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Abstract

A function that takes n numbers as input and outputs

one number is said to be homogeneous whenever the

result of multiplying each input by a certain factor λ

yields the original output multiplied by that same factor.

This concept has been extended by the notion of abstract

homogeneity, which generalizes the product in the ex-

pression of homogeneity by a general function g and the

effect of the factor λ by an automorphism. However, the

effect of parameter λ remains unchanged for all the input

values. In this study, we generalize further the condition

of abstract homogeneity by introducing ℱ‐homogeneity,

which is defined with respect to a family of functions,

enabling a different behavior for each of the inputs. Next,

we study the properties that are satisfied by this family of

functions and, moreover, we link this concept with the

condition of directional monotonicity, which is a trendy

property in the framework of aggregation functions. To

achieve that, we generalize directional monotonicity byℱ

directional monotonicity, which is defined with respect to

a family of functionsℱ and a family of vectors  . Finally,

we show how the introduced concepts could be applied
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in two different problems of computer vision: a snow

detection problem and image thresholding improvement.
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1 | INTRODUCTION

A homogeneous function of degree 1 is the one that, when all the inputs are multiplied by a factor
related to the domain, the output is multiplied by the same factor. Homogeneous functions and,
more generally, the property of homogeneity1 is a property that has caught the attention of many
researchers. Indeed, in the literature, one can find works regarding this property both from the
theoretical point of view,2,3 and from the applied perspective.4–6

The notion of homogeneity has been generalized. Specifically, in the context of aggregation
functions, in a recent work,7 the concept of abstract homogeneity has been introduced, which is
defined in terms of a function g : [0, 1] [0, 1]2 so that, in the specific case that g is given by
g x y xy( , ) = , abstract homogeneity coincides with standard homogeneity. Moreover, as exposed in
Santiago et al.,7 this concept generalizes other stability properties, such as shift‐invariance8 and
power stability.9 Finally, all the theoretical developments are applied in a multicriteria decision
making problem.

Another research topic that has attracted the interest of many researchers in the framework
of aggregation functions is that of relaxing the monotonicity condition that is required in the
definition of an aggregation function. To that end, various relaxed forms of monotonicity have
been presented in the literature: weak monotonicity,10 directional monotonicity,11 as well as
some other extensions.12,13

In this paper, we explore a further generalization of homogeneity. The recent concept of
abstract homogeneity generalizes standard homogeneity but it treats all the inputs in the same
manner. We aim at defining a generalization of homogeneity in which the condition for each
one of the inputs can vary. Additionally, this feature of varying the condition for each input is
related to the concept of directional monotonicity, as it consists in studying the increasingness
of a function when the inputs are modified according to a specific real vector. Thus, in this
paper we aim at the following to objectives:

• generalizing the concept of abstract homogeneity, making the required condition specific for
each input;

• linking the new generalization of homogeneity with the property of directional monotonicity.

To generalize homogeneity, we introduce ℱ‐homogeneity, a condition that is defined with
respect to a family of functionsℱ. This new property is a general case of abstract homogeneity and,
thus, it recovers both the concepts of standard homogeneity and abstract homogeneity. To link this
property with directional monotonicity, we propose a generalization of directional monotonicity:
ℱ directional monotonicity, which is defined with respect to a family of functionsℱ and a family of
vectors  .

Finally, by means of an illustrative example, we show how the introduced concepts could be
applied in a computer vision problem. Specifically, we show that the developed theoretical
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results can be applied to a snow detection problem and as an improvement to a general image
thresholding algorithm.

The structure of the paper is the following: First, we fix the notation that is used throughout
the rest of the manuscript and we expose some preliminary concepts. In Section 3, we introduce
the concept of ℱ‐homogeneity and, in Section 4, we study the main properties of the functions
satisfying the proposed property. In Section 5, we present a generalization of the concept of
directional monotonicity and we establish its link withℱ‐homogeneity. We end the manuscript
by presenting two examples that illustrate the applicability of the proposed concepts to image
thresholding in Section 6 and some concluding remarks in Section 7.

2 | NOTATION AND PRELIMINARIES

In this section, we present some basic concepts and notations that are used throughout the
paper.

Definition 1. A function φ : [0, 1] [0, 1] is said to be an automorphism on [0, 1] if it
is an increasing bijection.

Definition 2. Let f : [0, 1] [0, 1]n and let φ φ φ φ= ( , , …, )n0 1 be a tuple of n + 1

bijective functions φ : [0, 1] [0, 1]i . Let us denote by f φ the function given by
f x x φ f φ x φ x( , …, ) = ( ( ( ), …, ( )))φ

n n n1 0
−1

1 1 . If the functions φi are automorphisms, then f φ

is said to be the φ‐conjugate function of f .

Definition 3. Let
 x x x= ( , …, ) [0, 1]n

n
1 , the number of occurences (frequency)

of xi in

x is denoted


k i x( , ), that is,

  k i x j x x j n( , ) = #{ : = , 1 }i j —and m =
  k i x i nmax{ ( , ) : 1 }, the multimode of


x is the set of all 

x xi with the highest

frequency; that is,
 
x x k i x mmmode( ) = { : ( , ) = }i ; where “#” denotes the cardinality of

a set. The MinMode of

x is given by

 
MinMode x mmode x( ) = min( ( )) and the MaxMode

of

x is

 
MaxMode x mmode x( ) = max( ( )).

Example 1. For

x = (0.2, 0.3, 0.5, 0.7, 0.3, 0.9, 0.7), it holds that


k x(2, ) = #{2, 5} = 2

and m = max{1, 2} = 2. Also, it holds that


mmode x( ) = {0.3, 0.7},


MinMode x( ) = 0.3

and


MaxMode x( ) = 0.7.

Definition 4 (Kolesárová et al.9). A function F : [0, 1] [0, 1]n is power stable if for
each x x, …, [0, 1]n1 and  r ]0, [, F x x F x x( , …, ) = ( , …, )r

n
r

n
r

1 1 .

Definition 5. A function A : [0, 1] [0, 1]n is said to be an aggregation function
whenever it satisfies the following conditions:

• A (0, …, 0) = 0,
• A (1, …, 1) = 1, and
• A is nondecreasing.
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Definition 6. An associative and commutative bivariate aggregation function,
A : [0, 1] [0, 1]2 , is called a t‐conorm whenever A x x( , 0) = .

2.1 | Homogeneity

The key notion in the present work is that of homogeneity. We start recalling the definition.

Definition 7. Let  γ [0, [. A function F : [0, 1] [0, 1]n is said to be homogeneous
of order γ (or γ‐homogeneous), whenever the identity

F λx λx λ F x x( , …, ) = ( , …, )n
γ

n1 1

holds for all x x λ, …, , [0, 1]n1 . We assume 0 = 10 .

Example 2. The following are examples of homogeneous functions:

• A constant function is homogeneous of order 0.
• The maximum and the minimum are examples of 1‐homogeneous functions.
• The n‐dimensional product:

x x x x x x xΠ( , …, ) = Π = · ·…· ·n
i

n

i n n
n

1
=1

1 2 −1

is homogeneous of order n.
• Given γ > 0, the function G : [0, 1] [0, 1]γ

n given by

( )G x x x( , …, ) = Πγ n
i

n

i1
=1

γ
n

is homogeneous of order γ .

The study of the notion of homogeneity from a theoretical point of view has led to different
related concepts. In what follows we present two related concepts.

Definition 8 (Ebanks14). A function F : [0, 1] [0, 1]n is called quasi‐homogeneous if
there exist an automorphism φ : [0, 1] [0, 1] and a strictly monotone and continuous
function  P : [0, 1] [0, [ such that

F λx λx P φ λ P F x x( , …, ) = ( ( ) ( ( , …, )))n n1
−1

1

for every x x λ, …, , [0, 1]n1 .

Note that if we take φ x x( ) = and P x x( ) = γ
1 , then F comes out to be homogeneous of order γ .

Definition 9 (Xie et al.15). A function F : [0, 1] [0, 1]n is said to be pseudo‐homogeneous
if there exists a continuous and increasing function P : [0, 1] [0, 1]2 such that
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F λx λx P λ F x x( , …, ) = ( , ( …, ))n n1 1

for every x x λ, …, , [0, 1]n1 .

Note that, if  γ [0, [ and we take P x y x y( , ) = ·γ , then a pseudo‐homogeneous function F
is homogeneous of order γ .

2.2 | Directional monotonicity and related concepts

In this section, we recall the notions of weak and directional monotonicity. Weak monotonicity
emerged in the context of aggregation functions8,16 seeking to relax their condition of mono-
tonicity (to be increasing with respect to all the inputs), while maintaining that the output must
increase whenever all the inputs increase by the same amount.

Definition 10 (Wilkin and Beliakov10). We say that a function F : [0, 1] [0, 1]n is
weakly increasing (resp. weakly decreasing), if for all c > 0 and x x( , …, ) [0, 1]n

n
1 such

that  x c0 + 1i for all i n{1, …, }, it holds that F x x F x c x c( , …, ) ( + , …, + )n n1 1

(resp. F x x F x c x c( , …, ) ( + , …, + )n n1 1 ). If F is both weakly increasing and weakly
decreasing, we say that F is weakly constant.

Interpreting this property as monotonicity along the vector

1 = (1, …, 1), we can generalize

it by taking any vector


  r0 ℝn, which led to the introduction of directional monotonicity.

Definition 11 (Bustince et al.11). Let


  r0 ℝn. We say that a function F : [0, 1]n

[0, 1] is

r ‐increasing (resp.r ‐decreasing) if for all c > 0 and

 x x x= ( , …, ) [0, 1]n
n

1 such

that
  x c r+ [0, 1]n, it holds that

   
F x F x c r( ) ( + ) (resp.

   
F x F x c r( ) ( + )). If F

is both

r ‐increasing and


r ‐decreasing, we say that F is


r ‐constant.

There exist more relaxed forms of monotonicity in the literature, such as ordered directional
monotonicity17 and strengthened ordered directional monotonicity.12 Additionally, pointwise
directional monotonicity has also been proposed18 and the concepts of weak and directional
monotonicity have been extended to more general frameworks such as interval‐valued func-
tions, among other.13

3 | ℱ‐HOMOGENEITY

In this section, we recall the definition of abstract homogeneity7 and we provide a general-
ization in the sense that a function is considered homogeneous with respect to a family, ℱ , of
functions and an automorphism φ.

Definition 12 (Santiago et al.7). Let g : [0, 1] [0, 1]2 and F : [0, 1] [0, 1]n be
functions and φ : [0, 1] [0, 1] be an automorphism. F is said to be abstractly

SANTIAGO ET AL. | 5



homogeneous with respect to g and φ, or just g φ( , )‐homogeneous if for every
λ x x, , …, [0, 1]n1 :

F g λ x g λ x g φ λ F x x( ( , ), …, ( , )) = ( ( ), ( , …, )).n n1 1

In the case where φ is the identity, F is said to be g‐homogeneous instead of g φ( , )‐
homogeneous.

g φ( , )‐homogeneity generalizes the notion of homogeneity of order  γ [0, + [ at
Definition 7.

We extend this concept to homogeneity with respect to a family of functions g g, …, n1 .

Definition 13. Let   g D D j nℱ = { : [0, 1] [0, 1] and {1, …, }}j
2 be a family of

functions, φ : [0, 1] [0, 1] be an automorphism and ψ : [0, 1] [0, 1]n be an increasing
function. A function F : [0, 1] [0, 1]n is said to be abstractly homogeneous with respect

to φ ψ(ℱ, , ), or just ℱψ
φ‐homogeneous, if for every x x, …, [0, 1]n1 and


λ λ λ= ( , …, )n1

[0, 1]n it holds that

F g λ x g λ x ψ g φ λ F x x g φ λ F x x( ( , ), …, ( , )) = ( ( ( ), ( , …, )), …, ( ( ), ( , …, ))).n n n n n n n1 1 1 1 1 1 1

(1)

If φ is the identity automorphism, then F is called ℱψ‐homogeneous.

Remark 1. Note that in the case that λ λ= = n1 ⋯ , g g= = n1 ⋯ and ψ is such that it
satisfies

ψ g φ λ F x x g φ λ F x x g φ λ F x x( ( ( ), ( , …, )), …, ( ( ), ( , …, ))) = ( ( ), ( , …, )).n n n1 1 1

An example of such a ψ function would be a projection, or any increasing idempotent
function.

Remark 2. Unless we explicitly state otherwise, from this point we assume

λℱ, , φ, and

ψ as declared in Definition 13. Moreover, φ is not explicitly mentioned whenever φ id= .

Proposition 1. Let F : [0, 1] [0, 1]n be a function which is homogeneous of order
 γ [0, + [. Then it is g φ( , )‐homogeneous for g x y xy( , ) = and φ x x( ) = γ . Moreover, for

k g x y x y> 0, ( , ) = k and φ x x( ) = k γ, F is g φ( , )‐homogeneous.

Proof. Straightforward. □

Moreover, ℱ‐homogeneity generalizes the notion of g φ( , )‐homogeneity in Definition 12.

Proposition 2. Let g : [0, 1] [0, 1]2 . If ℱ is such that g g=j for all j n{1, …, }, ψ is

idempotent* and F : [0, 1] [0.1]n is ℱψ
φ‐homogeneous, then F is also g φ( , )‐

homogeneous.
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Proof. In fact, F g λ x g λ x ψ g φ λ F x x g φ λ F x x( ( , ), …, ( , )) = ( ( ( ), ( , …, )), ( ( ), ( , …, )))n n n1 1 1

g φ λ F x x= ( ( ), ( , …, ))n1 . □

Example 3.

• Consider the arithmetic mean:

M x x
x x

n
( , …, ) =

+ +
.n

n
1

1 ⋯

Then, if we take g x y( , ) =
x y+

2
, from an easy calculation it follows that:

g λ M x x M g λ x g λ x( , ( , …, ) = ( ( , ), …, ( , ))n n1 1

for every λ [0, 1] and M is g‐homogeneous.
• Take g x y xy( , ) = . Then, if λ [0, 1],

λx λx λ x xmax( , …, ) = max( , …, )n n1 1

and

λx λx λ x xmin( , …, ) = min( , …, ) .n n1 1

So both max and min are g‐homogeneous.

Proposition 3 (MaxMode). Consider the MaxMode function defined at Definition 3 and
the weighted average g x y a x a y( , ) = · + (1 − )·a , for  a0 1. Then MaxMode is ga‐
homogeneous for any a [0, 1].

Proof. In fact, for any
 x x x= ( , …, ) [0, 1]n

n
1 and k [0, 1], let be: k k k= ( , …, )n

n
⏞

, k·

x x k x k x{ , …, } = { · , …, · }n n1 1 , and k x x k x k x+ { , …, } = { + , …, + }n n1 1 , then


mmode λ x( · ) =


λ mmode x· ( ) and
 

mmode λ x λ mmode x( + ) = + ( )n . Hence, λ a a mmode· + (1 − )·
 
x mmode λ a a x( ) = (( · ) + (1 − )· ) =n mmode λ a a x λ a a x( · + (1 − )· , …, · + (1 − )· ) =n1

mmode g λ x g λ x( ( , ), …, ( , ))a a n1 . Therefore, MaxMode g λ x g λ x( ( , ), …, ( , )) = maxa 1 a n

   mmode g λ x g λ x λ a a mmode x λ a( ( ( , ), …, ( , ))) = max( + (1 − ) ( )) = +a a n1

    
a mmode x λ a a mmode x gmax((1 − ) ( )) = + (1 − ) max( ( )) = a


λ mmode x g λ x xMaxMode( , max( ( ))) = ( , ( , …, ))a n1 . □

Example 4. Let be g g x y x yℱ = { : ( , ) = }j j
j , ψ x x x( , …, ) =n i

n
i1 =1

n (the geometric
mean), φ x x( ) = n, and F x x x( , …, ) =n i

n
i1 =1 . Then, F is ℱψ

φ‐homogeneous, since:


( )

( )

F g λ x g λ x F λ x λ x

λ x

( ( , ), …, ( , )) = · , …, ·

= · ,

n n n n
n

n

i

n

i
i

i

1 1 1 1 1

=1
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and

 





 
 


















( )

( )

ψ g φ λ F x x g φ λ F x x ψ φ λ x φ λ x

λ x λ x

λ x

λ x

( ( ( ), ( , …, )), …, ( ( ), ( , …, ))) = ( ) , …, ( )

= …

=

= .

n n n n

i

n

i n
n

i

n

i

n

i

n

i n
n

i

n

i

i

n

i
i

i

n

i

n

i
i

i

1 1 1 1 1

=1 =1

1
=1 =1

=1

=1

n

n

2

4 | SOME PROPERTIES OF ℱ‐HOMOGENEITY

In this section, we establish some relations between ℱ‐homogeneity and other properties.
We start studying the relation of g‐homogeneity and power stability.

Proposition 4. A function F : [0, 1] [0, 1]n is power stable with respect to a power
r (0, 1] if and only if it is abstractly homogeneous with respect to g x y y( , ) = x.

Proof. It follows from the definitions of power stability and g‐homogeneity. □

We also study the relations between ℱ‐homogeneity and conjugates: given a function
F : [0, 1] [0, 1]n and a bijection ρ : [0, 1] [0, 1], we define the conjugate function of F , Fρ,

as F x x ρ F ρ x ρ x( , …, ) = ( ( ( ), …, ( )))ρ
n n1

−1
1 .

Proposition 5. Let F : [0, 1] [0, 1]n be a function and ρ : [0, 1] [0, 1] a bijection. If
F is ( φ ψℱ, , )‐homogeneous, then Fρ is such that for  i n1 :

( )F g λ x g λ x

ρ ψ g φ ρ λ ρ F x x g φ ρ λ ρ F x x

( , ), …, ( , )

= ( ( ( ( ), ( ( , …, )), …, ( ( ), ( ( , …, )))).

ρ ρ
n
ρ

n n

ρ
n n n

ρ
n

1 1 1

−1
1 1 1 1∘ ∘

(2)

Proof.

( ) )( ) )( ) ( ) ( )F g λ x g λ x ρ F ρ g λ x ρ g λ x

ρ F ρ ρ g ρ λ ρ x ρ ρ g ρ λ ρ x

ρ F g ρ λ ρ x g ρ λ ρ x

ρ ψ g φ ρ λ F ρ x ρ x g φ ρ λ F ρ x ρ x

ρ ψ g φ ρ λ ρ ρ F ρ x ρ x ρ ρ g φ ρ λ

F ρ x ρ x

ρ ψ g φ ρ λ ρ F x x g φ ρ λ ρ F x x

( , ), …, ( , ) = ( , ) , …, ( , )

= ( ( ( ( ( ( ), ( )))), …, ( ( ( ( ), ( ))))))

= ( ( ( ( ), ( )), …, ( ( ), ( ))))

= ( ( ( ( ), ( ( ), …, ( ))), …, ( ( ), ( ( ), …, ( )))))

= ( ( ( ( ), ( ( ( ), …, ( )))), …, ( ( ( ),

( ( ), …, ( ))))))

= ( ( ( ( ), ( ( , …, ))), …, ( ( ), ( ( , …, ))))).

ρ ρ
n
ρ

n n
def ρ

n
ρ

n n

n n n

n n n

n n n n

n n n

n

ρ
n n n

ρ
n

1 1 1
−1

1 1 1

−1 −1
1 1 1

−1

−1
1 1 1

−1
1 1 1 1

−1
1 1

−1
1

−1

1

−1
1 1 1 1

∘ ∘

∘ ∘ ∘ ∘

∘ ∘

□
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Remark 3. Proposition 5 can be rewritten in the following way:

( )( ) ( )F g λ x g λ x ρ ψ g λ F x x g λ F x x β

id φ ρ id ρ

( , ), …, ( , ) = ( , ( , …, )), …, ( , ( , …, )) , for

= ( , , ).

ρ ρ
n
ρ

n n
β ρ

n n
β

n
ρ

n1 1 1
−1

1 1 1 1

∘ ∘

Indeed,

( )

( )

( )

F g λ x g λ x ρ ψ g φ ρ λ ρ F x x

g φ ρ λ ρ F x x

ρ ψ id g φ ρ λ id ρ F x x

id g φ ρ λ id ρ F x x

ρ ψ g λ F x x g λ F x x β

id φ ρ id ρ

( , ), …, ( , ) = ( ( ( ( ), ( ( , …, )), …,

( ( ), ( ( , …, ))))

= ( ( ( ( ( ), ( ( , …, ))), …,

( ( ( ), ( ( , …, )))))

= ( , ( , …, )), …, ( , ( , …, )) , for

= ( , , ).

ρ ρ
n
ρ

n n
ρ

n

n n
ρ

n

ρ
n

n n
ρ

n

β ρ
n n

β
n

ρ
n

1 1 1
−1

1 1 1

1

−1 −1
1 1 1

−1
1

def −1
1 1 1 1

∘

∘

∘ ∘

∘ ∘

∘ ∘

Corollary 1. If ρ ψ x x ψ ρ x ρ x( ( , …, )) = ( ( ), …, ( ))n n
−1

1
−1

1
−1 , then

( )F g λ x g λ x ψ ρ g φ ρ λ ρ F x x

ρ g φ ρ λ ρ F x x

( , ), …, ( , ) = ( ( ( ( ), ( ( , …, )))), …,

( ( ( ), ( ( , …, ))))).

ρ ρ
n
ρ

n n
ρ

n

n n
ρ

n

1 1 1
−1

1 1 1

−1
1

∘

∘

Moreover, if φ ρ ρ φ=∘ ∘ , then

( ) (
)

F g λ x g λ x ψ g φ λ F x x

g φ λ F x x

( , ), …, ( , ) = ( ( ), ( , …, )), …,

( ( ), ( , …, )) ,

ρ ρ
n
ρ

n n
ρ ρ

n

n
ρ

n
ρ

n

1 1 1 1 1 1

1

that is, Fρ is φ ψ(ℱ , , )ρ ‐homogeneous, where g gℱ = { : ℱ}ρ
i
ρ

i .

Proof. Note that, by hypothesis,

( )F g λ x g λ x ψ ρ g φ ρ λ ρ F x x

ρ g φ ρ λ ρ F x x

( , ), …, ( , ) = ( ( ( ( ), ( ( , …, )))), …,

( ( ( ), ( ( , …, ))))).

ρ ρ
n
ρ

n n
ρ

n

n n
ρ

n

1 1 1
−1

1 1 1

−1
1

∘

∘

Thus, if φ ρ ρ φ=∘ ∘ , then it is straightforward that

( ) (
)

F g λ x g λ x ψ g φ λ F x x

g φ λ F x x

( , ), …, ( , ) = ( ( ), ( , …, )), …,

( ( ), ( , …, )) .

ρ ρ
n
ρ

n n
ρ ρ

n

n
ρ

n
ρ

n

1 1 1 1 1 1

1

□
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Proposition 6. Let ρ : [0, 1] [0, 1] be a bijective function and g : [0, 1] [0, 1]2 be a
function. If ρ satisfies:

ρ g x y g ρ x ρ y( ( , )) = ( ( ), ( )), (3)

then ρ g x y g ρ x ρ y( ( , )) = ( ( ), ( ))−1 −1 −1 . Moreover, if F is g‐homogeneous and ρ g x y( ( , ))

g ρ x ρ y= ( ( ), ( )), then Fρ is also g‐homogeneous.

Proof. Just note that

g ρ x ρ y ρ ρ g ρ x ρ y( ( ), ( )) = ( ( ( ( ), ( ))))−1 −1 −1 −1 −1

which, by hypothesis, is equal to

ρ g ρ ρ x ρ ρ y ρ g x y( ( ( ( )), ( ( )))) = ( ( , )).−1 −1 −1 −1

Moreover, if F is g‐homogeneous and g satisfies (3), then,

F g λ x g λ x ρ F ρ g λ x ρ g λ x( ( , ), …, ( , )) = ( ( ( ( , )), …, ( ( , )))).ρ
n n1

−1
1

By hypothesis this expression is equal to

ρ F g ρ λ ρ x g ρ λ ρ x( ( ( ( ), ( )), … ( ( ), ( ))))n
−1

1

Since F is g‐homogeneous, then we obtain ρ g ρ λ F ρ x ρ x( ( ( ), ( ( ), … ( ))))n
−1

1 . Therefore,

g ρ ρ λ ρ F ρ x ρ x g λ F x x( ( ( )), ( ( ( ), …, ( )))) = ( , ( , …, )).n
ρ

n
−1 −1

1 1

□

5 | ℱ‐HOMOGENEITY AND DIRECTIONAL
MONOTONICITY

In this section, we link the concepts of ℱ‐homogeneity and directional monotonicity. To achieve
that we generalize the notions of weak and directional monotonicity to ℱ‐monotonicity, a
generalization of directional monotonicity with respect to a family of functions ℱ .

Definition 14. Let   g D D j nℱ = { : [0, 1] [0, 1] and {1, …, }}j
2 be a family of

functions and 


ℝ { 0 }n⧹ a family of vectors. A function F : [0, 1] [0, 1]n is

ℱ‐increasing with respect to  or just (ℱ, ) ‐increasing if for every

λ =

λ λ( , …, )n1  it holds that

F g λ x g λ x F x x( ( , ), …, ( , )) ( , …, ),n n n n1 1 1 1 (4)
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whenever g λ x g λ x( ( , ), …, ( , )) [0, 1]n n n
n

1 1 1 . If


= [0, 1] { 0 }n⧹ , we say that F is (ℱ, ) ‐
weakly increasing or just ℱ‐weakly increasing.

Dually we obtain the notion of (ℱ, ) ‐decreasing functions.

Example 5.

• Every constant function is ℱ‐weakly increasing for any family ℱ.
• If F is a nondecreasing function, then it is ℱ‐weakly increasing with respect to the
family g g x y x yℱ = { : ( , ) = + }j .

Proposition 7. Given a family, ℱ , of functions gj such that g x y y( , )j , if a function

F : [0, 1] [0, 1]n is isotonic, then it is ℱ‐weakly increasing.

Proof. Straightforward. □

Example 6. Any binary isotonic function is ℱ‐weakly increasing for Sℱ = { , max}Ł ,
where SŁ is the Łukasiewicz t‐conorm, defined by S x y x y( , ) = min{ + , 1}Ł .

Proposition 8. Every function F : [0, 1] [0, 1]n is ℱ‐weakly increasing/decreasing for
g g x y yℱ = { : ( , ) = }j j .

Proof. F g λ x g λ x F x x( ( , ), …, ( , )) = ( , …, )n n n
def

n1 1 1 1 . □

The following result exposes how ℱ‐monotonicity generalizes directional monotonicity.

Proposition 9. Let


  r r r0 = ( , …, ) ℝn
n

1 . A function F is

r ‐increasing if

and only if it is (ℱ, )r ‐weakly increasing, for  c r c r c= {( · , …, · ) : > 0}r n1 and
g g x y x yℱ = { : ( , ) = + }j j .

Proof. Let c > 0 and
 


r r r= ( , …, ) 0n1 , making

 
λ c r c r c r= · = ( · , …, · )n1 , if F is


r ‐increasing, then for x c r x c r( + · , …, + · ) [0, 1]n n

n
1 1 , F x c r x c r( + · , …, + · ) =n n

def
1 1

F g λ x g λ x F x x( ( , ), …, ( , )) ( , …, )n n n1 1 1 . The reciprocal is analogous. □

Proposition 10. Let λ [0, 1] and F : [0, 1] [0, 1]λ
n be such that F x x( , …, ) =λ n1

MinMode λ x λ x(min( , ), …, min( , ))n1 . Let λ λ= {( , …, )} and ℱ be a family of functions
 g g x y g x y j nℱ = { : [0, 1] [0, 1] ( , ) = ( , ), for {1, …, }}j

n
j , where the function g is

injective with respect to the second variable. If g x y y( , ) , then Fλ is (ℱ, ) ‐weakly
increasing. If g x y y( , ) , then Fλ is (ℱ, ) ‐weakly decreasing.
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Proof. Suppose that g x y y( , ) , then g λ x x( , )i i i and λ g λ x λ xmin( , ( , )) min( , )i i .
Therefore, since g is injective with respect to the second variable, it holds that



F g λ x g λ x MinMode λ g λ x λ g λ x

MinMode λ x λ x

F x x

( ( , ), …, ( , )) = (min( , ( , )), …, min( , ( , )))

(min( , ), …, min( , ))

= ( , …, ).

λ n n
def

n n

n

def
λ n

1 1 1 1

1

1

Similarly, one can prove the case of (ℱ, ) ‐weakly decreasingness. □

The next proposition connects ℱ‐homogeneity with ℱ‐increasing functions.

Proposition 11. Let   g D D j nℱ = { : [0, 1] [0, 1] and {1, …, }}j
2 be a family of

functions such that g x y y( , )i , φ : [0, 1] [0, 1] be an automorphism and ψ : [0, 1]n

[0, 1] be an increasing function, such that ψ x x x( , …, ) . If F : [0, 1] [0, 1]n is ℱψ
φ‐

homogeneous, then it is ℱ‐increasing.

Proof.




F g λ x g λ x ψ g φ λ F x x

g φ λ F x x

ψ F x x F x x

F x x

( ( , ), …, ( , )) = ( ( ( ), ( , …, )), …

, ( ( ), ( , …, )))

( ( , …, ), …, ( , …, ))

( , …, ).

n n n n

n n n

n n

n

1 1 1
hom

1 1 1

1

1 1

1

□

Corollary 2. For any T‐conorm S, if F is S‐homogeneous, then it is S‐weakly increasing.

Proof. All T‐conorms satisfy the conditions of Proposition 11. □

Corollary 3. If F is SŁ‐homogeneous, then it is weakly increasing.

Proof. Let x x( , …, ) [0, 1]n
n

1 and λ > 0 be such that x λ x λ( + , …, + ) [0, 1]n
n

1 , since
S x y x y( , ) = min( + , 1)Ł , then:



F x λ x λ F S λ x S λ x

S λ F x x

F x x

( + , …, + ) = ( ( , ), …, ( , ))

= ( , ( , …, ))

( , …, ).

n n

n

n

1 Ł 1 Ł

Ł 1

1

□

Corollary 4. Given c r, > 0 and
 r r r= ( , …, ) ℝn, if a function F : [0, 1] [0, 1]n is

SŁ‐homogeneous, then F is

r ‐increasing.
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Proof. Given c r, > 0,

r r r= ( , …, ) and

 
λ c r= · , then F x c r x c r( + · , …, + · ) =n1

F λ x λ x F S λ x S λ x( + , …, + ) = ( ( , ), …, ( , ))n n n1 1 Ł 1 Ł . And the result holds by Corollary 3. □

Corollary 5. For every function F , there exists ψ and a family ℱ such that F is
ℱψ‐homogeneous and

F g λ x g λ x F x x( ( , ), …, ( , )) ( , …, ).n n n n1 1 1 1

Proof. Let ψ x x x( , …, ) =n1 1 and g x y y j nℱ = { ( , ) = : {1, … }}j . Then,

F x x F g λ x g λ x

ψ g λ F x x g λ F x x

( , …, ) = ( ( , ), …, ( , ))

= ( ( , ( , …, )), …, ( , ( , …, ))).

n n n n

n n n n n

1 1 1 1

1 1 1

□

Theorem 1. Letℱ be such that g ℱj are increasing in the first variable for all  j n1

and let F be an ℱψ
φ‐homogeneous function. Then, for all λ λ, [0, 1]1 2 such that λ λ1 2, it

holds that

F g λ x g λ x F g λ x g λ x( ( , ), …, ( , )) ( ( , ), …, ( , )).n n n n1 1 1 1 1 2 1 2

Proof. Since F is ℱψ
φ‐homogeneous, then



F g λ x g λ x ψ g φ λ F x x

g φ λ F x x

ψ g φ λ F x x

g φ λ F x x

F g λ x g λ x

( ( , ), …, ( , )) = ( ( ( ), ( , …, )), …

, ( ( ), ( , …, )))

( ( ( ), ( , …, )), …

, ( ( ), ( , …, )))

= ( ( , ), …, ( , )).

n n
def

n

n n

n

n n

def

n n

1 1 1 1 1 1 1

1 1

1 2 1

2 1

1 2 1 2

□

6 | TWO ILLUSTRATIVE EXAMPLES OF APPLICATION

In this section, we show two examples that illustrate the applicability of our proposal to two
different problems, both related to image processing. The first one is using function Fx0 of
Proposition 10 as a tool for snow detection in an image. The second application consists in an
improvement of a given image thresholding algorithm. Specifically, once the threshold is
computed, we propose to use Fx0 to alter the way in which the segmented image is obtained.
This second illustrative example is supported by the comparison with four image thresholding
algorithms in the literature. In all cases, it is shown that our proposal is valid to improve the
results obtained by each method.
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6.1 | Snow detection

The amount of snow in a given mountain may be very important to determine the existing
reserve of water, a critical part in the generation of accurate hydrological models. There
exist several methods to gather such knowledge, many of them using images from which
the available snow is determined. The first problem in this case is to locate the areas of the
studied image where snow appears. To do so, it is usually taken into account the fact that
snow can be distinguished by means of two properties: the high reflectivity in the visible
part of the spectrum and the low reflectivity in the infrared one.19 The combination of these
two spectral features is typically made by means of the Normalized Difference Snow Index
(NDSI). In general, NDSI is much greater for snow than for other types of surfaces, so the
first criterion to determine the presence of snow is to study whether a NDSI threshold is
surpassed.

This fact leads us to settle that, if we are working with images in the RGB color space (with
each channel taking values in a scale from 0 to 255), the presence of snow is determined by the
existence of several pixels in the considered area whose intensities are, in each channel, greater
than a threshold x0 which has been fixed beforehand. This threshold must be high for each of
the channels since we want to detect a bright object, and the maximum of intensity in the RGB
channels, corresponding to white, is obtained for (255, 255, 255).

In this setting, we select the threshold x0 over which we assume the existence of snow.
We take n ℕ and choose windows of size n n(2 + 1) × (2 + 1). We calculate, for each
channel, x x x xmin( , )…, min( , )nn11 0 0 . If the mode in each of the three channels is equal to x0,
then we conclude that we have snow and we mark the central pixel of the window in white,
and, in other case, we mark the central pixel in black. Observe that this amounts to
consider the function F x x MinMode x x x x( , …, ) = (min( , ), …, min( , ))x nn nn11 11 0 00

. According to
Proposition 10, Fx0 is (ℱ, ) ‐weakly increasing for gℱ = { } and x x= {( , …, )}0 0 , where

g : [0, 1] [0, 1]2 is a function that is injective with respect to the second variable
and satisfies g x y y( , ) . An algorithmic representation of this procedure is included in
Algorithm 1.

Algorithm 1 Algorithm using the function Fx0 of Proposition 10.

Require: An image f in RGB color space, threshold x0, and F .

Ensure: A segmented image.

1: for each pixel x y( , )do

2: for each of the color components of the pixel, R,G,B do

3: Take the corresponding submatrix n n((2 + 1) × (2 + 1)) of the image f centered on the pixel x y( , ).

4: Compute the value obtained by applying the function Fx0 to all the pixels of the matrix.

5: endfor

5: Assign to the pixel x y( , ) the value of 255 if the F value is equal to

6: x0 for R,G,B and 0 otherwise.

7: endfor

Figure 1 shows the original images (first column) and the resulting output considering
x = 1700 (second column) in our proposed algorithm.
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6.2 | Image thresholding improvement

Another possible application of our proposal is image thresholding. Image thresholding is a
simple method of image segmentation, which is used to differenciate between an object that
is present in an image and the background. The general idea of an image thresholding
algorithm is to replace each pixel of the image with a black pixel if the intensity of said pixel
is less than a given threshold or, with a white pixel, if its intensity is greater than the
threshold.

Different thresholding algorithms yield different thresholds for an image and, thus,
some perform better than others depending on the image. In this study, we propose a
methodology to to improve the results of a given thresholding algorithm by means of
Algorithm 1.

Thus, we use Algorithm 1 as a final step of a given thresholding algorithm to improve
the segmented image of in grayscale images. Specifically, our proposal consists in using
Algorithm 1 as a final step of a given thresholding algorithm. Once the threshold value is
obtain, it could be used as x0 to perform the segmentation. Note that in this case, as images
are grayscale, there is only one color component or channel. This procedure is exposed in
Algorithm 2.

Algorithm 2 Algorithm to improve a given methodology of image thresholding.
Require: An image f in RGB color space, an image thresholding algorithm H and F .
Ensure: A segmented image.
1: Apply algorithm H to obtain a threshold x0
2: Apply Algorithm 1 with f , x0 and F to obtain the segmented image.

We put this methodology to the test in two differente frameworks:

• Using two recent thresholding algorithms: one based on equivalence measures (EM)20 and
one based on a fuzzy entropy approach (FE)21;

• Using two well‐known image thresholding algorithms in the literature: Otsu22 and
Tizhoosh.23

To check whether our proposal improves the thresholded images, we consider 10 images
that are commonly used to test image thresholding algorithms (see the first column of
Figures 2 and 3).

For our experiments, we set x0 as the threshold value provided by each of the thresholding
algorithm and, as before, we use F x x MinMode x x x x( , …, ) = (min( , ), …, min( , ))x nn nn11 11 0 00

.
In Figure 2, we show the thresholded images by each of the two recent methods (EM and

FE) and the result of applying Algorithm 1 to obtain the segmented image (EM + Fx0 and FE +
Fx0).

In Figure 3, we show the thresholded images by each of the two well‐known methods (Otsu
and Tizhoosh) and the result of applying Algorithm 1 to obtain the segmented image (Otsu +
Fx0 and Tizhoosh + Fx0).

By visual inspection, we get the impression that our proposal yields images that are more
similar to the ground‐truth image for each of the base methodologies that we have considered,
thus improving the results. Moreover, we have computed a series of evaluation metrics that
confirms our first intuition. In Table 1, we can compare the accuracy, precision, recall and
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F‐score of the EM original approach with our proposal. In Tables 2–4 we show the analogous
results for the FE, Otsu and Tizhoosh approaches, respectively.

From the results of both Tables 1–4 we see that the global accuracy rates, the recall and the
F‐score have improved using our proposal. It is important to point out that these improvements
have been produced for all the methods that we have considered. On the other hand, although
the average precision has decreased, we can say that the overall results are positive since the
F‐score is a measure that takes into account both the precision and recall and it has increased.
Therefore, the increase in recall compensates the loss in precision.

7 | CONCLUSION

We have introduced the concept of ℱ‐homogeneity which generalizes the previous gen-
eralization of the property of homogeneity for functions: abstract homogeneity. This new
proposal permits to add variability to the condition that is required to each of the individual
inputs of the function. Moreover, we have carried out a theoretical study of the properties of
the functions that satisfy the proposed notion of ℱ‐homogeneity. Furthermore, we have
related this concept with the property of directional monotonicity by generalizing it by ℱ
directional monotonicity, that relates to a monotonicity condition with respect to a family
of funcions ℱ and a family of vectors  . Finally, we have shown an illustrative example of a
possible application of the introduced concepts in snow detection and as a final step in
image thresholding. The proposed image thresholding algorithm yields better results when
compared to four image thresholding algorithms, two recent and two well‐known. Our
proposal specially improves the recall, which suggests that our proposal can lead to a
reduction of false negatives.

FIGURE 1 Original images in RGB and their corresponding segmented images [Color figure can be viewed
at wileyonlinelibrary.com]
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FIGURE 2 First column: original images. Second column: Ground‐truth images. Third column: Thresholded
images using EM. Fourth column: Thresholded images using EM and our proposal. Fifth column: Thresholded
images using FE. Sixth column: Thresholded images using FE and our proposal
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FIGURE 3 First column: original images. Second column: Ground‐truth images. Third column: Thresholded
images using Otsu. Fourth column: Thresholded images using Otsu and our proposal. Fifth column: Thresholded
images using Tizhoosh. Sixth column: Thresholded images using Tizhoosh and our proposal
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As future research lines, we have two paths in mind. On the one hand, abstract homo-
geneity has been applied to a multi‐expert decision making problem.7 We intend to study
whether the variability that our new generalization provides is beneficial in such a problem. On
the other hand, the relation between ℱ‐homogeneity and directional monotonicity suggests
thatℱ‐homogeneity could be extended to domains that are more abstract than real numbers, in
the same way that directional monotonicity was extended to Riesz spaces to be able to handle
multidimensional data in Sesma‐Sara et al.13

TABLE 1 Evaluation metrics of the comparison between the original EM algorithm and EM + our proposal

Accuracy Precision Recall F‐score
EM EM+Fx0 EM EM+Fx0 EM EM+Fx0 EM EM+Fx0

Im_0 0.803464 0.832415 1.000000 0.990915 0.454899 0.540149 0.625334 0.699176

Im_1 0.914218 0.920289 0.966039 0.877638 0.790091 0.905364 0.869251 0.891285

Im_2 0.983666 0.979620 0.989342 0.968774 0.978227 0.991649 0.983753 0.980078

Im_3 0.939911 0.905202 0.916733 0.869680 0.994580 0.998563 0.954071 0.929676

Im_4 0.958499 0.951536 0.959188 0.907189 0.929201 0.970433 0.943956 0.937746

Im_5 0.964085 0.947097 0.886510 0.789752 0.896936 0.925410 0.891692 0.852216

Im_6 0.953620 0.962799 0.979785 0.961351 0.888762 0.933601 0.932056 0.947273

Im_7 0.882129 0.934318 0.976113 0.968195 0.833285 0.926160 0.899062 0.946711

Im_8 0.882602 0.869501 0.889514 0.869368 0.987065 0.999526 0.935754 0.929915

Im_9 0.826813 0.817070 0.828562 0.816609 0.990278 0.997268 0.902230 0.897942

Average 0.910901 0.911985 0.939178 0.901947 0.874332 0.918812 0.893716 0.901202

TABLE 2 Evaluation metrics of the comparison between the original FE algorithm and FE + our proposal

Accuracy Precision Recall F‐score
FE FE+Fx0 FE FE+Fx0 FE FE+Fx0 FE FE+Fx0

Im_0 0.967401 0.968932 0.921348 0.921931 0.994482 0.921931 0.956519 0.958631

Im_1 0.927482 0.903224 0.895868 0.812067 0.904163 0.921931 0.899996 0.876578

Im_2 0.983339 0.977635 0.982107 0.963056 0.984988 0.921931 0.983546 0.978228

Im_3 0.954753 0.924012 0.938419 0.893427 0.993060 0.921931 0.964967 0.942799

Im_4 0.945949 0.955923 0.995371 0.957414 0.860301 0.921931 0.922920 0.940364

Im_5 0.968881 0.954316 0.922469 0.826415 0.885639 0.921931 0.903679 0.868473

Im_6 0.969080 0.968003 0.942114 0.931388 0.973426 0.921931 0.957514 0.956510

Im_7 0.895726 0.941388 0.974562 0.964812 0.856843 0.921931 0.911919 0.952906

Im_8 0.565532 0.623090 0.944321 0.912427 0.529629 0.921931 0.678639 0.741721

Im_9 0.710055 0.790227 0.922021 0.878166 0.699879 0.921931 0.795737 0.868604

Average 0.888820 0.900675 0.943860 0.906110 0.868241 0.921931 0.897544 0.908481

SANTIAGO ET AL. | 19



ACKNOWLEDGMENTS
This study was supported by National Council for Scientific and Technological Development
(CNPq) within the project 312053/2018‐5, Coordination for the Improvement of Higher
Education Personnel (CAPES) within the project Capes‐Print 88887.363001/2019‐00, the
Spanish Ministry of Economy and Competitiveness through the Spanish National Research
Project PID2019‐108392GB‐I00, financed by MCIN/AEI/10.13039/501100011033, VEGA 1/
0267/21, and APVV‐18‐0052.

TABLE 3 Evaluation metrics of the comparison between the original Otsu algorithm and Otsu + our proposal

Accuracy Precision Recall F‐score
Otsu Otsu+Fx0 Otsu Otsu+Fx0 Otsu Otsu+Fx0 Otsu Otsu+Fx0

Im_0 0.936614 0.953347 0.967496 0.967909 0.852848 0.900460 0.906561 0.932967

Im_1 0.922227 0.917508 0.953061 0.861065 0.825147 0.919853 0.884503 0.889489

Im_2 0.980148 0.983389 0.995742 0.979023 0.964856 0.988318 0.980056 0.983649

Im_3 0.958283 0.929449 0.943919 0.900589 0.992486 0.997700 0.967593 0.946661

Im_4 0.958474 0.953984 0.968902 0.918077 0.919097 0.963651 0.943342 0.940312

Im_5 0.956408 0.938654 0.840717 0.752962 0.907459 0.934386 0.872814 0.833920

Im_6 0.959748 0.967157 0.966072 0.958092 0.919848 0.949789 0.942394 0.953923

Im_7 0.890935 0.939135 0.975326 0.966538 0.848333 0.935781 0.907408 0.950911

Im_8 0.700031 0.743206 0.939850 0.906041 0.698378 0.784928 0.801318 0.841147

Im_9 0.799405 0.834530 0.886085 0.846001 0.862267 0.971850 0.874014 0.904569

Average 0.906227 0.916036 0.943717 0.905630 0.879072 0.934672 0.908000 0.917755

TABLE 4 Evaluation metrics of the comparison between the original Tizhoosh algorithm and Tizhoosh +
our proposal

Accuracy Precision Recall F‐score
Tiz. Tiz.+Fx0 Tiz. Tiz.+Fx0 Tiz. Tiz.+Fx0 Tiz. Tiz.+Fx0

Im_0 0.974212 0.978803 0.949822 0.948188 0.980262 0.995614 0.964802 0.971322

Im_1 0.927660 0.909014 0.916562 0.829001 0.879638 0.942257 0.897721 0.882009

Im_2 0.983565 0.979947 0.990128 0.969569 0.977233 0.991450 0.983639 0.980387

Im_3 0.958283 0.929449 0.943919 0.900589 0.992486 0.997700 0.967593 0.946661

Im_4 0.957224 0.961968 0.992093 0.951803 0.893395 0.946833 0.940161 0.949312

Im_5 0.966789 0.951408 0.905405 0.809958 0.891674 0.921387 0.898487 0.862086

Im_6 0.966721 0.969542 0.946226 0.937342 0.961679 0.980446 0.953890 0.958409

Im_7 0.893603 0.939964 0.975043 0.965517 0.852938 0.938207 0.909912 0.951666

Im_8 0.589350 0.646882 0.943931 0.911664 0.559111 0.655873 0.702259 0.762898

Im_9 0.726618 0.802892 0.917975 0.873196 0.726091 0.884127 0.810836 0.878627

Average 0.894402 0.906987 0.948111 0.909683 0.871451 0.925389 0.902930 0.914338
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ENDNOTE
*A function f : [0, 1] [0, 1]n is said to be idempotent if f x x x( , …, ) = for all x [0, 1].
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