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Abstract: Thermoelectric generators have emerged as an excellent solution for the energy supply of
volcanic monitoring stations due to their compactness and continuous power generation. Neverthe-
less, in order to become a completely viable solution, it is necessary to ensure that their materials
are able to resist in the acidic environment characteristic of volcanoes. Hence, the main objective of
this work is to study the resistance to corrosion of six different metallic materials that are candidates
for use in the heat exchangers. For this purpose, the metal probes have been buried for one year
in the soil of the Teide volcano (Spain) and their corrosion behavior has been evaluated by using
different techniques (OM, SEM, and XRD). The results have shown excessive corrosion damage to the
copper, brass, and galvanized steel tubes. After evaluating the corrosion behavior and thermoelectric
performance, AISI 304 and AISI 316 stainless steels are proposed for use as heat exchangers in
thermoelectric devices in volcanic environments.

Keywords: corrosion; soil corrosion; thermoelectricity; materials selection

1. Introduction

At this exact moment, 10% of the global population is at risk of a volcanic eruption [1].
As most natural events, eruptions cannot be avoided. Nonetheless, volcanic vigilance
has demonstrated to be able to predict when these eruptions are going to occur and,
consequently, reduce their damage [2], becoming indispensable in any volcano in the world.

The biggest difficulty resides in supplying power to the necessary equipment, which
constitutes a challenge since volcanic areas are usually remote, inaccessible, and lack power
grid [3]. Normally, power supply is obtained by means of photovoltaic panels, transforming
the solar radiation into electricity and storing it in a battery [4,5]. Nevertheless, this
solution is not valid for all the volcanoes in the world. This is the case of those volcanoes
that are located at high latitudes, and therefore, lack sun during months, or those that
suffer of severe snowfalls that cover the PV panels, not permitting a continuous volcano
vigilance [6,7].

One of the signs of volcanic activity is in the form of fumaroles, i.e., vents in the
Earth’s surface from which steam and volcanic gases are emitted, typically at temperatures
between 70 and 100 ◦C [8]. Hence, transforming this geothermal energy into electricity
would permit obtaining a continuous power supply. For this purpose, since a low power
supply is required compact, autonomous and robustly, binary cycles are not a viable option.
As an alternative, thermoelectric generators have been proposed in the literature [9,10] due
to their robustness and durability even without maintenance, as demonstrated in spatial
applications [11]. Catalan et al. demonstrated their viability in reality, with a prototype that
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produced between 0.32 and 0.33 W in an 82 ◦C fumarole [12]. However, they realized that
the conditions in which the generator needs to operate are extremely aggressive. In fact, as
it is more deeply analyzed in Section 2, their device stopped its operation after only one
week because of corrosion. Therefore, a critical aspect that must be taken into account for
the durability of thermoelectric generators to become a completely valid solution is the use
of materials that are resistant to corrosion in these harsh environments.

Volcanic environments have aggressive chemistries due to the presence of gases like
SO2(g) and H2S(g), and corrosive soils. Most of the existing studies focus on the effect of
atmospheric corrosion in these environments, studying the corrosion products created and
determining the most resistant materials for each type of volcanic environment [13–18]. In
this work, instead of atmospheric corrosion, the effect of soil corrosion on different metallic
materials has been analyzed in depth. Although the corrosion in soils is a phenomenon
of great importance since it produces significant economic costs, few studies exist which
analyses in detail the corrosion of buried metallic materials in soils.

Galai et al. [19] carried out a comparative study of the corrosion resistance of copper
alloys (copper, brass, and bronze) in a sandy soil in Essouari (Morocco). By carrying
out tests on buried samples (160 days) and electrochemical tests during 21 days, they
concluded that copper is the most resistant material to corrosion followed by bronze, while
brass showed the worst behavior. On their behalf, Yan et al. [20] evaluated the corrosion
resistance of a x80 steel pipe in an anoxic acid soil. Different moisture contents between 12%
and 40% were used in electrochemical and gravimetric tests for 60 days. They highlighted
that the maximum rate of corrosion (0.1 mm/year) was found for moisture contents of 30%
or less.

Chung et al. [21] studied the influence of chloride, sulphate, and chloride concentration
on the corrosion rate of a carbon steel pipeline in a natural soil by a statistical method
according to the design of experiments (DOE). They concluded that the influence of
the order of the independent variables on the corrosion rate was as follows: chloride
concentration higher than sulphate concentration higher than pH. Moreover, a useful
mathematical model was suggested.

Mahlobo et al. [22] studied the effect of cathodic protection polarisation on a carbon
steel in an unsaturated soil. They observed that at −1.0 V vs. Cu/CuSO4, the effectiveness
of the protection was a high measuring (7 µm yr−1); however, at 1.2 V Cu/CuSO4, the pro-
tective magnetite layer deteriorated after 63 days due to the formation of hydrogen bubbles.

Nevertheless, until the moment, only Yurata et al. [23] have studied the resistance
to the corrosion in volcanic soils. They evaluated the corrosion resistance of eight metal-
lic materials in volcanic soils located on White Island in New Zealand at 40 and 100 ◦C
for 111 days. The authors measured a high corrosion rate of more than 1 mm/year in
the 400 steel, while the low alloy steels showed moderate resistance (0.1 mm/year). The
stainless steels AISI 304 and 316 did not suffer and did not show any sign of corrosion.
In line with this study, the present paper continues with the analysis of the resistance to
corrosion of different materials, but considering a different environment: Teide volcano
(Canary Islands, Tenerife, Spain), which presents a different soil composition as detailed
in Section 2. The studied materials have also been different, specifically intended for ther-
moelectric generators. Furthermore, in order to have a better perspective of the durability
of the materials, their exposure has been more prolonged: one year instead of 111 days.
The objective of the present paper is to study the degradation of different materials buried
in a volcanic soil, trying to determine which ones are more suitable for the heat exchang-
ers of thermoelectric generators destined to autonomous volcanic vigilance stations. For
this purpose, six different materials have been buried during one year at Teide volcano
(Canary Islands, Tenerife, Spain), and several tests have been performed afterwards.
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2. Materials and Methods
2.1. First Experience of Thermoelectric Generation in Fumaroles

Before delving into the degradation of different materials buried in volcanic soil, this
section describes the first experience of thermoelectric generators in fumaroles, so that the
present study is justified.

Thermoelectric generators are devices based on solid-state physics whereby heat is
directly transformed into electricity thanks to Seebeck effect. This transformation is held
in the so-called thermoelectric modules, which are made up of semiconductor materials
united by a conductor material and isolated with a ceramic plate that also provides firmness
to the modules. Since the efficiency of these modules is proportional to the temperature
difference between their sides, it is necessary to incorporate heat exchangers with thermal
resistances as low as possible so that the hot side of the modules approaches to the heat
source temperature, and the cold side one to the ambient temperature.

Catalan et al. demonstrated that for geothermal shallow anomalies, the most suitable
heat exchangers are those based on phase change [24]. This type of heat exchangers permit
absorbing big amounts of heat and transport it almost isothermally, leading to low thermal
resistances [25].

Figure 1 depicts the first prototype of thermoelectric generator installed at Teide vol-
cano in March 2019 [12], as well as its schema of operation. This device absorbs geothermal
heat thanks to eight 450 mm long grooved heat pipes made of nickel-plated copper and
with water as working fluid, which are inserted in an aluminum plate. Two bismuth-
telluride thermoelectric modules transform part of this heat into electricity, releasing the
rest to the environment by means of a similar heat exchanger, with the only difference of
including 62 aluminum fins separated 5 mm for increasing the heat exchange area.
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monitoring. However, after just three days, the monitoring of the different variables 

Figure 1. First thermoelectric generator installed at Teide volcano on March 2019 and its schema of operation.

This prototype was installed at Teide volcano (Canary Islands, Spain) on March
2019, at an altitude of 3500 m, where there exist 82.5 ◦C fumaroles. During three days,
it demonstrated the viability of thermoelectric generation from fumaroles, being able to
produce between 0.32 and 0.33 W, which represents a good starting point for autonomous
volcanic monitoring. However, after just three days, the monitoring of the different
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variables stopped. The examination of the prototype three weeks later reported severe
corrosion of the electronic system, as depicted in Figure 2.
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Figure 2. (a) Detail of the corrosion of the electronic system. (b) Detail of the perforated tubes due to corrosion.

Due to the failure, the complete prototype was taken off, and thereafter, a visual
analysis of corrosion in the generator itself could be performed. This analysis showed that
corrosion also affected the generator. Copper tubes were the most affected element of the
generator. In fact, as depicted in Figure 2, in only one month, corrosion perforated the
tubes, causing the leakage of the internal working fluid.

Therefore, in order to be able to obtain robust and reliable thermoelectric generators
for the stand-alone power supply of volcanic vigilance stations, it is necessary to make a
deep study of which materials are able to withstand this acidic environment characteristic
of volcanoes. This is indeed the objective of the present paper.

2.2. Materials Tested and Soil Characteristics

In order to analyze which materials are more suitable for thermoelectric generators,
different samples of six metals were buried during 12 months at Teide volcano at an
altitude of approximately 3500 m, next to an 82.5 ◦C fumarole (Figure 3). More specifically,
galvanized steel (thickness: 25 µm), anodized aluminum (thickness: 20 µm, anodized
only in its interior), copper, brass (Zn: 36%), and stainless steels AISI 304 (Cr:18%, Ni:8%)
and AISI 316 (Cr:18%, Ni:8%, Mo:3%) were selected. In all cases, 10 cm long tubes with
a diameter of 12 mm were buried, since this is the predominant shape in thermoelectric
generators with biphasic heat exchangers. The thickness of the probes varied between 0.5
and 1.5 mm due to the commercial availability.

The soil in this area was formed from material of volcanic origin, made up of lava
flows or products of aerial projection such as pyroclasts and ashes. This type of soil is
mainly constituted by amorphous aluminosilicates and a high content of native sulphur.



Materials 2021, 14, 7657 5 of 15
Materials 2021, 14, x FOR PEER REVIEW 5 of 15 
 

 

 

Figure 3. Location of the buried samples in the proximity a fumarole at Teide volcano. 

2.3. Methodology for Evaluation of Corrosion Damage 

After the 12-month exposure to the volcanic environment, the samples were cleaned 

with different chemicals, in accordance with standard 8407 [26], to remove the soil and 

corrosion products adhered. Before and after the cleaning, the tubes were weighted using 

a precision balance in order to determine their weight loss. Afterwards, three cuts were 

performed and each of them was subject of a different analysis: metallographic analysis 

with an optical microscopy, X-ray diffraction, and surface morphology by SEM-EDX. 

Optical microscopy observations (in bright field and under polarized light) were car-

ried out using an Olympus metallographic microscope BX 60 (Tokyo, Japan). Before per-

forming this analysis, the cross-section of each piece was prepared by grinding with sili-

con carbide abrasive papers ranging from 400 up to 2000 grit and polishing, with diamond 

pastes and alcohol-based lubricant, until a mirror-like surface was achieved. Then, the 

polished surface was cleaned in ethanol in an ultrasonic bath for few minutes to remove 

the residual abrasive particles. 

For the X-Ray diffraction analysis, the crust formed on the external surface of the 

tubes was scrapped off with the help of a stainless steel spatula until sufficient amount of 

debris was collected. The debris was then smashed using an agate mortar to obtain a fine 

powder, and then placed on the XRD holder for the analysis. A Bruker D8 Discover equip-

ment under Bragg Brentano configuration, using a Chromium source (Ka = 2.29 Å ), was 

used (Billerica, MA, USA, 2012). For the identification of the peaks, the Crystallographic 

Open Database together with the data obtained from the EDX was of help. 

The surface morphology was observed by means of a Hitachi S4800 scanning electron 

microscope (SEM) (Tokyo, Japan, 2006), which was coupled to an Inca EDX analyser (Ox-

ford, United Kingdom, 2006) for chemical identification of the elements on the different 

surfaces. The acceleration voltage was 20 kV for all images and analysis, and both second-

ary electron and backscattered images were collected in order to obtain all the possible 

information from the surfaces. 

Figure 3. Location of the buried samples in the proximity a fumarole at Teide volcano.

2.3. Methodology for Evaluation of Corrosion Damage

After the 12-month exposure to the volcanic environment, the samples were cleaned
with different chemicals, in accordance with standard 8407 [26], to remove the soil and
corrosion products adhered. Before and after the cleaning, the tubes were weighted using
a precision balance in order to determine their weight loss. Afterwards, three cuts were
performed and each of them was subject of a different analysis: metallographic analysis
with an optical microscopy, X-ray diffraction, and surface morphology by SEM-EDX.

Optical microscopy observations (in bright field and under polarized light) were
carried out using an Olympus metallographic microscope BX 60 (Tokyo, Japan). Before
performing this analysis, the cross-section of each piece was prepared by grinding with
silicon carbide abrasive papers ranging from 400 up to 2000 grit and polishing, with
diamond pastes and alcohol-based lubricant, until a mirror-like surface was achieved.
Then, the polished surface was cleaned in ethanol in an ultrasonic bath for few minutes to
remove the residual abrasive particles.

For the X-Ray diffraction analysis, the crust formed on the external surface of the tubes
was scrapped off with the help of a stainless steel spatula until sufficient amount of debris
was collected. The debris was then smashed using an agate mortar to obtain a fine powder,
and then placed on the XRD holder for the analysis. A Bruker D8 Discover equipment
under Bragg Brentano configuration, using a Chromium source (Ka = 2.29 Å), was used
(Billerica, MA, USA, 2012). For the identification of the peaks, the Crystallographic Open
Database together with the data obtained from the EDX was of help.

The surface morphology was observed by means of a Hitachi S4800 scanning elec-
tron microscope (SEM) (Tokyo, Japan, 2006), which was coupled to an Inca EDX analyser
(Oxford, United Kingdom, 2006) for chemical identification of the elements on the different
surfaces. The acceleration voltage was 20 kV for all images and analysis, and both sec-
ondary electron and backscattered images were collected in order to obtain all the possible
information from the surfaces.
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3. Results

Once the methodology has been described, this section deals with the description of
the results and their discussion. Firstly, a visual analysis is performed. This first analysis
is followed by others that permit a more in-depth determination of the degradation:
weight loss, metallography by optical microscopy, corrosion products by SEM-EDX, and
X-ray diffraction.

3.1. Visual Analysis of the Exposed Tubes

Figure 4 shows the six metal pipes after having been buried in the volcanic soil
for one year, depicting the whole tube on the left and one cut that was made for the
subsequent analyses on the right, before the chemical cleaning performed in accordance
with standard 8407 [26].
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Figure 4. Photographs of the complete tubes after the field tests and a cut that was made for
the subsequent analyses. (a) Galvanized Steel. (b) Anodized Aluminum. (c) Copper. (d) Brass.
(e) AISI 304 and (f) AISI 316.

As can be observed, all the samples show a high content of soil and corrosion products
adhered to the interior and exterior of the tubes. When analyzed separately, the corrosion
products present a different aspect. Thus, on the surface of the galvanized steel, a mixture
of dark brown earths and white zinc corrosion products can be observed. In the anodized
aluminum tube, a great amount of white corrosion products are detected. In addition, it
is necessary to emphasize that in a zone of the tube, the corrosion has advanced from the
interior achieving the tube fracture. Green and dark corrosion products mixed with earth
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have adhered to the copper tube. Brass shows less corrosion products and soil adhered
to its surface. Finally, in the stainless steels 304 and 316 metallic zones without apparent
corrosive damage can be observed.

Based on the visual analysis, the stainless steels are apparently the least corroded
material. Nonetheless, it is necessary to perform more analyses in order to determine the
degradation grade of each material, which is performed in the following subsections.

3.2. Weight Loss and Microstructural Analysis of Exposed Samples

The initial analysis that was performed was the determination of weight loss, which
was carried out with the whole samples (not cut). The results of weight variation after the
field test are shown in Figure 5. As can be seen, copper is, by far, the material that has
suffered the highest weight loss (19.25%) followed by brass (6%). The anodized aluminum
and the galvanized steel have also undergone an important weight loss of 5.4% and 3.6%,
respectively, while the stainless steels have not experienced any weight loss.
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3.3. Corrosion Damage Evaluation by Optical Microscopy

After the weight loss analysis, the samples were cut into smaller pieces in order to
perform further studies. The first one consisted in a metallographic analysis with an optical
microscopy, whose results are depicted in Figure 6.

These metallographies, in conjunction with Table 1, provide more information about
the internal state of the exposed materials. Thus, in the galvanized steel sample corrosion
damage of 0.3 mm can be found in some areas, which means a loss of thickness of more than
20%. Anodized aluminum also presents a high corrosive attack. Nonetheless, it occurs in
the internal part, while the external surface has remained unaltered. This unique behavior
is due to the fact that Teide’s volcanic soil presents a high content of native sulphur, which
reacts with meteoric water leading to an acid soil. According to Pourboix diagrams, the
corrosion resistance of aluminum decreases with a pH lower than 4, explaining its high
corrosion rate in the interior of the tube, which was not anodized. The outer part of the
sample presents Al2O3, leading to an elevated corrosion resistance in acidic environments.
The rest of the samples present a more intense attack in their external surface. In fact, the
entire external surface of the copper sample shows intense corrosion damage, in some
cases resulting in a loss of thickness of 40%. On the contrary, the brass sample only shows
some damage in localized areas of the exterior. Finally, the stainless steels 304 and 316 do
not show signs of general or localized corrosion.
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Figure 6. (a) Galvanized Steel. (b) Anodized Aluminum. (c) Copper. (d) Brass. (e) Stainless Steel AISI 304. (f) Stainless Steel
AISI 316.

Table 1. Values of the initial thickness and the average thickness after exposure of the
different samples.

Sample Initial Average
Thickness (mm)

Average Thickness
after Exposure (µm)

Standard Deviation
after Exposure (µm)

Galvanized Steel 1.28 1228.84 71.51
Anodized Aluminum 0.86 809.59 62.59

Copper 1.42 1002.92 197.59
Brass 0.52 478.83 13.06

Stainless Steel A304 0.99 989.03 14.64
Stainless Steel A316L 0.86 857.71 7.59
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3.4. Characterization Analysis of Corrosion Products

The next test that was performed to the samples was the analysis of the corrosion
products by SEM-EDX.

The microanalyses carried out on the galvanized steel sample, as shown in Table 2,
indicate the formation of mainly iron oxides. Titanium, silicon, sulphur and aluminum
from the volcanic soil have also been detected, but in a lesser extent.

Table 2. Values of elemental microanalysis corresponding to zones showed in Figure 7.

Galvanized steel Fe Ti F Al Si S K O Ca

Zone 1 50.4 18.8 3.1 2.6 25.0
Zone 2 57.2 19.1 23.6
Zone 3 64.7 2.9 32.4

Anodized aluminum

Zone 1 4.8 3.6 0.4 40.6 41.8 7.8 1.1 0.4
Zone 2 8.2 67.3 24.3
Zone 3 6.3 11.3 23.8 11.8 42.8
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In the case of aluminum, the results vary depending on the zone of study as depicted
in Table 2 and Figure 7. Thus, on the inner side of the aluminum sample (zone 1), a layer
of silicates and sulphides from the soil can be seen. In zone 2, it can be seen how the
corrosive attack progresses through the reaction of the soil components with the aluminum.
In contrast, the anodizing layer of the aluminum sample has not suffered any corrosive
damage and good adhesion to the aluminum is observed.

Figure 8 shows how the copper sample has undergone intense corrosive damage to
the entire outer surface. More specifically, the results indicate that the copper reacts with
the soil to form aluminum silicates and copper oxides.
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Figure 9 shows the formation of a large amount of oxides formed on the external
surface of the brass due to the presence of moisture. The microanalyses carried out indicate
that in the intercalary between the metal and the layer of oxides an impoverishment of the
zinc has taken place, causing, therefore, a dezincification.
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Finally, Figure 10 shows how a dense and adherent layer has formed on the inner
surface of the AISI 304 and AISI 316 stainless steel samples. The external part has not
experienced corrosion while the internal one has formed a layer of oxides, which is more
intense in AISI 316.
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Figure 10. SEM images of (a) AISI 304 stainless steel, (b) AISI 316 stainless steel.

X-ray diffraction is the last analysis that was performed. Figure 11 displays the
diffractograms obtained from the corrosion products removed from the galvanized steel,
copper, and brass samples. Diffractograms of anodized aluminum and stainless steels were
not obtained since insufficient corrosion products had been formed.

In the diffractogram of the galvanized steel a mixture of zinc corrosion products
consequence of zinc and iron corrosion have been identified as FeO, Fe3O4, ZnS, and FeS2.

On its behalf, the corrosion products identified in the copper sample have been mainly the
cuprite (Cu2O) and paramelacomite (Cu4O3) and to a minor degree the brochantite (Cu4O10S).

Finally, in the corrosion products of brass, it has been mainly detected ZnO and to a
lower proportion cuprite and tenorite.



Materials 2021, 14, 7657 11 of 15Materials 2021, 14, x FOR PEER REVIEW 11 of 15 
 

 

 

(a) 

 

(b) 

Figure 11. Cont.



Materials 2021, 14, 7657 12 of 15Materials 2021, 14, x FOR PEER REVIEW 12 of 15 
 

 

 

(c) 

Figure 11. XRD difractogram of (a) galvanized steel, (b) copper, (c) and brass. 

In the diffractogram of the galvanized steel a mixture of zinc corrosion products con-

sequence of zinc and iron corrosion have been identified as FeO, Fe3O4, ZnS, and FeS2.  

On its behalf, the corrosion products identified in the copper sample have been 

mainly the cuprite (Cu2O) and paramelacomite (Cu4O3) and to a minor degree the bro-

chantite (Cu4O10S). 

Finally, in the corrosion products of brass, it has been mainly detected ZnO and to a 

lower proportion cuprite and tenorite. 

3.5. Discussion 

Based on the previous tests, this section jointly analyzes the obtained results in order 

to determine the most adequate material for thermoelectric generators. 

The copper sample has suffered a severe corrosive attack resulting in an excessive 

loss of weight and thickness. The high content in sulphur compounds and low pH have 

led to the formation of abundant corrosion products such as Cu2O and CuS. The high 

corrosivity of this type of volcanic soils is mainly associated with the reactions of the na-

tive sulphur with the soil moisture producing hydrolysis reactions that lower the pH. 

Consequently, for future thermoelectric applications in volcanic environments, only cop-

per protected with some type of organic coatings should be used. Otherwise, its use is not 

recommended. 

The brass sample has suffered a selective corrosive attack due to the reaction of the 

zinc with the sulphur-rich compounds in the soil forming mainly ZnS. This dezincification 

corrosion mechanism, characteristic of brass alloys with zinc contents higher than 30%, 

was observed by the Greeks on brass buried in Roman times in the 10th century. 

Similarly, galvanized steel has also experienced an excessive corrosive attack by re-

action of zinc with sulphur compounds in the soil, forming again mainly ZnS. 

The advance of corrosion on the inner side of the aluminum pipe has been very in-

tense and has even perforated the pipe completely. According to the Pourbaix diagram of 

aluminum, at pH less than 4, aluminum behaves actively and therefore the protective 

Figure 11. XRD difractogram of (a) galvanized steel, (b) copper, (c) and brass.

3.5. Discussion

Based on the previous tests, this section jointly analyzes the obtained results in order
to determine the most adequate material for thermoelectric generators.

The copper sample has suffered a severe corrosive attack resulting in an excessive loss
of weight and thickness. The high content in sulphur compounds and low pH have led to
the formation of abundant corrosion products such as Cu2O and CuS. The high corrosivity
of this type of volcanic soils is mainly associated with the reactions of the native sulphur
with the soil moisture producing hydrolysis reactions that lower the pH. Consequently, for
future thermoelectric applications in volcanic environments, only copper protected with
some type of organic coatings should be used. Otherwise, its use is not recommended.

The brass sample has suffered a selective corrosive attack due to the reaction of the
zinc with the sulphur-rich compounds in the soil forming mainly ZnS. This dezincification
corrosion mechanism, characteristic of brass alloys with zinc contents higher than 30%,
was observed by the Greeks on brass buried in Roman times in the 10th century.

Similarly, galvanized steel has also experienced an excessive corrosive attack by
reaction of zinc with sulphur compounds in the soil, forming again mainly ZnS.

The advance of corrosion on the inner side of the aluminum pipe has been very
intense and has even perforated the pipe completely. According to the Pourbaix diagram
of aluminum, at pH less than 4, aluminum behaves actively and therefore the protective
layer of Al2O3 does not form. In contrast, the external anodized coating has performed
well since its integrity has not been preserved and no corrosion products have formed.

Due to the formation of a passive layer, stainless steel samples have shown good
corrosion performance in this acidic ambient so they are proposed as candidates for
thermoelectric devices.
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4. Effect on Thermoelectric Generation

According to the results of the previous analyses, it becomes evident that copper
cannot be again used as material in the heat exchangers of the thermoelectric generator.
The best candidates are stainless steels A304 and A3016L. These materials are more resistant
to the volcanic environment. However, their thermal conductivity is lower, which can
diminish the generation of the thermoelectric generators. Therefore, in this section, the
effect of using stainless steel tubes is briefly studied thanks to the computational model
developed by Catalan et al. in [27] which presents errors lower than 8% in the estimation
of power generation.

Figure 12 shows the thermal-electrical analogy used for the former estimation. Using
stainless steel instead of copper affects the conduction thermal resistances, increasing their
value 25 times:

Rk =
ln(De/Di)

2·π·L·k
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Hence, reducing the thermal conductivity of the tubes from 385 to 14.4 W/m·K
supposes a reduction in the power generation of 0.38 W, at 7.3%. Therefore, since this
reduction is considerably low, the gain in robustness is worth it.

5. Conclusions

In the present paper, the performance in operation of six candidate materials for use
as heat exchangers in thermoelectric generators have been studied in a long-term test
(one year) in the volcanic environment of Teide (Tenerife, Spain).

The copper, brass, and galvanized steel tubes have suffered a severe corrosive attack
due to the physicochemical conditions of the volcanic soil. Thus, for their use as heat
exchangers in future thermoelectric devices, these materials must be protected with an
organic coating to achieve proper operation.

In contrast, the stainless steels AISI 304 and AISI 316L have shown a remarkable
performance in service without suffering corrosion damage. In spite of having a lower
thermal conductivity than the rest of the alloys, the power loss is only 7% compared to
the calculations carried out with copper. Therefore, although the cost of these stainless
steels is higher than the rest of alloys, their use is recommended as materials for the heat
exchangers of the thermoelectric devices.

To complete the study on the corrosion resistance of the materials of the thermoelectric
devices, it would be necessary to evaluate the atmospheric resistance of the materials in
contact with the fumaroles present in volcanic environments.
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