific occupancy level? 

Individual results can be aggregated by group of users 𝑔 according to equation (5.8). To 

compare these values, we recommend the use of graphical representations of the results for a 

better appreciation. 

 
𝑃𝑔(𝐷|𝐿𝑘) =

∑ 𝑒𝐷𝑖(𝐿𝑘)𝑖

∑ 𝑒𝑇𝑖(𝐿𝑘)𝑖
, 𝑃𝑔(𝐶|𝐿𝑘) =

∑ 𝑠𝐶𝑖(𝐿𝑘)𝑖

∑ 𝑠𝑇𝑖(𝐿𝑘)𝑖
,

𝑃𝑔(𝑆|𝐿𝑘) =
∑ 𝑑𝑆𝑖(𝐿𝑘)𝑖

∑ 𝑑𝑇𝑖(𝐿𝑘)𝑖
 

(5.8) 

Another interesting issue derived from the above analyses is the probability of being in each 

pressure level 𝐿𝑘 by each user 𝑖, 𝑃𝑖(𝐿𝑘). For each decision time 𝑡𝑑, the number of times the 

ICU pressure level belongs to the level 𝐿𝑘 is counted and the result is divided by the total 

number of decisions (𝑁𝐷), as it is shown in equation (5.9). The same probabilities can be 

obtained for each group 𝑔, 𝑃𝑔(𝐿𝑘), using the expression sown in equation (5.10). 

 
𝑃𝑖(𝐿𝑘) =

∑ 1{𝑝𝑖(𝑡𝑑)∈𝐿𝑘}
𝑁𝐷
𝑑=1

𝑁𝐷
 (5.9) 

 
𝑃𝑔(𝐿𝑘) =

∑ ∑ 1{𝑝𝑖(𝑡𝑑)∈𝐿𝑘}
𝑁𝐷
𝑑=1

𝑁𝑔

𝑖=1

𝑁𝑔𝑁𝐷
=

∑ 𝑃𝑖(𝐿𝑘)
𝑁𝑔

𝑖=1

𝑁𝑔
 (5.10) 

Methodology application 

Table 5.10 summarizes results recorded by Physicians, but now considering the ICU pressure 

level (the results of the rest of the users individually and separated by group are collected in 

Appendix E.3). We can observe that some physicians avoid managing the ICU at certain 

pressure levels, such as physicians 1, 7, 11, 12, 13, 17 and 18 who have avoided the pressure 

level 𝐿5 in all three BCA, corresponding to the saturation level of the ICU. 
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Table 5.10. Comparison of simulation global results recorded by 18 ICU physicians considering the ICU pressure 

level. 

Physician 
𝑃𝑖(𝐷)  𝑃𝑖(𝐶)  𝑃𝑖(𝑆) 

𝐿1 𝐿2 𝐿3 𝐿4 𝐿5  𝐿1 𝐿2 𝐿3 𝐿4 𝐿5  𝐿1 𝐿2 𝐿3 𝐿4 𝐿5 

Phy_1 0.167 0.222 0.500 0.667 -  0.000 0.077 0.143 - -  0.000 0.083 0.429 - - 

Phy_2 - 0.143 0.231 0.333 0.500  0.000 0.000 0.111 0.833 -  0.000 0.462 0.444 0.600 1.000 

Phy_3 - 0.167 0.267 0.250 1.000  0.000 0.200 0.333 0.667 -  0.000 0.556 0.600 0.600 - 

Phy_4 0.333 0.000 0.125 0.222 0.250  0.000 0.000 0.182 0.600 1.000  0.250 0.400 0.600 0.750 1.000 

Phy_5 - 0.167 0.067 0.364 0.500  0.000 0.125 0.300 0.500 -  0.000 0.091 0.500 0.571 1.000 

Phy_6 - 0.000 0.167 0.200 0.500  0.000 0.000 0.000 0.667 -  0.000 0.500 0.625 0.833 - 

Phy_7 0.000 0.385 0.636 0.800 -  0.000 0.000 0.000 - -  0.000 0.000 0.000 - - 

Phy_8 0.000 0.167 0.400 0.500 0.000  0.000 0.000 0.250 0.500 -  0.000 0.100 0.333 0.667 1.000 

Phy_9 - 0.000 0.176 0.250 1.000  0.000 0.000 0.000 0.833 -  0.000 0.455 0.533 0.600 - 

Phy_10 0.000 0.000 0.231 0.182 0.333  0.000 0.000 0.000 0.143 1.000  0.571 0.667 0.722 0.667 1.000 

Phy_11 - 0.000 0.263 0.444 -  0.000 0.000 0.000 0.000 -  0.000 0.688 0.579 0.500 - 

Phy_12 0.000 0.571 0.267 0.500 -  0.000 0.000 0.100 0.500 -  0.000 0.000 0.429 0.400 - 

Phy_13 0.333 0.333 0.385 0.333 -  0.000 0.000 0.200 0.750 -  0.000 0.091 0.300 0.800 - 

Phy_14 - 0.200 0.176 0.500 0.500  0.000 0.000 0.000 0.333 -  0.000 0.000 0.333 0.800 1.000 

Phy_15 0.000 0.000 0.364 0.357 0.500  0.000 0.000 0.000 0.143 -  0.000 0.667 0.714 0.750 - 

Phy_16 - 0.000 0.063 0.143 0.500  0.000 0.000 0.000 0.500 -  0.000 0.500 0.667 0.625 1.000 

Phy_17 0.000 0.000 0.200 0.636 -  0.000 0.000 0.000 0.500 -  0.333 0.556 0.900 0.750 - 

Phy_18 0.200 0.143 0.375 0.500 -  0.000 0.000 0.091 0.500 -  0.154 0.250 0.583 1.000 - 

 

Table 5.11 presents the aggregated results for each group 𝑔, calculated according to equation 

(5.8). The conditional probabilities of diverted emergency patients, cancelled surgeries and 

shortened stays, for each group, are shown in Figure 5.4, Figure 5.5, and Figure 5.6 

respectively. These three figures show that the probabilities increase as the level of pressure 

increases, which is logical. The greatest differences are observed in the probability of diverting 

emergency patients (see Figure 5.4). Physicians, Nurses, and Nurse technicians (users with 

ICU experience) divert more patients than the other groups with pressure levels 𝐿1, 𝐿2, 𝐿3, and 

𝐿4. For better visualization, the graphs of these conditional probabilities separated by groups 

can be found in Appendix E.3. 

Table 5.11. Global mean results of all users of the simulator considering the ICU pressure level. 

Group (𝑁𝑔) 
𝑃𝑔(𝐷)  𝑃𝑔(𝐶)  𝑃𝑔(𝑆) 

𝐿1 𝐿2 𝐿3 𝐿4 𝐿5  𝐿1 𝐿2 𝐿3 𝐿4 𝐿5  𝐿1 𝐿2 𝐿3 𝐿4 𝐿5 

Physicians (18) 0.129 0.179 0.262 0.363 0.440  0.000 0.028 0.090 0.514 1.000  0.072 0.358 0.547 0.675 1.000 

Nurses (14) 0.333 0.239 0.311 0.356 0.667  0.000 0.054 0.161 0.591 1.000  0.081 0.350 0.405 0.610 1.000 

Nurse techs (4) 0.286 0.429 0.425 0.400 0.500  0.000 0.000 0.050 0.200 1.000  0.136 0.343 0.452 0.600 1.000 

Residents (6) 0.000 0.029 0.130 0.190 0.571  0.000 0.028 0.141 0.577 1.000  0.087 0.434 0.550 0.788 1.000 

Medical 

students (6) 
0.000 0.020 0.108 0.209 0.889  0.000 0.104 0.245 0.500 1.000  0.026 0.373 0.519 0.688 1.000 

OM-OR 

researchers (11) 
0.000 0.034 0.132 0.214 0.649  0.067 0.045 0.044 0.371 1.000  0.082 0.468 0.611 0.678 1.000 

Engineers (11) 0.000 0.045 0.085 0.246 0.783  0.000 0.062 0.088 0.415 1.000  0.038 0.462 0.485 0.727 1.000 

Others (12) 0.302 0.239 0.144 0.207 0.710  0.120 0.026 0.026 0.317 1.000  0.000 0.258 0.478 0.639 1.000 
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These graphs illustrate that decisions depend on the level of pressure. Differences can also 

be found between the different user groups. Figure 5.7 show the probabilities of each group of 

being in each ICU pressure level 𝐿𝑘. It is observed that Nurses and Nurse technicians show a 

tendency towards lower levels of pressure. 

 

Figure 5.4. Probability of diverting emergency patients by each group conditioned by ICU pressure levels 

𝑃𝑔(𝐷|𝐿𝑘). 

 

Figure 5.5. Probability of cancelling scheduled surgeries by each group conditioned by ICU pressure levels 

𝑃𝑔(𝐶|𝐿𝑘). 
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Figure 5.6. Probability of shortening stays by each group conditioned by ICU pressure levels 𝑃𝑔(𝑆|𝐿𝑘). 

 

Figure 5.7. Probability of being in each ICU pressure level 𝑃𝑔(𝐿𝑘). 

5.3.2 Decision-making analysis in a collectively managed ICU 

A real ICU is managed by a group of physicians, and the ICU pressure levels are the result of 

the combination of decisions made by all individuals in the group. In this section we calculate 

for each user the probability of doing each of the BCA, diverting emergency patients (𝐷), 
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cancelling scheduled surgeries (𝐶), and shortening inpatients’ stays (𝑆), conditioned on the 

probability distribution of the ICU pressure levels (𝐿𝑔) resulting from the combined decisions 

of the group to which he or she belongs. The probability distribution of the ICU pressure levels 

of group 𝑔 is 𝑃𝑔(𝐿𝑘). 

The conditional probabilities of diverting emergency patients, 𝑃𝑖(𝐷|𝐿𝑔), cancelling 

scheduled surgeries, 𝑃𝑖(𝐶|𝐿𝑔), and shortening patient stay, 𝑃𝑖(𝑆|𝐿𝑔), are calculated for each 

user 𝑖 as shown in equation (5.11). 

 𝑃𝑖(𝐷|𝐿𝑔) = ∑ 𝑃𝑖(𝐷|𝐿𝑘)𝑃𝑔(𝐿𝑘)

𝑘

, 𝑃𝑖(𝐶|𝐿𝑔) = ∑ 𝑃𝑖(𝐶|𝐿𝑘)𝑃𝑔(𝐿𝑘)

𝑘

,

𝑃𝑖(𝑆|𝐿𝑔) = ∑ 𝑃𝑖(𝑆|𝐿𝑘)𝑃𝑔(𝐿𝑘)

𝑘

 
(5.11) 

Note that some conditional probabilities like 𝑃𝑖(𝐷|𝐿𝑘), 𝑃𝑖(𝐶|𝐿𝑘), or 𝑃𝑖(𝑆|𝐿𝑘) may not have 

been calculated. In these cases, 𝑃𝑔(𝐷|𝐿𝑘), 𝑃𝑔(𝐶|𝐿𝑘), or 𝑃𝑔(𝑆|𝐿𝑘) corresponding to the user's 

group 𝑔 is used instead. In addition, for users in the same group 𝑔, the probabilities of being in 

each pressure level 𝐿𝑘 by that group, 𝑃𝑔(𝐿𝑘), 𝑃𝑔(𝐿𝑘), and 𝑃𝑔(𝐿𝑘), are used. 

 

Methodology application 

Table 5.12 shows the probabilities of diverting emergency patients (D), cancelling scheduled 

surgeries (C), and shortening inpatients’ stays (S) of Physicians in an ICU managed by all of 

them. Comparing these results with those presented in Table 5.1, it can be seen that there are, 

on the one hand, physicians who maintain similar values in both approaches (e.g. physicians 2, 

3 and 9), and on the other hand, physicians whose initial values have been considerably 

modified (e.g. physicians 1, 7 and 10). An increase in the initial values indicates that the user 

has made decisions with pressure levels lower than those of his/her group (e.g. physician 1 and 

7), while a decrease in the initial values indicates that the user has made decisions with pressure 

levels higher than those of his/her group (e.g. physicians 10 and 16). 

With these results, the next steps would be to apply the methods introduced in Section 5.2.2 

and Section 5.2.3 (dissimilarity analysis, AHC, and MDS). New dendrograms and 2D scatter 

plots of the distance matrix would be obtained, which could be analysed and compared with 

existing ones (such as those in Figure 5.2 and Figure 5.3) representing distances between users. 
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Table 5.12. Decision-making results of 18 ICU physicians in a collectively managed ICU. The probabilities of 

diverting patients, 𝑃𝑖(𝐷|𝐿𝑔), cancelling surgeries 𝑃𝑖(𝐶|𝐿𝑔), and shortening stays, 𝑃𝑖(𝑆|𝐿𝑔), are shown. Bold 

values represent the highest (red) and lowest (green) values. 

Phyisician 𝑃𝑖(𝐷|𝐿𝑔)  𝑃𝑖(𝐶|𝐿𝑔)  𝑃𝑖(𝑆|𝐿𝑔)  

Phy_1 0.4385 0.2193 0.3771 
Phy_2 0.2305 0.2581 0.4581 
Phy_3 0.2465 0.3631 0.5463 
Phy_4 0.1385 0.2364 0.5645 
Phy_5 0.1737 0.2942 0.3861 

Phy_6 0.1396 0.1744 0.5950 
Phy_7 0.5495 0.1406 0.1763 

Phy_8 0.3192 0.2431 0.3391 
Phy_9 0.1684 0.2112 0.4939 
Phy_10 0.1466 0.0587 0.6906 

Phy_11 0.2327 0.0271 0.5470 
Phy_12 0.3722 0.1798 0.2963 
Phy_13 0.3579 0.2772 0.3523 
Phy_14 0.2581 0.1008 0.3445 
Phy_15 0.2459 0.0587 0.6543 
Phy_16 0.0831 0.1376 0.5666 

Phy_17 0.2369 0.1376 0.7359 

Phy_18 0.3329 0.1760 0.5680 

 

5.3.3 Distance between observations by aggregating neighbouring 

components 

The calculation of the Euclidean or Mahalanobis distance between two observations (see 

section 5.2.2) consists of measuring the differences component by component and the 

summands involved in the definition of these distances could be permuted. That is, keeping the 

same values, any permutation of the components as long as the relative distances are 

maintained gives the same result, with Euclidean distance, Mahalanobis distance, and in 

general with all distance definitions that are defined component by component. In this section, 

we propose an extension of the Euclidean distance in which, in addition to taking into account 

the component-by-component differences in the vector of observations, we take into account 

the differences between the sums of consecutive components of the vectors. We denote these 

sums as aggregations of neighbouring components, which can be of different sizes (a size of 3 

means that three consecutive components are added together). 

We define this distance as the Euclidean-Aggregate distance (𝛿𝐸𝐴), which will allow us to 

calculate the dissimilarities from a novel point of view in which both the value and the position 

of all the components of the vector of observations will be relevant in the result. For illustrative 

purposes, an example is shown below in which the use of the classical Euclidean distance has 

weaknesses when used in specific contexts, which justifies the development of this Euclidean-

Aggregate distance. 
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Let's assume that we compare ICU management by analysing the emergency patients diverted 

at different pressure levels by the user. Let denote 𝑒𝐷𝑖 = [𝑒𝐷𝑖(𝐿1), 𝑒𝐷𝑖(𝐿2), 𝑒𝐷𝑖(𝐿3), 𝑒𝐷𝑖(𝐿4),

𝑒𝐷𝑖(𝐿5)] the vector of emergency patients diverted at each level 𝑘 of user 𝑖. We consider three 

different users with the following proposed vectors: 𝑒𝐷1 = [1, 2, 1, 1, 1], 𝑒𝐷2 = [1, 1, 2, 1, 1], 

and 𝑒𝐷3 = [1, 1, 1, 1, 2]. Applying the Euclidean distance calculation expression in equation 

(5.4), we obtain the following values for the distance between observations: 𝛿𝐸(𝑒𝐷1, 𝑒𝐷2) =

√2, 𝛿𝐸(𝑒𝐷1, 𝑒𝐷3) = √2, and 𝛿𝐸(𝑒𝐷2, 𝑒𝐷3) = √2. These results do not reflect the fact that the 

managements of users 1 and 2 are more similar to each other than with respect to user 3. 

Although in this example all three users diverted the same number of emergency patients in 

total (𝑒𝐷1 = 𝑒𝐷2 = 𝑒𝐷3 = 6), users 1 and 2 diverted the same number of emergency patients at 

similar pressure levels. (3 patients at levels 𝐿2 and 𝐿3). Applying the Euclidean-Aggregate 

distance defined in the following paragraphs, the results have the following relationship: 

𝛿𝐸(𝑒𝐷1, 𝑒𝐷2) < 𝛿𝐸(𝑒𝐷2, 𝑒𝐷3) < 𝛿𝐸(𝑒𝐷1, 𝑒𝐷3). 

Let us denote 𝑣𝑖 =  (𝑣𝑖1, … , 𝑣𝑖𝑄 ) and 𝑣𝑗 =  (𝑣𝑗1, … , 𝑣𝑗𝑄 ) the observations of two objects or 

individuals resulting from measuring one variable 𝑉 that can be disaggregated into 𝑄 ordered 

categories 𝑉1, … , 𝑉𝑄, which can be temporal or spatial values, defined levels or established 

sequences. Two weight vectors are also defined here, 𝜔 =  (𝜔1, … , 𝜔𝑄 ) and 𝛼 =  (𝛼1, … , 𝛼𝑄 ) 

with ∑ 𝜔𝑠
𝑄
𝑠=1 = ∑ 𝛼𝑘

𝑄
𝑘=1 = 1. 𝜔𝑠 is the weight assigned to the differences between the 

observed variables grouped into a set of size 𝑠. 𝛼𝑘is the weight assigned to each category or 

level 𝑘 separately. The expression of 𝛿𝐸𝐴
2 , when 𝑄 > 1, is shown in equation (5.12). Note that 

when 𝑄 = 1 then 𝛿𝐸𝐴
2 (𝑣𝑖 , 𝑣𝑗) = (𝑣𝑖 − 𝑣𝑗)

2
. 

 

𝛿𝐸𝐴
2 (𝑣𝑖 , 𝑣𝑗) =  ∑ ∑ [𝜔𝑘 ( ∑ 𝛼𝑚𝑣𝑖𝑚

𝑙+𝑘−1

𝑚=𝑙

− ∑ 𝛼𝑚𝑣𝑗𝑚

𝑙+𝑘−1

𝑚=𝑙

)

2

]

𝑄−𝑘+1

𝑙=1

𝑄

𝑘=1

+ ∑ {(𝑄 − 𝑘 − 1)𝜔𝑘 [( ∑ 𝛼𝑚𝑣𝑖𝑚

𝑘

𝑚=1

− ∑ 𝛼𝑚𝑣𝑗𝑚

𝑘

𝑚=1

)

2𝑄−1

𝑘=1

+ ( ∑ 𝛼𝑚𝑣𝑖𝑚

𝑄

𝑚=𝑄−𝑘+1

− ∑ 𝛼𝑚𝑣𝑗𝑚

𝑄

𝑚=𝑄−𝑘+1

)

2

]} 

(5.12) 

𝜔𝑠 is expected to decrease as the size of the group considered increases (𝜔𝑠 ≥ 𝜔𝑠+1). With 

𝛼𝑘, we can give more importance to some categories individually. For example, we could give 

more weight to differences observed in more demanding or important categories. In this case, 

as we are observing only one variable, the Euclidean-Aggregate distance 𝛿𝐸𝐴(𝑣𝑖 , 𝑣𝑗) =

√𝛿𝐸𝐴
2 (𝑣𝑖 , 𝑣𝑗). However, in the general case where 𝑅 variables are observed, we can apply 



66 Chapter 5 Methodologies for the analysis of decision-making in the ICU 

 

equation (5.12) for each variable 𝑟 obtaining 𝛿𝐸𝐴𝑟
2 . Then, the Euclidean-Aggregate distance 

would be calculated according to equation (5.13). Additional information on the aggregation 

of the neighbouring components in the calculation of this distance, as well as the results of the 

distances 𝛿𝐸𝐴(𝑒𝐷1, 𝑒𝐷2), 𝛿𝐸𝐴(𝑒𝐷1, 𝑒𝐷3), and 𝛿𝐸𝐴(𝑒𝐷2, 𝑒𝐷3) of the example proposed before can 

be found in Appendix F. 

 

𝛿𝐸𝐴(𝑣𝑖, 𝑣𝑗) =  √∑ 𝛿𝐸𝐴𝑟
2 (𝑣𝑖 , 𝑣𝑗)

𝑅

𝑟=1

 (5.13) 

Applying this methodology, we can calculate the Euclidean-Aggregate distance between two 

observations. In this context, we propose 3 variables (𝑅 = 3) whose values are ordered in 5-

component vectors (𝑄 = 5): 𝑒𝐷 = [𝑒𝐷(𝐿1), 𝑒𝐷(𝐿2), 𝑒𝐷(𝐿3), 𝑒𝐷(𝐿4), 𝑒𝐷(𝐿5)], 𝑠𝐶 = [𝑠𝐶(𝐿1),

𝑠𝐶(𝐿2), 𝑠𝐶(𝐿3), 𝑠𝐶(𝐿4), 𝑠𝐶(𝐿5)], and 𝑑𝑆 = [𝑑𝑆(𝐿1), 𝑑𝑆(𝐿2), 𝑑𝑆(𝐿3), 𝑑𝑆(𝐿4), 𝑑𝑆(𝐿5)]. The 

diversion of emergency patients, the cancellation of elective surgeries, and the shortening of 

stays are conditioned by the level of pressure observed when making each decision. In cases 

where the scales of the variables included are very different from each other, a normalization 

could be carried out. However, this normalization depends on each observation and is strongly 

influenced by outliers. In this context, the variables proposed for the calculation of the 

Euclidean-Aggregate distance are considered to be of the same scale, so that normalization 

would not be necessary. Regarding the two weight vectors, a first approach would be to 

consider all their components equal (𝛼𝑘 = 𝜔𝑠 = 1 𝑄⁄ ). But these values can be discussed with 

ICU practitioners to decide whether to assign more weight to high-pressure levels or to 

aggregations of neighbouring components of smaller sizes. Even for each variable 𝑟, these 

values can be different. Once all the Euclidean-Aggregate distances between each pair of users 

are calculated, it is possible to obtain the distance matrix and, from it, representing the 

appropriate dendrograms and 2D scatter plots. 

Demonstration that the Euclidean-Aggregate distance is a metric. 

The Euclidean-Aggregate distance can be expressed as a generalization of the Euclidean 

distance. We can rewrite equation (5.12) as follows: 

 

𝛿𝐸𝐴
2 (𝑥, 𝑦) = ∑ ∑ (𝑥𝑘𝑙 − 𝑦𝑘𝑙)2

𝑄−𝑘+1

𝑙=1

𝑄

𝑘=1

+ ∑(𝑥𝑘1 − 𝑦𝑘1)2

𝑄−1

𝑘=1

+ ∑(𝑥𝑘2 − 𝑦𝑘2)2

𝑄−1

𝑘=1

 (5.14) 

where, 

 𝑥𝑘𝑙 = √𝜔𝑘 ∑ 𝛼𝑚𝑣𝑖𝑚
𝑙+𝑘−1
𝑚=𝑙 . 

 𝑦𝑘𝑙 = √𝜔𝑘 ∑ 𝛼𝑚𝑣𝑗𝑚
𝑙+𝑘−1
𝑚=𝑙 . 
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 𝑥𝑘1 = √(𝑄 − 𝑘 − 1)𝜔𝑘 ∑ 𝛼𝑚𝑣𝑖𝑚
𝑘
𝑚=1 . 

 𝑦𝑘1 = √(𝑄 − 𝑘 − 1)𝜔𝑘 ∑ 𝛼𝑚𝑣𝑗𝑚
𝑘
𝑚=1 . 

 𝑥𝑘2 = √(𝑄 − 𝑘 − 1)𝜔𝑘 ∑ 𝛼𝑚𝑣𝑖𝑚
𝑄
𝑚=𝑄−𝑘+1 . 

 𝑦𝑘2 = √(𝑄 − 𝑘 − 1)𝜔𝑘 ∑ 𝛼𝑚𝑣𝑗𝑚
𝑄
𝑚=𝑄−𝑘+1 . 

Grouping all the summations and generalising the indices, the Euclidean-Aggregate distance 

can be formulated as shown in equation (5.15). Note that 𝑥 = (𝑥1, … , 𝑥𝑛) and 𝑦 = (𝑦1, … , 𝑦𝑛) 

belong to ℝ𝑛. 

 

𝛿𝐸𝐴(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 (5.15) 

Equation (5.15) is the definition of Euclidean distance between 𝑥 and 𝑦 vectors (see equation 

(5.4)). The Euclidean distance is a metric, so it is demonstrated that the Euclidean-Aggregate 

distance is also a metric. 

5.4 Analysis of ICU management over time 

There is still the possibility that the decisions made by two users may be different even if they 

have similarities in the global use of BCA (results shown in Section 5.2 and Section 5.3). Time 

is a variable that has not been taken into account so far in the analysis of the results. Assuming 

that the purpose of using the BCA is to keep a certain number of beds available for future 

patients, we propose to track over time the number of manageable beds to describe, with 

trajectories, the dynamic management of the ICU beds. That is, we compare the functions 

𝑚𝑖(𝑡). 

Figure 5.8 shows the trajectories 𝑚𝑖(𝑡) of two different physicians. The physician number 7 

prefers more control over the ICU and reserves at least 3 manageable beds most of the time in 

order not to cancel any surgeries. However, physician number 10, works on a lower level of 

manageability, which means that more new patients are admitted, with the risk of running out 

of manageable beds at certain times. This representation is consistent with the results shown in 

Table 5.1. By contrast, Figure 5.9 shows the trajectories of two physicians who were not so 

different according to Table 5.1 (physicians 1 and 12). It is observed that the evolution they 

have followed is quite different. Accordingly, global results do not fully describe how users 

manage the ICU, and it is necessary to analyse their evolution. Likewise, the evolution of mean 

manageable beds for each type of user can be represented. Figure 5.10 shows the trajectories 

obtained by Physicians, Nurses, Nurse technicians, and Residents. It can be seen that Nurse 

technicians and Nurses reserve on average more manageable beds than Physicians and 
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Residents during their management of the ICU. In particular, Residents present the lowest mean 

manageable beds and they are the only ones with no ICU experience among these four groups. 

Each of the trajectories for each type of user is listed individually in Appendix E.4. 

 

Figure 5.8. Graph showing the trajectory of the number of manageable beds of two different physicians 

(physicians 7 and 10). 

 

Figure 5.9. Graph showing the trajectory of the number of manageable beds of two similar physicians according 

to their global results (physicians 1 and 12). 
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Figure 5.10. Graph showing the trajectories of the number of manageable beds of 18 ICU physicians, 14 ICU 

nurses, 4 ICU nurse technicians, and 6 residents. 

These trajectories 𝑚𝑖(𝑡) can be compared by the distance between them. For this purpose, 

the area between two curves is calculated. The expression of this dynamic measure of distance 

(𝛿𝐷) is shown in equation (5.16): 

 

𝛿𝐷 (𝑚𝑖(𝑡), 𝑚𝑗(𝑡)) =
1

𝑛𝐵𝑇
∫|𝑚𝑖(𝑡) − 𝑚𝑗(𝑡)|

𝑇

0

𝑑𝑡 (5.16) 

where, 

 𝑛𝐵: total ICU beds. 

 𝑇: total time of the simulation in hours. 

 𝑚𝑖(𝑡): number of manageable beds in the ICU of user 𝑖 at time 𝑡. 

This calculation allows us to obtain the distances between all users and groups.  

Methodology application 

Table 5.13, for example, shows the dynamic distances between the 18 ICU physicians who 

have used the simulator. With this information, it is possible to unequivocally detect the pair 

of physicians who are most or least similar in terms of the management of the ICU manageable 

beds. Specifically, Figure 5.11 shows the two most similar physicians to each other in this 
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matter, while Figure 5.12 shows the two most different physicians. Further comparisons can 

be made here by means of representations such as dendrograms and 2D scatter plots. 

Table 5.13. Dynamic distances between the 18 ICU physicians who have used the simulator. Bold values represent 

the five lowest distances (green) and the five highest distances (red). 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 0.000 0.068 0.066 0.068 0.071 0.069 0.022 0.039 0.078 0.086 0.060 0.060 0.047 0.062 0.068 0.091 0.048 0.051 

2 0.068 0.000 0.019 0.026 0.027 0.021 0.076 0.046 0.018 0.031 0.038 0.030 0.026 0.028 0.029 0.028 0.035 0.053 

3 0.066 0.019 0.000 0.029 0.028 0.021 0.076 0.043 0.031 0.029 0.038 0.040 0.034 0.029 0.026 0.033 0.030 0.060 

4 0.068 0.026 0.029 0.000 0.034 0.026 0.078 0.048 0.026 0.021 0.049 0.037 0.028 0.033 0.023 0.035 0.038 0.059 

5 0.071 0.027 0.028 0.034 0.000 0.021 0.080 0.047 0.028 0.040 0.045 0.048 0.043 0.030 0.029 0.025 0.033 0.072 

6 0.069 0.021 0.021 0.026 0.021 0.000 0.079 0.046 0.022 0.027 0.031 0.035 0.033 0.013 0.024 0.025 0.025 0.057 

7 0.022 0.076 0.076 0.078 0.080 0.079 0.000 0.042 0.086 0.096 0.070 0.058 0.056 0.072 0.078 0.101 0.058 0.044 

8 0.039 0.046 0.043 0.048 0.047 0.046 0.042 0.000 0.058 0.063 0.059 0.051 0.037 0.048 0.045 0.068 0.037 0.067 

9 0.078 0.018 0.031 0.026 0.028 0.022 0.086 0.058 0.000 0.033 0.040 0.038 0.038 0.031 0.033 0.016 0.041 0.059 

10 0.086 0.031 0.029 0.021 0.040 0.027 0.096 0.063 0.033 0.000 0.046 0.050 0.041 0.030 0.019 0.028 0.039 0.069 

11 0.060 0.038 0.038 0.049 0.045 0.031 0.070 0.059 0.040 0.046 0.000 0.053 0.051 0.034 0.050 0.045 0.042 0.051 

12 0.060 0.030 0.040 0.037 0.048 0.035 0.058 0.051 0.038 0.050 0.053 0.000 0.023 0.039 0.041 0.052 0.043 0.030 

13 0.047 0.026 0.034 0.028 0.043 0.033 0.056 0.037 0.038 0.041 0.051 0.023 0.000 0.036 0.031 0.047 0.030 0.047 

14 0.062 0.028 0.029 0.033 0.030 0.013 0.072 0.048 0.031 0.030 0.034 0.039 0.036 0.000 0.022 0.035 0.015 0.053 

15 0.068 0.029 0.026 0.023 0.029 0.024 0.078 0.045 0.033 0.019 0.050 0.041 0.031 0.022 0.000 0.037 0.021 0.065 

16 0.091 0.028 0.033 0.035 0.025 0.025 0.101 0.068 0.016 0.028 0.045 0.052 0.047 0.035 0.037 0.000 0.049 0.074 

17 0.048 0.035 0.030 0.038 0.033 0.025 0.058 0.037 0.041 0.039 0.042 0.043 0.030 0.015 0.021 0.049 0.000 0.052 

18 0.051 0.053 0.060 0.059 0.072 0.057 0.044 0.067 0.059 0.069 0.051 0.030 0.047 0.053 0.065 0.074 0.052 0.000 

 

 

Figure 5.11. Graph showing the trajectory of the number of manageable beds of the two most similar physicians 

to each other according to their dynamic distance (physicians 6 and 14). 
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Figure 5.12. Graph showing the trajectory of the number of manageable beds of the two most different physicians 

to each other according to their dynamic distance (physicians 7 and 16). 

5.5 Analysis of patient-level decisions 

In this section, we propose an analysis of the ICU management through the decisions made by 

each user on each of the ICU patients. So we need a mathematical representation of the 

decisions to disaggregate and analyse them at the patient level. 

Let us denote 𝑁𝑃 as the total number of patients observed in the simulation by the user. The 

occupancy of the ICU changes or may change at decision times 𝑡𝑑 𝑑 = 1, … , 𝑁𝐷, where 𝑁𝐷 is 

the total number of decision-making instants (see Section 5.3.1). We define the time slot (𝜏𝑑) 

as the period between two consecutive decision times (𝜏𝑑 = 𝑡𝑑+1 − 𝑡𝑑 and 𝜏𝑁𝐷
= 𝑇 − 𝑡𝑁𝐷

). 

Let 𝛤𝑖 be the binary matrix 𝑁𝐷𝑥𝑁𝑃 of occupancy, which for each user 𝑖 is defined as: 

 
𝛾𝑖𝑑𝑙 = { 

1  𝑖𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑙 𝑖𝑠 𝑎𝑑𝑚𝑖𝑡𝑒𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝜏𝑑

0                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       

𝑑 = 1, … , 𝑁𝐷

𝑙 = 1, … , 𝑁𝑃
 (5.17) 

This matrix mathematically represents the medical decisions in the ICU. The following two 

examples attempt to clarify the definition of the occupancy matrix 𝛤𝑖. In the case that the 

scheduled surgery of patient 𝑙 is confirmed at time 𝑡𝑑, then 𝛾𝑖𝑑𝑙 = 1 even if the patient is not 

physically in the ICU until the surgery is completed. In the case that a patient 𝑙 is discharged 

at time 𝑡𝑑, then 𝛾𝑖𝑑𝑙 = 0 even if the patient does not leave the ICU immediately. Therefore, 

each row 𝑑 of the matrix 𝛤𝑖 (𝛾𝑖𝑑⦁), represents the patients virtually admitted to the ICU at time 

𝑡𝑑, that is, the patients that the user has decided to remain in the ICU or those who will be 
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admitted to the ICU. The information associated with the initial occupancy of the ICU is stored 

in the binary vector 𝑝 as shown in equation (5.18), which is the same for all users. 

 𝑝𝑙 = { 
1  𝑖𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑙 𝑖𝑠 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑙𝑦 𝑎𝑑𝑚𝑖𝑡𝑡𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝐼𝐶𝑈
0                                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   𝑙 = 1, … , 𝑁𝑃 (5.18) 

The occupancy matrix 𝛤𝑖, together with the vector 𝑝, allows the simulation performed by any 

user to be reproduced from the initial instant. All medical patient-level decisions are stored 

sequentially. The difference between the management of the ICU of two users 𝑖 and 𝑗 will be 

measured as a distance between their respective binary matrices 𝛤𝑖 and 𝛤𝑗. Numerous binary 

similarity and distance measures have been proposed in different fields to compare binary 

feature vectors. Choi et al. (2010) have collected 76 binary similarity and distance measures 

used over the last century. Here, our binary feature vector is each row 𝛾𝑖𝑑⦁ = (𝛾𝑖𝑑1, … , 𝛾𝑖𝑑𝑁𝑃
) 

of matrix 𝛤𝑖, which represents for each user 𝑖 the virtual occupancy of the ICU at time 𝑡𝑑 as 

mentioned above. To measure the distance or similarity between user 𝑖 and user 𝑗, with 

occupancy matrixes 𝛤𝑖 and 𝛤𝑗 respectively, we define the following variables that will be used 

later: 

 𝑎𝑖𝑗𝑑: the number of times that each patient 𝑙 is admitted by both user 𝑖 and user 𝑗 at time 

𝑡𝑑, see equation (5.19). 

 𝑏𝑖𝑗𝑑: the number of times that each patient 𝑙 is only admitted by the user 𝑖 at time 𝑡𝑑, 

see equation (5.20). 

 𝑐𝑖𝑗𝑑: the number of times that each patient 𝑙 is only admitted by the user j at time 𝑡𝑑, 

see equation (5.21). 

 𝑑𝑖𝑗𝑑: the number of times that each patient 𝑙 is admitted neither by user 𝑖 nor by user 𝑗 

at time 𝑡𝑑, see equation (5.22). 

 

𝑎𝑖𝑗𝑑 = ∑(𝛾𝑖𝑑𝑙 · 𝛾𝑗𝑑𝑙)

𝑁𝑃

𝑙=1

 (5.19) 

 

𝑏𝑖𝑗𝑑 = ∑[𝛾𝑖𝑑𝑙 · (1 − 𝛾𝑗𝑑𝑙)]

𝑁𝑃

𝑙=1

 (5.20) 

 

𝑐𝑖𝑗𝑑 = ∑[(1 − 𝛾𝑖𝑑𝑙) · 𝛾𝑗𝑑𝑙]

𝑁𝑃

𝑙=1

 (5.21) 
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𝑑𝑖𝑗𝑑 = ∑[(1 − 𝛾𝑖𝑑𝑙)(1 − 𝛾𝑗𝑑𝑙)]

𝑁𝑃

𝑙=1

 (5.22) 

These variables can be expressed in a 2x2 contingency table (see Table 5.14) where 𝑎𝑖𝑗𝑑 is 

the number of patients where the values of 𝛾𝑖𝑑𝑙 and 𝛾𝑗𝑑𝑙 are both 1 (or admitted), meaning 

‘admission matches’, 𝑏𝑖𝑗𝑑 is the number of patients where the value of 𝛾𝑖𝑑𝑙 and 𝛾𝑗𝑑𝑙 is (0,1), 

meaning ‘𝑖 admission mismatches’, 𝑐𝑖𝑗𝑑 is the number of patients where the value of 𝛾𝑖𝑑𝑙 and 

𝛾𝑗𝑑𝑙 is (1,0), meaning ‘𝑗 admission mismatches’, and 𝑑𝑖𝑗𝑑 is the number of patients where both 

𝛾𝑖𝑑𝑙 and 𝛾𝑗𝑑𝑙 are 0 (or not admitted), meaning ‘non-admission matches’. The diagonal sum 

𝑎𝑖𝑗𝑑 + 𝑑𝑖𝑗𝑑 represents the total number of matches between 𝛾𝑖𝑑⦁ and 𝛾𝑗𝑑⦁, the other diagonal 

sum 𝑏𝑖𝑗𝑑 + 𝑐𝑖𝑗𝑑 represents the total number of mismatches between 𝛾𝑖𝑑⦁ and 𝛾𝑗𝑑⦁. The total 

sum of the 2x2 table, 𝑎𝑖𝑗𝑑 + 𝑏𝑖𝑗𝑑 + 𝑐𝑖𝑗𝑑 + 𝑑𝑖𝑗𝑑 is always equal to 𝑁𝑃. 

Table 5.14. Contingency table representing at time 𝑡𝑑 the coincidences and discrepancies of two users 𝑖 and 𝑗 in 

patient admission decisions. 

𝛾𝑗𝑑𝑙

𝛾𝑖𝑑𝑙

 
1

 
0

 
𝑆𝑢𝑚

 

1  𝑎𝑖𝑗𝑑 𝑏𝑖𝑗𝑑 𝑎𝑖𝑗𝑑 + 𝑏𝑖𝑗𝑑 

0  𝑐𝑖𝑗𝑑 𝑑𝑖𝑗𝑑 𝑐𝑖𝑗𝑑 + 𝑑𝑖𝑗𝑑 

𝑆𝑢𝑚  𝑎𝑖𝑗𝑑 + 𝑐𝑖𝑗𝑑 𝑏𝑖𝑗𝑑 + 𝑑𝑖𝑗𝑑 𝑎𝑖𝑗𝑑 + 𝑏𝑖𝑗𝑑 + 𝑐𝑖𝑗𝑑 + 𝑑𝑖𝑗𝑑 = 𝑁𝑃 

 

Using these variables, we want to measure both the differences between decisions on patient 

admissions and the differences on the virtual occupancy that each user maintains during the 

simulation in the ICU. None of the binary similarity and distance measures reported in the 

literature captures the two aspects we want to measure. For example, the Jaccard similarity 

measure (𝑆𝐽𝑑), shown in equation (5.23) (Jaccard 1901), is very useful for measuring the degree 

of similarity between decisions made. Or the Hamming distance measure (𝐷𝐻𝑑), shown in 

equation (5.24) (Hamming 1950), can be used to detect different decisions among users. 

 𝑆𝐽𝑑(𝛾𝑖𝑑⦁, 𝛾𝑗𝑑⦁) =
𝑎𝑖𝑗𝑑

𝑎𝑖𝑗𝑑 + 𝑏𝑖𝑗𝑑 + 𝑐𝑖𝑗𝑑
 (5.23) 

 𝐷𝐻𝑑(𝛾𝑖𝑑⦁, 𝛾𝑗𝑑⦁) = 𝑏𝑖𝑗𝑑 + 𝑐𝑖𝑗𝑑 (5.24) 
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However, these measures do not reflect in the results when two users have maintained similar 

occupancy levels. To illustrate this in a very simple way, let us assume that there are only two 

patients to decide on their admission at time 𝑡𝑑. We define the following decision vectors: 

𝛾1𝑑⦁ = (1, 1), 𝛾2𝑑⦁ = (0,0), 𝛾3𝑑⦁ = (1, 0), and 𝛾4𝑑⦁ = (0, 1). Comparing user 1 with user 2, 

and user 3 with user 4, we obtain the following variables: 𝑎12𝑑 = 0, 𝑏12𝑑 = 2, 𝑐12𝑑 = 0, 𝑑12𝑑 =

0, 𝑎34𝑑 = 0, 𝑏34𝑑 = 1, 𝑐34𝑑 = 1, and 𝑑34𝑑 = 0. According to equations (5.23) and (5.24), 

𝑆𝐽𝑑(𝛾1𝑑⦁, 𝛾2𝑑⦁) = 𝑆𝐽𝑑(𝛾3𝑑⦁, 𝛾4𝑑⦁) = 0 and 𝐷𝐻𝑑(𝛾1𝑑⦁, 𝛾2𝑑⦁) = 𝐷𝐻𝑑(𝛾3𝑑⦁, 𝛾4𝑑⦁) = 2. Although it 

is true that between users 1 and 2, and between users 3 and 4 the two decisions have been 

different, the management of users 3 and 4 is more similar due to the fact that the occupancy 

of the ICU is the same. This fact is not reflected with these types of distances. 

Note that 𝑎𝑖𝑗𝑑 + 𝑐𝑖𝑗𝑑 and 𝑎𝑖𝑗𝑑 + 𝑏𝑖𝑗𝑑 represent the virtual occupancy at time 𝑡𝑑 of user 𝑖 and 

user 𝑗 respectively. Therefore, the difference in absolute value between virtual occupancies of 

users 𝑖 and 𝑗 is given by: |[𝑎𝑖𝑗𝑑 + 𝑐𝑖𝑗𝑑] − [𝑎𝑖𝑗𝑑 + 𝑏𝑖𝑗𝑑]| = |𝑐𝑖𝑗𝑑 − 𝑏𝑖𝑗𝑑| = |𝑏𝑖𝑗𝑑 − 𝑐𝑖𝑗𝑑|. So we 

propose to include this expression, together with the two Hamming distance terms, in the 

calculation of the distance at the patient-level and dividing the result by the number of observed 

patients to normalize. Equation (5.25) shows the Extended Weighted Normalized Hamming 

distance (𝐷𝐸𝑊𝑁𝐻𝑑), where 𝛽 is the weight assigned to the difference in virtual occupancy and 

1 − 𝛽 is the weight assigned to the difference in admission decisions (0 ≤ 𝛽 ≤ 1). 

 
𝐷𝐸𝑊𝑁𝐻𝑑(𝛾𝑖𝑑⦁, 𝛾𝑗𝑑⦁) =

𝛽|𝑏𝑖𝑗𝑑 − 𝑐𝑖𝑗𝑑| + (1 − 𝛽)(𝑏𝑖𝑗𝑑 + 𝑐𝑖𝑗𝑑)

𝑎𝑖𝑗𝑑 + 𝑏𝑖𝑗𝑑 + 𝑐𝑖𝑗𝑑 + 𝑑𝑖𝑗𝑑

=
𝛽|𝑏𝑖𝑗𝑑 − 𝑐𝑖𝑗𝑑| + (1 − 𝛽)(𝑏𝑖𝑗𝑑 + 𝑐𝑖𝑗𝑑)

𝑁𝑃
 

(5.25) 

The proposed distance 𝐷𝐸𝑊𝑁𝐻𝑑 allows comparing the decision-making of two users at time 

𝑡𝑑 taking into account the virtual occupancy. Now, with 𝛽 = 0.5 we obtain that 

𝐷𝐸𝑊𝑁𝐻𝑑(𝛾1𝑑⦁, 𝛾2𝑑⦁) = 1 and 𝐷𝐸𝑊𝑁𝐻𝑑(𝛾3𝑑⦁, 𝛾4𝑑⦁) = 0.5 which is consistent with the user's 

managements. Extending the calculation for all decisions times, we obtain the distance 𝛿𝐸𝑊𝑁𝐻 

that measures the observed differences between all users' decisions in the simulation. Equation 

(5.26) shows the calculation of 𝛿𝑃, in which time is indirectly taken into account. Differences 

in patient decisions persist over time and are directly proportional to the duration of the 

corresponding time slot 𝜏𝑑. The result is then divided by the total time 𝑇 of the simulation to 

normalise. 
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𝛿𝐸𝑊𝑁𝐻(𝛤𝑖 , 𝛤𝑗) =
1

𝑇
∑ 𝜏𝑑

𝛽|𝑏𝑖𝑗𝑑 − 𝑐𝑖𝑗𝑑| + (1 − 𝛽)(𝑏𝑖𝑗𝑑 + 𝑐𝑖𝑗𝑑)

𝑁𝑃

𝑁𝐷

𝑑=1

=
1

𝑇
∑ 𝜏𝑑𝐷𝐸𝑊𝑁𝐻𝑑(𝛾𝑖𝑑⦁, 𝛾𝑗𝑑⦁)

𝑁𝐷

𝑑=1

 

(5.26) 

As in the previous sections, once the distances at the patient-level between all users are 

calculated, the distance matrix can be obtained. The analysis would then continue by 

representing these distances with dendrograms and 2D scatter plots. 

Deceased patients during the simulation 

The decease of a patient is not considered as one of the BCA that the user uses to manage the 

ICU, as it is not part of the decision-making. Therefore, the times in which patients decease are 

not included in the decision-making times 𝑡𝑑. However, when a patient deceases, the bed 

occupancy decreases, and this has to be taken into account in the calculation of the distance at 

the patient-level. 

Let us consider a patient 𝑙 who deceases at time 𝑡𝑝 ∈ (𝑡𝑑 , 𝑡𝑑+1) during the simulation of the 

user 𝑖. Then 𝛾𝑖𝑑𝑙 = 1 and 𝛾𝑖(𝑑+1)𝑙 = 0, but the change in value from 1 to 0 occurs at time 𝑡𝑝 

and not at time 𝑡𝑑+1. Therefore, the summand with index 𝑑 in equation (5.26) has to be 

separated into 2, a first one calculating the differences over the period from 𝑡𝑑 to 𝑡𝑝 and a 

second one for the period from 𝑡𝑝 to 𝑡𝑑+1. Equation (5.27) shows the summation term 𝑑 to be 

substituted into equation (5.26) when in only one of the simulations of user 𝑖 or user 𝑗 the 

patient 𝑙 deceases between time 𝑡𝑑 to 𝑡𝑑+1. If in that period the patient 𝑙 deceases in the 

simulations of both users, the expression in equation (5.26) is still valid. 

 
(𝑡𝑝 − 𝑡𝑑)

𝛽|𝑏𝑖𝑗𝑑 − 𝑐𝑖𝑗𝑑| + (1 − 𝛽)(𝑏𝑖𝑗𝑑 + 𝑐𝑖𝑗𝑑)

𝑁𝑃

+ (𝑡𝑑+1 − 𝑡𝑝)
𝛽|𝑏𝑖𝑗𝑑 − 𝑐𝑖𝑗𝑑 + 휀| + (1 − 𝛽)(𝑏𝑖𝑗𝑑 + 𝑐𝑖𝑗𝑑 − 1)

𝑁𝑃
 

(5.27) 

where 휀 = −1 if the patient 𝑙 only deceases in the simulation of user 𝑖 and 휀 = 1 if the patient 

𝑙 only deceases in the simulation of user 𝑗. Note that if patient 𝑙 does not decease in the 

simulation of user 𝑖, it means that he or she has not been admitted in the ICU (because deceases 

are predetermined), so 𝛾𝑖𝑑𝑙 = 𝛾𝑖(𝑑+1)𝑙 = 0 in that case. 

5.6 Discussion and future work 

In this chapter, we develop new methodologies enabling us to compare the way an ICU is 
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managed. To supplement the global evaluation criteria such as the number of diverted 

emergency patients, cancelled surgeries, and shortened stays, we define new metrics to measure 

the use of these BCA conditional to the ICU pressure level. We also propose distance measures 

that take into account ICU bed management dynamics and patient-level decisions. 

This is possible thanks to an interactive tool such as a MFS of an ICU (see Chapter 4), which 

has been used by different user profiles. This ICU simulator saves all the decisions of each user 

and the situations in which they are taken. It is also important to highlight the participation of 

the ICU practitioners in this type of initiative, since their results enable us to develop 

appropriate methodology to reflect their different ways of managing the ICU and show how 

they vary. 

The developed methodology can be extended in future research. It might be very interesting, 

for example, to compare the decisions made by a single user of the ICU simulator on separate 

occasions. This would make it possible to check whether, by using the simulator, the user is 

able to improve the outcomes of his or her decisions. Also, by detecting discrepancies in their 

own decisions, users can identify situations in which a decision was taken without full 

conviction, examine the details and reach a definitive decision. 

Other lines of research that remain open are the detection of dilemma-inducing scenarios and 

patients. In other words, detecting which situations in the ICU lead to greater discrepancy 

between medical decisions or which patients generate a greater variety of opinion, in terms of 

their admission, for example. However, it must be taken into account that, from the first 

discrepancy between two users, the scenarios that result in each case are different, and the 

decisions made are not exactly the same. 

Finally, the next objective is to obtain and implement practical conclusions in reality. In 

collaboration with the hospital, we can gather further results and conduct a more 

comprehensive study with more data. A more detailed clustering analysis will enable us to 

deduce which kind of ICU management patterns will potentially lead to discussions at the 

clinical level. Mallor et al. (2016) identify different management policies (aggressive, 

equitable, and cautious) in a normative analysis of decision-making using stochastic 

optimization methods. Physicians' behaviour could be classified according to these or similar 

policy categories. In summary, our purpose is to use the simulator to collect ICU management 

data enabling us to test theories about physicians’ decision-making, analyse triage processes, 

and detect biases and patterns. 
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6 Forecasting the needs of ward and ICU beds 

in the COVID-19 pandemic 

This chapter presents a Discrete Event Simulation (DES) model combining dynamic 

forecasting to predict (simulate) new patient arrivals and the reproduction of patient flow 

patterns and designed to address all the issues just raised. The simulation process yields future 

resource-use scenarios to inform the health authorities of future needs and give them time to 

plan. Therefore, the main feature of the simulation model presented here is its capacity to 

reproduce the evolution of the health system from its current state, in a non-stationary and 

changing environment, thus providing a useful forecasting tool. 

The main contribution of this chapter is our proposal for a new simulation framework 

enabling short-term (from days to a few weeks) prediction of critical resource needs for the 

care of COVID-19 patients. The simulation framework can be adapted for application in 

potential future outbreaks. 

This chapter is organized as follows. Section 6.1 offers a review of related literature dealing 

with the use of quantitative methods for the prediction and efficient management of health care 

system requirements. Section 6.2 studies the adequacy of Population Growth (PG) models to 

predict the spread trend of a pandemic. The modelling of patient flow through the hospital is 

presented in Section 6.3. The structure of the DES model and the methodology used to set up 

the simulation are included in Section 6.4. In Section 6.5 we propose a new estimator that, 

based on an Expectation-Maximization (EM) algorithm, estimates the branching probabilities 

using information from patients who do not yet know which path they will follow, as well as 

the parameters of the length of stay (LoS) probability distributions. The estimation method is 

based on the maximum likelihood method and uses exact and censored data. The new 

estimators are tested in Section 6.6 by simulating pandemic scenarios and compared with other 

estimators that make use of complete information only. Finally, Section 6.7 ends the chapter 

with the conclusions of this work. 
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6.1 The use of simulation models in hospital management 

Simulation is one of the most suitable analytical tools for the analysis of complex systems, such 

as healthcare systems, as reflected in numerous specialist articles describing the use of 

simulation models for decision-making in the healthcare context. DES has been used to model 

and analyse all aspects of logistics management in healthcare, particularly the improvement of 

patient flow management, bed-planning, waiting list management, health service design, 

medical staff scheduling, etc. For reviews of the use of simulation models in healthcare, see 

Brailsford et al. (2009), Günal and Pidd (2010), Katsaliaki and Mustafee (2011), and 

Mielczarek and Uziałko-Mydlikowska (2012). These simulation models usually focus on 

studying the stationary state of the health system to support strategic decisions for resource 

sizing or management policy design purposes. 

The ultimate goal of these models is to match resource availability with demand in order to 

provide high-quality patient care while maintaining adequate human and technological 

resource provision. Some of the problems analysed in this framework are patient flow (Shahani 

et al. 2008; Kolker 2009), bed planning (Ridge et al. 1998; Zhu et al. 2012; Rodrigues et al. 

2018), health service design (Mallor et al. 2016), and medical staff scheduling (Erhard et al. 

2018), among others. Despite reports in the medical literature of discrepancies between 

assumptions in mathematical simulation models and the behaviour of real healthcare systems 

(Azcarate et al. 2020), there is no doubt about the usefulness of simulation models for the 

analysis of relevant problems in complex healthcare systems. 

However, simulation not only helps to ensure the highest quality healthcare in terms of staff 

and facilities, it also improves the delivery of best practice. Since the pandemic began, all 

national governments and the World Health Organization (WHO) have extensively used 

simulation modelling to identify the best strategies for reducing the impact of COVID-19. 

Currie et al. (2020) identify challenges from this disease and discuss how simulation modelling 

can help decision-makers to make the best informed decisions. 

The accuracy of a simulation model for the prediction of resource needs during a pandemic 

is dependent upon the design of an accurate model to forecast patient arrivals at the health 

facility. Most infectious disease prediction methods rely on differential equation models based 

on population dynamics (Grassly and Fraser 2008; Brauer and Castillo-Chavez 2012). These 

mathematical models are essential for understanding the course of the epidemic and planning 

effective control strategies (Anderson and May 1991; Diekmann and Heesterbeek 2000; 

Hethcote 2000). One of the most widely used models of human-to-human transmission is the 

SIR model (Kermack and McKendrick 1927). Members of the population are sorted into 

different status categories: S (Susceptible), I (Infected), and R (Remove). The portion of 

population in each state is calculated over time by estimating the rate of transition from one 

state to another. With more complex model specifications, it is possible to recreate the spread 

of a specific epidemic. Extensions of the classical SIR model (Anastassopoulou et al. 2020; 
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Giordano et al. 2020; Lin et al. 2020; Zhou et al. 2020; Casella 2021), as well as stochastic 

transmission models (Hellewell et al. 2020; Kucharski et al. 2020) have indeed  been developed 

for the COVID-19 pandemic. However, such models are complicated and need strong 

assumptions and simplifications, because they are based on a set of differential equations with 

initial conditions and a number of adaptive parameters (Xia et al. 2009; Li et al. 2014; Magal 

et al. 2016; Li and Zhang 2017). Reliable values of those parameters only become available at 

the end of the pandemic and they depend on non-pharmaceutical interventions dictated by 

political decisions. There is also a need for other mathematical models that can be adapted to 

daily pandemic data. 

PG models provide a simpler alternative for modelling the number of cumulative positive 

cases, hospitalizations and other pandemic variables. Growth curves are used in a wide range 

of research areas, such as fishery research (Oliveira Zardin et al. 2019; Oribe-Pérez et al. 2020), 

biology (Sun et al. 2020), or other infectious disease outbreaks (Horimoto et al. 1997; Roberts 

and Saha 1999; Viboud et al. 2016; Ghazvini et al. 2019). Specifically, Logistic, Gompertz, 

Rosenzweig, and Richards models have been used to model the spread of outbreaks such as 

A/H1N1 and Ebola in (Liu et al. 2015). The COVID-19 research has produced several papers 

describing the development of a growth model to predict new cases in countries such as China 

(Shen 2020), India (Malavika et al. 2021), Spain (Sánchez-Villegas and Daponte Codina 2020), 

and other European countries (Cássaro and Pires 2020). These mathematical models present a 

set of mathematical equations including adaptive parameters that can be determined 

numerically based on available real data (Panovska-Griffiths 2020). The model can be used 

daily (by updating the number of positive cases) and automatically adapted to individual 

parameter trends. 

If all the mathematical models mentioned in the previous paragraphs could be fitted to real 

data, it would be possible to obtain an accurate prediction of  what might happen in the future 

(e.g., emergency planning, resource allocation) (He et al. 2020; Poston et al. 2020; Steinberg 

et al. 2020). This is very important; especially for typically scarce hospital resources, such as 

Intensive Care Unit (ICU) beds. Manca et al. (2020) present and discuss a few regression 

models built on historical ICU admissions and patient death data during the COVID-19 

pandemic. They are capable of reproducing the bed occupancy curve using regression models 

with great potential for decision-making and emergency planning in future pandemics. 

In recent decades, moreover, healthcare simulation models using advanced technology have 

become a new experience-based learning support (Almagooshi 2015; Persson 2017) enabling 

healthcare professionals to acquire new cognitive, technical, and behavioural skills. Before 

working in real-world patient treatment scenarios, both professionals and students can benefit 

from this experience-based form of learning in a risk-free decision-making environment 

(Palominos et al. 2019). Simulation models of the type presented in this chapter also enable 

training in the management of health care services during emergencies. When resources are in 

short supply, one of the most critical decisions is how to allocate them to patients, especially 
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when they can mean the difference between survival and death, as is the case with ICU patients. 

This triage becomes even more difficult during pandemics, when resources are stretched even 

further. Different ICU triage protocols for use in pandemics have been suggested in Cheung et 

al. (2012), Christian et al. (2014), and Zhang et al. (2020). Forecasting bed demands is essential 

to avoid ethical dilemmas (Azcarate et al. 2020; Garcia-Vicuña et al. 2020b). According to 

Utley et al. (2011), “the impact of triage is dependent on the level of demand and on the scale 

of achievable differences between included and excluded groups in terms of anticipated LoS 

and critical care survival”. A simulation model can improve critical resource planning during 

a pandemic; and can be used as an off-line learning tool to test new triage protocols, which are 

not always as effective as might be desired, and other hard-to-anticipate factors must be 

considered. 

6.2 Modelling the patient arrival pattern with the 

Gompertz model 

In this section, we discuss the adequacy of PG models for case prediction purposes. First, we 

perform a statistical comparison of four different models for their suitability. We then describe 

the use of the Gompertz PG model to simulate daily hospitalization series. 

6.2.1 Population growth models 

The simulation model needs to generate the daily patient arrivals to the hospital(s), which is a 

non-stationary process highly dependent on the number of positive (active) cases in the 

population. A compartmentalized epidemiological model, such as the SEIR model, enables 

analysis of the spread of the disease throughout a population. It models transition dynamics 

between four different states of a population: susceptible (S), exposed (E), infective (I), and 

recovered (R). The model depends on epidemiological parameters such as the infection rate 

(the number of people that an infective person infects per day), the disease latent time (the lag 

between contact with an infected person and the appearance of symptoms), the recovery rate, 

and the death rate. The basic SEIR model has been extended to categories such as the protected 

(P) and the quarantined people (Q) (Godio et al. 2020) and other case detection and symptom 

statuses, up to a total of eight or more compartments (Giordano et al. 2020). Stochastic 

transmission models have also been considered (Kucharski et al. 2020). All these extensions 

add details to the model but also more complexity, which does not necessarily mean greater 

forecasting reliability, since it increases the number of model parameters to be estimated (Roda 

et al. 2020). Roda et al. (2020) demonstrate a linkage between the transmission rate and the 

case-infection ratio, resulting in a continuum of best-fit parameter values. These can produce 

significantly different predictions for the epidemic: the hallmark of a non-identifiability 

problem. These difficulties motivated us to consider parametrically parsimonious models, such 
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as the PG type, which are able to generate curves of the shapes generally associated with 

pandemic variables (positive (active) cases, hospitalizations, deaths): monotonic, humped, and 

S-shaped. Rypdal and Rypdal (2020) found that PG models are obtained from the SIR model 

by making reasonable assumptions about the SIR parameter trends over time. 

Examples of growth models found in the literature include the Gompertz (Gompertz 1825), 

the Richards (Richards 1959), the Stannard (Stannard et al. 1985), and the Logistic model 

(Ricker 1979). They all start with exponential growth but each has a specific, gradually 

decreasing growth rate. All produce S-shaped curves describing the evolution of pandemic 

variables departing from one or a few initial cases, growing initially at an exponential rate 

before reaching a plateau, and then decreasing to zero when the pandemic expires. The 

equations describing the number of cases in population 𝑦, at time 𝑥, take the following form: 

Gompertz: 𝑦(𝑥) = 𝑎 · exp[−exp(𝑏 − 𝑐𝑥)] (6.1) 

Logistic: 𝑦(𝑥) =
𝑎

[1 + exp(𝑏 − 𝑐𝑥)]
 (6.2) 

Richards: 𝑦(𝑥) = 𝑎{1 + 𝑣 · exp[𝑘(𝜏 − 𝑥)]}(−1 𝑣⁄ ) (6.3) 

Stannard: 𝑦(𝑥) = 𝑎 {1 + exp [−
(𝑙 + 𝑘𝑥)

𝑝
]}

(−𝑝)

 (6.4) 

We carried out two statistical analyses to elucidate the adequacy of PG models for 

representing and predicting the evolution of the pandemic caused by the SARS-CoV-2 virus. 

The first analysis evaluates the capacity of the four PG models to fit complete sets of real 

positive case data registered in the 20 most-affected countries during the first wave of the 

pandemic (as recorded in Worldometer on June 15, 2020). The results included in Appendix 

G.1 show that, measuring the fit quality by the Mean Absolute Errors (MAE), the Gompertz, 

Richards, and Stannard models have similar goodness of fit; and with all three outperforming 

the Logistic model. These results are consistent with Rypdal and Rypdal (2020) who found that 

the COVID-19 related death rate curves of most countries are well described by the Gompertz 

growth model. The cumulative positive case, hospitalization and death curves have similar 

shapes because they are all scaled by the factor 𝑠, and translated by the factor 𝑡. 

 𝑦ℎ(𝑥) = 𝑠ℎ𝑦𝐼(𝑥 − 𝑡ℎ) (6.5) 

 𝑦𝑑(𝑥) = 𝑠𝑑𝑦𝐼(𝑥 − 𝑡𝑑) (6.6) 

where 𝑦𝐼, 𝑦ℎ, 𝑦𝑑 are the cumulative series of positive cases, hospitalizations and deaths, 

respectively; 𝑠ℎ, 𝑠𝑑 are the scaling factors for hospitalizations and deaths, respectively, and 𝑡ℎ, 

𝑡𝑑 are the time lags between infection and hospitalization, and infection and death, respectively. 

https://www.worldometers.info/coronavirus/
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The second statistical analysis is designed to test the short-medium term predictive capacity 

of the PG models. For each of the 20 countries used in the first statistical analysis, the data up 

to the day on which cases exceed 25%, 40%, and 65% of the total cases registered at the end 

of the pandemic wave are used to predict the cases for the following successive 5, 10 and 15 

day horizons. Thus, nine prediction exercises are performed for each country and each PG 

model. The prediction of the fitted curves for the next 5, 10, and 15 days is assessed by 

calculating the MAE. The results included in Appendix G.2 show that the Gompertz model 

surpasses the predictive capacity of the other PG models, outperforming them in all nine cases, 

and being equalled by the Richards and Stannard models in only four. 

Our statistical analysis supports the use of the Gompertz for modelling series of cumulative 

hospitalizations. The parameters of the original equation of this model, presented above, are 

more suited to mathematical than biological interpretation, like most equations describing 

sigmoidal growth curves. Therefore, before using it in our modelling, some transformation will 

aid interpretation of the curve. Zwietering et al. (1990) rewrite the Gompertz growth model as 

shown in equation (6.7). 

 
𝐺(𝑡) = 𝐴exp (−exp (

K𝑒

𝐴
(𝐷 − 𝑡) + 1)) (6.7) 

where, 

 𝑒 = exp(1) 

 𝐺(𝑡) is the cumulative number of hospitalizations up to time 𝑡. 

 𝐴 is a growth model parameter corresponding to the total number of hospitalizations at 

the end of the outbreak. It is the upper asymptote of the curve. 

 𝐾 is the absolute growth rate of the curve at its inflection point. 

 𝐷, known as the lag time, is the time at which 𝐺(𝑡) = 𝐴𝑒𝑥𝑝(−𝑒), which means that it 

always occurs at the same percentage (6.6%) of the upper asymptote. This value is less 

intuitive than either of the others. 

Suppose we are at pandemic day 𝑛 + 1 and have recorded and denoted by ℎ(𝑡), 𝑡 =

−𝑛, … , −1 the number of hospitalizations at day 𝑡 and by 𝐻(𝑡) the cumulative number of 

hospitalizations 𝐻(𝑡) =  ∑ ℎ(𝑖)𝑡
𝑖=−𝑛 , 𝑡 = −𝑛, … , −1. Using these data, the Gompertz growth 

model parameters 𝑝 = (𝐴, 𝐾, 𝐷) are estimated by minimizing the sum of the squared errors 

(SSE). The estimated parameter vector is denoted by �̂� = (�̂�, �̂�, �̂�) and the Gompertz model 

by 𝐺�̂�(𝑡). The values of 𝐺�̂�(𝑡) are used to predict the expected number of hospitalizations for 

the current and following days, 𝑡 = 1, … , 𝑇, as required by the simulation methodology 

described in the following subsection. 
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6.2.2 Simulation of the patient arrival pattern 

Once the curve 𝐺�̂�(𝑡) is fitted to the hospitalization data 𝐻(𝑡), 𝑡 = −𝑛, … , −1 of a certain 

region up to the present day, it is used to predict and simulate the number of new 

hospitalizations for each of the following days  𝑡 = 1 … , 𝑇. The function argument 𝑡 is 

continuous and we will assume that 𝑡 = 0 represents both the end of the last day of recorded 

hospitalizations and the start of the current day. Therefore, 𝑡 = 1 is the time at which the current 

day ends. 

The simulation procedure is summarized in the following four steps: 

1. Fit the Gompertz curve to cumulative hospitalization data series (e.g. by using the 

least squares method). Record the estimated parameter vector �̂� = (�̂�, �̂�, �̂�) and its 

covariance matrix 𝜮�̂�. 

2. Simulate a parameter vector 𝒑 = (𝐴, 𝐾, 𝐷) from the Multivariate Normal distribution 

𝑁(�̂�, 𝜮�̂�). 

3. Calculate the expected number of arrivals 𝑁(𝑡) for day 𝑡, 𝑡 = 1, … , 𝑇, where 𝑡 = 1 

represents the current day (start of the simulation) and 𝑇 is the simulation horizon. Use 

the Gompertz curve 𝐺𝑝(𝑡) with parameters 𝒑 to calculate 𝐸(𝑁(𝑡)) = 𝐺p(𝑡) −

𝐺p(𝑡 − 1). 

4. Simulate the number of hospitalizations, for each day 𝑡, 𝑡 =  1, … , 𝑇, in the future, 

as observations from a Poisson distribution with mean 𝜆(𝑡) = 𝐸(𝑁(𝑡)): 

 
𝑃(𝑁(𝑡) = 𝑘) =

𝑒−(𝜆(𝑡))(𝜆(𝑡))
𝑘

𝑘!
       𝑡 = 1, … , 𝑇 (6.8) 

5. Repeat steps 2-4 as many times as necessary for the different hospitalization sequences 

to be simulated. 

This simulation procedure takes into account both variability due to uncertainty in the 

estimation of the Gompertz parameters and variability in hospital arrival numbers around the 

mean. Figure 6.1 illustrates the four steps. The upper-left hand corner of the graph shows the 

Gompertz model (green curve) fitted to the available data (black dots); the point estimator �̂� 

and the covariance matrix 𝜮�̂� are used in the second step to sample a parameter vector 𝒑. The 

upper-right hand corner of the graph shows the Gompertz curves associated with parameter 

vectors 𝒑 in a tolerance region obtained from the multivariate normal distribution (Dong and 

Mathew 2015), using equation (6.9). 

 𝑅 = {𝒑| (𝒑 −  �̂�)′𝜮�̂�
−1(𝒑 −  �̂�) ≤ 𝜒3

2(𝑞)} (6.9) 
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where 𝜒3
2(𝑞) denotes the 𝑞𝑡ℎ percentile of a chi-square distribution with 𝑑𝑓 = 3. Clearly, 𝑅 

is the central 100𝑞% region of the multivariate normal distribution 𝑁(�̂�, 𝜮�̂�). 

Each parameter vector 𝒑 in the region 𝑅 is associated with a Gompertz curve 𝐺𝑝(𝑡) (shown 

in the lower left hand corner of Figure 6.1) compatible with the observed data (and different 

from 𝐺�̂�(𝑡)). This Gompertz curve 𝐺𝑝(𝑡) provides the expected number of hospitalizations 

among simulated arrivals generated by sampling from a Poisson distribution. A sequence of 

trajectories with the simulated number of hospitalizations for future days 𝑡 = 1, … , 𝑇 (shown 

in the lower right hand corner of Figure 6.1) is obtained by replicating the sampling of a vector 

𝒑, the calculation of the expected number of future arrivals 𝜆(𝑡), 𝑡 = 1, … , 𝑇, from the 

Gompertz curve 𝐺𝑝(𝑡), and the simulation of simulated arrivals 𝑁(𝑡), 𝑡 = 1, … , 𝑇, from the 

Poisson distribution. The Gompertz curve is refitted after every new observation and the 

simulation of future arrivals is carried out again following steps 1 to 5. 

 

Figure 6.1. The simulation procedure for the patient arrival pattern. Steps 2-4 are replicated as often as necessary 

for the different patient arrival and hospitalization sequences to be simulated. 

6.2.3 New parametrization of the Gompertz growth model 

In this subsection, we introduce a new parameterization easier to interpret and to use for 

creating pandemic scenarios over which running hospital offline simulation models. The new 

parameterization depends on three parameters that reflect the size, the temporal spread, and the 

temporal location of the pandemic. 
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The original equation of the Gompertz model, proposed in (Gompertz 1825), was rewritten 

in (Zwietering et al. 1990) to ease the biological interpretation of its parameter, see equation 

(6.7) shown in the Section 6.2.2. In the context of a pandemic mathematical modelling, 

parameter 𝐴 has a clear meaning: the total number of infected persons or the total number of 

hospitalized patients at the end of the pandemic wave, when the Gompertz curve is used to 

model the series of new positive cases or the hospitalization process, respectively. However, 

the parameter 𝐾 has no intuitive meaning, and health managers may have difficulties in 

assigning a value to it in order to create an “artificial” pandemic. To overcome this difficulty 

we propose to replace the parameter 𝐾 by other parameter linked with the duration of the 

pandemic wave. The new parameterization is obtained from equation (6.7) by calculating the 

percentile 𝑡𝑝 (𝐺(𝑡𝑝) = 𝑝𝐴) as 𝑡𝑝 = 𝐺−1(𝑝𝐴): 

 𝑡𝑝 = 𝐷 −
𝐴

K𝑒
[ln(− ln(𝑝)) − 1] (6.10) 

Let us denote by 𝑇𝑝1,𝑝2
 the elapsed time between percentiles 𝑡𝑝1

 and 𝑡𝑝2
. 

 𝑇𝑝1,𝑝2
= 𝑡𝑝2

− 𝑡𝑝1
=

[−ln(− ln(𝑝2)) + ln(− ln(𝑝1))]

𝑒

𝐴

K
=

𝐶𝑝1,𝑝2

𝑒

𝐴

K
 (6.11) 

Where, 𝐶𝑝1,𝑝2
 is a constant that depends on proportions 𝑝1 and 𝑝2. Then, the parameter 𝐾 is 

equal to 𝐾 = 𝐶𝑝1,𝑝2
𝐴 (𝑒𝑇𝑝1,𝑝2

)⁄ , and substituting in equation (6.7), we obtain: 

 𝐺(𝑡) = 𝐴exp (−exp (
𝐶𝑝1,𝑝2

𝑇𝑝1,𝑝2

(𝐷 − 𝑡) + 1)) (6.12) 

To simplify this expression, we consider the length of the interval time associated to the 

central proportion 𝛼 of cases, that is, proportions 𝑝1 and 𝑝2 are defined as 𝑝1 = 𝛼 2⁄  and 𝑝2 =

1 − 𝛼 2⁄  to get the constant 𝐶𝑝1,𝑝2
= 𝐶𝛼 and the parameter 𝑇𝑝1,𝑝2

= 𝑇𝛼. With 𝛼 = 0.1, we 

obtain 𝐶𝛼 ≅ 4.0674 and the Gompertz curve is: 

 𝐺(𝑡) = 𝐴exp (−exp (
4.0674

𝑇0.1

(𝐷 − 𝑡) + 1)) (6.13) 

This new parameterization determines the Gompertz curve by setting the total number of 

cumulative cases at the end of the outbreak, the duration of the wave, and the time at which 

6.6% of the total cases are reached. Therefore, giving values to parameters 𝐴, 𝑇0.1, and 𝐷, from 

equation (6.13), custom curves can be obtained in order to recreate an outbreak. Figure 6.2 

shows nine different scenarios generated from the combination of the three parameters. In each 

row of graphs, two of the three parameters are held constant. Parameter 𝐴 is modified in the 

first row, 𝑇0.1 in the second one, and 𝐷 in the third one. Note that the parameter 𝐷 affects only 

the displacement of the curve on the 𝑡-axis. Therefore, only two parameters need to be 

manipulated to modify the shape. 
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Figure 6.2. Nine Gompertz curves generated by fixing the three parameters of Equation (6.13). In the first row of 

the graphs, the parameter 𝐴 is varied (𝐴 = 2000, 20000, and 100000). As 𝐴 increases, the horizontal upper 

asymptote of the curve increases. In the second row, the value of 𝑇0.1, which controls the duration of the wave, is 

modified (𝑇0.1 = 30, 60, and 75). Finally, in the third row, the parameter 𝐷 is modified (𝐴 = 10, 30, and 50), 

which allows to move the Gompertz curve on the x-axis. 

6.3 Modelling the patient flow 

This subsection focuses on modelling patient flow through the health system. First, we describe 

the possible patient pathways through the hospital, and then explain how the LoS of each 

patient is modelled. 

6.3.1 Hospital patient pathway 

COVID-19 patients can access the health system in a variety of ways: following diagnosis with 

COVID-19 in a primary healthcare facility, hospital emergency department, or nursing home; 

or after undergoing a SARS-CoV-2 test control (such as a Polymerase chain reaction (PCR) 

test), etc. Depending on the severity of his/her condition, the person is admitted to the health 

care system as a COVID-19 patient, either in a hospital ward or directly in the ICU. 

The COVID-19 patient pathway through the hospital is the same as for other hospital patients, 

but, due to the highly contagious nature of the virus, COVID-19 patients require dedicated 

resources and cannot be mixed with other patients. Figure 6.3 shows the patient flow through 

the health system, highlighting the transitions between the hospital ward and the ICU (the 

variables and the probabilities that appear are defined in Section 6.3.2). Patients can be 
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admitted either to the ICU or first to a hospital ward with potential transfer to the ICU if their 

condition deteriorates. Discharge from a ward can follow either death or a health improvement. 

Patient transfers from the ICU to a hospital ward occur after a health improvement. 

 

Figure 6.3. Representation of COVID-19 patient flow in the health system. 

6.3.2 Stochastic modelling of hospital LoS 

The following variables are used to model LoS in the hospital: 

 𝑋, the LoS in the hospital ward of a patient not needing ICU. 

 𝑌, the LoS of a patient in the ICU. 

 𝑍, time spent by a patient in the hospital ward before transfer to the ICU (applies only 

to patients transferred to the ICU from the hospital ward). 

 𝑄, the LoS of a patient in the hospital ward after being discharged from the ICU. 

The following probabilities determine the patient-pathway through the healthcare facilities: 

 𝑝𝐼, the probability of direct admission to ICU upon arrival. 

 𝑝𝑊𝐼, the probability of a patient initially admitted to a ward requiring transfer to ICU. 

 𝑝𝐼𝑊, the probability of patient transfer from ICU to a ward. Then, 1 − 𝑝𝐼𝑊 is the 

probability of death in the ICU. 

Then, the probability of ICU requirement is 𝑝𝐼+(1 − 𝑝𝐼)𝑝𝑊𝐼. 

As the pandemic progresses and more COVID-19 patients need hospitalization, the new data 

collected from these patients can be used to update the probability distribution parameters 

estimates and patient pathway probabilities. Given that only a small percentage of ward 

admissions and an even smaller percentage of ICU admissions have been discharged after a 

few weeks from the start of the outbreak, the associated information on most of them is partly 

unknown, that is, they constitute censored data. For example, a patient admitted to the ICU 10 

days ago provides an ICU LoS datum 𝑦 such that 𝑦 > 10. 
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This motivates us to perform daily updates of the distribution parameters and probabilities 

by adding the fresh data, thereby enlarging the sample size, reducing the degree of censorship 

bias and ultimately obtaining more accurate parameter estimates. The parameter estimation is 

done by the maximum likelihood method. For example, for the estimation of 𝜃𝑌, the parameter 

vector of the distribution function of variable 𝑌 is performed by maximizing the following 

likelihood function: 

 
𝐿𝑌(𝜃𝑌|𝑦(𝑡)) = ∏ 𝑓𝜃𝑌

(𝑦𝑖)

𝑛𝑌

𝑖=1

∏ (1 − 𝐹𝜃𝑌
(𝑦𝑖

∗))

𝑛𝑌∗

𝑖=1

→ 𝜃𝑌 = arg max
𝜃𝑌

𝐿𝑌(𝜃𝑌|𝑦(𝑡)) (6.14) 

where, 

 {𝑦𝑖 , 𝑖 = 1, … , 𝑛𝑌} is the set of exact value observations, that is, those corresponding to 

the LoS of patients now discharged from the ICU, and 𝑓𝜃𝑌
(𝑦𝑖) is the density function. 

 {𝑦𝑖
∗, 𝑖 = 1, … , 𝑛𝑌∗} is the set of censored values, that is, those corresponding to the LoS 

of patients remaining in the ICU at the time of the statistical analysis, and 𝐹𝜃𝑌
(𝑦𝑖) is 

the cumulative distribution function. 

The use of probability plots and statistics as Anderson-Darling facilitates identification of the 

parametric probability distribution family that best fits the data. The parameters of the selected 

probability distribution family are estimated by the maximum likelihood method. Weibull and 

Lognormal distribution families have proved to be good probability models for LoS variables, 

as will be shown in Chapter 7. 

At the beginning of a new pandemic, there is insufficient understanding of the disease and 

possibly no known effective treatment, as was the case with the COVID-19 outbreak. As 

medical and biological research progresses, the discovery of new drugs and therapeutic 

protocols improves patient care and alters lengths of stay in hospital wards or ICUs. This 

observation reinforces the need to gather every possible new piece of patient admission and 

discharge data for use in updating estimated distribution parameters and branching 

probabilities. 

6.4 The discrete event simulation model 

In this section, we present the mathematical modelling of hospital dynamics using a DES 

model. We pay attention to starting the simulation from the current state of the health system, 

which is one of the distinguishing features of this application of healthcare system simulation 

modelling. 
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6.4.1 Entities, state variables, and events 

DES models create moving entities that are transformed by several processes until they exit the 

modelling system. In the health care system that concerns us, the entities are the COVID-19 

patients and the processes are the health care received in the hospital ward and/or ICU. The 

system is described by a set of state variables, which provide at any time a complete 

representation of the simulated system, and the set of events, which modify the value of the 

state variables. The simulation model represents patient flow through the different 

hospitalization routes; that is, the area enclosed by dashed lines in Figure 6.3. In this subsection, 

we present two types of healthcare system state variables and the set of events separated into 

two categories. 

We consider two distinct types of state variables: global and patient-level. The two global 

variables, 𝐵(𝑡) = (𝐵𝑊(𝑡), 𝐵𝐼(𝑡)), describe bed occupancy by COVID-19 patients in hospital 

wards and the ICU, respectively, at any time 𝑡. Total COVID-19 hospitalizations at time 𝑡, 

𝑁(𝑡), is given by the sum of these two state variables, 𝑁(𝑡) = 𝐵𝑊(𝑡) + 𝐵𝐼(𝑡). 

Each patient 𝑖 admitted to hospital has two associated state variables. The patient-level state 

variable 𝑆𝑖(𝑡), which records the condition of patient 𝑖 at time 𝑡, can take one of three values: 

𝑊1, when patient 𝑖 is admitted to a ward without a previous stay in ICU; 𝐼, when patient 𝑖 is 

admitted to ICU; and 𝑊2, when patient 𝑖 is in a ward after transferral from ICU. The patient-

level state variable 𝑅𝑖(𝑡) records the time at which patient 𝑖 enters state 𝑆𝑖(𝑡). 

Two different types of events can affect the values of the state variables. They have been 

classified by the nature of the variation in 𝐵(𝑡): an increase or decrease in 𝑁(𝑡), or a variation 

in 𝐵𝑊(𝑡) and 𝐵𝐼(𝑡) not affecting their sum. The first set of events 𝐸𝐴 are associated with patient 

arrival times. This group includes only external arrivals, i.e., positive cases detected outside 

the hospital that require hospitalization. These events are generated by the simulation 

methodology described in Section 6.2.2, and each arrival is classified as an ICU arrival or a 

ward arrival with probabilities 𝑝𝐼 and 1 − 𝑝𝐼, respectively. The last type of patients are also 

subdivided into two groups, those who will require ICU admission after some time on the ward 

(with probability 𝑝𝑊𝐼) and those who will not (with probability 1 − 𝑝𝑊𝐼). 

The second category includes the events 𝐸𝐵 leading to a patient’s end of a stay in the ICU or 

the ward, and altering the value of their patient-level state variables, and also either 𝐵𝑊(𝑡), or 

𝐵𝐼(𝑡) or both. As stated in Section 6.3, there are several events of this type: 

 𝐸𝐵𝑍 events dictating end of ward stay prior transfer to ICU, which are generated by 

sampling from the variable 𝑍. The variable 𝐵𝑊(𝑡) decreases by one unit and 𝐵𝐼(𝑡) 

increases by one. 

 𝐸𝐵𝑋 events signalling end of ward stays with no need for ICU transfer, which are 

generated by sampling from the variable 𝑋. The variable 𝐵𝑊(𝑡) decreases by one unit. 
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 𝐸𝐵𝑄 events associated with end of ward stay for a patient transferred from ICU, and 

generated by sampling from the variable 𝑄. The variable 𝐵𝑊(𝑡) decreases by one unit. 

 𝐸𝐵𝑌 events associated with end of ICU stay and generated by sampling from the 

variable 𝑌. The variable 𝐵𝐼(𝑡) decreases by one unit. The patient is transferred to a 

ward with probability 𝑝𝐼𝑊, and 𝐵𝑊(𝑡) increases by one unit. 

The event calendar vector at time 𝑡 has 𝐵𝑊(𝑡) + 𝐵𝐼(𝑡) + 1 positions. One includes the time 

of the next patient arrival (associated with event 𝐸𝐴), 𝐵𝑊(𝑡) positions, one for each ward 

patient, containing their hospital discharge times (associated with events 𝐸𝐵𝑋 or 𝐸𝐵𝑄) or ICU 

transfer times (associated with event 𝐸𝐵𝑍), and 𝐵𝐼(𝑡) positions, one for each ICU patient, 

storing the discharge time from ICU. 

Figure 6.4 outlines the DES model of the health system. 

 

Figure 6.4. Flow diagram of the health system simulation model. Two types of events are considered, external 

arrivals and ward or ICU end of stays. 
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6.4.2 Starting the simulation run 

The purpose of the simulation model is to predict short-term resource needs, with precision 

strongly depending on the model’s accuracy both in representing the initial state of the 

healthcare system and the initial resource utilization rate. This last aspect of mathematical 

modelling is usually not very important when the aim of the simulation is to investigate the 

long-term behaviour of a system in its stationary state, which is usually independent of its initial 

state. However, when the simulation is used as a predictive tactical decision-making support 

tool, the initial state of the simulation model and the initial dynamics of the system are the main 

determining factors of the state of the healthcare system in the near future. 

The simulation clock is set to zero at the time of the last update of the Electronic Health 

Record (EHR)-file, which we assume to have taken place at the end of the 𝑘𝑡ℎ day of the 

pandemic. The simulation model begins to simulate future changes from day (𝑘 + 1)𝑡ℎ, using 

the information collected during the first 𝑘 days of the pandemic, taking hospitalizations at the 

end of the 𝑘𝑡ℎ day as the initial state. The point of transition from the past to the future occurs 

at the beginning of the simulation run, for which the event calendar must be initialized (Law 

2014). The simulation of event type 𝐸𝐴, a new patient arrival, was explained in Section 6.2.2. 

We will now explain how to simulate type 𝐸𝐵 events for patients currently admitted, that is, at 

time zero in the simulation model. The value of the state variables, number of ward patients, 

𝐵𝑊(0), and number of ICU patients, 𝐵𝐼(0), as well as times 𝑅𝑖(0) in the current state 𝑆𝑖(0) 

for each patient 𝑖, can be calculated from the EHR-file, which records admission, discharge, 

and ward/ICU transfer dates for each patient. This set of state variables defines the initial state 

of the healthcare system simulation model. 

The discharge time of each ICU patient 𝑖 is calculated by sampling from the random variable 

𝑌 conditioned to a stay longer than 𝑟𝑖 = (𝑘 + 1 − 𝑅𝑖(0)), the number of days already spent in 

the ICU. Let 𝑦𝑖 be a value sampled from the conditional distribution 𝑌|𝑌 > 𝑟𝑖, then the value 

𝑦𝑖 − 𝑟𝑖 is the simulated ICU discharge date for patient 𝑖, which is assigned to the position 𝐸𝐵𝐼 

of the event calendar vector associated with patient 𝑖. 

A patient admitted to a ward for 𝑟𝑖 days can ultimately be discharged from the hospital or 

transferred to ICU. The probability of ICU transfer for a patient hospitalized for 𝑟𝑖 days, 

denoted by 𝑝𝐼𝐶𝑈|𝑟𝑖
, is calculated with Bayes theorem: 

 𝑝𝐼𝐶𝑈|𝑟𝑖
= 𝑃(𝐵|𝑟𝑖  𝑑𝑎𝑦𝑠 𝑖𝑛 𝑤𝑎𝑟𝑑) =

𝑃(𝑍 > 𝑟𝑖|𝐵) 𝑃(𝐵)

𝑃(𝑟𝑖  𝑑𝑎𝑦𝑠 𝑖𝑛 𝑤𝑎𝑟𝑑)

=
𝑃(𝑍 > 𝑟𝑖|𝐵) 𝑃(𝐵)

𝑃(𝑍 > 𝑟𝑖|𝐵) 𝑃(𝐵) + 𝑃(𝑋 > 𝑟𝑖|𝐶) 𝑃(𝐶)

=
(1 − 𝐹𝜃𝑍

(𝑟𝑖)) 𝑝𝑊𝐼

(1 − 𝐹𝜃𝑍
(𝑟𝑖)) 𝑝𝑊𝐼 + (1 − 𝐹𝜃𝑋

(𝑟𝑖)) (1 − 𝑝𝑊𝐼)
 

(6.15) 
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where, 

 𝐵 is the event of a ward patient requiring ICU transfer. 

 𝐶 is the event of a ward patient not requiring ICU transfer. 

 𝐹𝜃𝑍
(𝑟𝑖) is the cumulative distribution function of variable 𝑍. 

 𝐹𝜃𝑋
(𝑟𝑖) is the cumulative distribution function of variable 𝑋. 

A hospital trajectory is simulated for each patient 𝑖 already admitted to a hospital ward. The 

first step of the simulation concerns the decision as to whether the patient will be admitted to 

the ICU (with probability 𝑝𝐼𝐶𝑈 𝑟𝑖⁄ ) or not (with probability 1 − 𝑝𝐼𝐶𝑈 𝑟𝑖⁄ ). Time to ICU transfer 

is then simulated by sampling from the conditional distribution 𝑍|𝑍 > 𝑟𝑖, and assigning the 

value 𝑧𝑖 − 𝑟𝑖 to the event 𝐸𝐵𝑍. If the patient 𝑖 does not require ICU care, the hospital discharge 

event 𝐸𝐵𝑋 will occur at time 𝑥𝑖 − 𝑟𝑖, where 𝑥𝑖 is sampled from the conditional distribution 

𝑋|𝑋 > 𝑟𝑖. 

Similarly, for each ward patient 𝑖 previously discharged from the ICU, the time of discharge 

from the hospital is simulated by sampling a value 𝑞𝑖 from the conditional variable 𝑄|𝑄 > 𝑟𝑖. 

The value 𝑞𝑖 − 𝑟𝑖 is the simulated discharge time and is assigned to position 𝐸𝐵𝑄 of the event 

calendar vector associated with patient 𝑖. 

Once discharge times and transfer times between ward and ICU have been simulated for each 

hospitalized patient, and recorded in the event calendar (together with the arrival time of the 

next COVID-19 patient) the DES model is ready to advance the simulation clock from time 

zero to the minimum of the times recorded in the event calendar. The state variables and 

calendar events are then updated accordingly and the main loop of Figure 6.4 is repeated until 

the simulation run is complete. 

The fitted Gompertz curve forecasts daily patient arrivals, which can be uniformly distributed 

over the following 24 hours or according to a non-stationary pattern when, for example, arrivals 

drop significantly overnight. 

6.4.3 Simulation output 

The DES model works by generating patient arrivals, discharges, and transfers causing 

variations in ward and ICU occupancy levels, which are recorded by statistical counters. The 

simulation model includes two sources of randomness: the number of patient arrivals (hospital 

and ICU), and patients’ LoS. Therefore, each time the DES model is run departing from the 

current situation of the healthcare system (generating randomness based on a different seed) 

the ward and ICU bed requirements differ. Figure 6.4 in Section 6.4.1 shows one iteration of 

the simulation, with which different trajectories can be obtained with each replication of that 

routine. Thus, the simulation model is run many times (thousands) to get a statistical 

distribution of the number of ward and ICU beds needed each day. 
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The DES simulator generates percentile data, which are stored in an Excel file. The 5th 

percentile (P5), 50th percentile (P50), and 95th percentile (P95) are plotted on a graph as 

confidence bands for future resource needs. Figure 6.5 shows an example of these graphic 

outputs. The green line represents the real occupancy trend and the black dot indicates the 

Simulation Starting Point (SSP), that is, the moment from which the hospital system dynamics 

are simulated. The left-hand side shows four different possible ICU bed demand trajectories 

(T1, T2, T3, and T4), while the right-hand side shows the confidence bands. 

 

Figure 6.5. Simulation output for ICU bed demand for the following days. The left-hand side shows four different 

trajectories starting from the SSP; the 3 lines on the right-hand side correspond to the 5th, 50th, and 95th percentiles. 

ICU and hospital wards saturation risk 

During the pandemic, it is critical for physicians to have enough beds available to treat all 

COVID-19 patients arriving at the hospital system, both in the hospital wards and in the ICU. 

A very important aspect for managers when coping with resource-scarce situations is the 

measure related to saturation of these. With the results obtained in the simulation, it is possible 

to determine a measure of the risk of ICU and hospital wards saturation over the following days 

of the pandemic. 

Let us denote 𝑟𝑏(𝑡) as the risk of system saturation at time 𝑡 when 𝑏 beds are considered 

available for COVID-19 patients. This risk, which can be particularized for both hospital ward 

and ICU beds, is obtained for each day 𝑡 as the percentage of times the number of beds observed 

on that day in the simulation replications exceeds the number of available beds 𝑏 considered. 

Equation (6.16) show the expression to calculate the ICU and hospital wards saturation risk 

𝑟𝑏(𝑡). 
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𝑟𝑏(𝑡) =

∑ 1{𝛽𝑖(𝑡)>𝑏}
𝑁𝑅
𝑖=1

𝑁𝑅
× 100 (6.16) 

where, 

 𝑁𝑅 is the number of simulation replications. 

 𝛽𝑖(𝑡) is the number of beds occupied with COVID-19 patients at time 𝑡 of replication 

𝑖. 

This risk can be studied for different numbers of beds, and curves such as those shown in 

Figure 6.6 can be obtained. In this example, the blue line at the top of the graph corresponds to 

the risk associated with a number of beds 𝑏 = 200. It can be seen that between October 15 and 

November 1, 2020, the risk of saturation is 100%, that is, in the simulations, in all replications, 

the number of beds occupied by COVID-19 patients observed has always been greater than 

200 between these dates. With the green line, we can interpret that from October 8 onwards, 

having more than 220 beds occupied by COVID-19 patients presents a risk of more than 60%. 

The higher the number of beds associated with the risk, the lower the risk values. The shape of 

these risk curves is given by the shape of the bed occupancy curves in the simulations. 

 

Figure 6.6. Saturation risk curves associated with hospital ward bed numbers between 200 and 300. 
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6.5 Estimation of parameters and probability distributions 

In this section, we deal with the problem of getting reliable estimations of all the parameters 

that define the trajectory and LoS of patients in the hospital facilities. These parameters cannot 

be calibrated in advance by using historical data because each pandemic wave may have 

different characteristics, affecting different population groups with different intensity, and even 

change during the pandemic wave. However, during the first days, and even weeks, of the 

pandemic, few complete data are available since a significant proportion of patients are still 

admitted to the hospital. For this reason, it is essential to develop estimation methods that also 

take into account data coming from the patients of the current pandemic wave, even if this 

information is incomplete. 

6.5.1 The online estimation problem 

We consider the problem of estimating the parameters associated with the pathway and LoS of 

patients hospitalized during a pandemic. This is a non-stationary situation, in which 

hospitalization parameters may vary between different waves, between different places, and 

evolve during the pandemic. We propose to estimate them by using all data collected during 

the pandemic wave in which the simulation model is being applied, that is, from the time the 

first infected patient was admitted until the present time. However, the use of data associated 

with patients still hospitalized is a complex task, not only because of censorship but it is also 

unknown which event will be observed in the future and then from which variable is observed 

the value. Specifically, it is unknown whether a patient who has been hospitalized for some 

time will be finally admitted to the ICU or not, so it is unknown whether the observed value of 

the stay is a censored data for the variable 𝑍, “time until admission to the ICU”, or for the 

variable 𝑋, “time to hospital discharge”. 

In this section, we propose an estimation method for the probability distributions of these 

variables, as well as the probability of admission to the ICU from the ward, 𝑝𝑊𝐼, that uses the 

information of all patients admitted currently at the hospital (Figure 6.7, left). The same 

estimation methodology can be applied, to the estimation of the probability distributions of 𝑌, 

“LoS in the ICU before being transfer to hospital ward”, and 𝐷, “LoS in the ICU until death”, 

and 𝑝𝐼𝑊, the probability of discharge to hospital ward (Figure 6.7, right). 

 

Figure 6.7. Parameters and probability distributions for modelling Ward-to-ICU transition (left) and ICU-to-Ward 

transition (right). 
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6.5.2 Data and taxonomy of patients 

Hospital EHR systems provide information at the patient level that allows knowing the pathway 

of all patients admitted at the hospital and their current location, ward or ICU, in the case they 

are still admitted. Pathway and current location result from the times at hospital admission and 

discharge (𝑡𝐻𝐴 and 𝑡𝐻𝐷, respectively) and the times of ICU admission and discharge (𝑡𝐼𝐴 and 

𝑡𝐼𝐷, respectively). 

Therefore, for each patient 𝑖 admitted to the hospital until time 𝑡, we assume to know vector 

𝑢𝑖(𝑡) that contains these four times (𝑢𝑖(𝑡) = [𝑡𝐻𝐴𝑖
, 𝑡𝐻𝐷𝑖

, 𝑡𝐼𝐴𝑖
, 𝑡𝐼𝐷𝑖]). At time 𝑡, not all four 

times have been observed or are exactly known for all patients. For example, for an already 

discharged patient 𝑖 from the hospital ward that did not need care in the ICU, the two 

components of vector 𝑢𝑖(𝑡) related with the ICU are not observed and are left “empty” (we 

denote by the symbol ∅ this situation): 𝑢𝑖(𝑡) = [𝑡𝐻𝐴𝑖
, 𝑡𝐻𝐷𝑖

, ∅, ∅]. For an admitted patient at the 

ICU at time 𝑡, it is known that both discharge times, from ICU and from hospital, will certainly 

happen but in a future time. This situation is denoted by 𝑢𝑗(𝑡) = [𝑡𝐻𝐴𝑗
, 𝑡, 𝑡𝐼𝐴𝑖

, 𝑡], and then 𝑡 −

𝑡𝐼𝐴𝑖
 is a censored time for the LoS of this patient in the ICU. In turn, a patient 𝑗 with 𝑢𝑗(𝑡) =

[𝑡𝐻𝐴𝑗
, 𝑡, ∅, ∅] indicates that he or she is still admitted to the hospital, and his/her LoS is 

censored by the value 𝑡 − 𝑡𝐻𝐴𝑗
 and that so far the patient has not required admission into the 

ICU but it is not known if the admission will happen or not. 

According to the values observed for the vector 𝑢𝑖(𝑡), 10 different types of patient states can 

be distinguished at time 𝑡. In the taxonomy of the type of patient, we use the letter 𝐻 to refer 

to the hospital ward and the letter 𝐼 to the ICU. The sequence of letters corresponds to the 

trajectory in the hospital facilities. The asterisk symbol (∗) indicates that the patient is still 

admitted into the facility indicated by the preceding letter, and therefore provides censored 

data. 

 𝐻: Patients with a full stay in the hospital ward who have not needed ICU 

([𝑡𝐻𝐴, 𝑡𝐻𝐷, ∅, ∅]). 

 𝐻∗: Patients with an incomplete stay in the hospital ward who have not needed ICU 

([𝑡𝐻𝐴, 𝑡, ∅, ∅]). They do not have a discharge date and may or may not be admitted to 

the ICU. 

 𝐻𝐼∗: Patients with an incomplete stay in the ICU transferred from the hospital ward 

([𝑡𝐻𝐴, 𝑡, 𝑡𝐼𝐴, 𝑡], 𝑡𝐻𝐴 < 𝑡𝐼𝐴). 

 𝐻𝐼: Patients died in the ICU after being transferred from the hospital ward 

([𝑡𝐻𝐴, 𝑡𝐻𝐷, 𝑡𝐼𝐴, 𝑡𝐼𝐷], 𝑡𝐻𝐴 < 𝑡𝐼𝐴, 𝑡𝐻𝐷 = 𝑡𝐼𝐷). 

 𝐻𝐼𝐻∗: Patients with a full stay in the ICU after being transferred from the hospital ward. 

They are still admitted to the hospital ward after leaving the ICU 

([𝑡𝐻𝐴, 𝑡, 𝑡𝐼𝐴, 𝑡𝐼𝐷], 𝑡𝐻𝐴 < 𝑡𝐼𝐴). 
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 𝐻𝐼𝐻: Patients with a full stay in the ICU after being transferred from the hospital ward. 

They have been discharged from the hospital ward after leaving the ICU 

([𝑡𝐻𝐴, 𝑡𝐻𝐷, 𝑡𝐼𝐴, 𝑡𝐼𝐷], 𝑡𝐻𝐴 < 𝑡𝐼𝐴, 𝑡𝐻𝐷 > 𝑡𝐼𝐷). 

 𝐼∗: Patients admitted directly to the ICU with an incomplete stay ([𝑡𝐻𝐴, 𝑡, 𝑡𝐼𝐴, 𝑡], 𝑡𝐻𝐴 =

𝑡𝐼𝐴). 

 𝐼: Patients admitted directly to the ICU who die there ([𝑡𝐻𝐴, 𝑡𝐻𝐷, 𝑡𝐼𝐴, 𝑡𝐼𝐷], 𝑡𝐻𝐴 =

𝑡𝐼𝐴, 𝑡𝐻𝐷 = 𝑡𝐼𝐷). 

 𝐼𝐻∗: Patients admitted directly to the ICU with a full stay. They are still admitted to the 

hospital ward after leaving the ICU ([𝑡𝐻𝐴, 𝑡, 𝑡𝐼𝐴, 𝑡𝐼𝐷], 𝑡𝐻𝐴 = 𝑡𝐼𝐴). 

 𝐼𝐻: Patients admitted directly to the ICU with a full stay. They have been discharged 

from the hospital ward after leaving the ICU ([𝑡𝐻𝐴, 𝑡𝐻𝐷, 𝑡𝐼𝐴, 𝑡𝐼𝐷], 𝑡𝐻𝐴 = 𝑡𝐼𝐴, 𝑡𝐻𝐷 > 𝑡𝐼𝐷). 

The diagram shown in Figure 6.8 helps to better understand the different types of patients 

defined in the previous points. 

 

Figure 6.8. Diagram of the state of a patient at time 𝑡. 
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6.5.3 Maximum likelihood estimation at the end of the pandemic wave 

First, we address the problem of estimating the parameters and probability distributions 

involved in the patient transition Ward-to-ICU when, for each patient admitted to the hospital, 

the values of the vector 𝑢𝑖(𝑡) are fully known. Therefore, the pandemic wave is over and all 

patients have been discharged from the hospital (classified in the types 𝐻, 𝐻𝐼, 𝐻𝐼𝐻, 𝐼 and 𝐼𝐻). 

For the rest of this section we denote: 

 𝑛𝐺(𝑡) as the number of patients of type 𝐺 (generic) at time 𝑡. To simplify the notation, 

and when there is no confusion, we will use 𝑛𝐺 instead of 𝑛𝐺(𝑡). 

 𝑥(𝑡) = (𝑥1(𝑡), … 𝑥𝑖(𝑡), … 𝑥𝑛𝑋(𝑡)(𝑡)) the realization of the variable 𝑋, with 𝑥𝑖(𝑡) =

𝑡𝐻𝐷𝑖
− 𝑡𝐻𝐴𝑖

. 

 𝑧(𝑡) = (𝑧1(𝑡), … 𝑧𝑖(𝑡), … 𝑧𝑛𝑍(𝑡)(𝑡)) the realization of the variable 𝑍, with 𝑧𝑖(𝑡) =

𝑡𝐼𝐴𝑖
− 𝑡𝐻𝐴𝑖

. 

 𝜃𝑉 as the vector of parameters of the distribution function of variable 𝑉. 

 𝜃𝑉 as the estimation of the vector of parameters 𝜃𝑉. 

 𝐿𝑉(𝜃𝑉|𝑣(𝑡)): is the likelihood function of sample 𝑣(𝑡) used to estimate 𝜃𝑉. 

The estimation of the probability distribution parameters of the LoS variables 𝑋 and 𝑍 is done 

by the maximum likelihood method. 

 
𝐿𝑋(𝜃𝑋|𝑥(𝑡)) = ∏ 𝑓𝜃𝑋

(𝑥𝑖)

𝑛𝑋

𝑖=1

→ 𝜃𝑋 = arg max
𝜃𝑋

𝐿𝑋(𝜃𝑋|𝑥(𝑡)) (6.17) 

 
𝐿𝑍(𝜃𝑍|𝑧(𝑡)) = ∏ 𝑓𝜃𝑍

(𝑧𝑖)

𝑛𝑍

𝑖=1

→ 𝜃𝑍 = arg max
𝜃𝑍

𝐿𝑍(𝜃𝑍|𝑧(𝑡)) (6.18) 

Where 𝑓𝜃𝑋
(𝑥𝑖) and 𝑓𝜃𝑍

(𝑧𝑖) are the density functions of variables 𝑋 and 𝑍, respectively, and 

𝑛𝑋(𝑡) = 𝑛𝐻(𝑡) and 𝑛𝑍(𝑡) = 𝑛𝐻𝐼(𝑡) + 𝑛𝐻𝐼𝐻(𝑡) are the sizes of the samples for variables 𝑋 and 

𝑍. 

The probability 𝑝𝑊𝐼 is estimated by the observed ratio of patients that are admitted to ICU 

from wards: 

 �̂�𝑊𝐼 =
𝑛𝐻𝐼 + 𝑛𝐻𝐼𝐻

𝑛𝐻𝐼 + 𝑛𝐻𝐼 + 𝑛𝐻𝐼𝐻
 (6.19) 

6.5.4 The Expectation-Maximization algorithm for parameter estimation 

during the pandemic wave 

In this subsection, we develop an algorithm to estimate the probability 𝑝𝑊𝐼, and the parameters 

of the probability distributions of variables 𝑋 and 𝑍 at any time 𝑡 during the development of 
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the epidemic wave, making use of the information of all patients that have been admitted so far 

at the hospital. Let us consider the variable vector 𝑊 = (𝑆, 𝛿) with 𝑆 the time spent in hospital 

by a patient until discharge or until admission in the ICU and 𝛿 the indicator of whether the 

patient is admitted to the ICU or not. 

 𝛿𝑖 = {
1 𝑖𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑖 𝑖𝑠 𝑎𝑑𝑚𝑖𝑡𝑡𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝐼𝐶𝑈        
0 𝑖𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑑𝑚𝑖𝑡𝑡𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝐼𝐶𝑈

 (6.20) 

Variable 𝑋, the time spent in hospital by a patient that is discharged from hospital with no 

admission in the ICU, verifies that 𝑋 ≡  𝑆|𝛿 = 0, and 𝑍, the time spent in hospital by a patient 

before his/her admission in the ICU is 𝑍 ≡  𝑆|𝛿 = 1. At the end of the pandemic the value of 

𝛿𝑖 is observed for each patient 𝑖 admitted to the hospital. However, at a time 𝑡, when the 

pandemic is not over, the value of 𝛿𝑖 is not known for patients already admitted at the hospital 

ward that have not been admitted in the ICU. 

Specifically, for each patient 𝑖 of type 𝐻 (𝑡𝐻𝐷𝑖
< 𝑡 ) or types 𝐻𝐼, 𝐻𝐼𝐻, 𝐻𝐼∗, 𝐻𝐼𝐻∗ ( 𝑡𝐼𝐴𝑖

< 𝑡) 

the value of the indicator variable 𝛿𝑖 has been observed, and the vector 𝑤𝑖 = (𝑠𝑖 , 𝛿𝑖) provides 

an observation for variable 𝑋 in case 𝛿𝑖 = 0 (𝑥𝑖 = 𝑠𝑖), or for 𝑍 in case 𝛿𝑖 = 1 (𝑧𝑖 = 𝑠𝑖). 

However, for each patient 𝑖 of type 𝐻∗ (with 𝑡𝐻𝐴𝑖
< 𝑡, 𝑡𝐻𝐷𝑖

> 𝑡 𝑎𝑛𝑑 𝑡𝐼𝐴𝑖
> 𝑡 or ∅) the variable 

𝛿𝑖 has not been observed at time 𝑡, and then 𝑡 − 𝑡𝐻𝐴𝑖
 is a censored time that is not known to 

which variable corresponds, 𝑋 or 𝑍. 

Suppose that at time 𝑡 of the pandemic there are 𝑛(𝑡) patients that have been admitted at a 

hospital ward. We denote as 𝑤(𝑡) = (𝑤1(𝑡), … 𝑤𝑖(𝑡), … 𝑤𝑛(𝑡)(𝑡)) the realization of the 

variable 𝑊 in these 𝑛(𝑡) patients. The vector 𝑤(𝑡) can be divided in two parts 𝑤(𝑡) =

(𝑤𝐹(𝑡), 𝑤𝐼(𝑡)): 𝑤𝐹(𝑡), contains the observations of patients for which the value of 𝛿𝑖 has been 

observed, and 𝑤𝐼(𝑡) contains the observations of those patients with unknown value for 𝛿𝑖. We 

have developed an iterative procedure, based on the EM algorithm, to estimate the distribution 

functions of variables 𝑋 and 𝑍 and the probability 𝑝𝑊𝐼. First, an initial estimation of the 

parameters is carried out by only using the fully-known data (those observations with known 

value for 𝛿𝑖). In the main iteration, the estimated parameters are used to update the probability 

of being admitted to the ICU for each one of the patients admitted in the ward. These updated 

probabilities are used to calculate a new likelihood function for the parameters, which is 

maximized to obtain a new estimation of the probability distribution parameters. These two 

steps (updating ICU admission probabilities and getting and maximizing new likelihood 

function) are repeated until stopping criteria are met. We use the following additional notation: 

 𝜃𝑋
(𝑘)

: is the estimation of vector 𝜃𝑋 in the 𝑘-th iteration of the algorithm. 

 𝜃𝑍
(𝑘)

: is the estimation of vector 𝜃𝑍 in the 𝑘-th Iteration of the algorithm. 

 �̂�𝜃𝑋

(𝑘)(𝑥) = 𝐹𝜃𝑋
(𝑥; 𝜃𝑋

(𝑘)
): is the distribution function of 𝑋 with parameters 𝜃𝑋

(𝑘)
. 

 �̂�𝜃𝑍

(𝑘)(𝑥) = 𝐹𝜃𝑍
(𝑥; 𝜃𝑍

(𝑘)
): is the distribution function of 𝑍 with parameters 𝜃𝑍

(𝑘)
. 



102 Chapter 6 Forecasting the needs of ward and ICU beds in the COVID-19 pandemic 

 

 �̂�𝑊𝐼
(𝑘)

: is the estimation of the probability 𝑃𝑊𝐼 in the 𝑘-th iteration of the algorithm. 

 𝑛𝐹(𝑡): number of patients with full information at time 𝑡 (the size of vector 𝑤𝐹(𝑡)). 

 𝑛𝐼(𝑡): number of patients with incomplete information at time 𝑡 (the size of vector 

𝑤𝐼(𝑡)). 

To simplify the notation, and when there is no confusion, we will use 𝑛𝐹 and 𝑛𝐼, instead of 

𝑛𝐹(𝑡) and 𝑛𝐼(𝑡), respectively. 

Steps of the algorithm 

1. Initialization. 

𝑘 = 0. Estimate the parameters 𝜃𝑋, 𝜃𝑍 and the probability 𝑃𝑊𝐼 by using the data in the vector 

𝑤𝐹(𝑡): 

 
�̂�𝑊𝐼

(0)
=

1

𝑛𝐹
∑ 1{𝛿𝑖=1}

𝑛𝐹

𝑖=1

 (6.21) 

 
𝐿𝑋

(0)(𝜃𝑋|𝑤𝐹(𝑡)) = ∏ 𝑓𝜃𝑋
(𝑠𝑖)

𝑛𝐹

𝑖=1

(1 − 𝛿𝑖) → 𝜃𝑋
(0)

= arg max
𝜃𝑋

𝐿𝑋
(0)(𝜃𝑋|𝑤𝐹(𝑡)) (6.22) 

 
𝐿𝑍

(0)(𝜃𝑍|𝑤𝐹(𝑡)) = ∏ 𝑓𝜃𝑍
(𝑠𝑖)

𝑛𝐹

𝑖=1

𝛿𝑖 → 𝜃𝑍
(0)

= arg max
𝜃𝑍

𝐿𝑍
(0)(𝜃𝑍|𝑤𝐹(𝑡)) (6.23) 

2. Repeat until the stop criteria is met. 

Iteration 𝒌 + 𝟏. From the 𝑘-th iteration, 𝑘 ≥ 0, we know the estimations 𝜃𝑋
(𝑘)

, 𝜃𝑍
(𝑘)

, and �̂�𝑊𝐼
(𝑘)

; 

of the parameters 𝜃𝑋, 𝜃𝑍, and the probability 𝑃𝑊𝐼. The iteration is divided into two steps: in the 

first one the calculation of the expected value of the indicator function 𝛿𝑖 in each patient with 

incomplete data is carried out, which allows estimating the probability of admission in the ICU, 

𝑃𝑊𝐼, and the expectation of the likelihood function when all data, complete and incomplete, are 

considered. The second step estimates 𝜃𝑋 and 𝜃𝑍 by maximizing the likelihood functions 

estimated in the previous step. 

2.1. Expectation. 

For each patient 𝑖, the probability of being admitted to the ICU is updated as the posterior 

probability given the time already spent at the ward: 

 �̂�𝑖
(𝑘+1)

≡ �̂�(𝑘+1) (𝛿𝑖 = 1 |�̂�𝑊𝐼
(𝑘)

, 𝜃𝑋
(𝑘)

, 𝜃𝑍
(𝑘)

)

=
(1 − �̂�𝜃𝑍

(𝑘)(𝑠𝑖)) �̂�𝑊𝐼
(𝑘)

(1 − �̂�𝜃𝑍

(𝑘)(𝑠𝑖)) �̂�𝑊𝐼
(𝑘)

+ (1 − �̂�𝜃𝑋

(𝑘)(𝑠𝑖)) (1 − �̂�𝑊𝐼
(𝑘)

)
 

(6.24) 

The updated probabilities of being admitted in ICU for each patient of type 𝐻∗ allows to 

update the unconditional probability of admission in the ICU 
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�̂�𝑊𝐼

(𝑘+1)
= 𝐸 [𝛿 = 1 |�̂�𝑊𝐼

(𝑘)
, 𝜃𝑋

(𝑘)
, 𝜃𝑍

(𝑘)
] =

1

𝑛(𝑡)
∑ 𝐸[1{𝛿𝑖=1}]

𝑛(𝑡)

𝑖=1

=
1

𝑛(𝑡)
(∑ 1{𝛿𝑖=1}

𝑛𝐹

𝑖=1

+ ∑ �̂�𝑖
(𝑘+1)

𝑛𝐼

𝑖=1

) 

(6.25) 

and, the likelihood functions of the sample as expected functions: 

 𝐿𝑋
(𝑘+1)(𝜃𝑋|𝑤(𝑡)) = 𝐸[𝐿𝑋(𝜃𝑋|𝑤(𝑡))]

= ∏ 𝑓𝜃𝑋

(𝑘)(𝑠𝑖)

𝑛𝐹

𝑖=1

(1 − 𝛿𝑖) ∏ (1 − 𝐹𝜃𝑋

(𝑘)(𝑠𝑖))

𝑛𝐼

𝑖=1

(1 − �̂�𝑖
(𝑘+1)

) 
(6.26) 

 𝐿𝑍
(𝑘+1)(𝜃𝑍|𝑤(𝑡)) = 𝐸[𝐿𝑍(𝜃𝑍|𝑤(𝑡))]

= ∏ 𝑓𝜃𝑍

(𝑘)(𝑠𝑖)

𝑛𝐹

𝑖=1

𝛿𝑖 ∏ (1 − 𝐹𝜃𝑍

(𝑘)(𝑠𝑖))

𝑛𝐼

𝑖=1

�̂�𝑖
(𝑘+1)

 
(6.27) 

2.2. Maximization. 

The likelihood functions are maximized to find the estimation of the parameters. 

 𝜃𝑋
(𝑘+1)

= 𝑎𝑟𝑔 max
𝜃𝑋

(𝐿𝑋
(𝑘+1)(𝜃𝑋|𝑤(𝑡))) (6.28) 

 𝜃𝑍
(𝑘+1)

= 𝑎𝑟𝑔 max
𝜃𝑍

(𝐿𝑍
(𝑘+1)(𝜃𝑍|𝑤(𝑡))) (6.29) 

3. Stop criteria. 

Repeat Step 2 until the sequence of values of the likelihood function or the values of the 

estimated parameters converges: 

 |𝐿𝑋
(𝑘+1)

(𝜃𝑋|𝑤(𝑡)) − 𝐿𝑋
(𝑘)

(𝜃𝑋|𝑤(𝑡))| ≤ 휀1 (6.30) 

 |𝜃𝑋
(𝑘+1)

− 𝜃𝑋
(𝑘)

| ≤ 휀2 (6.31) 

6.6 Importance of a good dynamic parameter estimation 

In this section, we compare, by simulating different pandemic waves, the performance of the 

EM estimator with other two statistical estimators that use only complete data. We measure the 

accuracy in the parameters estimation and their influence in the forecasting of necessary 

resources to provide healthcare to pandemic patients. 
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6.6.1 Experimental design 

A simulation experiment has been designed to validate the estimation method developed in 

Section 6.5 (named EM method) and its impact on the quality of the predictions made on the 

necessary resources, specifically, about the necessary ICU beds. The simulation of a pandemic 

wave requires the simulation of the patient arrival process, which is carried out using the 

Gompertz model exposed in equation (6.13), and the generation of a trajectory in the hospital 

for each patient, which is carried out according to the flow of patients shown in Figure 6.3. 

Specifically, generated pandemic waves mimic those observed in reality (Garcia-Vicuña et 

al. 2021) with the parameters for the arrival and hospitalization processes described below. 

Each pandemic wave simulation generates data over time that is used to test the performance 

of the proposed estimation method EM and its comparison with the other two estimation 

methods. The results about the estimation accuracy are shown in Section 6.6.2 and the impact 

on the precision of the predictions in Section 6.6.3. 

Gompertz model parameters. Patient arrivals are generated according to the accumulated 

curve described by equation (6.13) with parameters 𝐴 = 2,000; 20,000; and  100,000, 𝑇0.1 =

60, and 𝐷 = 18. That is, a pandemic wave that spreads 60 days (to account for the 90% central 

cases) and varying sizes, from 2,000 (corresponding to a small region) to 100,000 

(corresponding to a medium-size country). Daily admissions are determined by the difference 

between the value of the Gompertz curve in two consecutive days, rounded to the nearest 

integer number. 

Patient hospital path. Probability distributions for the LoS are assumed to be Weibull 

(𝑊(𝛼, 𝛽), where 𝛼 is the scale parameter and 𝛽 the shape parameter): LoS in the hospital ward 

of a patient not needing ICU (variable 𝑋) 𝑊(10.74, 1.25), the time spent by a patient in the 

hospital ward before transfer to the ICU (variable 𝑍) 𝑊(5.06, 0.98). In addition, the LoS of a 

patient in the ICU 𝑊(18.91, 1.15), and the LoS of a patient in the hospital ward after being 

discharged from the ICU 𝑊(12.90, 1.4). 

The probability of a patient initially admitted to a ward requiring transfer to ICU (𝑝𝑊𝐼) 

(0.073). Moreover, the probability of direct admission to ICU upon arrival (0.021), and the 

probability of patient transfer from ICU to hospital ward (0.75). 

Estimation methods. Three parameter estimation methods are compared. In the first one 

(method 𝐼), the probability 𝑝𝑊𝐼 is estimated by the ratio of patients that were admitted at the 

ICU divided by patients admitted at a hospital ward, to date. Therefore times at the hospital of 

patients of type 𝐻∗ are considered censored times for variable 𝑋. The second method is similar 

to the first one, but only patients that were admitted more than 5 days before are considered for 

the estimation calculations (method 𝐼-5). This avoids overestimating the number of patients 
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who will not require ICU in the future. Finally, the third method is the one developed in Section 

6.5.4 (method 𝐸𝑀). 

6.6.2 Parameter estimation accuracy 

This subsection assesses the accuracy in the estimation of the probability 𝑝𝑊𝐼 and the scale and 

shape parameters of the Weibull distribution of variables 𝑋 and 𝑍 as the pandemic progresses. 

The simulation model recreates the patients' arrival and their stay at the hospital according to 

the parameters and probability distributions fixed in Section 6.6.1. After simulating one day of 

the pandemic, the three estimation methods are applied to estimate the probability parameters 

and distributions. The results of these estimations are shown in Figure 6.9. Therefore, the 

differences in the estimations produced by the three methods are assigned to the differences in 

their prediction capability and not to the randomness of the simulation because it is controlled 

and the same for each method. 

 

Figure 6.9. Estimation of parameters 𝑝𝑊𝐼 and 𝜃𝑍 over time (the horizontal axes represent the time during the 

pandemic) with the 3 methods (𝐼, 𝐼-5, and 𝐸𝑀) and the real values. Results are shown for different values of 

parameter 𝐴 of the Gompertz curve (2000, 20000, and 100000). 
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Figure 6.9 shows the evolution of the estimation of parameters 𝑝𝑊𝐼 and 𝜃𝑍 over time (𝜃𝑋 

values show small differences among different methods). Each pandemic scenario is simulated 

10 times and the results show the estimation averages over the 10 runs. The 𝑥-axis represents 

the pandemic days when the estimations are made, and the 𝑦-axis represents the value of the 

parameter being estimated. The red dashed line marks the real value of the parameter. The three 

methods provide results that converge to the true value of the estimated parameter. However, 

the method 𝐸𝑀 has a fast convergence in all simulated cases, which turns to be important when 

the simulation model is used as a prediction tool for the resources needed in the future, as we 

expose in the next subsection. 

6.6.3 Impact on the simulation output: bed occupancy prediction accuracy 

The objective of the simulation model is to predict the future bed occupancy level during the 

course of the pandemic wave. The predictions of the simulation model are obtained by the 

statistical analysis of the output of many simulation model runs. In this subsection, we evaluate 

the quality of the predictions made with the simulation model with each of the three estimation 

methods. For each estimation method, predictions are obtained at different times of the 

pandemic evolution by simulating patient pathways and LoS by using the respective estimated 

branching probabilities and probability distribution parameters. The results obtained from each 

method are compared with those obtained by simulating using the true value of the parameters 

and probabilities. 

Once the prediction day is set, many simulations are run with each method and the predictions 

obtained are compared with those made from the actual parameters. Figure 6.10 shows nine 

predictions of ICU bed occupancy made with all methods from 3 different days (20th, 25th, 

and 30th). Note that these days are quite far away from the peak occupancy. The green line in 

each graph represents the evolution of the simulated pandemic up to the SSP, which is 

represented by a black dot. For each prediction, the 5th percentile (P5) and the 95th percentile 

(P95) are plotted. As the pandemic progresses, the predictions of occupation become closer to 

reality. But in all cases, the 𝐸𝑀 method is the closest. 
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Figure 6.10. Prediction of ICU bed occupancy on the 20th, 25th, and 30th days of the pandemic with the 3 methods 

(𝐼, 𝐼-5, and 𝐸𝑀) compared to prediction with actual parameters. 

6.7 Conclusions 

Healthcare systems are overburdened as high demand for healthcare services from COVID-19 

patients places strains on ICU capacity and creates excessive workloads for healthcare 

professionals. Accurate predictions of patient care resource needs are essential to advanced 

resource planning which can ease pressure on the system and relieve stress among hospital 

staff. Accurate predictions optimize response times and thus help to save lives. 

Under normal circumstances, managers cope with demand surges through resource 

contingency plans based on predictions made about one week in advance. In this chapter, we 

have developed a DES model to predict hospital resource needs, particularly in terms of ward 

and ICU beds. The simulation model is fed with new hospitalization predictions generated by 

a PG model. The Gompertz growth model was selected following an analysis of the fit and 

forecasting properties of four PG models: Logistic, Richards, Stannard, and Gompertz. 

Forecasting improvements could be achieved using an ensemble of these models, but such an 

exercise is beyond the scope of this chapter and remains for future research. Forecasting 



108 Chapter 6 Forecasting the needs of ward and ICU beds in the COVID-19 pandemic 

 

accuracy can be improved by including other factors affecting resource consumption, such as 

age and the Adjusted Morbidity Group (AMG), in LoS stochastic models. 

The structural simplicity of the simulation model makes it appropriate for general use, i.e., it 

can be adapted to estimate bed needs in any geographic area. The growth model requires only 

three parameter estimates, which can be obtained directly from the observed data. Easy online 

parameter estimation is one of the advantages of this model over other complex models, such 

as the SIR type. 

It is worth mentioning the strength of simulation models in this context of uncertainty, that 

is, their capability to run what-if scenarios enabling decision-makers to explore the 

consequences of different policy choices, such as the spatial allocation and quantity of 

additional healthcare resources required by COVID-19 patients in a context of uncertain 

demand. The simulation model is data-driven, patient arrivals and lengths of stay can be 

estimated from data, but it also has the flexibility of allowing the use of simulation from user-

determined input to explore additional scenarios. 

A distinct technical/methodological feature of the simulation model is its focus on the 

transition period of the health system rather than the stationary state as is usual in simulation 

studies or on transition periods following regeneration points. This simulated transition period 

is unique, given that the outbreak has no regeneration points. Therefore, accurate representation 

of the initial health system status is paramount. The simulation of remaining LoS per 

hospitalization has shown to be a key point to the smooth projection of health system dynamics 

and the process of linking them (and mixing them) with the new dynamics obtained from 

simulated new patient arrivals and lengths of stay. However, the simulation of the remaining 

LoS depends on the amount of information known about hospitalized patients. In this chapter, 

we have considered patient-level information (exact admission and discharge dates). In cases 

where only aggregated hospital-level information is available, that is, daily numbers of 

admissions and discharges, an estimated admission date per patient at time zero of the 

simulation is required. 

The method we have developed based on an EM algorithm is suitable for the online 

estimation of hospital simulation-model input parameters. This method allows the use of the 

data provided by all patients admitted so far. This characteristic is a big advantage when only 

a small ratio of patients have been discharged and can provide full information about their 

hospital pathway and LoS. Simulation tests have shown a better performance than other 

estimation methods that use only complete information. Poor estimation of the parameters and 

probabilities leads to poorer estimations of the output variables of interest as the number of 

beds necessary to attend to all pandemic coming patients. 

The estimation method has been applied to the estimation of the admission probability to the 

ICU from the ward and to the parameters of the probability distributions of variables LoS in 

the hospital ward and the time to admission to the ICU. The same stochastic situation occurs 
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for the admitted patients to the ICU, since it is unknown whether at the end of their stay they 

will be transferred back to the ward, due to improved health, or will leave the ICU due to death. 

The application of the estimation method to this case allows estimating the probability of 

recovery, and the parameters of the probability distributions of the time until transfer to the 

ward and the time until death. 

Note that, in addition to the probabilities and parameters set forth above, it is only necessary 

to estimate the probability of direct admission to the ICU and the LoS in the ward after transfer 

from the ICU to complete the estimation of all the variables and parameters that describe the 

randomness of the pathways and LoS of patients through the hospital, as it is described in 

Figure 6.3. The probability of direct admission to the ICU is estimated by means of the 

observed proportion, which obviously uses the information of all the patients admitted so far. 

The probability distribution parameters of the LoS in the hospital ward after ICU can be 

estimated by maximum likelihood: those patients already discharged provide an exact value, 

while those who are still hospitalized provide a censored value. 

The simulation model can be extended to include non-COVID-19 ICU and ward bed 

utilization. This extension would enable the creation of hospital scenarios on which to test the 

effects of decisions involving other hospital areas, such as a reduction in elective surgeries to 

free more beds for COVID-19 patients during epidemic waves. The ultimate purpose is to 

create a learning tool, as we did in the Part I of this thesis, by developing an interactive 

simulation model to enable the inclusion of patients from all types of pathways (ordinary and 

non-ordinary, such as pandemic patients), where bed management decisions are made by the 

program user. 
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7 Practical application of methodologies to 

support hospital management 

This chapter reports a successful real application of simulation the simulation methodology 

exposed in Chapter 6 to support the decision-making of hospital logistic managers in broad 

regions of Spain. The results of the simulation model were used on a daily basis during the 

successive waves of the pandemic (from March 2020 to December 2021) by local governments 

of two Spanish regions and by the Spanish Ministry of Health as a health resources planning 

instrument. In addition, the simplicity of this simulation model and the lack of local 

assumptions about the COVID-19 behaviour make it usable in other countries and regions. 

This chapter is organized as follows. First, in Section 7.1, we briefly introduce the 

implementation of the methodology developed in Chapter 6 in simulation software. Results of 

the application in the Autonomous Regions of Navarre and La Rioja (Spain) during pandemic 

waves in 2020 are included in Section 7.2. Section 7.3 includes a chronological account of the 

practical application of the simulation model and outlines the usefulness of these models in 

non-acute phases of the pandemic to aid decision-making during the phase of return to the 

normal operation of the health services or as a management learning tool. Finally, in Section 

7.4, we conclude with lessons learned from all collaborations and some conclusions of this 

work. 

7.1 Implementation of the methodology in a simulation 

software 

The methodology presented in Chapter 6 was implemented in software using the Python 

programming language. It takes input from a data file containing a record of six variables 

including sex and age of patient and four dates representing the hospital and ICU admission 

and discharge times for each patient admitted to the hospital so far. Dates of events that do not 
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occur or have not yet been observed are left blank, such as the date of admission to ICU or the 

dates of discharge from both ward and ICU. These four dates enable estimation of all the LoS 

probability distributions and branching probabilities. The additional age and sex data enable 

segmentation of the patient population. The functionalities and manner of use of the software 

evolved through time and from one pandemic wave to another. 

Initially (from March 2020 to June 2020), the simulation model was computationally 

implemented on its own, such that a daily manual statistical analysis was required to fit 

probability distributions. Throughout this period, the predictions and reports were drawn up by 

the research group and sent to the hospital’s COVID-19 logistics manager. Only one regional 

government, specifically that of Navarre, used the results of our simulation model during this 

period. 

After discussions with the hospital managers of Navarre, improvements were implemented 

in the software such as the computational implementation of the dynamic estimation of the 

probability distributions of hospital stay. Later, the assessment of a measure of the hospital 

saturation risk emerged, so the results were extended to include this measure. The statistical 

analysis was automatized and integrated in the software during the summer of 2020. In 

addition, the user interface, output analysis and automatic reports generation were also 

implemented. 

Then, from October 2020 and throughout the second pandemic wave, the analyses were 

performed by local government health administration personnel (Govts. of Navarre and La 

Rioja), under the supervision of the research group. From December 2020, and throughout the 

third, fourth, and fifth waves, the health administration analysts worked almost autonomously. 

During the last period (January to June, 2021) the research group also assisted the Spanish 

Health Ministry by providing predictions for each of the 17 Autonomous Communities in 

Spain. 

As a result of all these collaborations, the simulation software COVIDSIM was developed. 

This simulator, which allows the predictions of necessary beds in both hospital wards and ICUs 

during a pandemic, integrates all the parts developed in Chapter 6. In Appendix H, the 

COVIDSIM software user guide is provided. It explains how the software works and the steps 

that the user has to take to obtain an adequate prediction. 

7.2 Application example in Navarre and La Rioja 

The COVIDSIM software introduced in Section 7.1 has been used by the Governments of the 

Spanish Autonomous Regions of Navarre and La Rioja to support bed planning in their 

hospitals during the pandemic waves experienced in 2020 and 2021. We briefly describe how 

the virus has affected these two regions globally, then explain the stochastic modelling of the 
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hospitalized patients and their pathway through the hospital, and then present the predictions 

obtained by the DES model at different times and the deviations of these predictions from the 

real values. We conclude this section with some observations and tips for the practical use of 

this forecasting tool. 

7.2.1 Incidence of COVID-19 disease during 2020 and 2021 

Navarre and La Rioja are two Regions of northern Spain with populations of about 650,000 

and 350,000, respectively, more than half concentrated around the capitals (Pamplona and 

Logroño). With this population distribution, Navarre Health Services have a main hospital in 

Pamplona, with a bed capacity of more than 1,000, and two secondary hospitals in two of the 

most populated cities (Estella and Tudela) bringing total bed capacity to 1,466 ward beds and 

45 ICU beds. La Rioja has a main hospital in Logroño with 630 hospital beds and 21 ICU beds 

and a secondary 80-bed hospital in Calahorra. Both regions have the possibility of increasing 

bed numbers if necessary. 

Navarre and La Rioja figure among the five Spanish autonomous regions with the highest 

cumulative COVID-19 rates during the first both waves of the pandemic, according to data 

collected by the Governments of Navarre and La Rioja. Daily numbers of new admissions have 

important implications for hospital management teams. Figure 7.1 shows hospital admission 

statistics for both regions from early March 2020 to mid-December 2020. Two waves can be 

appreciated each with its own characteristics. The first is shorter but steeper, while the second 

is more prolonged. By December 16, 2020, 4,228 COVID-19 patients had been admitted to 

hospitals in Navarre (6.5 per 1,000) and 2,235 COVID-19 patients in La Rioja (6.4 per 1,000). 

A more extended series of hospitalized patients in Navarre and La Rioja between March 2020 

and December 2021 can be seen in Figure 7.2. A total of 6 waves can be distinguished, with 

different characteristics between them in terms of magnitude and duration. In total, between 

February 26, 2020, and December 19, 2021, 7,213 COVID-19 patients were admitted to the 

hospital in Navarra and 3,712 in La Rioja. 

https://gobiernoabierto.navarra.es/es/coronavirus/impacto-situacion
https://actualidad.larioja.org/coronavirus/datos
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Figure 7.1. Daily recorded hospitalizations in Navarre and La Rioja from early March 2020 to mid-December 

2020. 

 

Figure 7.2. Daily recorded hospitalizations in Navarre and La Rioja from early March 2020 to mid-December 

2021. 

7.2.2 Stochastic modelling of hospitalizations and lengths of stay 

As the pandemic spreads, the data load increases, making it possible to improve the accuracy 

of the statistical estimations. Since March 16, 2020, the arrival pattern is calculated from the 

hospital admission series. Figure 7.3 shows different results after fitting the Gompertz growth 
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model to cumulative hospitalizations in La Rioja during the first wave. As the pandemic 

progresses and more data becomes available, the Gompertz curve fit usually improves. 

However, due to the wide variability of the real data, minor fit deviations, such as that of March 

31, 2020, are possible. Separate curve fits are shown in Figure 7.4, along with the real daily 

hospitalization series. These graphs show the wide variability of the data. 

 

Figure 7.3. Cumulative hospitalizations in La Rioja from March 3 to June 9, 2020, and different curve fits obtained 

from the Gompertz growth model. 

 

Figure 7.4. Six different curve fits obtained from the Gompertz growth model compared with the daily 

hospitalization series for La Rioja from March 3 to June 30, 2020. 
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Both ward and ICU lengths of stay are estimated daily, as explained in Section 6.3. Ward 

lengths of stay (𝑋) fit reasonably well to a lognormal distribution (𝐿𝑁(𝜇, 𝜎)), whilst the 

Weibull (𝑊(𝛼, 𝛽)) distribution is found to provide a better fit for ICU LoS (𝑌). During the 

pandemic, each time the data was analyzed, the distribution parameters were reset for the 

simulation. Table 7.1 lists the probability distributions that best fit the lengths of stay in the 

two waves for Navarre (Na) and La Rioja (Ri), sorted by gender, male (M) and female (F). 𝑁 

stands for the number of patients analysed. Differences can be observed between regions, 

waves, and genders, especially in ICU lengths of stay and the percentages of ICU admissions. 

Figure 7.5 shows two probability plots obtained from the fits of the ward and ICU LoS 

distributions (regardless of gender) during the first wave of the pandemic in Navarre. 

Table 7.1. The parameters fitted to different populations at different moments during the pandemic, sorted by 

region (Navarre and La Rioja), wave, and gender, showing ward and ICU lengths of stay distributions and ICU 

admission probabilities. 

Region Wave Gender N 𝑋 (days) �̅� (days) 𝑌 (days) �̅� (days) 𝑝𝐼 𝑝𝑊𝐼 𝑝𝐼𝑊 

Na 1st M 929 LN (2.220; 0.845) 13.148 W (30.191; 1.184) 28.501 0.026 0.074 0.682 

Na 1st F 807 LN (2.131; 0.819) 11.781 W (18.304; 1.055) 17.919 0.011 0.040 0.683 

Na 2nd M 1,313 LN (2.021; 0.792) 10.325 LN (2.550; 1.075) 22.815 0.021 0.095 0.678 

Na 2nd F 1,189 LN (1.970; 0.834) 10.151 LN (2.427; 0.876) 16.613 0.020 0.049 0.859 

Ri 1st M 662 LN (1.882; 0.875) 9.630 W (14.385; 1.028) 14.226 0.039 0.063 0.455 

Ri 1st F 583 LN (1.843; 0.779) 8.555 W (14.196; 1.038) 13.986 0.012 0.031 0.480 

Ri 2nd M 559 LN (1.965; 0.774) 9.625 W (25.719; 1.166) 24.381 0.081 0.115 0.769 

Ri 2nd F 450 LN (1.874; 0.805) 9.002 W (14.283; 1.184) 13.483 0.044 0.035 0.800 

 

 

Figure 7.5. Probability plots of the fits of the ward and ICU LoS distributions during the first wave of the pandemic 

in Navarre. 
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7.2.3 Ward and ICU bed occupancy forecasts 

Figure 7.6 shows the bed occupancy forecasts for the hospitals of Navarre based on the March 

21, 2020 simulation for the following days. Note that the most important predictions for the 

medical staff are for the short-medium term (yellow-colored area in Figure 7.6), and there is a 

close match between the simulated and the real data, plotted in green. Besides, in Figure 7.7 

we present the bed occupancy forecasts for the ICUs of Navarre based on the March 16, 2020 

simulation for the following days. The simulator's ability to obtain accurate 10-day and 15-day 

forecasts, even in the early stages of the pandemic, is demonstrated here. 

 

Figure 7.6. The prediction made on March 21, 2020 for bed occupancy in the hospitals of Navarre and the real 

occupancy levels. The area shaded yellow highlights the ability of the simulator to obtain accurate 10-day 

occupancy forecasts. 

Figure 7.8 shows 4 simulations carried out on March 26 and 29 and April 1 and 4, 2020, 

comparing the results with the real evolution of the first pandemic wave in Navarre. It is 

observed that as the days go by, the results are more accurate because more information is 

available. More ward and ICU bed occupancy predictions at different moments of the second 

wave in Navarre, in comparison with real occupancy can be seen in Figure 7.9. Three dates 

have been selected to show the data trend pattern. The first is September 20, 2020, when the 

occupation began to increase significantly. The second is October 27, 2020, some days before 

the peak in ward and ICU bed occupancy. The last is November 13, 2020, when peak 

occupancy had passed and a downward trend had begun. All these results were derived from 

the 2,000 simulation runs conducted for each date. 
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Figure 7.7. The prediction made on March 16, 2020 for bed occupancy in the ICUs of Navarre and the real 

occupancy levels. The area shaded yellow highlights the ability of the simulator to obtain accurate 15-day 

occupancy forecasts. 

 

Figure 7.8. Comparison between the predictions made on different days (2020/03/26, 2020/03/29, 2020/04/01, 

and 2020/04/04) for the number of hospitalization and ICU beds occupied in Navarre and the real occupancies. 
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Figure 7.9. Comparison between the predictions made in Navarre at different moments of the second wave 

(2020/09/20, 2020/10/27, and 2020/11/13) for the number of beds occupied in both hospital and ICU, and real 

occupancies. 

7.2.4 Tips for the use of the DES model in practice 

All results shown in the previous subsections were obtained by fitting the growth model and 

probability distributions to the available data at the prediction times. However, during the first 

stages of an outbreak, when patient hospitalization data are scant, it could be hard to achieve 

accurate Gompertz model parameters and LoS probability distribution estimates to feed the 

simulation model. The beginning of an outbreak is usually marked by exponential growth in 

the data, potentially leading to a very high upper asymptote from the Gompertz model, which, 

in practical terms, could be considered as infinity (e.g. several orders of magnitude greater than 

the total population of the region). Taking this estimation as a simulation input, bed demand 

rises exponentially to figures much higher than the entire regional population. This is not a 

realistic estimation even in the worst case scenario of the entire population being infected. 

Nevertheless, in this case, the estimation would be valid for as many days as the exponential 

growth holds, and, as more data is collected, the accuracy of the upper asymptote estimate 

increases. 

However, to avoid unlimited exponential growth, and improve the accuracy of the estimates 

at the beginning of a new pandemic wave, we recommend conducting a mixed estimation of 

the Gompertz parameters, combining an estimate based on expert opinion for one parameter 

with statistical fit estimates for the other two. Specifically, experts are able to estimate total 

hospitalizations based on the population incidence rate scaled by a hospitalization factor. For 

example, at the beginning of the first wave of the pandemic, Navarre Health Administration 
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professionals guessed that 1% of the population would catch the virus (based on flu incidence), 

and 40% of the cases would require hospitalization (estimating from initial data). Using values 

ranging around these estimates, we could run the simulation model to obtain possible 

hospitalization scenarios throughout the entire wave. These predictions overestimated total 

hospitalizations by the end of the first wave by only 30%. At the beginning of the second wave, 

the initial predicted maximum can be the value observed in the first wave or a percentage of it. 

However, as soon as enough data are available for an accurate parameter estimation, the 

simulation model should be completely data-driven. 

A similar problem arises when estimating the parameters of the LoS probability distributions 

at the onset of a new wave. When insufficient data prevents the statistical estimation of all 

parameters, the simulation model has to be flexible enough to allow manual parameter input. 

We recommend the use of the triangular distribution to represent the LoS for different hospital 

status levels. The triangular distribution family is a popular choice for the estimation of task 

completion times because it embodies the idea of the ‘three-point estimation’ where subjective 

judgment is used to estimate a minimum, a ‘best guess’, and a maximum value of the variable 

of interest (Law 2014). Experts can rely on values reported for  the countries first affected by 

the pandemic (for example the cases of China and Italy are described in Grasselli et al. (2020); 

Guan et al. (2020); Young et al. (2020); and Zhou et al. (2020)). For the second and successive 

waves, the probability distributions estimated at the end of previous waves can be used initially. 

For example, during the first days of the outbreak, Navarre Health Administration experts fixed 

the minimum, maximum, and most probable total LoS as 10, 18, and 13 days respectively. 

7.3 Use as a support for decision making in hospital 

management 

7.3.1 Chronological overview of the use of the simulation model in practice 

The simulation model and its computational implementation have been a successful application 

of operational research, as the predictions provided were used in decision-making on the 

planning of resources needed to care for COVID-19 patients, mainly hospital and ICU beds. 

Those responsible for hospital logistics wanted to know the needs within a time horizon of one 

week, which was enough time for the preparation and deployment of field hospitals and the 

adaptation of other facilities to receive patients. Therefore, although the errors in the 

predictions could increase considerably as the time horizon is extended, they were reasonable 

for time horizons of up to one week. Thus, the simulator provides objective values on which to 

base decisions, thus avoiding arbitrariness in resource planning. 

The use of the simulator for short-term prediction requires knowledge of the exact state of 

the hospital system at the time the simulation is started. With this information, in addition to 
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defining the initial state of the simulation model, the estimates of the parameters of the 

probability distributions and the branching probabilities that determine the flow of patients are 

readjusted. At the beginning of March 2020, the Government of Navarre prepared an 

information collection structure capable of providing complete information every morning at 

9:00 a.m. that describes the state of the hospital system in the entire Autonomous Community 

one hour earlier, at 8:00 a.m. This information system involves the Department of Health 

Systems and Technologies of the Government of Navarre, in charge of storing, organising, and 

replicating health information (represented as operational systems in Figure 7.10), and the Data 

Management Unit of the Navarre Hospital Compound, in charge of processing the information 

received from the Government of Navarre and preparing the hospitalization data file on a daily 

basis. This unit, in addition to preparing the data files, also prepares reports, which integrate 

our forecasts, which are sent to the hospital management, the Health Counselling, and the 

political decision-makers of the Autonomous Community. 

 

Figure 7.10. Daily flow of data, information and reports. 

This collaboration started on March 12, 2020, when the management of the Navarre Hospital 

Compound contacted the q-UPHS research group asking about the possibility of forecasting 

the necessary resources. The first model was based on the simulation model of Part I Analysis 

of Intensive Care Unit bed management using an interactive simulator. This model was adapted 

and used for the initial analysis, but in the first stage of development, it required manual 

statistical analysis of the data file for fitting distributions, as well as launching the simulations, 

extracting results, and writing reports manually. 

On March 16, 2020, we presented the first prototype of the simulator to those responsible for 

hospital management and Health Counselling, who approved the tool and agreed to provide the 

necessary data for its implementation. On the same day, the first forecasts were made using 

triangular distributions and parameter estimates based on values published in the literature. 

Numerous scenarios were run to see in which scenarios the existing capacities were sufficient 

and in which situations additional resources had to be prepared and in what quantity. In the 

daily reports generated for the government of Navarre, these scenarios were evaluated, 

expressly indicating the maximum number of beds to be occupied, as well as the day on which 
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this occurred. In the hospital, the maximum bed occupancy occurred on April 1, 2020, with 

669 beds, while in the ICU the maximum of 81 beds lasted from April 1 to April 5, 2020. After 

the first peak of the pandemic, the research group provided support through a surveillance 

system for early detection of outbreaks (the development of this is not part of this research). In 

addition, during the first pandemic wave of 2020, we acknowledged that dynamic estimation 

of the parameters of probability distributions acquires great importance. Therefore, these 

dynamic estimates were improved by proposing new estimators. 

At the end of the first wave of COVID-19 in June 2020, hospital system managers were 

satisfied with the results and found it to be a very useful tool. In addition, there was some media 

coverage, which made the methodology known to other governments such as La Rioja’s, which 

became interested in using it in future pandemic waves. The scaling up necessary to serve 

several communities motivated the use of some procedures in the computational improvement, 

automating parts, so as to avoid manual statistical analysis, the launching of simulations, and 

the collection of results or the elaboration of reports. With the new computer application (the 

COVIDSIM software), hospital managers in Navarre and La Rioja gained the autonomy to 

make their own predictions, under the supervision of the research team. The new software was 

used in both Navarre and La Rioja from the second wave onwards. Figure 17 shows a graph 

with the 7-day occupancy predictions that the Navarre hospital managers obtained 

autonomously during the fourth pandemic wave (between March 2021 and June 2021) and the 

real curve of occupied beds in the hospital. 

 

Figure 7.11. Comparison between 7-day forecasts made in Navarre at different times of the fourth wave (between 

March 2021 and June 2021) for the number of occupied hospital beds and actual occupancies. 
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In November 2020, the Health Alerts and Emergency Coordination Centre (CCAES) heard 

about the existence of our software and requested our collaboration to prepare individualized 

reports for each of the Spanish autonomous communities. It was applied during the third and 

fourth pandemic waves (between January and June 2021). Some autonomous communities, 

such as Castile and León and the Balearic Islands, requested a disaggregation by provinces and 

islands to facilitate management. In order to collaborate with the Ministry of Spain, we were 

allowed to access all centrally available data sources, which include the information system on 

hospital capacity (CMC) and other databases, receiving direct notification from public and 

private hospitals on admitted and discharged patients, active beds, and beds occupied by 

COVID-19 patients. All databases were updated daily and have national coverage. 

7.3.2 Additional simulation model functionalities 

The COVID-19 pandemic has required the use of all available resources in hospital services, 

leading to the cancellation of the usual activity of many departments and services. Thus, the 

activity in operating rooms, except for very urgent cases, was cancelled in order to free up beds 

in the ICUs. The incorporation of the usual sources of patients to an ICU into the simulation 

model allows it to be used to schedule the activity of the manageable sources, and its impact 

on future occupancy can be predicted. In times of pandemic, patients requiring intensive care 

can be classified into COVID-19 patients, patients from scheduled surgeries, and emergency 

patients (see Figure 7.12). 

 

Figure 7.12. Sources of arrival in the ICU in times of pandemic. In addition to the two usual sources (emergencies 

and operating rooms), patients infected, in this case, by COVID-19, are added. 

Typically, emergencies follow a stable random pattern, well described by a Poisson Process 

(PP), which in the pandemic period has decreased its arrival rate due to lockdown and a 

decrease in the activity. In periods of pandemic remission, the arrivals of COVID-19 patients 

progressively decreases, freeing resources for the reactivation of surgical activity. The 
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determination of optimal operating room schedules in these transition periods can be done 

using the simulation model in combination with heuristic optimisation techniques, to solve 

problems that seek to maximise the ICU bed resource, subject to probabilities of 

rejection/diversion of patients below a certain risk threshold and that address the priorities of 

patients waiting on the waiting lists of the different specialties. Similarly, this simulation model 

can be used for the gradual suspension of activity in operating rooms during subsequent 

outbreaks of the pandemic. 

In general, the situation described raises the problem of the distribution and allocation of 

scarce healthcare resources among a wide range of patients. The pandemic may lead to changes 

in admission and discharge protocols for other types of patients who may be indirectly affected 

by the new disease. The confrontation of medical staff with the allocation of scarce resources 

is not new to this pandemic (Azcarate et al. 2020), although it has overemphasized the problem. 

Simulation models can be used to assess the effects of changes in medical care for other 

patients, both individually and collectively in terms of increased waiting lists (Wood 2020). 

On the other hand, the simulation model can also be used in offline mode, in other words, 

outside the pandemic period as a learning tool for the management of resources by those 

responsible for health logistics. The simulation model is capable of recreating different 

pandemic scenarios, providing the necessary resources in each one, and comparing them with 

those available or programmed. It also makes it possible to test the influence of different ways 

of managing the hospitalization of patients (hospital, home, nursing homes, etc.). 

7.4 Conclusions 

After 21 months’ cooperation with health authorities, we have reached the conclusion that the 

success of this operations-research support system for decision-makers in difficult pandemic 

times is due to the following factors: 

 Multidisciplinary teamwork and a background of cooperation with health managers. 

The research group q-UPHS (www.unavarra.es/quphs) has been cooperating for more 

than 10 years in the solving of real problems surrounding health service improvements. 

Problem analysis is always addressed through multidisciplinary teamwork involving 

academics (engineers and mathematicians) and health service personnel (managers, 

medical staff, and computer scientists). 

 A request for assistance from the health administration. At the beginning of the 

pandemic, health managers raised the need for a short- and medium-term bed-demand 

forecasting method to improve their bed management system. Medical space and 

equipment (including staff) planning is based on 10-bed modules. Prior knowledge of 

bed needs therefore facilitates resource planning. 

http://www.unavarra.es/quphs


7.4 Conclusions 125 

 

 Rapid response. Five days after the original request, the group presented the simulation 

model and the initial results (predictions) for validation by the region’s hospital and 

healthcare logistics managers. 

 Joint development of the model. Decision-makers were involved in the development of 

the model and maintained continuous communication with the research team. 

 Continuous improvement of the computer application. Suggestions made by health 

managers and a user-friendly software interface were implemented to free users 

gradually from the need for supervision by the research team. 

 Joint monitoring of the results. Quality assessment and critical analysis of the 

predictions were performed jointly by the research team and health managers. 

Thus, the simulation paradigm presented in this chapter is suitable for the realistic 

representation of health service processes, which makes it more credible and easier to 

understand by the managers who will have to rely on the results in their decision-making. From 

March 2020 until the moment of writing this thesis (end of December 2021), the simulation 

model has been used daily to predict hospital resource needs in the Spanish regions of Navarre 

and La Rioja, and all other Spanish Communities from January, 2021. 
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8 Conclusion 

This thesis presents a research project using quantitative data analysis to enable the study and 

the comparison of decisions made by Intensive Care Unit (ICU) physicians. This opens up a 

future line of research based on the mathematical modelling of an ICU including the decisions 

made by medical staff. The outcome is the development of a learning tool for ICU resource 

management that was subsequently adapted for use as a prediction tool during the global 

COVID-19 pandemic, which created a surge in demand for hospital and ICU beds. During the 

pandemic, hospital beds, ICU beds, and healthcare staff are essential, not only to achieve 

optimal public health resource planning to assist all COVID-19 patients, but also to minimize 

the impact of the pandemic on other public health services (such as scheduled surgeries and 

medical consultations). 

The rest of this chapter is organised as follows. The general conclusions of this thesis are 

explained in Section 8.1. The main contributions are summarised in Section 8.2. Section 8.3 

indicates possible future extensions of this work. Both parts of this thesis leave issues to be 

addressed in future research. This chapter ends with Section 8.4, which contains some final 

remarks and a report of the scientific publications and conference presentations that have 

resulted from this work. 

8.1 General conclusions 

The research conducted for this thesis contributes to improving the understanding of 

decision-making processes for ICU admission and discharge in high-occupancy periods. 

The ICU work environment is one of intense stress due both to the critical state of the patients, 

whose chances of survival depend upon the medical staff’s clinical decisions, and also to the 

uncertainty of future patient admission requirements. The need to hold resources in reserve to 

deal with unplanned or unexpected admissions can impact upon clinical decisions involving 

either admitted patients or expected arrivals, especially at times of high occupancy. Despite the 

crucial importance of this problem and the potential patient-health repercussions of the 
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eventual decisions, there is no protocol to guide professionals when faced with such challenges. 

Protocol design entails the added complication of a setting marked by a conflicting combination 

of patients already admitted and potential arrivals, making the ICU environment one of infinite 

casuistry, where the historical comparison of clinical decisions becomes impossible. 

Against this background, the simulator proposed in this thesis becomes a valuable alternative 

for understanding the patient admission and discharge decisions of ICU professionals. It is to 

this end that the research work has focused primarily on creating a simulator with the capacity 

to faithfully reproduce the decision-making environment faced by ICU physicians. A key factor 

in achieving this is the simulation of ICU patient length of stay (LoS) using real (duly 

anonymised) clinical cases described by over 250 variables and physician and nurse reports. It 

is superior in this respect to the simplified approach used in the mathematical models developed 

to date, which describe hospital stays in terms of the number of days spent in hospital, and, at 

best, a small set of variables including gender, age, type of pathology or reason for admission. 

The information is presented as it is on the screens of the clinical record software 

(Metavision®) used in the ICU of the Navarre Hospital Compound. Moreover, the simulator 

creates a historical decision-making record, which can be understood as the raw datum 

describing the user’s decision-making process. The challenge to be addressed in this thesis is 

the statistical analysis of this new data source with proposed metrics and statistical 

methodology for comparing physicians’ decision-making processes. The preliminary results 

indeed show that there is variability across ICU professionals’ decision-making processes, and 

differences between and within professional groups (physicians, nurses, residents, etc.). 

Successive waves of the COVID-19 epidemic have triggered a surge in the number of patients 

requiring hospitalisation and intensive care which has rapidly exhausted the supply of acute 

and ICU beds. Hospitals have had to increase their capacity to deal with the surge in demand 

from these patients, while trying as far as possible to minimise the impact on the quality of 

attention given to other types of patients. This has called for flexible management strategies to 

ensure quality care for all patients needing it, while also maintaining some elective surgery. 

One way in which a hospital can increase its capacity for the implementation of management 

policies adapted to exceptional circumstances is by means of informed decision making based 

on the analysis of available data and accurate future demand forecasts. 

The research carried out in the second part of the thesis contributes towards obtaining short 

term demand forecasts both for acute and ICU beds, to cover the needs of COVID 

patients, with a proposed forecasting method based on a combination of epidemiological 

statistical models and simulation techniques. This method uses known real-time data, the 

COVID-19 patient hospitalisation record, and a mechanistic simulation model that can be 

easily understood by the decision makers. The conceptual simplicity of the model belies its 

potential for addressing the methodological challenges raised in this thesis: from the dynamic 

parameter estimation of probabilistic models with incomplete data, to transitory state 

simulation of the hospital system, and future patient volume forecasting using a growth curve 
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model. Its conceptual simplicity, rigorous methodology and data accessibility have enabled its 

practical implementation as a decision-making support for hospital logistics managers. 

The pandemic has thrown a spotlight on many areas of research where Operations Research 

(OR) models can provide solutions. It has also served to accelerate processes of change in 

patient care, such as telemedicine and home care. These changes, together with an ageing 

population and the threat of the re-emergence of this or similar viruses, will define public health 

in the 21st century and are a clarion call for researchers to prepare our models to support the 

development of sustainable and efficient health services and to be better prepared for the next 

health crisis. 

8.2 Thesis contributions 

Part I of this thesis consists of the development of simulation models and methodology for the 

analysis of ICU bed management. This includes the first ICU Management Flight Simulator 

(MFS), which enables analysis of the decision-making process and how it is managed, as well 

as providing a useful learning-training tool. This interactive simulator is based on a Discrete 

Event Simulation (DES) model that mimics real ICU admission and discharge processes. We 

recreate patients’ health status using real clinical data recorded with Metavision® software, 

instead of using a single LoS value. The status of real patients is monitored with 275 health 

indicators, to give an extended and realistic description of their evolution, with possible 

improvement or deterioration. Thus, the first objective of this thesis, the “Development of an 

interactive simulator capable of creating a virtual environment in which the operation of an 

ICU is represented…” is fulfilled. We have designed a flexible tool which enables the 

recreation of ICUs with different characteristics (numbers of beds, patient arrival types, 

congestion levels...) and which begins the simulation with a scenario that is representative of 

the stationary state of an ICU. 

Furthermore, we have developed statistical methods to analyse a new type of data in this 

context, patient admission and discharge decision-making sequences considering ICU status at 

each point of time. Preliminary results of global performance measures reveal variability 

among physicians’ decision-making when faced with the dilemma of the last bed. The ICU 

pressure level is an important factor when analysing decision-making. Results based on this 

parameter reveal differences in management approaches across different user profiles (ICU 

nurses and ICU physicians, for example). One contribution in this respect is the development 

of a new metric to compare decisions according to the ICU pressure level, which consists of an 

extension of the Euclidean distance, which we have defined as the Euclidean-Aggregate 

distance. We have also defined a proper distance to compare decisions at patient level, the 

Extended Weighted Normalised Hamming distance between two binary vectors. It is 

mathematically expressed taking into account both the sum and the absolute difference of the 

non-common values, which, in this context, refer to the difference between patients and 
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between bed occupancy, respectively. Thus, the research described here fulfils the second 

specific objective, “Quantitative analysis of medical decisions, by seeking patterns in ICU 

decision-making, using mathematical modelling to learn how decisions are made…”. 

Part II of this thesis consists of the development of simulation models and methodologies to 

predict both hospital and ICU admissions and bed occupancy several days ahead. The COVID-

19 pandemic prompted the development of these models and their use in real-time. We had the 

opportunity to use them during the pandemic with daily updated data from the hospital. Thus, 

the model and methodology were validated by the Health Services managers. Specifically, we 

have developed a method to simulate COVID-19 patient arrival times based on Population 

Growth (PG) models. These are better suited for the prediction of hospitalization (and positive 

cases) series than other mathematical alternatives such as SIR-type models, which require 

detailed knowledge of the spread of the disease throughout the population and the estimation 

of many parameters. PG models produce S-shape curves able to represent the evolution of 

pandemic variables, such as positive cases and hospitalisations, from beginning to end of the 

outbreak. A statistical analysis of the accuracy of four different PG models in simulating and 

forecasting the spread of the pandemic has been carried out. We represent the current state of 

the health system based on a set of state variables and a dynamic statistical analysis of patient 

flow which enables the accurate simulation of the bed occupancy rate in the following days. 

We have developed methodological improvements in the estimation of hospital LoS and the 

probability of ICU admission. We have proposed a new estimator based on the Expectation-

Maximization (EM) technique, which uses information on all patients admitted to the hospital 

and improves the results obtained with traditional estimators that do not use all the available 

information. We have combined all these elements in a DES model that is flexible enough to 

recreate scenarios based on stochastic models fitted to data (data-driven prediction), scenarios 

defined by expert judgement, and a mixture of both. Thus, we have satisfactorily fulfilled the 

third objective of this thesis, the “Development of a mathematical tool for real-time prediction 

of hospital and ICU admissions and occupancy of these units in the following days during the 

pandemic caused by COVID-19…”. 

Finally, in practical terms, this thesis also reports the validation of the developed 

methodology by means of a successful real-world application of the simulation model to 

support a decision-making process of crucial importance to the health of patients in two 

Autonomous Regions of Spain (Navarre and La Rioja). Healthcare authorities in these two 

regions received, daily throughout all the pandemic waves, results predicting hospital and ICU 

admissions and occupancy for the following days. With this information, we helped them to 

act quickly and effectively. In addition, our model was used from the third pandemic wave, 

which started in December 2020, by Health Alert and Emergency Coordination Centre 

(CCAES), associated with the Spanish Ministry of Health. Some Spanish autonomous 

communities, such as Castile and León and the Balearic Islands, requested a disaggregation 

analysis by provinces and islands to facilitate the management of hospital resources. With these 

reports, we accomplish the fourth objective of the thesis, the “Validation of the methodology 
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in a real context by supporting healthcare authorities during the pandemic with daily forecast 

reports to help them to respond quickly and effectively in managing and planning public health 

resources”. 

8.3 Future work and research 

This thesis analyses problems of various kinds, some of which require further analysis and 

research. As far as Part I is concerned, we plan to continue studying the properties of the metrics 

proposed in Chapter 5 in greater depth, and to propose new metrics for comparing decision-

making sequences between two physicians. An exhaustive analysis of all the results obtained 

with the ICU simulator is also required for the identification of different ICU management 

profiles. The observed ICU management behaviour can be compared with strategies formulated 

in optimization models in order to detect patterns. The objective would be to include physician 

decision-making in ICU simulation models to achieve a closer fit to real-life ICU decision-

making processes. The computational implementation of these models will enable the 

development of methods for the analysis of medical staff workload and resource utilization. 

A better understanding of physicians’ decision-making processes will help to the correct 

choice of action in complex management situations, such as periods of high occupancy in 

which it is necessary to decide between the early discharge of an admitted patient or the 

redirection of others arriving at ICU. With the help of the ICU simulator, it will be possible to 

detect, study, and recreate difficult-choice scenarios, for discussion by professionals with a 

view to developing consensual action protocols. In addition, the implications of medical 

decisions in bed management on patients' health must be assessed, such as the health risk for 

patients when LoS is reduced for reasons of high ICU occupancy and other variables, such as 

the number of planned surgical admissions. 

With respect to Part II of this thesis, some aspects remain to be analysed. On the one hand, 

the modelling of COVID-19 patient arrival can be improved by using combined methods to 

increase prediction efficiency. This requires assessing the sensitivity of different methods to 

the addition of new data and incorporating the results into the model. We would also like to 

compare the EM method used to estimate the pandemic wave parameters with other non-

parametric methods. Through pandemic simulation, we will be able to conclude which method 

provides more accurate estimates with earlier convergences and whether it is more appropriate 

to develop an algorithm combining both methods. 

A further aim would be to create an interactive simulator for use in healthcare resource 

management during a pandemic, to enable the user, based on predictions, to decide the amount 

of resources, in terms of ward and ICU beds and medical staff, to be allocated for the care of 

infected patients in the following days, bearing in mind that other health services, such as 

scheduled surgical operations, may be affected as a result. In addition, the tool would also 
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enable measurement of the impact of the decisions on other units of the hospital, and could be 

used as a training tool in manager performance comparisons and the evaluation of learning 

from repeated use. 

8.4 Final remarks 

The original plan for this thesis was modified due to the global COVID-19 pandemic. The 

initial objectives were those associated with Part I, however, the outbreak of the virus in China 

in December 2019 and in Spain in March 2020 prevented the dissemination of the simulator 

and the collection of usage data. This pandemic has provided a research opportunity for the 

development of new methodologies and the practical application of the developed simulation 

models. At the request of the Navarre healthcare services, we adapted our models to collaborate 

in the COVID-19 healthcare crisis and support the healthcare authorities with short-term 

predictions. Therefore, the first line of research relating to the analysis of admission and 

discharge decisions was adapted to include both aspects of our research in this thesis. 

I would also like to emphasise that this thesis, involving direct contact with real clinical 

problems, was possible thanks to the efforts of the ICU Management at the Navarre Hospital 

Compound and the generous and kind collaboration of the ICU physicians and nurses. We 

would also like to highlight the work of the data analysis and hospital logistics management 

teams at the Navarre Hospital Compound during the pandemic, at whose request we provided 

data analysis support. 

This thesis was only possible thanks to the support of the General Directorate of Health 

Services of Navarre, by whom we were authorised to access the data of the Regional Ministry 

of Health of the Government of Navarre, which was indispensable for the completion of this 

thesis. Similarly, access to all the data from La Rioja was provided by the Rioja Salud 

Foundation. The Spanish Ministry of Health also allowed us daily access to the Information 

system on hospital capacity (CMC) and other databases, to enable the national level analyses 

and predictions. All these entities were aware of the information and our daily forecast results, 

when making hospital logistics decisions and also political decisions such as lockdown and 

social distancing (SD) measures to cut the spread of the virus. 

This work has resulted in the publication of two scientific papers in international indexed 

journals (Garcia-Vicuña et al. 2020b, 2021). One disclosure paper has also been published 

nationally (Garcia-Vicuña et al. 2020a), and another on the academic website The Conversation 

(Garcia-Vicuña and Mallor 2021), a network of not-for-profit media outlets publishing news 

stories and research reports online, with accompanying expert opinion and analysis. 

Specifically, the latter has had some media repercussions, with 13 re-publications in other 

media, having also generated over 2,600 reads in the following countries: Spain, Colombia, 

Peru, the United States, Chile, Mexico, Argentina, France, the United Kingdom, and Ecuador. 



8.4 Final remarks 135 

 

Furthermore, this thesis has been presented at 11 international conferences (Winter 

Simulation Conference, Operational Research Applied to Health Services, European 

Conference on Operational Research, European Society of Intensive Care Medicine LIVES, 

INFORMS Healthcare Conference, and New Bridges Between Mathematics and Data Science) 

and 5 national conferences (SEMICYUC National Congress). Our work has also had an impact 

on some Spanish hospitals, presentations having been made in five hospitals, three in Navarre 

(Navarre Hospital Compound, García Orcoyen Hospital, and Reina Sofia Hospital), one in the 

Basque Country (Guipúzcoa Polyclinic), and one in La Rioja (San Pedro Hospital). 
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A List of acronyms and their definitions 

Table A.1 provides the list of acronyms and their definitions used in this thesis, sorted 

alphabetically. In total, 63 acronyms have been used. 

Table A.1. List of acronyms and their definitions used in this thesis, sorted alphabetically. 

Acronym Definition 

AES Atrial extrasystoles 

AF Atrial fibrillation 

AFL Atrial flutter 

AHC Agglomerative Hierarchical Clustering 

ALT Alanine transferase 

AMG Adjusted Morbidity Group 

AMI Acute myocardial infarction 

aPTT Activated partial thromboplastin time 

ARDS Acute respiratory distress syndrome 

AST Aspartate transferase 

AV Atrioventricular 

BCA Bed control actions 

CCAES Health Alert and Emergency Coordination Centre 

CK-MB Creatine kinase myocardial band 

CMC Information system on hospital capacity  

COPD Chronic obstructive pulmonary disease 

CT Computed tomography 

cTnI Troponin I 

DES Discrete Event Simulation 

EC European Commission 

ECDC European Centre for Disease Prevention and Control 

EM Expectation-Maximization 
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EN Enteral nutrition 

ESICM European Society of Intensive Care Medicine 

GGT Gamma-glutamyl transpeptidase 

IABP Intra-aortic balloon pump 

ICP Intracranial pressure 

ICU Intensive Care Unit 

INR International normalized ratio 

ITA Aeronautics Institute of Technology 

LoS Length of stay 

MAE Mean Absolute Errors 

MDS Multidimensional Scaling 

MFS Management Flight Simulator 

MIT Massachusetts Institute of Technology 

NEMS Nine equivalents of nursing manpower use score 

non-VAP Non ventilator-associated pneumonia 

non-VAT Non-ventilator-associated tracheobronchitis 

OM Operations Management 

OR Operations Research 

PACs Premature atrial contractions 

PCR Polymerase chain reaction 

PG Population Growth 

PHEIC Public Health Emergency of International Concern 

PM Pacemaker 

PN Parenteral nutrition 

PP Poisson Process 

PtiO2 The partial pressure of O2 in brain tissue 

PVCs Premature ventricular contractions 

SCCM Society of Critical Care Medicine 

SD Social distancing 

SSE Sum of the squared errors 

SMACOF Scaling by MAjorizing a COmplicated Function 

SSP Simulation Starting Point 

SVES Supraventricular extrasystole 

SVT Supraventricular tachycardia 

VAP Ventilator-associated pneumonia 

VAT Ventilator-associated tracheobronchitis 

VES Ventricular extrasystole 

VR Virtual Reality 
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VT Ventricular tachycardia 

WHO World Health Organization 

WGQI Working Group on Quality Improvement 
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B Information of the example of the dilemma of 

the last bed 

B.1 Real patients’ description 

Peter, 56 years old. Admitted for acute viral meningoencephalitis due to Herpes Simplex 

Virus I. 

 Intubated and connected to mechanical ventilation. 

 Neuromonitoring of intracranial pressure (ICP) control by first level measurements. 

 In treatment with intravenous acyclovir. 

 He requires norepinephrine in continuous infusion at 0.3 µg/Kg/min. 

 

Phil, 78 years old. Admitted for postoperative control of aortic valve replacement cardiac 

surgery. 

 Hemodynamically stable without requiring vasopressors and with low doses of 

dobutamine at 2 µg/Kg/min. 

 Chest tube with a rate of drainage less than 100 mL/d. 

 Acute kidney injury without oliguric and creatinine and urea levels of 1.8 mg/dL and 

80 mg/dL, respectively. 

 

Cate, 63 years old. Admitted for severe community-acquired pneumonia due to 

Streptococcus pneumoniae. 

 Situation of severe acute respiratory distress syndrome (ARDS) requiring respiratory 

support with veno-venous extracorporeal membrane oxygenation and ultra-protective 

mechanical ventilation. 

 In treatment with meropenem and linezolid. 

 With continuous extrarenal depuration techniques. 
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Harvey, 28 years old. Polytrauma with severe traumatic brain injury secondary to a high-

energy car accident after leaving the roadway. 

 Intubated and connected to mechanical ventilation. 

 Fitted with rigid cervical collar and pelvic stabilization device. 

 Hemodynamic instability, with worsened hypotension (blood pressure, 80/50 mmHg) 

and persistent bradycardia (heart rate, 105 beats/min). 

 An inadequate response to fluid resuscitation during transfer by mobile ICU. 

 

Anne, 37 years old. Postoperative course of glioblastoma multiforme. 

 Clinic of headache difficult to control with usual analgesics, nausea-vomiting and 

progressive left hemiparesis for two days. 

 In the emergency room, he suffered a partial motor epileptic seizure, secondarily 

generalized. 

 Cranial computed tomography (CT) scan showed right frontoparietal glioblastoma 

multiforme with significant perilesional edema and incipient data of transtentorial 

herniation. 

 

Paul, 52 years old. Postoperative cardiac surgery for coronary artery bypass grafting. 

 Admitted for acute coronary syndrome with ST-segment elevation. 

 Cardiac catheterization with left main coronary artery and three-vessels disease. 

 Echocardiography with severe ventricular dysfunction and segmental alterations, with 

extensive anterior hypokinesia. 

 Hemodynamic support with intra-aortic balloon pump (IABP) and solinitrin perfusion 

for refractory postinfarction angina. 

 

B.2 All combinations of the example of the dilemma of the 

last bed 

Table B.1. All 57 possible combinations of the example of the dilemma of the last bed. 

Decision ICU occupancy Deviations/Cancellations Early discharges 

1 
 

 

- 

2 

  

- 
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3 

  

- 

4 

  

- 

5 

  

 

6 

  

 

7 

   

8 

   

9 

   

10 

   

11 

   

12 

   

13 

   

14 

   

15 

   

16 

   

17 

   

18 

   

19 

   

20 

   

21 

   

22 

   

23 
   

24 
   

25 
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26 

 

- 
 

27 

 

- 
 

28 

 

- 
 

29 

   

30 

   

31 

   

32 

   

33 

   

34 

   

35 

   

36 

   

37 

   

38 

   

39 

   

40 

   

41 

   

42 

   

43 

   

44 

   

45 

   

46 

   

47 
   

48 
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49 
   

50 

 

- 
 

51 

   

52 

   

53 

   

54 

   

55 

   

56 

   

57 
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C Set of patient variables included in the ICU 

management flight simulator 

C.1 Patient information data 

Patient data 

Coded ICU number, coded Medical Record number, age, gender, weight, LoS, ICU admission 

time, ICU discharge time, principal diagnosis (see Table C.1), provenance, and type of 

discharge (see Table C.2). 

Table C.1. Unified principal diagnosis. 

Code Principal diagnostic 

1 Cardiac surgery postoperative 

2 Neurosurgery postoperative 

3 Vascular surgery postoperative 

4 Thoracic surgery postoperative 

5 General surgery postoperative 

6 Other postoperative 

7 Acute respiratory failure 

8 Chronic obstructive pulmonary disease (COPD) 

9 Pneumonia 

10 Pulmonary embolism 

11 Acute respiratory distress syndrome (ARDS) 

12 Heart failure 

13 Acute myocardial infarction (AMI) 

14 Stroke 

15 Other neurological disorders 
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16 Renal insufficiency 

17 Acute pancreatitis 

18 Other digestive disorders 

19 Polytrauma 

20 Intoxication 

21 Septic shock 

22 Hemorrhagic shock 

23 Cardiorespiratory arrest 

24 Other 

99 Donation 

 

Table C.2. Type of discharge. 

Code Reason for discharge 

0 Planned discharge 

1 Suspension of discharge on clinical grounds 

2 Suspension of discharge due to lack of ward beds 

3 Suspension of discharge on other criteria 

  

6 Unplanned discharge after morning physician's assessment 

7 Unplanned discharge due to shortage of beds 

8 Exitus/donation 

9 Other 

 

Personal background 

Comorbidities as recorded in the APACHE II score, liver diseases (y/n), dyspnoea or unstable 

angina (New York Heart Association Class IV) (y/n), respiratory background (y/n), chronic 

kidney dialysis (y/n), and immunocompromised (y/n) 

Type of patient 

Emergency patient (𝐸): 

 Urgent surgery (𝐸1). 

 Polytrauma (𝐸2). 

 Patient hospitalized in Medical Service (𝐸3). 

 Patient hospitalized in Surgical Service (𝐸4). 

 Emergency/observation patient (𝐸5). Polytrauma patients (𝐸2) and those undergoing 

emergency surgery from the Emergency Department (𝐸1) are excluded from this group. 
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 Patients admitted for organ donation and others not included in previous groups (𝐸6). 

Scheduled patients (𝑆): 

 Patients that recover from standard surgery procedure, which can be in the ICU for 

an expected short stay (𝑆1). 

 Patients that can be for an expected long stay due to a complicated surgery or critical 

condition of them (𝑆2). 

C.2 Patient's clinical data 

Neurological parameters (10) 

Both pupil size in millimetres (1-8 mm) and reactivity (unreactive-sluggish-reactive- 

undetermined), Glasgow Coma Scale (Glasgow-Motor response, Glasgow-Eye response, and 

Glasgow-Verbal response), external ventricular drain (ml), and RASS scale (-5: unarousable 

sedation, -4: deep sedation, -3: moderate sedation, -3: moderate sedation, -2: light sedation, -

1: drowsy, 0: alert and calm, 1: restless, 2: agitated, 3: very agitated, or 4: combative). 

Hemodynamic parameters (17) 

Oxygen saturation (%), the temperature in degrees Celsius (ºC), type of heart rhythm (sinus 

rhythm, junctional rhythm, atrial fibrillation [AF], atrial flutter [AFL], supraventricular 

tachycardia [SVT], ventricular tachycardia [VT], atrioventricular [AV] block [1st, 2nd, and 3rd 

degree], Premature ventricular contractions [PVCs], atrial extrasystoles [AES], ventricular 

extrasystole [VES], supraventricular extrasystole [SVES], premature atrial contractions 

[PACs], and pacemaker [PM]), heart rate (rpm), systolic blood pressure (mmHg), diastolic 

blood pressure (mmHg) (invasive are non-invasive), mean arterial blood pressure (mmHg), 

systolic blood pressure-non-invasive blood pressure (mmHg), diastolic blood pressure-non-

invasive blood pressure (mmHg), pacemaker rhythm (y/n), type of pacemaker (temporary 

epicardial or permanent bicameral), pacemaker operating modes (ventricular (VVI) or 

atrioventricular (DDD), pacing rate (rpm), pacing capture threshold (mA), cardiac output-

Vigileo, cardiac index-Vigileo, and stroke volume-Vigileo. 

Respiratory parameters (14) 

Spontaneous breathing trials (L/minute), tracheotomy (y/n), fenestrated cannula/speaking 

valve (y/n), tracheostomy cap (y/n), conventional mechanical ventilation (y/n), noninvasive 

positive pressure ventilation (y/n), reservoir mask (y/n), Venturi mask (y/n), nasal cannula 

(L/minute), inspired gas flow with high-flow nasal cannula oxygen therapy (L/minute), fraction 

of inspired oxygen with high-flow nasal cannula oxygen therapy (%), fraction of inspired 

oxygen (%), extrinsic positive end-expiratory pressure (cmH2O), and respiratory rate (rpm). 
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Kidney parameters (2) 

Continuous renal replacement therapies (y/n) and intermittent hemodialysis (y/n). 

Fluid balances (2) 

Diuresis (mL) and chest drainage (mL). 

Medication (123) 

Plasmalyte (mL/h), propofol 2% (mg/Kg/h), midazolam 50 mg (μg/Kg/h), remifentanil / ultiva 

(μg/Kg/min), morphic chloride (mg/h), intravenous fentanyl (μg/Kg/h), cisatracurium 

(µg/Kg/min), dexmedetomidine / dexdor (µg/Kg/min), norepinephrine (µg/Kg/min), 

dobutamine (µg/Kg/min), dopamine (µg/Kg/min), levosimendan (µg/Kg/min), epinephrine 

(µg/Kg/min), urapidil (mg/h), nimodipine (mg/h), nitroglycerin (µg/min), labetalol (mg/min), 

nitroprusside (µg/Kg/min), clevidipine (mg/h), amiodarone (mg/h), furosemide 250 mg 

(mg/min), regular insulin (IU/h), enteral nutrition (EN) - water (mL/h), EN - gastrointestinal 

mucosal disruption / GI protein (mL/h), EN - surgery (mL/h), EN - hyperproteic diabetes 

(mL/h), EN - normo-protein diabetes (mL/h), EN - standar (mL/h), EN - standard with fibre 

(mL/h), EN - metabolic stress (mL/h), EN - metabolic stress / Perative (mL/h), EN - 

hypercaloric (mL/h), EN - hypercaloric with fibre (mL/h), EN - hypercaloric with fibre / Jevity 

(mL/h), EN - hyperproteic (mL/h), EN - hyperproteic with fibre (mL/h), EN - liver failure 

(mL/h), EN - kidney failure (mL/h), EN - respiratory failure / Oxepa (mL/h), EN - oncology 

(mL/h), EN - peptidic (mL/h), EN - hyperproteic hypercaloric peptidic (mL/h), EN - 

hyperproteic peptidic with glutamine (mL/h), parenteral nutrition (PN) - moderate liver disease 

1,800 mL (mL/h), PN - hypercaloric 2,000 mL (mL/h), PN - hypercaloric 2,500 mL (mL/h), 

PN - hypercaloric 3,000 mL (mL/h), PN - hyperproteic hypercaloric 2,200 mL (mL/h), PN - 

hyperproteic hypercaloric 2,600 mL (mL/h), PN - hyperproteic hypercaloric 3,000 mL (mL/h), 

PN - hypocaloric 2,000 mL (mL/h), PN - hypocaloric 2,500 mL (mL/h), PN - hypocaloric 3,000 

mL (mL/h), PN - individualized (mL/h), PN - isoplasmal (mL/h), PN - normocaloric 2,000 mL 

(mL/h), PN - normocaloric 2,500 mL (mL/h), PN - normocaloric 3,000 mL (mL/h), PN - 

normocaloric with glutamine 2,000 mL (mL/h), PN - hyperproteic normocaloric 2,000 mL 

(mL/h), PN - hyperproteic normocaloric 2,500 mL (mL/h), PN - hyperproteic normocaloric 

3,000 mL (mL/h), PN - hyperproteic normocaloric with glutamine 2,000 mL (mL/h), PN - 

pancreatitis 2,375 mL (mL/h), albendazole oral (y/n), amikacin (y/n), amoxicilin-clavulanic 

(y/n), ampicilin (y/n), azithromycin  (y/n), aztreonam (y/n), cefazolin (y/n), cefepime (y/n), 

cefotaxime (y/n), ceftazidime (y/n), ceftriaxone (y/n), intravenous ciprofloxacin (y/n), oral 

ciprofloxacin (y/n), clarithromycin (y/n), clindamycin (y/n), cloxacilin (y/n), intravenous 

colistin (y/n), nebulized colistin (y/n), intravenous trimethoprim-sulfamethoxazole / TMP-

SMX (y/n), oral trimethoprim-sulfamethoxazole / TMP-SMX (y/n), daptomycin (y/n), 

doxycycline (y/n), intravenous doxycycline (y/n), oral doxycycline (y/n), ertapenem (y/n), 

gentamicin (y/n), imipenem (y/n), intravenous isoniazid (y/n), oral isoniazid (y/n), intravenous 

levofloxacin (y/n), oral levofloxacin (y/n), linezolid  (y/n), meropenem (y/n), metronidazole 

(y/n), moxifloxacin (y/n), penicillin G sodium (y/n), piperacillin-tazobactam (y/n), rifampicin 
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(y/n), teicoplanin (y/n), tigecycline  (y/n), tobramycin (y/n), vancomycin (y/n), oral 

vancomycin (y/n), lipid complex amphotericin B (y/n), liposomal amphotericin B (y/n), 

anidulafungin (y/n), caspofungin (y/n), intravenous fluconazole (y/n), oral fluconazole (y/n), 

micafungin  (y/n), intravenous voriconazole (y/n), oral voriconazole (y/n), intravenous 

acyclovir (y/n), oral  acyclovir  (y/n), ganciclovir (y/n), oral suspension oseltamivir (y/n), oral 

oseltamivir (y/n), nebulized ribavirina (y/n), and oral ribavirina (y/n). 

Events and care (54) 

Percutaneous tracheostomy (y/n), cardiopulmonary resuscitation (y/n), defibrillation (y/n), 

electrical cardioversion (y/n), pharmacologic cardioversion (y/n), transcutaneous pacing (y/n), 

pericardiocentesis (y/n), pulmonary embolectomy (y/n), vena cava filters (y/n), coronary 

catheterization (y/n), open surgical tracheostomy (y/n), indwelling  pleural catheter (y/n), 

indwelling pleural catheter (ICU) (y/n), thoracentesis (y/n), bronchoscopy (y/n), 

bronchoalveolar lavage (y/n), plasmapheresis (y/n), therapeutic hypothermia (y/n), the partial 

pressure of O2 in brain tissue (PtiO2) (y/n), intraparenchymal intracranial pressure (ICP) 

monitoring catheters (y/n), external ventricular drain (y/n), lumbar puncture (y/n), 

decompressive craniectomy (y/n), endovascular techniques (y/n), thrombolytic therapy in acute 

ischemic stroke (y/n), surgical intervention in a patient admitted to the ICU (y/n), surgical 

reintervention in a patient admitted to the ICU (y/n), percutaneous imaging-guided catheter 

drainage of abdominal collections (y/n), intra-abdominal pressure (y/n), neuroendovascular 

techniques (y/n), neuroendovascular techniques II (y/n), gastroscopy (y/n), colonoscopy (y/n), 

endoscopic sclerosis of esophagogastric varices (y/n), paracentesis (y/n), gastrostomy tube 

(y/n), transjugular intrahepatic portosystemic shunt (y/n), sengstaken-blakemore tube (y/n), 

fibrinolytic (thrombolytic) therapy (y/n), immunoglobulin (y/n), unplanned decannulation 

(y/n), unplanned extubation (y/n), accidental central venous catheter removal (y/n), accidental 

removal of a drain (y/n), accidental arterial catheter removal (y/n), accidental removal of a 

urinary catheter (y/n), accidental removal of a nasogastric tube (y/n), fall in ICU (y/n), 

medication errors (y/n), drainage obstruction (y/n), obstruction of a tracheostomy tube (y/n), 

physical restraints (y/n), sitting position (y/n), and sitting position using a hoist (y/n). 

Infections (5) 

Type of infection (see Table C.3), origin (community-acquired infection, intra_ICU, extra-

ICU, or other hospitals), inflammatory response (non sepsis, sepsis, severe sepsis, or septic 

shock), germs (see Table C.4), and antibiotics (see Table C.5). 

Table C.3. Type of infection. 

# Type of infection 

1 Acalculous cholecystitis 

2 Bacteremia of unknown origin 

3 Bacteremia secondary to respiratory infection 
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4 Bacteremia secondary to respiratory infection 

5 Bloodstream infection of abdominal origin 

6 Bloodstream infections secondary to central nervous systems 

7 Bloodstream infections secondary to soft tissue infection 

8 Bloodstream infections secondary to urinary tract infection 

9 Catheter-related bloodstream infections 

10 Central nervous system infection 

11 Deep infection of surgical incision 

12 Deep infection of surgical wound 

13 Infection of unknown origin 

14 Intra-abdominal infection 

15 Non ventilator-associated pneumonia (non-VAP) 

16 Non-surgical infection of digestive system 

17 Non-ventilator-associated tracheobronchitis (non-VAT) 

18 Organ-space surgical site infections 

19 Primary peritonitis 

20 Skin and soft tissue infection 

21 Urethral catheter-related urinary tract infection 

22 Urinary tract infection not related to urethral catheter 

23 Ventilator-associated pneumonia (VAP) 

24 Ventilator-associated tracheobronchitis (VAT) 

25 Other 

 

Table C.4. Germs. 

# Germ 

1 Acinetobacter Baumanii 

2 Candida albicans 

3 Citrobacter freundii 

4 Citrobacter spp 

5 Clostridium difficile 

6 Enterobacer aerogenes 

7 Enterobacter cloacae 

8 Enterococcus faecalis 

9 Enterococcus faecium 

10 Escherichia coli 

11 Haemophilus influenzae 

12 HIV 1 
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13 Klebsiella oxytoca 

14 Klebsiella pneumoniae 

15 Klebsiella spp 

16 Moraxella catarrhalis 

17 Morganella morganii 

18 Neisseria spp 

19 Proteus mirabilis 

20 Pseudomonas aeruginosa 

21 Salmonella spp 

22 Serratia marcescens 

23 Staphylococcus aureus 

24 Staphylococcus epidermidis 

25 Streptococcus pneumoniae 

26 Streptococcus salivarius 

27 Streptococcus viridans group 

28 Zoster-varicella 

29 Other 

 

Table C.5. Antibiotics. 

# Antibiotic 

1 Acyclovir 

2 Amikacin 

3 Amoxicilin-clavulanic 

4 Ampicilin 

5 Anidulafungin 

6 Aztreonam 

7 Caspofungin 

8 Cefazolin 

9 Cefepime 

10 Cefotaxime 

11 Ceftazidime 

12 Ceftriaxone 

13 Ciprofloxacin 

14 Cloxacilin 

15 Colistin 

16 Cotrimoxazole 

17 Daptomycin 
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18 Fluconazole 

19 Gentamicin 

20 Levofloxacin 

21 Linezolid 

22 Meropenem 

23 Metronidazole 

24 Oseltamivir 

25 Piperacillin-tazobactam 

26 Rifampicin 

27 Tigecycline 

28 Vancomycin 

29 Voriconazole 

30 Other 

 

Analytics (37) 

Hemoglobin (g/dL), hematocrit (%), leukocytes (x109/L), neutrophils (%), Lymphocytes (%), 

monocytes (%), eosinophils (%), basophils (%), band neutrophils (%), platelets (x109/L), 

prothrombin time (s), prothrombin activity (%), international normalized ratio (INR), activated 

partial thromboplastin time (aPTT) (s), glucose (mg/dL), urea (mg/dL), creatinine (mg/dL), 

glomerular filtration (ml/min/1,73m2), protein (g/dL), albumin (g/dL), bilirubin (mg/dL), 

aspartate transferase (AST) (IU/L), alanine transferase (ALT) (IU/L), gamma-glutamyl 

transpeptidase (GGT) (IU/L), alkaline phosphatase (IU/L), lactate dehydrogenase (IU/L), 

troponin I (cTnI) (pg/mL), creatine kinase (IU/L), creatine kinase myocardial band (CK-MB), 

alpha-amylase (IU/L), lactate (mmol/L), sodium (mmol/L), potassium (mmol/L), chlorine 

(mmol/L), calcium (II) (mg/dL), procalcitonin (ng/mL), and C-reactive protein (mg/dL). 

Gasometry (7) 

pH, pCO2 (mmHg), pO2 (mmHg), lactate (mmol/L), saturation (%), HCO3 (mmol/L), and base 

excess (mmol/L). 

Reports (4) 

Admission, medical, nursing, and clinical reports. The nursing reports include the nine 

equivalents of nursing manpower use score (NEMS) and the therapeutic intervention scoring 

system-28 (TISS-28). 
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D ICU simulator user guide 

This is a user guide to the ICU simulator, an online interactive simulator to study patients 

admission and inpatients discharge decisions in situations of high occupancy in the ICU. This 

guide explains all the parts and steps necessary for its use, as well as showing the different 

possibilities offered by the software. The data used in this guide have been provided by Navarre 

Hospital Compound using Metavision® software. 

D.1 Access to the simulator 

The ICU simulator is freely available on the internet to be used by any interested user 

(https://icusimulator.unavarra.es). Figure D.1 shows the login screen for the simulator. Only 

the username (ICU-simulator) and the password (ICU_S1mulat0r*) are required in order to 

access it. 

 

Figure D.1. Login screen of the ICU simulator. 

https://icusimulator.unavarra.es/
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The username and password are the same for all users. Pressing the "Iniciar Sesión" button 

the user starts with several initial screens before the start of the simulation. The first screen of 

the simulator can be seen in Figure D.2. This screen presents the ICU simulator. Initially the 

selected language is English but it can be changed to Spanish (see Figure D.3). 

 

Figure D.2. Initial screen of the ICU simulator in English. 

 

Figure D.3. Initial screen of the ICU simulator in Spanish. 
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This first screen gives a description of what the simulator consists of and the email addresses 

of the developers (Daniel García de Vicuña, Laida Esparza, Fermín Mallor, and Pedro Mateo) 

are shown at the bottom of the screen. The logo of the Public University of Navarre and that of 

the research group qUPHS, belonging to the university, are also shown. By clicking on the 

"Start" button, the window shown in Figure 4 opens. Initially, a personal e-mail address is 

required in order to register, access the simulator, and receive the simulation results. A 

password is sent to the user with which he/she can log in. This password can be changed later. 

 

Figure D.4. ICU simulator registration screen. 

D.2 Defining the characteristics of user and the simulation 

scenario 

The initial screen of the ICU simulator after registration is shown in Figure D.5. In this screen, 

we have different options that are explained in Appendix D.7. Before starting the simulation, 

the characteristics of the user must be defined. By clicking on the "New simulation" button, the 

user can enter his or her data for the collection of results. 

The user is characterized by a name, which is used to save the files generated with that name, 

the type of user, which can be a physician, nurse, resident, medical student..., and the years of 

experience in the ICU. Figure D.6 shows as an example the user Daniel, who is a physician 

with between 10 and 15 years of experience in ICU. 
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Figure D.5. ICU simulator initial screen after registration. 

 

Figure D.6. User configuration screen. 

By clicking the "Accept" button in Figure D.6, the window shown in Figure D.7 opens. This 

screen shows a summary of the conditions that the simulated scenario will have. This 

configuration can be modified, but what is important is that it remains the same for all user 

simulations, in order to compare the results correctly afterwards. In the upper left corner, we 

can see the mix of patients. Two types of patients are distinguished, on the one hand, the 

emergency admissions, those who arrive unexpectedly to the ICU (in this case 56% are 

considered), which in turn are divided into 6 categories. On the other hand, scheduled 

admissions, that is, patients arriving from surgeries that are scheduled during the week. Here 

again, two types of patients are distinguished, those with a standard stay and those with an 

extended stay. 

A description of the ICU scenario is given on the right-hand side. We have a 24-bed ICU in 

a third-level hospital with an extreme degree of occupancy. Other aspects to note are that the 

simulation will start on Monday, with a duration of 21 days and that there will be no bed 

blocking from the hospital wards when assigning discharges. Finally, at the bottom left, the 
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properties of the discharge processes are defined. In this case, a clinical decision-making 

session is scheduled every day at 8 am. In addition, the times below indicate the times when 

the user can assign discharges to free up beds (from 8 a.m. to 10 p.m.), and the times when 

discharges can be assigned because there is saturation (all day). The bottom right options to 

change configuration and default settings are disabled for the collection of results to prevent 

users from modifying the scenarios. By clicking on the "Continue" button, the ICU simulation 

starts. 

 

Figure D.7. Configuration screen of the simulation scenario. 

D.3 Starting the simulation 

Before starting the simulation, a window appears with information about the ICU to be 

simulated, so that the user can put himself in the role of the ICU physician. This window is 

shown in Figure D.8. A window with a summary guide to the simulation and its main parts is 

also shown (see Figure D.9), which will be detailed later. 

 

Figure D.8. Information window of the ICU to be simulated. 
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Figure D.9. Simulation help window. 

To start the simulation, the user must click on the "Start" button in Figure D.10, which is the 

main screen of the ICU simulator, which at this point presents an empty ICU. With the 

initialization of the system (see Figure D.11), the software chooses which patients will be 

occupying the ICU beds at the beginning and in which condition. When this process finishes, 

the ICU beds are filled with patients (each in a different color depending on their health status) 

as shown in Figure D.12. 

 

Figure D.10. Main screen of the simulator before starting the simulation. 
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Figure D.11. Window indicating the initialization of the ICU. 

 

Figure D.12. Main screen of the ICU simulator at the beginning of the simulation. 

On the main screen of the ICU simulator, we can distinguish four parts. In the lower part, 

there is a history of the number of emergency patient arrivals for the last days (left) and a panel 

with the scheduled surgeries of the following days (right). In this surgery dashboard, the user 

can access patient information and view their clinical reports. The surgeries of the next week 

are updated and displayed on Friday. In the upper-right part, events related to the change of 

health of patients appear, as well as information about admissions and discharges. On the top 

left side, the occupancy of the ICU is shown in a panel that represents the beds with a color 

code. We can see a panel indicating the number of patients in each state. 
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The flow diagram in Figure D.13 shows the admission and the discharge processes as they 

are considered in the simulator. On the left side, the emergency and scheduled patients’ arrivals 

are represented. Medical staff must decide whether to reject or admit them to the ICU. 

Scheduled patients first occupy a bed in the operating theater area (dark blue icon). Admitted 

patients occupy a free bed (white icon) in the ICU, when they are available, when not, the 

patient is placed in a bed in a special room where he or she can temporarily be treated (light 

blue icon). The right side represents the ICU where the beds can be in 7 different occupancy 

states: an occupied bed by a patient that is in the process of being discharged (dark grey icon); 

a bed occupied by a deceased patient (brown icon); bed under cleaning process (light grey 

icon); available bed (white icon); and occupied beds by patients in severe, stabilized and 

recovered health status (red, orange and green icons, respectively). 

 

Figure D.13. Representation of the dynamics of an ICU through the change of the bed’s state. The two types of 

patients are distinguished (scheduled and emergency ones) and also the direct entry to the ICU from a delayed 

one. 

D.4 Bed management in the ICU 

The simulator is interactively managed by the user. At the decision times, the simulator shows 

the user which patients are occupying the ICU. The decisions to be made by the user consist of 

discharging admitted patients, confirming or cancelling scheduled surgeries, and admitting or 

diverting unscheduled emergency patients. To support the decisions made, the user can consult 

the patient's clinical information, as shown in Figure D.14, with the window that opens when 

clicking on bed number 14 in this case. The user can consult the patient's medical history in 

Spanish (see Figure D.15) as well as the patient's clinical data (see Figure D.16). 

So patient data are accessible, and these data are exactly the same as physicians see in the 

real ICU. We model the health status of a patient by using 275 health indicators (medical and 

nursing reports included), all recorded by the Metavision® software. These variables give an 

extended and realistic description of the evolution of the patient health status, showing all 

parameters a physician needs to discharge a patient. Users are able to access the values of these 

variables in the case of all stabilized and recovered patients. The volume of information 

provided is simplified by preventing the consultation of the data of those patients who finally 
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die and those who remain in serious conditions since the data of the patients that clearly cannot 

be discharged is meaningless. 

 

Figure D.14. Window with information about the patient that is on bed 14 and buttons to access the patient's 

medical history and patient data. 

 

Figure D.15. Medical history of the patient that is on bed 14. 
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Figure D.16. Information of clinical data of the patient that is on bed 14, mimicking real screens of Metavision®. 

We have collected variables of 200 real patients of an ICU. The objective of the simulator is 

to collect information on how each user manages an ICU in which the congestion level is 

extreme. It is not intended to assess the user's medical knowledge. Consequently, some ICU 

physicians collaborating in the development of the simulator, to shorten the time to assess the 

clinical status of all inpatients, analysed the medical records of all patients to define three states 

along their stay, which help the user to make decisions. On the one hand, we consider in severe 

conditions to be discharge a patient who has just been admitted in the ICU (red color in Figure 

D.13). On the other hand, patients who has finished their LoS are considered totally recovered 

and they should be discharged (green color in Figure D.13). Finally, an intermediate state is 

established for each patient (orange color in Figure D.13), which indicates the moment from 

which the patient is sufficiently stabilized to be discharged, although risks to his/her health are 

assumed. 

To discharge patients, the user has to click on the corresponding patient's bed and click on 

the "Discharge" box as shown in Figure D.17. Whenever the user discharges a patient, the 

simulator asks for confirmation. To confirm or cancel the scheduled surgeries of each day, the 

user must click on the "Manage surgeries" button colored in blue in Figure D.12. Figure D.18 

shows the window that opens to manage the 2 surgeries we can observe. The user can confirm 

both, one or none. Those surgeries that are cancelled must be indicated with the option "Cancel 

surgeries". But in this case, both surgeries are confirmed. 
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Figure D.17. The window for discharging the patient that is on bed 14. 

 

Figure D.18. The window for managing the surgeries. 

Finally, with the arrival of urgent patients, windows like the one shown in Figure D.19 

appear. The management options consist of admitting the patient, diverting the patient to 

another facility, or admitting but discharging a patient (the latter option is only enabled when 

there are no free beds). Figure D.19 shows that the user decides to admit the new patient. 
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Figure D.19. The window for admitting or diverting emergency patients. 

D.5 Conflictive situations during the simulation 

During the simulation, situations may arise where there are not enough free beds to care for all 

patients. These situations are called conflictive situations because not all patients can be treated 

at the same time and discrepancies appear between decision-makers. Two examples of possible 

conflictive situations that the user may face during the simulation are given below. 

In the first situation, we have the ICU with all beds occupied, and only two of them are 

stabilized, the rest are in severe condition. In this situation, an emergency patient has arrived, 

but there is no free bed. Figure D.20 shows the moment when the emergency patient arrives. 

Here, the user has two options: to divert the emergency patient to another facility or to admit 

the patient assigning an early discharge to one of the two stabilized patients. As the admission 

and discharge processes are not instantaneous, if the user chooses the second option, the 

admitted emergency patient must wait some time for the bed to be released and cleaned before 

being able to occupy it. Figure D.21 shows how the admitted patient is waiting while the patient 

in bed 1 has been already discharged. 
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Figure D.20. The situation when an emergency patient arrives at the ICU with all beds occupied. Only two patients 

are stabilized while the rest are in severe condition. 

 

Figure D.21. The situation in which the admitted emergency patient has to wait for the bed of the discharged 

patient to be freed up. 

The second conflict situation we present takes place on Friday at 8 am, during the morning 

clinical session. In this session, the two surgeries scheduled for that day have to be managed. 

But, the situation in the ICU is as follows: all ICU beds are occupied with critically ill patients 

except one, who is stabilized. Therefore, at least one surgery has to be cancelled as there is no 

possibility to treat both of them (see Figure D.22). The second surgery could be confirmed if 

the stabilized patient is early discharged. Figure D.23 shows that the second pending surgery 

has been confirmed, so the patient in bed 6 needs to be early discharged. The calendar at the 

bottom right of Figure D.23 indicates that of the two surgeries that were scheduled for Friday, 
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one has been cancelled. In addition, the scheduled surgeries for the following week are known 

at this morning clinic session, as the surgery calendar is updated on Fridays. 

 

Figure D.22. The situation when two surgeries have to be managed but only one can be confirmed due to lack of 

ICU beds. 

 

Figure D.23. The situation where the only stabilised patient in the ICU has to be discharged because one of the 

two surgeries scheduled for that day has been confirmed. 

D.6 Saving and loading simulations 

The ICU simulator allows the simulation to be saved at any time during the execution of the 

software. To do that, it is necessary to click on the tab "File" and on the option "Save 
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simulation" (see Figure D.24). To save the simulation correctly, the name of the file to be saved 

that the user writes must end with ".properties" as shown in Figure D.25. The simulator reminds 

the user to save the simulation at the end of each week and also generates an auto-saved file 

each day of the simulation. 

 

Figure D.24. Option to save the simulation with the simulator. 

 

Figure D.25. Saving the simulation with the ending ".properties". 

Once the simulation has been saved, the user could exit and enter again to resume the 

simulation at a later time. To load the simulation, the user has to click on the "Load simulation" 

button on the simulator start screen after registration, which has been shown earlier in Figure 

D.5. A window is opened with all the saved files, as shown in Figure D.26, and the user chooses 

which one he or she wants to load. When loading a file, the simulator automatically reproduces 
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all the simulation that the user had run up to the point at which he or she had saved. The 

simulation continues from exactly the same moment it was saved and with the same decisions 

made. Also, the simulation can be restarted from the beginning at any time. Figure D.27 shows 

the "Restart" button that allows the simulation to be restarted, and the message warning the 

user that restarting will result in the loss of unsaved simulation progress. When the simulation 

is restarted, all events are repeated in exactly the same way. 

 

Figure D.26. Window for loading saved simulations. 

 

Figure D.27. The window to restart the simulation from the beginning. Unsaved progress is lost. 

D.7 Help menu and exit the simulator 

The ICU simulator contains different windows with information to help the user understand 
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the different parts of the software. With the "Help" button in Figure D.5, we can access different 

explanatory texts about the ICU simulator (description, users, and simulation, see Figure D.28), 

scenarios (mix of patients, general parameters, types of discharge, and save/load, see Figure 

D.29), types of simulation (new simulation, simulation saved, simulation finished, and 

save/load, see Figure D.30), and information collected (results of simulation and bed 

occupancy, see Figure D.31). In addition, during the simulation, there is a "Help" tab that 

provides indications and clarifications about the different aspects of the simulation that appear 

in Figure D.32, including the simulation control buttons, surgeries management, and the 

emergency patient admission, among others. 

 

Figure D.28. Help menu with information about the ICU simulator. 
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Figure D.29. Help menu with information about the scenarios that can be created with the simulator. 

 

Figure D.30. Help menu with information about the types of simulation the user can access to. 
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Figure D.31. Help menu with information about the information collected with the simulator. 

 

Figure D.32. Help tab about different aspects of the simulation. 

Finally, this guide concludes by explaining how to correctly exit the ICU simulator. During 

the simulation, the user can exit the simulator at any time by pressing the "Exit" button (see 

Figure D.33). The simulator displays a warning window that unsaved progress will be lost upon 

exit. At this point, the user must press the "Logout" button in Figure D.5, and lastly, by pressing 

the "Exit" button in Figure D.2, the "Cerrar Sesión" button in Figure D.34 must be pressed. 
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Figure D.33. The window to exit the simulation. Unsaved progress is lost. 

 

Figure D.34. The window for logging out and disconnecting from the ICU simulator. 
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E ICU management flight simulator results 

E.1 Reviews about the ICU simulator 

The following are some reviews about the ICU simulator: 

 “You get into the role of the doctor very well and it feels like you are assessing the 

patients. It feels real. Sometimes it is difficult to decide on patient preference without 

having ICU experience.” 

 “I liked the simulation, it is quite realistic.” 

 “Congratulations, great job! I really liked the idea and how the format was developed. 

The same questions arise as in actual practice.” 

 “I think it is a great idea to use this tool so that both healthcare professionals and people 

outside of healthcare know how difficult it is to carry out this task. Congratulations!” 

 “I found it easier and friendlier than I thought.” 

 “I found it a very useful tool.” 

 “It is quite real.” 

 “Congratulations on the tool!” 

 “Magnificent work, a pleasure to collaborate in the simulation. Congratulations to the 

whole team!” 

 “I loved it! Let's see if you can implement it in the ICU!” 

 “I find it a very useful tool to be able to study the decision making of a hospital when 

it is collapsed and to understand that it is not easy to make the most appropriate 

decisions.” 

 “Very interesting, keep up the good work!” 

 “In my lack of knowledge of ICU bed management, the software seems intuitive and 

guides me very well through the necessary steps. However, precisely because of this 

lack of knowledge on my part, it is difficult for me to apply a more critical view with 

the aim of proposing improvements to the software that could have an impact on the 

actual management of an ICU.” 

 “It is a pleasure to collaborate in this type of initiative.” 

 “I found the simulator very interesting and a good tool for learning.” 

 “Very good work!” 
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 “Tremendous simulator that helps to better understand the functioning of an intensive 

care unit and its management logic.” 

 “Great simulator, which can have a very practical use in the professional field.” 

E.2 Global performance results 

The global results are shown below for the different types of users who, in addition to 

Physicians (see Table 5.1), have carried out the simulation: Nurses (see Table E.1), Nurse 

technicians (see Table E.2), Residents (see Table E.3), Medical students (see Table E.4), OM-

OR researchers (see Table E.5), Engineers (see Table E.6), and Others (see Table E.7). Bold 

values represent the highest (red) and lowest (green) values. 

Table E.1. Simulation global results recorded by 14 ICU nurses. 

Nurse 𝑒𝐷𝑖  𝑃𝑖(𝐷)  
 

𝑠𝐶𝑖  𝑃𝑖(𝐶)  
 

𝑑𝑆𝑖 (𝑑𝑇𝑖)  𝑃𝑖(𝑆)  
 

�̅�𝑖  𝑃𝑖(𝑀)  

Nur_1 10 0.2941  2 0.0870  3 (38) 0.0789  4.64 0.1933 

Nur_2 11 0.3235  4 0.1739  13 (33) 0.3939  3.69 0.1539 

Nur_3 11 0.3235  1 0.0435  6 (35) 0.1714  4.07 0.1695 

Nur_4 7 0.2059  4 0.1739  14 (34) 0.4118  2.92 0.1217 

Nur_5 6 0.1765  8 0.3478  25 (34) 0.7353  3.27 0.1361 

Nur_6 12 0.3529  1 0.0435  4 (37) 0.1081  5.07 0.2112 

Nur_7 2 0.0588  12 0.5217  16 (31) 0.5161  3.98 0.1658 

Nur_8 7 0.2059  3 0.1304  14 (35) 0.4000  2.61 0.1087 

Nur_9 5 0.1471  6 0.2609  15 (35) 0.4286  3.43 0.1430 

Nur_10 25 0.7353  0 0.0000  0 (32) 0.0000  6.91 0.2878 

Nur_11 18 0.5294  0 0.0000  6 (33) 0.1818  5.88 0.2451 

Nur_12 18 0.5294  0 0.0000  9 (34) 0.2647  5.75 0.2397 

Nur_13 8 0.2353  3 0.1304  12 (35) 0.3429  2.96 0.1235 

Nur_14 9 0.2647  5 0.2174  8 (34) 0.2353  4.35 0.1812 

 

Table E.2. Simulation global results recorded by 4 ICU nurse technicians. 

Nurse tech 𝑒𝐷𝑖  𝑃𝑖(𝐷)  
 

𝑠𝐶𝑖  𝑃𝑖(𝐶)  
 

𝑑𝑆𝑖 (𝑑𝑇𝑖)  𝑃𝑖(𝑆)  
 

�̅�𝑖  𝑃𝑖(𝑀)  

Nte_1 4 0.1176  3 0.1304  27 (40) 0.6750  2.54 0.1058 

Nte_2 19 0.5588  0 0.0000  3 (35) 0.0857  6.28 0.2615 

Nte_3 15 0.4412  2 0.0870  10 (35) 0.2857  4.93 0.2054 

Nte_4 17 0.5000  0 0.0000  3 (34) 0.0882  5.05 0.2104 

 

Table E.3. Simulation global results recorded by 6 residents. 

Resident 𝑒𝐷𝑖  𝑃𝑖(𝐷)  
 

𝑠𝐶𝑖  𝑃𝑖(𝐶)  
 

𝑑𝑆𝑖 (𝑑𝑇𝑖)  𝑃𝑖(𝑆)  
 

�̅�𝑖  𝑃𝑖(𝑀)  

Res_1 5 0.1471  7 0.3043  18 (33) 0.5455  2.49 0.1038 

Res_2 5 0.1471  4 0.1739  14 (36) 0.3889  3.03 0.1264 

Res_3 2 0.0588  4 0.1739  27 (41) 0.6585  2.82 0.1177 

Res_4 7 0.2059  3 0.1304  27 (38) 0.7105  2.56 0.1065 

Res_5 6 0.1765  8 0.3478  10 (32) 0.3125  3.13 0.1305 

Res_6 8 0.2353  5 0.2174  14 (33) 0.4242  3.88 0.1615 
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Table E.4. Simulation global results recorded by 6 medical students. 

Medical student 𝑒𝐷𝑖  𝑃𝑖(𝐷)  
 

𝑠𝐶𝑖  𝑃𝑖(𝐶)  
 

𝑑𝑆𝑖 (𝑑𝑇𝑖)  𝑃𝑖(𝑆)  
 

�̅�𝑖  𝑃𝑖(𝑀)  

Mst_1 6 0.1765  4 0.1739  9 (37) 0.2432  3.46 0.1442 

Mst_2 5 0.1471  5 0.2174  10 (37) 0.2703  4.26 0.1776 

Mst_3 3 0.0882  9 0.3913  6 (35) 0.1714  5.22 0.2174 

Mst_4 6 0.1765  5 0.2174  19 (34) 0.5588  2.53 0.1054 

Mst_5 4 0.1176  3 0.1304  19 (37) 0.5135  2.94 0.1225 

Mst_6 4 0.1176  5 0.2174  27 (38) 0.7105  3.11 0.1294 

 

Table E.5. Simulation global results recorded by 11 OM-OR researchers. 

OM-OR researcher 𝑒𝐷𝑖  𝑃𝑖(𝐷)  
 

𝑠𝐶𝑖  𝑃𝑖(𝐶)  
 

𝑑𝑆𝑖 (𝑑𝑇𝑖)  𝑃𝑖(𝑆)  
 

�̅�𝑖  𝑃𝑖(𝑀)  

OMr_1 10 0.2941  2 0.0870  15 (35) 0.4286  3.20 0.1333 

OMr_2 5 0.1471  5 0.2174  20 (37) 0.5405  2.22 0.0925 

OMr_3 4 0.1176  4 0.1739  22 (37) 0.5946  2.44 0.1017 

OMr_4 11 0.3235  1 0.0435  17 (34) 0.5000  2.68 0.1115 

OMr_5 8 0.2353  2 0.0870  15 (35) 0.4286  2.68 0.1117 

OMr_6 7 0.2059  11 0.4783  17 (29) 0.5862  4.08 0.1701 

OMr_7 8 0.2353  1 0.0435  34 (43) 0.7907  3.73 0.1555 

OMr_8 6 0.1765  4 0.1739  18 (35) 0.5143  2.15 0.0898 

OMr_9 4 0.1176  3 0.1304  18 (38) 0.4737  2.27 0.0944 

OMr_10 4 0.1176  5 0.2174  16 (36) 0.4444  2.51 0.1046 

OMr_11 6 0.1765  6 0.2609  17 (32) 0.5313  2.88 0.1199 

 

Table E.6. Simulation global results recorded by 11 engineers. 

Engineer 𝑒𝐷𝑖  𝑃𝑖(𝐷)  
 

𝑠𝐶𝑖  𝑃𝑖(𝐶)  
 

𝑑𝑆𝑖 (𝑑𝑇𝑖)  𝑃𝑖(𝑆)  
 

�̅�𝑖  𝑃𝑖(𝑀)  

Eng_1 3 0.0882  5 0.2174  14 (37) 0.3784  3.05 0.1271 

Eng_2 2 0.0588  4 0.1739  16 (38) 0.4211  3.45 0.1438 

Eng_3 10 0.2941  2 0.0870  13 (35) 0.3714  2.82 0.1174 

Eng_4 5 0.1471  4 0.1739  25 (36) 0.6944  2.49 0.1036 

Eng_5 8 0.2353  2 0.0870  21 (38) 0.5526  3.03 0.1263 

Eng_6 8 0.2353  5 0.2174  8 (32) 0.2500  3.06 0.1276 

Eng_7 3 0.0882  4 0.1739  26 (39) 0.6667  2.64 0.1100 

Eng_8 7 0.2059  2 0.0870  16 (36) 0.4444  2.53 0.1053 

Eng_9 9 0.2647  5 0.2174  5 (33) 0.1515  3.94 0.1643 

Eng_10 6 0.1765  3 0.1304  23 (40) 0.5750  3.53 0.1470 

Eng_11 2 0.0588  6 0.2609  23 (39) 0.5897  3.09 0.1289 

 

Table E.7. Simulation global results recorded by 12 other users not included in former groups. 

Other 𝑒𝐷𝑖  𝑃𝑖(𝐷)  
 

𝑠𝐶𝑖  𝑃𝑖(𝐶)  
 

𝑑𝑆𝑖 (𝑑𝑇𝑖)  𝑃𝑖(𝑆)  
 

�̅�𝑖  𝑃𝑖(𝑀)  

Oth_1 5 0.1471  5 0.2174  8 (35) 0.2286  3.22 0.1341 

Oth_2 5 0.1471  3 0.1304  17 (37) 0.4595  2.77 0.1152 

Oth_3 10 0.2941  8 0.3478  0 (36) 0.0000  7.91 0.3295 

Oth_4 6 0.1765  5 0.2174  16 (32) 0.5000  2.54 0.1057 

Oth_5 5 0.1471  3 0.1304  17 (37) 0.4595  2.41 0.1002 

Oth_6 8 0.2353  3 0.1304  13 (37) 0.3514  3.43 0.1427 
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Oth_7 7 0.2059  4 0.1739  19 (37) 0.5135  2.83 0.1177 

Oth_8 5 0.1471  2 0.0870  21 (40) 0.5250  2.58 0.1076 

Oth_9 4 0.1176  5 0.2174  17 (35) 0.4857  2.19 0.0913 

Oth_10 21 0.6176  0 0.0000  0 (36) 0.0000  7.72 0.3216 

Oth_11 7 0.2059  2 0.0870  19 (37) 0.5135  2.31 0.0960 

Oth_12 15 0.4412  0 0.0000  3 (36) 0.0833  4.88 0.2033 

 

E.3 Global results considering the ICU pressure level 

Below are all the tables for each type of user of the results when the pressure level is considered 

(except for the one of physicians which has already been shown in Chapter 5). Also included 

here are graphs of the conditional probabilities for each user type and the probability of each 

user type observing each pressure level. Table E.8 summarises information about which tables 

and figures contain this information for each type of user. 

Table E.8. Information about the specific tables and figures for each group. 

Group 
Table of conditional 

probabilities 

Figure of conditional 

probabilities 

Physicians Table 5.10 Figure E.1 

Nurses Table E.9 Figure E.2 

Nurse techs Table E.10 Figure E.3 

Residents Table E.11 Figure E.4 

Medical students Table E.12 Figure E.5 

OM-OR researchers Table E.13 Figure E.6 

Engineers Table E.14 Figure E.7 

Others Table E.15 Figure E.8 

 

Table E.9. Simulation global results recorded by 14 ICU nurses considering the ICU pressure level. 

Nurse 
𝑃𝑖(𝐷)  𝑃𝑖(𝐶)  𝑃𝑖(𝑆) 

𝐿1 𝐿2 𝐿3 𝐿4 𝐿5  𝐿1 𝐿2 𝐿3 𝐿4 𝐿5  𝐿1 𝐿2 𝐿3 𝐿4 𝐿5 

Nur_1 0.200 0.000 0.462 0.600 -  0.000 0.000 0.200 0.500 -  0.000 0.105 0.000 0.500 - 

Nur_2 0.000 0.286 0.308 0.444 0.500  0.000 0.000 0.167 0.500 -  0.000 0.500 0.333 0.400 1.000 

Nur_3 0.000 0.500 0.250 0.667 0.000  0.000 0.000 0.000 0.500 -  0.000 0.125 0.250 0.667 1.000 

Nur_4 0.000 0.000 0.118 0.375 0.400  0.000 0.000 0.077 0.333 1.000  0.000 0.000 0.421 0.600 1.000 

Nur_5 0.000 0.000 0.182 0.286 -  0.000 0.000 1.000 0.750 -  0.400 0.842 0.667 0.750 - 

Nur_6 0.167 0.167 0.615 0.333 -  0.000 0.143 0.000 - -  0.056 0.167 0.143 - - 

Nur_7 0.000 0.000 0.063 0.250 -  0.000 0.333 0.778 1.000 -  0.000 0.500 0.643 0.500 - 

Nur_8 - 0.000 0.071 0.167 1.000  0.000 0.000 0.000 0.500 -  0.000 0.143 0.471 0.714 - 

Nur_9 - 0.100 0.214 0.100 -  0.000 0.000 0.143 0.833 -  0.000 0.556 0.444 0.333 - 

Nur_10 0.769 0.643 0.833 1.000 -  0.000 0.000 0.000 - -  0.000 0.000 0.000 - - 

Nur_11 0.273 0.636 0.636 1.000 -  0.000 0.000 0.000 - -  0.208 0.125 0.000 - - 

Nur_12 0.375 0.500 0.667 1.000 -  0.000 0.000 0.000 - -  0.208 0.444 0.000 - - 

Nur_13 - 0.000 0.200 0.273 1.000  0.000 0.000 0.000 0.429 -  0.000 0.091 0.417 0.750 - 

Nur_14 0.333 0.000 0.333 0.600 1.000  0.000 0.273 0.125 0.500 -  0.000 0.267 0.429 0.500 - 
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Table E.10. Simulation global results recorded by 4 ICU nurse technicians considering the ICU pressure level. 

Nurse tech 
𝑃𝑖(𝐷)  𝑃𝑖(𝐶)  𝑃𝑖(𝑆) 

𝐿1 𝐿2 𝐿3 𝐿4 𝐿5  𝐿1 𝐿2 𝐿3 𝐿4 𝐿5  𝐿1 𝐿2 𝐿3 𝐿4 𝐿5 

Nte_1 - 0.000 0.000 0.091 0.500  0.000 0.000 0.000 0.125 1.000  0.400 0.667 0.700 0.714 1.000 

Nte_2 0.364 0.588 0.800 1.000 -  0.000 0.000 0.000 - -  0.040 0.286 0.000 - - 

Nte_3 0.400 0.400 0.500 0.500 -  0.000 0.000 0.167 0.500 -  0.263 0.400 0.000 0.333 - 

Nte_4 0.000 0.385 0.667 1.000 -  0.000 0.000 0.000 - -  0.059 0.167 0.000 - - 

 

Table E.11. Simulation global results recorded by 6 residents considering the ICU pressure level. 

Resident 
𝑃𝑖(𝐷)  𝑃𝑖(𝐶)  𝑃𝑖(𝑆) 

𝐿1 𝐿2 𝐿3 𝐿4 𝐿5  𝐿1 𝐿2 𝐿3 𝐿4 𝐿5  𝐿1 𝐿2 𝐿3 𝐿4 𝐿5 

Res_1 - 0.000 0.077 0.133 1.000  0.000 0.000 0.000 0.700 -  0.000 0.500 0.571 0.778 - 

Res_2 - 0.000 0.158 0.250 0.000  0.000 0.000 0.143 - 1.000  0.000 0.250 0.400 1.000 1.000 

Res_3 - 0.000 0.063 0.000 0.333  0.000 0.000 0.000 0.500 1.000  0.000 0.800 0.650 0.857 - 

Res_4 - 0.000 0.091 0.167 0.667  0.000 0.000 0.000 0.167 1.000  0.000 0.571 0.824 0.778 1.000 

Res_5 - 0.000 0.125 0.273 1.000  0.000 0.000 0.364 1.000 -  0.000 0.000 0.375 0.800 - 

Res_6 0.000 0.111 0.235 0.429 -  0.000 0.111 0.273 0.500 -  0.400 0.389 0.500 0.500 - 

 

Table E.12. Simulation global results recorded by 6 medical students considering the ICU pressure level. 

Medical 

student 

𝑃𝑖(𝐷)  𝑃𝑖(𝐶)  𝑃𝑖(𝑆) 

𝐿1 𝐿2 𝐿3 𝐿4 𝐿5  𝐿1 𝐿2 𝐿3 𝐿4 𝐿5  𝐿1 𝐿2 𝐿3 𝐿4 𝐿5 

Mst_1 - 0.000 0.188 0.250 0.500  0.000 0.091 0.000 0.500 1.000  0.000 0.125 0.250 0.750 1.000 

Mst_2 0.000 0.000 0.188 0.400 -  0.000 0.000 0.500 0.500 -  0.125 0.350 0.167 0.333 - 

Mst_3 0.000 0.071 0.167 0.000 -  0.000 0.429 0.667 1.000 -  0.000 0.250 0.375 0.500 - 

Mst_4 - 0.000 0.000 0.250 1.000  0.000 0.000 0.000 0.556 -  0.000 0.250 0.667 0.667 - 

Mst_5 - 0.000 0.059 0.200 1.000  0.000 0.000 0.154 0.333 -  0.000 0.333 0.609 0.750 - 

Mst_6 - 0.000 0.063 0.000 1.000  0.000 0.125 0.250 0.333 -  0.000 0.846 0.667 0.857 - 

 

Table E.13. Simulation global results recorded by 11 OM-OR researchers considering the ICU pressure level. 

OM-OR 

researcher 

𝑃𝑖(𝐷)  𝑃𝑖(𝐶)  𝑃𝑖(𝑆) 

𝐿1 𝐿2 𝐿3 𝐿4 𝐿5  𝐿1 𝐿2 𝐿3 𝐿4 𝐿5  𝐿1 𝐿2 𝐿3 𝐿4 𝐿5 

OMr_1 - 0.000 0.188 0.444 1.000  0.000 0.000 0.000 0.400 -  0.000 0.214 0.600 0.750 - 

OMr_2 - 0.000 0.000 0.118 0.750  0.000 0.000 0.000 0.500 1.000  0.000 0.200 0.615 0.714 1.000 

OMr_3 - 0.000 0.000 0.083 0.500  0.000 0.000 0.000 0.250 1.000  0.000 0.429 0.625 0.778 1.000 

OMr_4 - 0.000 0.231 0.533 0.000  0.000 0.000 0.000 0.250 -  0.000 0.286 0.600 0.750 - 

OMr_5 - 0.000 0.133 0.333 0.600  0.000 0.000 0.000 0.000 1.000  0.000 0.143 0.467 0.714 1.000 

OMr_6 0.000 0.143 0.200 0.375 -  0.200 0.375 0.750 0.667 -  0.111 0.857 0.500 0.750 - 

OMr_7 0.000 0.000 0.333 0.222 1.000  0.000 0.000 0.000 0.200 -  0.429 0.714 0.941 1.000 - 

OMr_8 - 0.000 0.077 0.077 0.667  0.000 0.000 0.000 0.250 1.000  0.000 0.250 0.615 0.583 1.000 

OMr_9 - 0.000 0.000 0.083 0.500  0.000 0.000 0.000 0.125 1.000  0.000 0.400 0.471 0.600 1.000 

OMr_10 - 0.000 0.000 0.176 0.500  0.000 0.000 0.000 0.500 -  0.000 0.250 0.533 0.538 - 

OMr_11 - 0.000 0.188 0.000 1.000  0.000 0.000 0.111 0.714 -  0.000 0.615 0.636 0.500 - 

 

Table E.14. Simulation global results recorded by 11 engineers considering the ICU pressure level. 

Engineer 
𝑃𝑖(𝐷)  𝑃𝑖(𝐶)  𝑃𝑖(𝑆) 

𝐿1 𝐿2 𝐿3 𝐿4 𝐿5  𝐿1 𝐿2 𝐿3 𝐿4 𝐿5  𝐿1 𝐿2 𝐿3 𝐿4 𝐿5 

Eng_1 0.000 0.000 0.000 0.125 0.500  0.000 0.250 0.000 0.250 1.000  0.000 0.333 0.250 0.857 1.000 

Eng_2 0.000 0.000 0.048 0.167 -  0.000 0.167 0.143 0.500 -  0.000 0.286 0.545 0.667 - 

Eng_3 - 0.000 0.000 0.643 1.000  0.000 0.000 0.000 0.500 -  0.000 0.000 0.600 0.200 - 

Eng_4 - 0.000 0.083 0.000 0.800  0.000 0.000 0.000 0.333 1.000  0.000 0.667 0.769 0.857 1.000 
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Eng_5 - 0.000 0.182 0.182 1.000  0.000 0.000 0.000 0.333 -  0.000 0.385 0.667 0.800 - 

Eng_6 - 0.000 0.067 0.583 -  0.000 0.000 0.167 0.750 -  0.000 0.222 0.231 0.500 - 

Eng_7 - 0.000 0.133 0.083 0.000  0.000 0.000 0.000 0.333 1.000  0.000 0.778 0.563 0.909 - 

Eng_8 - 0.000 0.067 0.091 0.833  0.000 0.000 0.000 0.250 -  0.000 0.000 0.412 0.727 1.000 

Eng_9 0.000 0.250 0.188 0.500 -  0.000 0.083 0.333 0.500 -  0.000 0.100 0.222 0.400 - 

Eng_10 0.000 0.111 0.182 0.100 1.000  0.000 0.091 0.000 0.400 -  0.250 0.556 0.750 0.833 - 

Eng_11 - 0.000 0.059 0.100 -  0.000 0.000 0.273 0.750 -  0.000 0.813 0.385 0.833 - 

 

Table E.15. Simulation global results recorded by 12 other users not included in former groups considering the 

ICU pressure level. 

Other 
𝑃𝑖(𝐷)  𝑃𝑖(𝐶)  𝑃𝑖(𝑆) 

𝐿1 𝐿2 𝐿3 𝐿4 𝐿5  𝐿1 𝐿2 𝐿3 𝐿4 𝐿5  𝐿1 𝐿2 𝐿3 𝐿4 𝐿5 

Oth_1 0.000 0.000 0.176 0.182 -  0.000 0.000 0.111 0.667 -  0.000 0.222 0.083 0.625 - 

Oth_2 - 0.000 0.059 0.250 0.500  0.000 0.000 0.000 0.250 1.000  0.000 0.429 0.526 0.400 1.000 

Oth_3 0.192 0.571 1.000 - -  0.316 0.500 - - -  0.000 0.000 - - - 

Oth_4 - 0.000 0.000 0.286 1.000  0.000 0.000 0.100 0.500 -  0.000 0.375 0.636 0.600 - 

Oth_5 - 0.000 0.000 0.091 0.667  0.000 0.000 0.000 0.167 1.000  0.000 0.200 0.444 0.667 1.000 

Oth_6 0.000 0.111 0.091 0.364 1.000  0.000 0.000 0.000 0.375 -  0.000 0.200 0.500 0.700 - 

Oth_7 - 0.000 0.143 0.267 1.000  0.000 0.000 0.000 0.571 -  0.000 0.615 0.538 0.500 - 

Oth_8 - 0.000 0.000 0.167 0.750  0.000 0.000 0.000 0.000 1.000  0.000 0.200 0.545 0.778 1.000 

Oth_9 - 0.000 0.000 0.000 0.667  0.000 0.000 0.000 0.375 1.000  0.000 0.250 0.467 0.700 1.000 

Oth_10 0.550 0.667 0.800 - -  0.000 0.000 - - -  0.000 0.000 - - - 

Oth_11 - 0.000 0.077 0.154 0.667  0.000 0.000 0.000 0.000 1.000  0.000 0.000 0.563 0.667 1.000 

Oth_12 0.000 0.385 0.667 0.500 -  0.000 0.000 0.000 0.000 -  0.000 0.111 0.250 0.500 - 

 

 

Figure E.1. Conditional probabilities recorded by 18 ICU physicians. 
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Figure E.2. Conditional probabilities recorded by 14 ICU nurses. 

 

Figure E.3. Conditional probabilities recorded by 4 ICU nurse technicians. 
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Figure E.4. Conditional probabilities recorded by 6 residents. 

 

Figure E.5. Conditional probabilities recorded by 6 medical students. 
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Figure E.6. Conditional probabilities recorded by 11 OM-OR researchers. 

 

Figure E.7. Conditional probabilities recorded by 11 engineers. 
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Figure E.8. Conditional probabilities recorded by 12 other users not included in former groups. 

E.4 Temporal evolution of the number of manageable beds 

In this section, the number of manageable beds in the ICU over time is shown for the different 

types of users: Physicians (see Figure E.9), Nurses (see Figure E.10), Nurse technicians (see 

Figure E.11), Residents (see Figure E.12), Medical students (see Figure E.13), OM-OR 

researchers (see Figure E.14), Engineers (see Figure E.15), and Others (see Figure E.16). 

 

Figure E.9. Graph showing the trajectory of the mean number of manageable beds of 18 ICU physicians. 
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Figure E.10. Graph showing the trajectory of the mean number of manageable beds of 14 ICU nurses. 

 

Figure E.11. Graph showing the trajectory of the mean number of manageable beds of 4 ICU nurse technicians. 

 

Figure E.12. Graph showing the trajectory of the mean number of manageable beds of 6 residents. 
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Figure E.13. Graph showing the trajectory of the mean number of manageable beds of 6 medical students. 

 

Figure E.14. Graph showing the trajectory of the mean number of manageable beds of 11 OM-OR researchers. 

 

Figure E.15. Graph showing the trajectory of the mean number of manageable beds of 11 engineers. 
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Figure E.16. Graph showing the trajectory of the mean number of manageable beds of by12 other users not 

included in former groups. 
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F Aggregation of neighbouring components in 

distance calculation 

F.1 Analysis of the Euclidean-Aggregate distance expression 

The Euclidean-Aggregate distance has two main parts in its expression in equation (5.12), 

which we denote as 𝑆1 and 𝑆2 for notation simplicity. Thus, 𝛿𝐸𝐴
2 (𝑖, 𝑗) = 𝑆1 + 𝑆2. The main part 

of the definition of 𝛿𝐸𝐴
2  is included in 𝑆1. For each size 𝑠 between 1 and 𝑄, all possible 

aggregated neighbouring components of the two observations are formed and the Euclidean 

distance between each of them is calculated. Given an observation of 𝑄 components, the 

aggregated neighbouring components of size 𝑠 consist of summing 𝑠 neighbouring 

components. 

Thus, with 𝑠 = 1 we have 𝑄 aggregations (each of the components), with 𝑠 = 2 we have 𝑄 −

1 aggregations (the sum of each component and its next), and so on up to 𝑠 = 𝑄 where only 

one aggregation is possible, which is the sum of all the components. As 𝑠 increases, fewer 

aggregations can be formed. At this point it should be clarified that, for example, aggregations 

of size 5 contain: 2 aggregations of size 4, 3 aggregations of size 3, 4 aggregations of size 2, 

and 5 aggregations of size 1, which are taken into account again. Figure F.1 shows a diagram 

of how neighbouring components are aggregated for each iteration 𝑘 of 𝑆1 (representing the 

size 𝑠). The variable 𝑙 indicates each of the aggregations formed at each iteration 𝑘. 
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Figure F.1. Diagram of the aggregations included in term 𝑆1 of the Euclidean-Aggregate distance between two 

observations. For each iteration 𝑘, all possible aggregations of size 𝑠 = 𝑘 are formed and the Euclidean distance 

between them is calculated. 

With the first part of the expression of the Euclidean-Aggregate distance (𝑆1), the weakness 

of the Euclidean distance in terms of the permutation of the components is solved. We can note 

this if we calculate 𝛿𝐸𝐴 between those observations proposed in Section 5.3.3 (𝑒𝐷1, 𝑒𝐷2, and 

𝑒𝐷3) considering only 𝑆1. Assigning the weights as 𝛼𝑘 = 𝜔𝑠 = 1 𝑄⁄ , where 𝑄 = 5, the 

following distances between the observations are obtained: 𝛿𝐸𝐴(1,2) = 0.200 < 𝛿𝐸𝐴(2,3) =

0.253 < 𝛿𝐸𝐴(1,3) = 0.268. However, by introducing a new observation 𝑒𝐷4 = [1, 1, 1, 1, 1], 

so that 𝛿𝐸𝐴(1,4) = 𝛿𝐸𝐴(2,4) = 𝛿𝐸𝐴(3,4), what is obtained by applying 𝑆1 is: 𝛿𝐸𝐴(3,4) =

0.200 < 𝛿𝐸𝐴(1,4) = 0.253 < 𝛿𝐸𝐴(2,4) = 0.268. This occurs because when grouping the 

neighbouring components from the beginning to the end of the vector of observations, the 

central components are taken into account more often than those at the edges. Therefore, the 

differences observed in the aggregations of the central components are larger with respect to 

those observed for the components of the edges. This is the reason why 𝛿𝐸𝐴(2,4) is the largest 

distance obtained since the difference between observations is located in the central 

component, 𝑒𝐷2(𝐿3). 

Consequently, with 𝑆2 the decompensation of the components of the edges is corrected. The 

aim is that aggregations of the same size 𝑠 are taken into account in the distance calculation the 

same number of times. In this part of 𝛿𝐸𝐴, aggregations of neighbouring components are added, 

starting at the edges of the observations, for each size 𝑠 from 1 to 𝑄 − 2 (note that in 𝑆2 when 

𝑘 = 𝑄 − 1 the summand is 0). Figure F.2 shows how, for each size 𝑠, aggregations of 

neighbouring components are compensated from the edges. The number of times each 

aggregation needs to be added depends on its size 𝑠. For example, for 𝑠 = 𝑄 and 𝑠 = 𝑄 − 1 
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there is no need to add terms since in 𝑆1 they are already compensated. For 𝑠 = 𝑄 − 2, 

however, the aggregations from the edges are included 3 times in 𝑆1 while the aggregation from 

component 2 to component 𝑄 − 1 is taken into account 4 times. Therefore, 1 aggregation from 

each edge must be added in 𝑆2 to compensate. Table F.1 shows the final amount of each 

aggregation of size 𝑠 included in the expressions 𝑆1 and 𝑆2 (further information on the number 

of aggregations considered according to their size is given in Appendix F.2). 

 

Figure F.2. Diagram of the aggregations included in term 𝑆2 of the Euclidean-Aggregate distance between two 

observations. For each iteration 𝑘, the aggregations of size 𝑠 = 𝑘 at the edges are included and the Euclidean 

distance between them is calculated. 

By recalculating the distances between the vectors 𝑒𝐷1, 𝑒𝐷2, 𝑒𝐷3, and 𝑒𝐷4, and applying the 

two parts of the Euclidean-Aggregate distance (𝑆1 and 𝑆2), the following results are obtained. 

On the one hand, since the aggregations of the central components and those of the edges have 

been compensated, the distances between the vector 𝑒𝐷4 and the rest are the same: 𝛿𝐸𝐴(1,4) =

0.297 = 𝛿𝐸𝐴(2,4) = 0.297 = 𝛿𝐸𝐴(3,4) = 0.297. On the other hand, the property of the 

permutation of the components is preserved, that is, the position of each component is still 

taken into account: 𝛿𝐸𝐴(1,2) = 0.253 < 𝛿𝐸𝐴(2,3) = 0.335 < 𝛿𝐸𝐴(1,3) = 0.379. Thus, the 

results are consistent when applying this methodology to compare decisions that depend on the 

ICU pressure level. 
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Table F.1. Final amount of each aggregation of size 𝑠 included in the expressions 𝑆1 and 𝑆2. 

Size Final amount of each aggregation 

1 1 +
𝑄(𝑄 − 1)

2
 

2 1 +
(𝑄 − 1)(𝑄 − 2)

2
 

3 1 +
(𝑄 − 2)(𝑄 − 3)

2
 

𝑠 1 +
(𝑄 − 𝑠 + 1)(𝑄 − 𝑠)

2
 

𝑄 − 4 11 

𝑄 − 3 7 

𝑄 − 2 4 

𝑄 − 1 2 

𝑄 1 

 

F.2 Number of aggregations considered according to their 

size 

The number of aggregations of neighbouring components included in the calculation of the 

Euclidean-Aggregate distance is different depending on the size 𝑠 of these aggregations (see 

Table F.1) In this appendix, we prove that for the same size 𝑠, the number of times each 

aggregation is considered is constant when adding the contributions of 𝑆1 and 𝑆2 (remember 

that the Euclidean-Aggregate distance has been expressed as 𝛿𝐸𝐴
2 (𝑖, 𝑗) = 𝑆1 + 𝑆2 in Appendix 

F.1) and corresponds to what is shown in Table F.1. Before the demonstrations, the notation of 

some of the elements used in the rest of the appendix are defined below. 

First, let us define 𝑣𝑖𝐴,𝐵 as the aggregation of neughbouring components of user 𝑖 from 

position 𝐴 to position 𝐵, both included (see equation (F.1)). Thus, aggregations of size 𝑠 = 1 

would have the notation 𝑣𝑖𝐴,𝐴, of size 𝑠 = 2 𝑣𝑖𝐴,𝐴+1, and so on. As an example, 𝑣𝑖3,7indicates 

the aggregation of components 3, 4, 5, 6, and 7, that is, 𝑣𝑖3,7 = 𝑣𝑖3 + 𝑣𝑖4 + 𝑣𝑖5 + 𝑣𝑖6 + 𝑣𝑖7. 

 

𝑣𝑖𝐴,𝐵 = ∑ 𝑣𝑖𝑚

𝐵

𝑚=𝐴

 (F.1) 
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Also, we define a function 𝑓(𝑥, 𝑦) that indicates, for a vector of size 𝑦, the number of 

positions between position 𝑥 and the nearest edge of the vector (position 𝑥 is also counted). 

For example, considering a vector of size 𝑦 = 7, the resulting function would be as follows: 

𝑓(𝑥, 𝑦): {(1,7), (2,7), (3,7), (4,7), (5,7), (6,7), (7,7)} ↦ {1,2,3,4,3,2,1}. This function is 

similar to the function of taking the minimum between two numbers 𝑁1 and 𝑁2 (𝑚𝑖𝑛{𝑁1, 𝑁2}), 

which is defined in equation (F.2), where 𝑁1 would be 𝑥 and 𝑁2 would be 𝑦 + 1 − 𝑥. With this 

consideration, the function 𝑓(𝑥, 𝑦) is defined in equation (F.3). This definition of 𝑓(𝑥, 𝑦) has 

been introduced to simplify the notation in the rest of the appendix. Note that 𝑓(𝑥, 𝑦) =

𝑚𝑖𝑛{𝑥, 𝑦 + 1 − 𝑥}. 

 
𝑚𝑖𝑛{𝑁1, 𝑁2} =

𝑁1 + 𝑁2

2
− |

𝑁1 − 𝑁2

2
| = {

𝑁1 𝑖𝑓 𝑁1 < 𝑁2

𝑁2 𝑖𝑓 𝑁1 ≥ 𝑁2
 (F.2) 

 
𝑓(𝑥, 𝑦) =

𝑦 + 1

2
− |𝑥 −

𝑦 + 1

2
|,   ∀𝑥, 𝑦 ∈ ℕ|x ≤ y (F.3) 

The following 5 figures illustrate the number of times each aggregation is considered for each 

size 𝑠, and in both S1 and S2. Each figure shows the aggregation size s considered, the final 

quantity of all aggregations of that size s (same expressions as shown in Table F.1), and two 

tables with the quantities of each of the aggregations of size s that are taken into account in 

each iteration of 𝑆1 and 𝑆2. The information for 𝑠 = 1, 𝑠 = 2, and 𝑠 = 3 can be seen in Figure 

F.3, Figure F.4, and Figure F.5 respectively. 

 

Figure F.3. Number of times each aggregation of 𝑠 = 1 is considered in both 𝑆1 and 𝑆2. 
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Figure F.4. Number of times each aggregation of 𝑠 = 2 is considered in both 𝑆1 and 𝑆2. 

 

Figure F.5. Number of times each aggregation of 𝑠 = 3 is considered in both 𝑆1 and 𝑆2. 

Figure F.6, shows the information of general size 𝑠. From these general expressions as a 

function of 𝑠, tables with the information for any size 𝑠 can be obtained. Finally, the 

information for 𝑠 = 𝑄 − 2, 𝑠 = 𝑄 − 1, and 𝑠 = 𝑄 is shown in Figure F.7. By adding the 

expressions of the last rows (Total) for each aggregation at each size 𝑠, the expressions of Table 

F.1 are obtained (for the same size 𝑠 the same expression is always obtained). Equation (F.4) 

shows the development of the general case of size 𝑠 for the central aggregations of 𝑣𝑖𝑚,𝑚+𝑠−1. 

Adding the expressions in row Total we obtain the expression shown in Table F.1 for the 



F.2 Number of aggregations considered according to their size 209 

 

general case 𝑠. Therefore, as the remaining expressions are derived from the general case, the 

contributions of the remaining aggregations are proved. 

 

Figure F.6. Number of times each aggregation of size 𝑠 is considered in both 𝑆1 and 𝑆2. 
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Figure F.7. Number of times each aggregation of 𝑠 = 𝑄 − 2, 𝑠 = 𝑄 − 1, and 𝑠 = 𝑄 is considered in both 𝑆1 and 

𝑆2. 

 
𝑚(𝑄 − 𝑠 − 𝑚 + 2) +

(𝑄 − 𝑠 − 𝑚)(𝑄 − 𝑠 − 𝑚 + 1)

2
+

(𝑚 − 2)(𝑚 − 1)

2
= 𝑄𝑚 − 𝑠𝑚 − 𝑚2 + 2𝑚

+
𝑄2 − 2𝑄𝑠 − 2𝑄𝑚 + 𝑄 + 2𝑠𝑚 + 𝑠2 − 𝑠 + 𝑚2 − 𝑚

2

+
𝑚2 − 3𝑚 + 2

2
=

𝑄2 − 2𝑄𝑠 + 𝑄 + 𝑠2 − 𝑠 + 2

2

= 1 +
𝑄2 − 2𝑄𝑠 + 𝑠2 + 𝑄 − 𝑠

2

= 1 +
(𝑄 − 𝑠 + 1)(𝑄 − 𝑠)

2
 

(F.4) 
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G Using PG models to represent the evolution of 

the COVID-19 pandemic 

G.1 Statistical analysis to elucidate the suitability of PG 

models 

The parameter estimation of the PG models is done by minimizing the sum of squared errors. 

There are functions implemented in free software that perform this estimation of parameters, 

for instance, the curve_fit() function in the optimize module of SciPy in Python or the 

growthrates package in R. The fit quality is measured by the Mean Absolute Errors (MAE). 

Table G.1 includes all MAE values calculated for each country and model. The best fits are 

marked in bold (differences less than 0.1% are not distinguished). Additional information in 

this table is the total population of each country and the total number of positive cases on June 

15, 2020. 

Table G.2 lists the figures in which, for each country, the fits of the four PG models are 

shown. In every figure, the Logistic function is shown in red, the Gompertz function in green, 

the Richards function in blue, and the Stannard function in purple. 

 

 

 

 

 

 

http://www.python.org/
https://cran.r-project.org/package=growthrates
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Table G.1. The 20 most-affected countries by COVID-19 until June 15, 2020. The last four columns show the 

MAE calculated for the fit with each of the applied models. 

# Country Population Total positive cases 

(2020-06-15) 

Logistic Gompertz Richards Stannard 

1 USA 330,922,877 2,094,069 47,128.9 21,461.2 21,464.4 21,466.7 

2 Brazil 212,496,348 867,624 3,182.3 3,245.1 2,754.7 2,754.7 

3 Russia 145,932,063 528,964 5,667.4 1,688.7 1,689.0 1,689.2 

4 India 1,379,418,901 332,424 1,392.9 537.9 538.0 538.2 

5 UK 67,871,466 295,889 4,758.0 1,046.6 1,046.9 1,047.2 

6 Spain 46,754,084 245,194 5,676.2 2,261.7 2,262.1 2,262.6 

7 Italy 60,465,149 236,989 4,928.0 1,061.2 1,061.6 1,061.7 

8 Peru 32,951,046 229,736 2,399.4 1,255.3 1,256.6 1,257.6 

9 Iran 83,944,885 187,427 8,105.8 6,176.3 6,176.6 6,176.9 

10 Germany 83,773,297 186,461 4,091.4 1,519.2 1,519.5 1,519.7 

11 Turkey 84,299,464 178,239 5,335.7 2,418.3 2,418.8 2,419.1 

12 Chile 19,109,226 174,293 1,132.5 1,601.2 1,068.5 1,068.5 

13 France 65,267,844 157,220 3,396.4 1,547.0 1,547.2 1,547.3 

14 Mexico 128,873,820 153,507 1,418.9 1,641.0 1,535.5 1,535.5 

15 Pakistan 220,685,460 144,478 1,631.5 1,324.5 1,301.0 1,321.6 

16 Saudi Arabia 34,788,836 127,541 1,709.0 814.9 814.9 814.9 

17 Canada 37,728,057 98,776 1,494.6 331.0 331.1 331.1 

18 Bangladesh 164,618,467 87,520 655.6 315.5 315.6 315.7 

19 China 1,439,323,776 84,335 1,166.6 1,133.0 1,097.6 1,097.7 

20 Qatar 2,807,805 79,602 417.7 369.2 263.6 263.6 

Bold values represent the best scores. 

 

Table G.2. List of figures with graphs of cumulative positive cases in each country, fitted with each of the four 

PG models. 

# Country Figure of fits obtained from the four PG models 

1 USA Figure G.1 

2 Brazil Figure G.2 

3 Russia Figure G.3 

4 India Figure G.4 

5 UK Figure G.5 

6 Spain Figure G.6 

7 Italy Figure G.7 

8 Peru Figure G.8 

9 Iran Figure G.9 

10 Germany Figure G.10 

11 Turkey Figure G.11 

12 Chile Figure G.12 

13 France Figure G.13 

14 Mexico Figure G.14 

15 Pakistan Figure G.15 

16 Saudi Arabia Figure G.16 

17 Canada Figure G.17 

18 Bangladesh Figure G.18 

19 China Figure G.19 

20 Qatar Figure G.20 
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Figure G.1. Cumulative positive cases in USA and fits obtained from the four PG models. 

 

Figure G.2. Cumulative positive cases in Brazil and fits obtained from the four PG models. 
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Figure G.3. Cumulative positive cases in Russia and fits obtained from the four PG models. 

 

Figure G.4. Cumulative positive cases in India and fits obtained from the four PG models. 
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Figure G.5. Cumulative positive cases in UK and fits obtained from the four PG models. 

 

Figure G.6. Cumulative positive cases in Spain and fits obtained from the four PG models. 
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Figure G.7. Cumulative positive cases in Italy and fits obtained from the four PG models. 

 

Figure G.8. Cumulative positive cases in Peru and fits obtained from the four PG models. 
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Figure G.9. Cumulative positive cases in Iran and fits obtained from the four PG models. 

 

Figure G.10. Cumulative positive cases in Germany and fits obtained from the four PG models. 
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Figure G.11. Cumulative positive cases in Turkey and fits obtained from the four PG models. 

 

Figure G.12. Cumulative positive cases in Chile and fits obtained from the four PG models. 



G.1 Statistical analysis to elucidate the suitability of PG models 219 

 

 

Figure G.13. Cumulative positive cases in France and fits obtained from the four PG models. 

 

Figure G.14. Cumulative positive cases in Mexico and fits obtained from the four PG models. 
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Figure G.15. Cumulative positive cases in Pakistan and fits obtained from the four PG models. 

 

Figure G.16. Cumulative positive cases in Saudi Arabia and fits obtained from the four PG models. 
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Figure G.17. Cumulative positive cases in Canada and fits obtained from the four PG models. 

 

Figure G.18. Cumulative positive cases in Bangladesh and fits obtained from the four PG models. 
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Figure G.19. Cumulative positive cases in China and fits obtained from the four PG models. 

 

Figure G.20. Cumulative positive cases in Qatar and fits obtained from the four PG models. 
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G.2 Positive cases predictions for the following 5, 10, and 15 

days, at 25%, 40%, and 65% of total cases detected 

The prediction of the fitted curves for the next 5, 10, and 15 days is assessed by calculating the 

MAE. These time horizons are considered as sufficient for the hospital managers to adapt extra 

resources for new needs. As new positive case data is added every day, and predictions are 

refreshed also every day, the long-term predictive capacity of the model will not be analysed. 

Table G.3 summarizes the relevant information from all the tables shown on the following 

pages. It indicates the number of countries in which each model is the best in terms of predictive 

capacity (as before, differences smaller than 0.1% have been considered equal). It is observed 

that the Gompertz model is the one that more accurately predicts future values, specifically in 

all time horizons analysed. For this reason, the Gompertz model is recommended for the 

prediction of new cases of COVID-19. 

Table G.3. The number of countries in which each model is equal or better than the others in terms of predicting 

new positive cases for the next 5, 10, and 15 days. 

Model 
25%  40%  65% 

5 days 10 days 15 days  5 days 10 days 15 days  5 days 10 days 15 days 

Logistic 4 5 5  4 4 3  2 1 2* 

Gompertz 11 12 13  13 14 14  15 15 13* 

Richards 11 9 7  13 9 10  15 15 11* 

Stannard 11 8 7  13 9 10  15 15 11* 

Bold values represent the best scores. 

*These values are of 18 countries because 2 of them (Pakistan and Bangladesh) have no data for that period. 

The rest of the section of this appendix is organized as follows. On the one hand, we present 

fits to the curves until the selected days, obtaining an MAE for each model and country (see 

Table G.4, Table G.6, and Table G.8). On the other hand, the tables of the MAEs made in the 

predictions are shown. To facilitate the comparison of results, MAEs are normalized by the 

total number of positive cases on the selected days (see Table G.5, Table G.7, and Table G.9). 

From these results, we can conclude that the Gompertz model outperforms in predictive 

capacity the other PG models and it is recommended to predict new cases of COVID-19. 

To abbreviate the headings in the following tables, we use L for the Logistic model, G for the 

Gompertz model, R for the Richard model, and S for the Stannard model. 
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Table G.4. MAE calculated for the fit of each model at 25% of total cases detected in each country. 

# Country Date Total positive cases Logistic Gompertz Richards Stannard 

1 USA 2020-04-12 529,951 2,233.0 554.9 553.7 553.7 

2 Brazil 2020-05-16 218,223 1,497.5 1,099.9 1,098.4 1,100.4 

3 Russia 2020-05-04 134,687 564.2 381.8 357.2 357.2 

4 India 2020-05-16 85,940 601.4 350.0 350.0 350.1 

5 UK 2020-04-12 78,991 320.6 249.7 209.7 209.7 

6 Spain 2020-03-26 66,460 297.1 147.8 147.8 147.9 

7 Italy 2020-03-24 63,927 269.7 150.8 156.7 156.7 

8 Peru 2020-05-08 58,526 608.4 385.0 385.1 385.1 

9 Iran 2020-04-02 47,593 1,192.5 969.6 969.6 969.7 

10 Germany 2020-03-28 48,582 269.9 315.8 287.4 287.4 

11 Turkey 2020-04-11 47,029 639.9 272.4 272.5 272.6 

12 Chile 2020-05-18 43,781 741.7 732.2 735.8 735.8 

13 France 2020-03-30 40,174 163.2 92.6 93.0 94.6 

14 Mexico 2020-05-06 40,186 207.8 130.5 128.3 128.3 

15 Pakistan 2020-05-15 37,218 304.3 223.5 223.1 223.5 

16 Saudi Arabia 2020-05-07 31,938 194.3 281.4 195.2 195.2 

17 Canada 2020-04-14 25,663 97.0 83.7 57.3 57.3 

18 Bangladesh 2020-05-18 22,268 270.9 134.5 134.5 134.5 

19 China 2020-02-05 24,320 164.3 114.1 114.1 114.1 

20 Qatar 2020-05-09 20,201 147.6 206.0 139.2 139.2 

Bold values represent the best scores. 

 

Table G.5. Normalized MAEs obtained for each prediction and model at 25% of total cases detected in each 

country. 

# Country 
5 days  10 days  15 days 

L (%) G (%) R (%) S (%)  L (%) G (%) R (%) S (%)  L (%) G (%) R (%) S (%) 

1 USA 6.840 2.234 2.090 2.091  15.771 1.732 1.558 1.559  26.066 2.473 2.646 2.645 

2 Brazil 5.154 1.565 1.596 1.567  12.003 3.820 3.899 3.827  20.594 4.942 5.080 4.956 

3 Russia 14.866 7.418 8.145 8.145  27.301 12.043 13.585 13.585  40.983 15.807 18.525 18.525 

4 India 6.100 2.053 2.055 2.056  13.805 5.244 5.247 5.248  24.003 8.760 8.765 8.768 

5 UK 8.099 1.903 1.089 1.089  16.215 3.978 1.343 1.343  26.289 6.670 2.387 2.387 

6 Spain 3.502 10.295 10.283 10.284  9.853 31.939 31.899 31.898  19.188 65.792 65.700 65.691 

7 Italy 1.865 10.643 7.881 7.881  5.990 24.930 17.171 17.171  13.465 44.691 28.294 28.295 

8 Peru 1.806 3.482 3.480 3.480  5.851 5.624 5.619 5.618  12.624 8.101 8.092 8.089 

9 Iran 2.635 1.778 1.777 1.777  2.157 7.030 7.027 7.028  3.204 16.013 16.006 16.007 

10 Germany 10.915 3.847 2.470 2.470  30.272 3.495 12.258 12.258  50.039 4.967 23.066 23.066 

11 Turkey 15.075 4.756 4.761 4.764  29.363 6.250 6.261 6.268  45.514 7.633 7.652 7.666 

12 Chile 5.868 8.082 5.183 5.183  10.310 13.948 8.985 9.253  12.393 18.030 9.969 20.650 

13 France 9.720 4.424 4.396 4.302  15.968 17.090 16.910 16.324  26.496 37.173 36.735 35.309 

14 Mexico 6.396 0.895 2.187 2.187  13.397 2.498 5.044 5.044  23.518 5.093 9.494 9.494 

15 Pakistan 0.886 4.092 4.063 4.089  1.968 5.827 5.779 5.823  3.048 10.311 10.236 10.303 

16 Saudi Arabia 5.616 2.142 6.813 6.814  12.669 2.608 14.917 14.917  24.360 2.470 27.770 27.770 

17 Canada 11.915 3.656 6.871 6.871  24.599 10.482 16.277 16.277  38.866 19.003 27.603 27.603 

18 Bangladesh 13.722 8.747 8.748 8.750  25.468 15.608 15.610 15.613  40.500 24.279 24.283 24.288 

19 China 13.144 5.681 5.669 5.663  44.477 12.518 12.528 12.534  75.439 11.828 11.796 11.775 

20 Qatar 8.920 1.879 11.294 11.294  19.084 5.653 23.360 23.360  31.546 9.641 37.870 37.870 

Bold values represent the best scores. 
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Table G.6. MAE calculated for the fit of each model at 40% of total cases detected in each country. 

# Country Date Total positive cases Logistic Gompertz Richards Stannard 

1 USA 2020-04-23 842,629 6,372.8 1,421.9 1,422.8 1,433.3 

2 Brazil 2020-05-24 347,398 2,085.6 1,422.1 1,413.6 1,422.7 

3 Russia 2020-05-12 221,344 1,316.9 521.2 521.3 521.5 

4 India 2020-05-25 138,845 882.2 480.3 480.4 480.5 

5 UK 2020-04-20 120,067 617.4 320.3 257.3 257.3 

6 Spain 2020-03-31 104,267 351.9 438.7 343.9 343.9 

7 Italy 2020-03-30 97,689 374.7 343.5 205.8 205.8 

8 Peru 2020-05-18 92,273 759.3 483.2 482.1 482.1 

9 Iran 2020-04-16 76,389 1,071.3 1,201.7 1,043.0 1,043.0 

10 Germany 2020-04-03 79,696 486.0 339.2 338.2 338.2 

11 Turkey 2020-04-17 74,193 795.4 345.4 345.5 345.7 

12 Chile 2020-05-26 73,997 854.4 858.2 854.4 854.4 

13 France 2020-04-04 64,338 260.8 200.4 219.2 219.2 

14 Mexico 2020-05-15 62,527 438.7 151.8 151.8 151.9 

15 Pakistan 2020-05-27 59,151 335.9 276.6 285.4 285.4 

16 Saudi Arabia 2020-05-17 52,016 360.6 273.4 256.6 256.6 

17 Canada 2020-04-23 40,179 405.1 175.7 175.7 175.7 

18 Bangladesh 2020-05-26 35,585 434.7 270.4 270.4 270.5 

19 China 2020-02-08 34,625 185.9 130.2 126.6 126.6 

20 Qatar 2020-05-18 32,604 274.1 216.8 216.8 216.8 

Bold values represent the best scores. 

 

Table G.7. Normalized MAEs obtained for each prediction and model at 40% of total cases detected in each 

country. 

# Country 
5 days  10 days  15 days 

L (%) G (%) R (%) S (%)  L (%) G (%) R (%) S (%)  L (%) G (%) R (%) S (%) 

1 USA 9.702 3.501 3.503 3.525  15.921 6.527 6.531 6.567  22.590 10.112 10.117 10.167 

2 Brazil 1.165 3.163 2.984 3.161  2.858 3.924 3.617 3.919  6.209 6.041 5.547 6.032 

3 Russia 3.420 2.303 2.301 2.299  5.698 6.093 6.090 6.085  9.245 10.728 10.721 10.714 

4 India 4.669 1.331 1.334 1.333  9.212 2.274 2.278 2.277  16.059 3.695 3.701 3.700 

5 UK 6.330 1.005 0.710 0.711  11.831 0.913 2.210 2.210  19.098 1.746 5.344 5.344 

6 Spain 6.632 5.630 5.905 5.906  13.015 11.927 11.725 11.725  20.529 18.121 18.794 18.795 

7 Italy 3.211 6.294 1.096 1.096  8.347 9.938 1.571 1.571  14.945 13.137 4.334 4.334 

8 Peru 6.317 0.817 1.035 1.035  11.975 1.669 2.145 2.146  22.254 6.073 6.872 6.873 

9 Iran 0.582 6.097 1.628 1.628  1.757 8.452 3.338 3.337  3.372 10.640 5.413 5.413 

10 Germany 11.428 2.083 2.224 2.220  19.849 2.095 2.390 2.381  27.383 1.755 1.802 1.801 

11 Turkey 7.319 1.436 1.432 1.429  13.559 3.472 3.463 3.457  19.637 6.500 6.486 6.476 

12 Chile 1.645 1.636 1.645 1.645  5.823 5.639 5.823 5.817  14.435 14.059 14.432 7.991 

13 France 2.158 12.580 6.941 6.940  3.202 22.970 9.453 9.451  7.545 35.881 10.903 10.900 

14 Mexico 7.023 2.499 2.501 2.503  12.126 3.558 3.563 3.566  19.255 5.141 5.149 5.154 

15 Pakistan 3.195 1.697 1.489 1.489  11.675 4.830 7.837 7.837  23.909 11.558 17.595 17.595 

16 Saudi Arabia 9.921 4.418 5.822 5.822  15.880 5.955 8.499 8.499  20.963 5.429 9.512 9.512 

17 Canada 12.339 6.475 6.477 6.478  19.244 9.745 9.749 9.751  27.788 14.521 14.526 14.529 

18 Bangladesh 4.289 1.024 1.025 1.025  11.261 3.951 3.955 3.954  20.791 7.544 7.550 7.550 

19 China 11.511 10.730 10.225 10.225  37.831 12.943 16.756 16.756  52.069 10.778 15.505 15.506 

20 Qatar 5.565 1.188 1.204 1.211  9.960 1.348 1.379 1.392  16.349 1.774 1.827 1.849 

Bold values represent the best scores. 
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Table G.8. MAE calculated for the fit of each model at 65% of total cases detected in each country. 

# Country Date Total positive cases Logistic Gompertz Richards Stannard 

1 USA 2020-05-13 1,369,964 20,036.0 7,343.8 7,345.7 7,346.8 

2 Brazil 2020-06-04 584,016 2,654.8 1,857.5 1,908.6 1,908.4 

3 Russia 2020-05-25 344,481 1,469.0 1,097.0 846.3 846.3 

4 India 2020-06-04 216,919 1,113.0 511.4 511.6 511.7 

5 UK 2020-05-06 194,990 2,136.8 593.2 593.2 593.3 

6 Spain 2020-04-10 163,472 917.7 639.9 382.2 382.2 

7 Italy 2020-04-13 156,363 1,420.8 585.3 526.1 526.1 

8 Peru 2020-05-31 155,671 1,757.1 792.6 792.9 793.1 

9 Iran 2020-05-19 122,492 3,124.1 1,912.6 1,912.7 1,912.8 

10 Germany 2020-04-13 123,016 907.9 419.2 400.3 400.3 

11 Turkey 2020-04-30 117,589 1,222.6 528.2 463.3 463.3 

12 Chile 2020-06-04 113,628 1,011.6 1,038.2 844.2 844.2 

13 France 2020-04-15 103,573 495.0 525.4 350.4 350.4 

14 Mexico 2020-05-27 101,238 746.9 237.1 237.2 237.3 

15 Pakistan 2020-06-06 93,983 918.8 565.8 565.8 566.0 

16 Saudi Arabia 2020-05-31 83,384 683.4 453.3 430.7 430.7 

17 Canada 2020-05-08 64,922 836.0 346.9 346.9 347.0 

18 Bangladesh 2020-06-05 57,563 534.4 310.3 310.4 310.4 

19 China 2020-02-13 59,865 841.5 556.6 556.6 556.7 

20 Qatar 2020-05-30 52,907 352.0 199.7 199.6 199.6 

Bold values represent the best scores. 

 

Table G.9. Normalized MAEs obtained for each prediction and model at 65% of total cases detected in each 

country. 

# Country 
5 days  10 days  15 days 

L (%) G (%) R (%) S (%)  L (%) G (%) R (%) S (%)  L (%) G (%) R (%) S (%) 

1 USA 7.840 3.355 3.356 3.356  10.822 4.910 4.911 4.911  13.993 6.696 6.698 6.698 

2 Brazil* 2.720 1.445 1.396 1.397  3.898 3.799 3.153 3.156  4.007 4.631 3.863 3.867 

3 Russia 4.285 1.705 0.901 0.902  7.670 1.598 2.524 2.524  11.790 1.254 4.822 4.822 

4 India* 4.293 0.859 0.861 0.861  7.276 0.607 0.609 0.610  8.062 0.575 0.577 0.578 

5 UK 9.641 4.441 4.443 4.444  12.914 5.616 5.618 5.620  16.050 6.681 6.684 6.687 

6 Spain 6.365 0.354 2.477 2.477  9.902 0.485 4.430 4.430  13.199 1.001 6.451 6.451 

7 Italy 7.789 2.131 3.037 3.037  11.523 3.678 4.993 4.993  15.241 5.390 7.116 7.116 

8 Peru 10.445 6.119 6.121 6.122  12.525 5.208 5.210 5.212  15.847 4.811 4.815 4.818 

9 Iran 14.856 10.700 10.702 10.702  18.765 13.960 13.962 13.963  23.212 17.807 17.809 17.810 

10 Germany 4.053 2.415 1.864 1.864  7.360 2.354 1.473 1.473  10.611 2.080 1.118 1.118 

11 Turkey 4.858 1.079 0.484 0.484  7.419 0.972 1.333 1.333  10.097 0.817 2.504 2.504 

12 Chile* 6.750 9.179 7.516 7.517  11.535 16.538 17.398 17.400  12.420 18.133 19.826 19.827 

13 France 5.234 1.690 1.813 1.813  7.530 2.840 2.534 2.534  9.905 3.784 3.530 3.530 

14 Mexico 5.207 1.082 1.084 1.085  8.908 1.584 1.587 1.588  11.785 2.536 2.537 2.538 

15 Pakistan* 11.997 9.348 9.351 9.351  18.651 14.243 14.246 14.247  - - - - 

16 Saudi Arabia 0.598 4.724 3.395 3.395  4.029 4.289 2.612 2.612  10.167 3.939 4.547 4.547 

17 Canada 5.661 0.861 0.862 0.863  7.801 0.674 0.676 0.677  10.379 0.791 0.793 0.794 

18 Bangladesh* 5.516 2.097 2.099 2.099  9.975 3.061 3.064 3.065  - - - - 

19 China 14.044 5.492 5.495 5.495  14.165 8.987 8.976 8.973  14.158 16.806 16.781 16.776 

20 Qatar 4.045 0.780 0.777 0.775  5.683 2.302 2.293 2.286  7.766 4.616 4.600 4.589 

Bold values represent the best scores. 

The symbol (*) indicates insufficient data in the comparison with the prediction of the next 15 days. 
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Table G.10 lists the figures in which, for each country, the cumulative positive cases 

predictions for the following days at 25%, 40%, and 65% of total cases detected using the four 

PG models. In every figure, the Logistic function is shown in red, the Gompertz function in 

green, the Richards function in blue, and the Stannard function in purple. 

Table G.10. List of figures with predictions for the following days at 25%, 40%, and 65% of total cases detected 

in each country using each of the four PG models. 

# Country Figure of predictions obtained using the four PG models 

1 USA Figure G.21 

2 Brazil Figure G.22 

3 Russia Figure G.23 

4 India Figure G.24 

5 UK Figure G.25 

6 Spain Figure G.26 

7 Italy Figure G.27 

8 Peru Figure G.28 

9 Iran Figure G.29 

10 Germany Figure G.30 

11 Turkey Figure G.31 

12 Chile Figure G.32 

13 France Figure G.33 

14 Mexico Figure G.34 

15 Pakistan Figure G.35 

16 Saudi Arabia Figure G.36 

17 Canada Figure G.37 

18 Bangladesh Figure G.38 

19 China Figure G.39 

20 Qatar Figure G.40 
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Figure G.21. Cumulative positive cases predictions for the following days at 25% (left), 40% (centre), and 65% 

(right) of total cases detected in USA using the four PG models. 
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Figure G.22. Cumulative positive cases predictions for the following days at 25% (left), 40% (centre), and 65% 

(right) of total cases detected in Brazil using the four PG models. 
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Figure G.23. Cumulative positive cases predictions for the following days at 25% (left), 40% (centre), and 65% 

(right) of total cases detected in Russia using the four PG models. 
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Figure G.24. Cumulative positive cases predictions for the following days at 25% (left), 40% (centre), and 65% 

(right) of total cases detected in India using the four PG models. 
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Figure G.25. Cumulative positive cases predictions for the following days at 25% (left), 40% (centre), and 65% 

(right) of total cases detected in UK using the four PG models. 
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Figure G.26. Cumulative positive cases predictions for the following days at 25% (left), 40% (centre), and 65% 

(right) of total cases detected in Spain using the four PG models. 
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Figure G.27. Cumulative positive cases predictions for the following days at 25% (left), 40% (centre), and 65% 

(right) of total cases detected in Italy using the four PG models. 



G.2 Positive cases predictions for the following 5, 10, and 15 days, at 25%, 40%, and 

65% of total cases detected 

235 

 

 

Figure G.28. Cumulative positive cases predictions for the following days at 25% (left), 40% (centre), and 65% 

(right) of total cases detected in Peru using four PG models. 
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Figure G.29. Cumulative positive cases predictions for the following days at 25% (left), 40% (centre), and 65% 

(right) of total cases detected in Iran using the four PG models. 
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Figure G.30. Cumulative positive cases predictions for the following days at 25% (left), 40% (centre), and 65% 

(right) of total cases detected in Germany using the four PG models. 
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Figure G.31. Cumulative positive cases predictions for the following days at 25% (left), 40% (centre), and 65% 

(right) of total cases detected in Turkey using the four PG models. 
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Figure G.32. Cumulative positive cases predictions for the following days at 25% (left), 40% (centre), and 65% 

(right) of total cases detected in Chile using the four PG models. 
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Figure G.33. Cumulative positive cases predictions for the following days at 25% (left), 40% (centre), and 65% 

(right) of total cases detected in France using the four PG models. 
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Figure G.34. Cumulative positive cases predictions for the following days at 25% (left), 40% (centre), and 65% 

(right) of total cases detected in Mexico using four PG models. 
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Figure G.35. Cumulative positive cases predictions for the following days at 25% (left), 40% (centre), and 65% 

(right) of total cases detected in Pakistan using the four PG models. 
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Figure G.36. Cumulative positive cases predictions for the following days at 25% (left), 40% (centre), and 65% 

(right) of total cases detected in Saudi Arabia using the four PG models. 
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Figure G.37. Cumulative positive cases predictions for the following days at 25% (left), 40% (centre), and 65% 

(right) of total cases detected in Canada using the four PG models. 
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Figure G.38. Cumulative positive cases predictions for the following days at 25% (left), 40% (centre), and 65% 

(right) of total cases detected in Bangladesh using the four PG models. 



246 Appendix G Using PG models to represent the evolution of the COVID-19 pandemic 

 

 

Figure G.39. Cumulative positive cases predictions for the following days at 25% (left), 40% (centre), and 65% 

(right) of total cases detected in China using the four PG models. 
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Figure G.40. Cumulative positive cases predictions for the following days at 25% (left), 40% (centre), and 65% 

(right) of total cases detected in Qatar using the four PG models. 
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H COVIDSIM software user guide 

This is a user guide to the COVIDSIM software, a pandemic hospital resource simulator. It 

explains all the parts and steps necessary for its use, as well as showing the different 

possibilities offered by the software. The data used in this guide have been provided by the 

main hospital of La Rioja. 

H.1 Starting the software 

The COVIDSIM software is a Python file (extension .py). This file can be opened with different 

integrated development environments (IDE), such as Spyder, which is the one used for 

programming. Before running the software, it is important to check that the following files also 

appear in the folder where the software is saved: 

 logo_Rioja salud.jpg. 

 logo_qUPHS.png. 

 qUPHS.ico 

 Patient flow.png 

 White background.png 

These files are read to be loaded into different parts of the software. Once this check is done, 

you can proceed to run the software. When running the software, a new window will be opened 

as shown in Figure H.1. 

 

Figure H.1. Start window of the COVIDSIM software. 
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This window will always remain open while the software is running in the background. The 

"EXIT" button closes the program. The "START" button opens a new window with different 

tabs, which must be configured to perform the simulation. Each of these tabs is described in 

detail in the following sections. 

H.2 Modelling pandemic spread 

The first tab you see in the new window after starting the software corresponds to the pandemic 

expansion modelling. This tab is shown in Figure H.2. 

 

Figure H.2. Modelling pandemic spread. 

As can be seen in Figure H.2, two parts can be distinguished. On the one hand, on the left-

hand side there is the estimation of the parameters of the Gompertz curve, and on the right-

hand side, fields concerning the visualization of the growth curve fit. The fields that appear in 

each section and the way in which they can be selected or filled in are explained below. 

Parameter estimation of the Gompertz curve 

Gompertz-type curves are used in population growth models and have been found to fit well 

the growth of cumulative (positive or hospitalized) cases in both the first and second waves of 

the COVID-19 pandemic. In total, the Gompertz function has 3 parameters that define the 

shape of this curve. Each of these parameters is related to a physical interpretation, which is as 

follows: 
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 The total number of cases (positive or hospitalized, depending on the series to be 

represented) at the end of the pandemic. 

 Time in days, in which the central 90% of the population (infected or hospitalized) is 

infected. That is the time between the moment when 5% and 95% of the total number 

of cases are registered. 

 The number of cumulative cases that are known on a particular day of the pandemic. 

These fields allow a personalized growth curve to be generated by entering the parameters 

manually. However, the software also allows for partial or full fit of the curve using a data file, 

as shown in Figure H.3. 

 

Figure H.3. Estimation of the parameters of the Gompertz curve, both manually and using a data file. 

To select the file, first, click on the "Open" button shown in Figure H.3 and then browse to 

the location of the file on the computer, as shown in Figure H.4. The file can contain the records 

of positive cases or patients admitted to the hospital. This information is specified later in this 

section. 
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Figure H.4. Window to search the data file. 

Finally, at the bottom of Figure H.3, there are two fields for entering percentages. These 

percentages serve to rescale the curve, in case the inpatient series is not being used. On the one 

hand, the geographical factor scales the number of cases from an area larger than the study 

area. On the other hand, the hospitalization factor, which indicates the percentage of patients 

admitted to the hospital with respect to the accumulated series (if the series coincides with that 

of hospitalized patients, these percentages are 100%). It may be the case that the series of 

hospitalized patients are not sufficiently extensive to be able to estimate it correctly and these 

intermediate calculations are necessary. 

Curve display 

In order to visualize the Gompertz growth curve, it is necessary to fill in three fields with the 

key dates of the situation under analysis. 

 Pandemic start date (yyyy-mm-dd): This date indicates the time at which the pandemic 

is considered to start. It is therefore the date from which the curve is fitted to the data. 

If there are records in the data file prior to this start date, they will not be considered 

for curve fitting. 

 Simulation start date (yyyy-mm-dd): This date indicates the time from which the 

predictions are to be made, which corresponds to the start of the simulation. If a data 

file is used to perform the curve fitting, there must at least be records up to this start 

date. Otherwise, the program will fail. 

 Forecast horizon (yyyy-mm-dd): This date indicates the time up to which the curve 

being fitted is to be displayed. This date is independent of the simulation horizon, which 

is specified in Appendix H.4. 
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 Content of the file: With the drop-down menu, the user chooses the form in which he 

or she wants to obtain the curve. There are three alternatives. The first consists of 

generating the curve without using a file, so that all the parameters of the curve must 

be entered manually as explained before in Parameter estimation of the Gompertz 

curve. The second way is to use the file on the number of daily cases (positive or 

hospitalized) that have been recorded (Appendix H.6 describes how the data should be 

organized in this file). The third way consists of selecting a file with the data on patient 

stays (Appendix H.6 also explains what the contents of the file should be). 

Figure H.5 shows all these fields filled in, and the drop-down menu with the three options for 

the file content. 

 

Figure H.5. Fields to be filled in for the display of the fitting curve. 

Once the way in which the curve is to be fitted has been decided, establishing all the necessary 

dates, the curve is generated. To do this, the user must click on the "Refresh chart" button 

shown in Figure H.6. In this example, it is being selected that all the parameters of the curve 

are going to be fitted according to the data file, the start of the pandemic occurs on the date 

2020-08-01, the start of the simulation is set on the date 2020-10-05 and the forecast horizon 

is set to 2020-12-31. Figure H.7 shows the result of the fitted curve. 
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Figure H.6. Fields needed to obtain the fit of the Gompertz curve to the historical data. 

 

Figure H.7. Gompertz curve fit to historical data, represented by the black dots from 2020-08-01 to 2020-10-05. 
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Using the drop-down menu below the graph, in addition to the display of the cumulative cases 

fit, it is possible to display the daily cases and a linearization of the curve (the latter is useful 

to easily detect if the fit is good). Figure H.8 and Figure H.9 show these two graphs 

respectively. 

 

Figure H.8. Fitting of the Gompertz curve to daily data. 
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Figure H.9. Linearization of the fitted Gompertz curve. 

As explained before in Parameter estimation of the Gompertz curve, the parameters of the 

curve can be chosen manually, and the software offers the possibility of a mixed fit, in which 

it fits the data but with some of the parameters fixed. For example, if it is considered that the 

total number of cases (patients admitted in this example) at the end of the pandemic will be 

higher than the fit to the data, a higher number can be selected, such as 700. Figure H.10 shows 

the result after setting the total number of admissions at 700. 



H.2 Modelling pandemic spread 257 

 

 

Figure H.10. Fit obtained by manually modifying the total number of cases at the end of the pandemic (700). 

Customized curve 

With the software, it is also possible to generate customized growth curves, that is, without 

fitting to the data. This is not a combination of manual input of some of the parameters and 

data fitting (see Figure H.10), but the whole curve is obtained by the user's selection of the 

parameters. 

The three parameters that the user must define in order to fully customize the curve are 

described before in Parameter estimation of the Gompertz curve. As an example, Figure H.11 

shows a curve generated in which the total number of patients admitted to the hospital at the 

end of the pandemic is 1,000, the time in which 90% of the core population is infected is 90 

days, and it is assumed that 300 patients had already been admitted by 2020-10-01. The graph 

generated no longer shows the series of black dots, as it does not follow the trend of the 

historical data recorded. Only two dots are marked. The blue one indicates the data entered 

manually, in this case, the 300 patients who were admitted on October 1. The black one 

indicates the present time, i.e. the starting date of the simulation. This option can be relevant 

to evaluate different scenarios and represent different levels of infection. It is also possible to 

create new pandemic curves for further analysis. 
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Figure H.11. Customized pandemic curve obtained after fitting the total number of admissions (1,000), the 

duration of the pandemic (90 days), and the number of cases on a selected day (300 on 2020-10-01). 

H.3 Modelling of patient stays in hospital 

The second tab to be configured before starting the simulation is the one concerning the 

modelling of patient stays in the hospital. Figure 12 shows an overview of this tab, which 

appears twice in the software it is distinguished by the gender of the patient (the first data 

analysed show that there are significant differences in the mean stays of men and women). 

In order to model patient stays in the hospital, it is first necessary to create a flow diagram 

that represents the different paths a patient may take in the hospital. This patient flow diagram 

is shown in Figure H.13 and appears in the programme at the top right of Figure H.12. The 

following paths are considered in this diagram: 

 The patient is admitted to the hospital ward, and after his or her stay he or she is 

discharged. 

 The patient is admitted to the hospital ward, after a few days he or she is admitted to 

the ICU, and at the end of his or her stay in the ICU he or she leaves the hospital (due 

to transfer or death). 

 The patient is admitted to the hospital ward, after a few days he or she is admitted to 

the ICU, and at the end of his or her stay in the ICU he or she is transferred to the 

hospital ward where his or her stay ends. 
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 The patient is admitted directly to the ICU, and at the end of the ICU stay leaves the 

hospital (due to transfer or death). 

 The patient is admitted directly to the ICU, and at the end of his or her stay in the ICU 

is transferred to the hospital ward where his or her stay ends. 

 

Figure H.12. Modelling of patient stays in the hospital. 

 

Figure H.13. Patient flow diagram through the hospital. 

Figure H.13 shows a number of parameters related to the branching probabilities of the paths 

(𝑝𝐼, 𝑝𝑊𝐼,and 𝑝𝐼𝑊) and the probability distributions of the stays on each path (𝑋, 𝑍, 𝑌,and Q), 

which are defined and explained later in Branching probabilities and in Probability 

distributions of hospital stays. 

Input data (age of cut-off and stay file) 

In the upper part of Figure H.12, there are the fields concerning the cut-off age of the patients, 

probabilities related to the cut-off age and gender of the patients, and the historical stays file 

used for the analysis. Figure H.14 shows this part of the tab. 
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Figure H.14. Fields related to the cut-off age of patients and the stays file. 

Firstly, the cut-off age of the patients. This age is entered manually and is used to divide the 

patients into two populations according to this cut-off age. By default, the cut-off age of 65 

years is selected. This age can be chosen independently for men and women. Related to this 

age, we have the field of the probability of being a patient with age less than or equal to the 

cut-off age (𝑝𝐴). This value can be calculated through the data file or entered manually. 

On the right-hand side of Figure H.15 is a field with the probability that the patient is male. 

This value, like 𝑝𝐴, can be obtained from the data or entered manually. In the tab with the 

female data, this field is greyish (see Figure H.15), as its value depends on the percentage of 

males. 

 

Figure H.15. Female patients tab for the fields related to the cut-off age and the stays file. 

Finally, concerning the patient stays file, it can be opened in exactly the same way as 

explained in Figure H.3 and Figure H.4. However, this step would not be necessary if the 

patient's stays file has been entered in the first tab of the software when the Gompertz curve is 

fitted. So the file would be loaded automatically. 

Branching probabilities 

In the central part of Figure H.12, there are fields of branching probabilities. Each of them can 

be entered manually or using a data file, as shown in Figure H.16. Within the same gender, 

each probability is distinguished according to the age of the patient, based on the cut-off age. 
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Figure H.16. Branching probabilities. 

These probabilities define the trajectory of patients through the flow diagram in Figure H.13, 

and are defined as follows: 

 𝑝𝐼: the probability that a patient arriving at the hospital is admitted directly to the ICU. 

Therefore, patients arriving at the hospital are admitted to the ward with probability 

(1 − 𝑝𝐼). 

 𝑝𝑊𝐼: the probability that a patient who is admitted to the hospital ward is transferred to 

the ICU. Then, a patient is discharged from the hospital (by recovery, transfer, death...) 

with probability (1 − 𝑝𝑊𝐼). 

 𝑝𝐼𝑊: the probability that a patient who is admitted to the ICU is transferred to the 

hospital ward. Thus, a patient is discharged from the ICU directly (usually by death or 

transfer) with probability (1 − 𝑝𝐼𝑊). 

Probability distributions of hospital stays 

In the lower part of Figure H.12, the probability distributions of hospital stays are defined. As 

with the branching probabilities, the parameters which describe each probability distribution 

can either be automatically fitted according to the patient stay data (data file) or set by the user 

(manual), distinguishing patients by gender and cut-off age, as shown in Figure H.17. 

 

Figure H.17. Probability distributions of hospital stays. 

These probability distributions describe the length of stay (LoS) of each patient in each phase 

of the process. In total 4 probability distributions are distinguished, which are shown in the 

flow chart in Figure H.13. They are as follows: 

 𝑋: LoS in hospital of a patient not requiring ICU. This time is determined by the 

difference between the date of discharge and the date of admission of a patient to the 

hospital. 

 𝑍: LoS in hospital of a patient until transfer to the ICU. It is determined by the difference 

between the date of admission to the ICU and the date of admission to the hospital. 

When these two dates are the same, it means that the patient has been admitted directly 

to the ICU and this stay is not considered. 
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 𝑌: LoS in the ICU of a patient. This time is determined by the difference between the 

date of discharge from the ICU and the date of admission to the ICU. 

 𝑄: LoS in hospital of a patient discharged from the ICU. This time is obtained from the 

difference between the hospital discharge date and the ICU discharge date. It is 

obviously only defined for patients who have been in the ICU. When the ICU discharge 

date coincides with the hospital discharge date, it implies that the patient has been 

discharged directly from the ICU, usually due to death or transfer, without being 

transferred to the hospital ward. 

Default values and updating of values 

The software assigns default values to all the probability values and parameters of the 

distributions of the stays defined before in Input data (age of cut-off and stay file), Branching 

probabilities, and Probability distributions of hospital stays. These default values correspond 

to the scenario that was observed in the first wave of the pandemic (between March and June 

2020) and can be used if not enough data have yet been observed from the new wave. 

Therefore, they are referenced values that can be modified either by fitting the values through 

the data file or by entering new data manually. In any case, it is always possible to return to the 

default values, by clicking on the orange button "Load default values", which can be seen in 

Figure H.12. 

Parameter fitting using data file 

To fit the parameters using a data file, the estimation mode "Data file" must be selected, and 

by clicking on the green button "Update all fields", only those fields with this option will be 

modified. Figure H.18 shows an update of the values in all parameters except for the 

distribution of the LoS in the hospital of patients discharged from ICU (𝑄), as the "Manual" 

option has been maintained. 

For the probability distributions of hospital stays, it is possible to select the distribution to be 

used for the fit and to check the quality of the fit by clicking on the "Draw" button. Figure H.19 

shows the fit made for the LoS in the hospital of non-ICU patients (𝑋) over 65 years old. The 

distribution selected for the fit of this LoS is the Weibull distribution. This graphical output is 

used to compare two fits with different probability distributions. For example, in Figure H.20, 

the same fit is shown, modifying the distribution to Lognormal. It can be seen that the fit with 

the Weibull distribution is better in this case. 
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Figure H.18. Parameter fitting using the data file. 

 

Figure H.19. Density function and quality of fit to a Weibull distribution for LoS in hospital for patients over 65 

years old who do not require ICU. 

 

Figure H.20. Density function and quality of fit to a Lognormal distribution for LoS in hospital for patients over 

65 years old who do not require ICU. 
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A detail to be taken into account is that the fits of the distributions through the data file can 

be made as long as there are at least 10 observations of the corresponding LoS. In cases where 

there are not enough observations, three zeros will appear in the distribution parameter boxes. 

Figure H.21 shows an example of the LoS in hospital for patients discharged from ICU over 

65 years old. On the one hand, it is possible to keep the default values of the parameters, which 

are those corresponding to the first wave of the pandemic (between March and June 2020). On 

the other hand, it is possible to enter values manually according to medical criteria or based on 

expert opinion. In any case, these boxes should not be left with a value of 0 before starting the 

simulation, as this would cause an error when assigning the stay of that group of patients. 

 

Figure H.21. Parameter fitting using a data file in which there is insufficient data for the LoS in the hospital of 

patients over 65 years old discharged from the ICU. 

Manual setting of parameters 

All the parameters described above in Input data (age of cut-off and stay file), Branching 

probabilities, and Probability distributions of hospital stays can be entered manually by the 

user for the simulation. Therefore, the cut-off age of the patients and the probability that a 

patient is younger than that age, as well as the probability that a patient is male or female can 

be varied by the user. The branching probabilities of the flowchart can also be modified 

directly. In Figure H.22, an example is shown with some changes introduced. 
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Figure H.22. Manually entered modifications with respect to the default values. 

The parameters of the probability distributions can also be varied. But unlike the fields shown 

in Figure H.22, there is also the possibility to update them if two of the three parameters are 

chosen for a probability distribution. Below, we explain how the values of the distributions can 

be entered and updated depending on which one is selected, and by selecting the "Manual" 

estimation mode: 

 Weibull distribution: In this probability distribution it is always mandatory to enter the 

shape parameter (𝛽). Then, you can enter both the scale (𝛼) and the mean manually, 

leaving the other empty. By pressing the "Update all fields" button, the software 

recalculates the parameter that has not been defined. 

 Lognormal distribution: In this case, the parameter that must always be entered 

manually is the scale parameter (𝛼). Then you can choose whether to enter the location 

(µ) or the mean. As with the Weibull distribution, the parameter not entered is 

recalculated. 

 Triangular distribution: This distribution has three parameters, minimum (𝑎), mode (𝑏), 

and maximum (𝑐). The one that must always be entered is the minimum, and then, 

depending on which of the other two is entered, the software recalculates the third so 

that the mode is at the same distance from the minimum and maximum. 

If for the same probability distribution the user enters all three field values and then presses 

the "Update all fields" button, the software checks whether the combination of parameters is 

correct. For both a Weibull and a Lognormal distribution, the value of the mean can be obtained 

from the two parameters of the distribution. If this value does not match the value entered by 

the user, the software recalculates the scale parameter (𝛼) for the Weibull distribution, and the 

location parameter (µ) for the Lognormal distribution, using the set mean. This is important to 

ensure that the combination of parameters entered provides the mean required by the user. On 

the other hand, for the case of the Triangular distribution, the software recalculates the value 

of the mode (𝑏) so that it is at the same distance from the minimum and the maximum. This 
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variation is not a correction, since the Triangular distribution does not have to be symmetrical, 

but it has been programmed in this way to control the cases in which the mode is outside the 

limits marked by the minimum (𝑎) and the maximum (𝑐). 

Figure H.23 and Figure H.24 show the parameter values of the distributions before and after 

clicking the "Update all fields" button respectively. This is a manual calculation of the four 

types of stays that are considered and in which all the possibilities mentioned in this section 

are included. 

 

Figure H.23. Manually entered parameters of LoS distributions, before recalculating missing values. 

 

Figure H.24. Manually entered LoS distributions parameters recalculated for missing or incorrect ones. 
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H.4 Pandemic simulation 

The fourth tab of the software is where the user enters the values needed to run the pandemic 

simulation. It is essential to complete the previous tabs in order to run the simulation correctly. 

Figure H.25 shows the parts of this tab. 

 

Figure H.25. Pandemic simulation. 

First, at the top on the left hand side, two dates must be entered: 

 Start date of the historical data (yyyy-mm-dd): This corresponds to the date from which 

the user wants to record the actual admissions and discharges of patients in order to 

represent them over time. This date may be prior to the date considered as the start of 

the pandemic, in order to see a greater evolution over time. 

 Simulation horizon (yyyy-mm-dd): This is the date up to which the user wants to 

visualize the simulation. 

Also, the software allows the user to select the population to be displayed in the graphs, 

whether all patients simultaneously (General) or separated by gender and age cut-off. Similarly, 

the user can choose to display the occupancy type in hospital beds, ICU beds, or both 

aggregated. To finish with the input parameters of this tab, at the bottom right the user must 

enter a seed for the simulation (to control the randomness of the simulation, the user can use 

the default one) and the number of replications (number of times the simulation will be repeated 

to observe different trajectories). 
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Figure H.26 shows the configuration set as an example, where the historical data date is 2020-

08-01, the simulation horizon is 2020-12-31, the simulation seed is 123,456 and the number of 

replications is 1,000. When the user presses the green button "SIMULATE", the simulation 

starts, and the user can see the progress of the simulation by means of a bar with a percentage. 

 

Figure H.26. Pandemic simulation progress with historical data date from 2020-08-01, simulation horizon to 2020-

12-31, simulation seed of 123,456, and 1,000 replications. 

When the established replications are finished, the user can visualize two graphs that appear 

in the central part of the tab. The first one reflects the daily number of admissions and the 

second one refers to bed occupancy. Depending on the type of occupancy selected, these graphs 

will correspond to the situation of hospital beds, ICU beds, or both aggregated. With the orange 

button "REFRESH", the results of each type can be loaded instantly. Figure H.27 and Figure 

H.28 show the results obtained in this example for hospital and ICU beds respectively. In both 

types of graphs (daily admissions and occupancy), the green line represents the real evolution 

of the historical data up to the moment of the start of the simulation, which is marked with a 

black dot. From this point onwards, 3 lines appear, two in blue marking the 5th and 95th 

percentiles, and the orange one representing the median. 
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Figure H.27. Simulation results for hospital beds. 

 

Figure H.28. Simulation results for ICU beds. 

In addition, on the right-hand side of the tab, there are fields that record both the date with 

the maximum admissions and the date with the maximum occupancy, for each of the 

percentiles represented in the graphs. For example, the results obtained show that the maximum 

occupancy at the 50th percentile for hospital beds will be 100 on 2020-10-24, while for ICU it 

was 23 on 2020-10-18. Furthermore, by means of the blue button "Generate trajectory", it is 

possible to represent different simulated situations on the graph (in this case, each of the 1,000 

replications can be represented). With the red button "Delete trajectories ", trajectories can be 
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removed from the graph so that new ones can be displayed more clearly. Figure H.29 shows 3 

trajectories generated with different colors for the ICU curves. 

 

Figure H.29. Generated trajectories in the ICU, from among the 1000 simulations run by the software. 

Finally, using the button at the bottom on the left "SAVE RESULTS ON FILE", it is possible, 

as the name suggests, to save the results obtained in data files. Specifically, it is possible to 

generate an Excel file with the numerical results of all the graphs that have been shown, and a 

Word file with the graphs of admissions and bed occupancy for the hospital and the ICU. When 

this button is clicked, a window similar to the one shown in Figure H.4 appears, with which 

these files can be saved in any location on the computer and with any name the user wants. 

Figure H.30 shows the window for saving the files. 

 

Figure H.30. Window used to save the simulation results in files. 
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H.5 Analysis of the system saturation risk 

The fifth and last tab of the software offers the possibility to analyse the system saturation risk, 

distinguishing between hospital capacity and ICU capacity. These analyses can only be 

performed once the simulation has been completed, as the calculations are made based on these 

simulations. Figure H.31 shows the visualization of this tab. 

 

Figure H.31. Analysis of the system saturation risk. 

In this tab, the user can enter values in different fields to calculate the different saturation 

risks. On the one hand, the horizon of the analysis (yyyy-mm-dd) must be indicated, which 

would be limited to the simulation horizon. On the other hand, the user must enter the current 

capacity and the maximum capacity of both the hospital and the ICU. With these data, the 

software calculates the saturation risk for both areas until the indicated date. In addition, to 

explore the intermediate occupancy values, between the current and the maximum set by the 

user, nine intermediate occupancies are added, for which the saturation risk is also calculated. 

The calculation of the saturation risk consists of analyzing all the simulations run by the 

software, and for each day calculating the percentage of times that the occupancy has exceeded 

the current capacity, for example. By clicking on the orange button "CALCULATE", a time 

series of the percentage of saturation is obtained for each occupancy value, which is represented 

in a separate graph for each area. Figure H.32 shows the analysis up to 2020-11-15 for 

occupancies between 100 and 120 in the hospital, and 20 and 30 in the ICU. 
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Figure H.32. Results obtained of system saturation risk for the hospital and ICU analysed up to 2020-11-15. 

Like the simulation results, these analyses can be saved in files using the "SAVE RESULTS 

ON FILE" button. An Excel file is generated with the numerical results, as well as a Word file 

with the graphs obtained in Figure H.32. As for saving the simulation results, the window that 

appears to save these files is similar to the one in Figure H.4, with which the user can select 

both the name of the files to be generated and their location on the computer. Figure H.33 

shows this window. 

 

Figure H.33. Window used to save the results of the saturation risk in the files. 
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H.6 Extension to flu 

The COVIDSIM software is used to simulate and forecast bed occupancy due to COVID-19 

disease. However, this same approach can be extended and adapted to other diseases with 

similar patterns, such as the flu. A second tab has been extended in the software to perform 

simulations on the flu, independent of those on COVID-19, with the possibility of obtaining 

combined results for both diseases in the hospital. 

The mathematical modelling of flu patients is the same as those of COVID-19 patients, as 

well as the tabs that the user has to use to fit the pattern of arrivals and the stay of patients in 

the hospital. However, there are certain aspects to be taken into account that differentiate the 

flu from COVID-19, and this is what is going to be discussed in this section. 

Observed data 

Flu patient data from the 2017-18 and 2018-19 seasons have been used. With these data, we 

have verified that the evolution of the pandemic can be represented with a Gompertz-type 

curve, and we have also been able to analyse patient stays in order to introduce default 

distributions in the software. 

Figure H.34 and Figure H.35 show both cumulative and daily historical data for patients 

admitted with flu to the hospital of the 2017-18 and 2018-19 seasons, respectively, in La Rioja. 

From these plots. it can be seen that the data are highly variable between consecutive days, 

which shows the difficulty of the fit. However, the fit to the Gompertz curve is reasonably good 

(green curve in the plots), making it possible to use this model in the simulation. 

 

Figure H.34. Cumulative and daily data for patients admitted to the hospital with flu in the 2017-18 season in La 

Rioja. 
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Figure H.35. Cumulative and daily data for patients admitted to the hospital with flu in the 2018-19 season in La 

Rioja. 

Figure H.36 shows a graph of the weekly incidence of the flu in Spain between the 2014-15 

and 2018-19 seasons. Although it has not always occurred on the same dates, it can be seen 

that the shape is similar in the different seasons. 

 

Figure H.36. Weekly incidence of the flu. Sentinel Flu Surveillance System in Spain. Seasons 2014-15 to 2018-

19, Spain. 

Tips for simulations 

One of the problems involved in carrying out daily follow-up of patients admitted with flu is 

the scarcity of data available, especially in the early stages of this disease. The lack of data 

negatively affects both the fit of the hospital admission curve and the fit of hospital stays. 
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However, from the data observed before in Observed data, it can be concluded that the flu is 

a "repetitive" pandemic whose duration can be estimated at around 90 days. This fact, together 

with the total number of admissions, which was 225 and 175 in both periods analysed, 

facilitates the estimation of the Gompertz curve at the beginning of the outbreak, according to 

the following steps detailed below: 

1. During the first 5 days in which daily admissions are observed, the parameters of the 

curve are manually set with a total number of admissions of 250 and a duration of 90 

days. Also, the number of accumulated admissions known up to a date before the start 

of the simulation is entered (for example, it can be the accumulated admissions up to 

the previous day). 

2. From the fifth day on, the total number of admissions remains fixed at 250 and the 

duration is maintained at 90 days. However, the third parameter is fitted through the 

data file. This can be done until day 10 of the start of the pandemic. 

3. Between day 10 and day 60, only the duration parameter is entered manually and 

remains at 90. The other two parameters are fitted by file. The values obtained must be 

monitored. If the value of the number of total admissions is outside the range between 

150 and 400, it is advisable to enter it manually so as not to exceed too much with what 

has been observed in past flu episodes. 

4. From day 60 until the end, there will already be enough data for the curve to be fully 

fitted by file. It should also be checked that the shape of the curve is reasonable. 

These four steps described are a previous recommendation that is established. Both the time 

intervals and the values to be entered are flexible and may vary as data are observed on a daily 

basis. Regarding the fit of the stay distributions, it is advisable to use the default values until a 

total of at least 30 complete hospital stays and 20 ICU stays have been observed. Fitting with 

too few values may lead to unreliable results. 

COVID-19 and flu results 

The software includes two tabs to perform independent simulations for each disease ("COVID" 

and "Flu"). In addition, a third tab called "Altogether" has been included to obtain the 

aggregated results. In this tab, it is possible to obtain, on the one hand, the graphs of admissions 

and bed occupancy both in the hospital and in the ICU for the two diseases separately or 

together (see Figure H.37), and on the other hand, the analyses of the hospital and ICU 

saturation risk taking into account the two diseases (see Figure H.38). 
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Figure H.37. Tab where the graphs of admissions and bed occupancy are obtained for the two diseases aggregated 

and individually. 

 

Figure H.38. Tab showing the hospital and ICU saturation risk analysis taking into account both diseases. 

H.7 Input data file 

This section describes the content of the software input files. Two types of file are 

distinguished: on the one hand, an Excel file with the data of patient stays in the hospital (both 

on the ward and in the ICU if required) and their characteristics (sex and age), and on the other 

hand, the file with the data of daily cases (which can be positive cases or hospital admissions). 
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If the first file is available, it would not be necessary to prepare the second file for the operation 

of the software. 

The file of hospital stays should be an Excel file with individualized data of patients admitted 

to the hospital (which are anonymized). It is essential that it always has the same column 

structure and the format of the data must also be maintained, such as the age, the label of male 

(H) and female (M), and the format of the dates of admission and discharge (date format and 

without the time). Figure H.39 shows visually how the information is organized in this file. 

The columns marked in red are the ones that are read in the software. 

 

Figure H.39. Excel file format of patient stay data. 

On the other hand, when the file of patient stays is not available, it is possible to fit the curve 

of hospital admissions using the historical series of admissions. Figure H.40 shows the format 

that this Excel file should have, which contains the date column, the column of daily cases and 

the column of cumulative cases. 

 

Figure H.40. Excel file format of daily case data. 
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