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A B S T R A C T   

Plant-soil feedback mechanisms influence the abundance and rarity of plant species and can favour invasive 
processes, including those of native species. To explore these mechanisms, we analysed correlations between 
spatial distributions of plant biomass and soil properties in two neighbouring grasslands at different phases of 
expansion of the native Eurasian tall-grass Brachypodium rupestre (Host) Roem & Schult (B. rupestre cover: >75 
and 25–50%). For this, we applied spatially explicit sampling, geostatistical analysis and structural equation 
models (SEM) to probe causal relationships among measured variables involved in nutrient accumulation. We 
hypothesized that if litter accumulates as a result of reduced grazing, ‘fertility islands’ (spots of high SOM and 
nutrient contents) will form under B. rupestre clumps because the increase in resource inputs from litter will 
trigger SOM build-up and promote microbial growth. Our results show that ‘fertility islands’ of P and amino acids 
occurred under the patchy clumps of B. rupestre in the less invaded grassland. In addition, the SEMs indicated 
that nutrient accumulation was partially due to mineralization of the SOM and modulated by the soil microbial 
biomass. However, there was no correlation between spatial patterns of B. rupestre biomass, SOM and microbial 
biomass. Moreover, the SEMs explained small amounts of variance in them (SOM r2 

= 0.22 and microbial 
biomass r2 = 0.08), suggesting that factors other than B. rupestre biomass were responsible for the high fertility 
below the patches. Our spatially explicit approach demonstrated that litter inputs in dense temperate grassland 
communities can generate ‘fertility islands’ that may favour the stability and expansion of a tall-grass invader 
and suggest that herbivory may enhance or inhibit this phenomenon.   

1. Introduction 

Plant-soil feedback mechanisms can contribute to the invasive 
behaviour of some perennial tall grasses that are extensively spreading 
into ecosystems throughout Europe and North America (Vinton and 
Goergen, 2006). Changes in disturbance regimes and human actions 
(relaxation of domestic grazing, recurrent burnings and fertilization) 
may trigger this invasive behaviour (Canals et al., 2017; Catorci et al., 
2011; Holub et al., 2012). Brachypodium rupestre (Host) Roem & Schult is 
a tall-grass native to Eurasia that can outcompete and displace 
co-dominant species, creating grasslands with low diversity and forage 
quality, associated with disruption of traditional management regimes 
(Fig. 1). Understanding the mechanisms that favour expansion of this 
tall-grass and contribute to stabilisation of this low-diversity grassland 

community would help efforts to identify management practices that 
can prevent its expansion. 

Plant-soil feedback processes influence species’ abundance, either 
positively or negatively, thereby promoting increases and decreases in 
their abundance, respectively (van der Putten et al., 2013). They play 
major roles in invasive processes (Klironomos, 2002; Suding et al., 2013) 
and stabilisation of alternate states (Rietkerk and van de Koppel, 1997; 
Suding et al., 2004). One well-known feedback process involves plants 
inducing accumulation of soil organic matter (SOM), which reciprocally 
promotes plant growth. One well-known feedback process involves 
plants inducing accumulation of soil organic matter (SOM), which 
reciprocally promotes plant growth. A well-studied example is the for-
mation of ‘fertility islands’ under shrubs and grass tussocks in arid and 
semi-arid areas (Gutiérrez et al., 1993; Schlesinger and Pilmanis, 1998). 
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In this process, higher litter inputs under the plant canopies than in areas 
with bare soil may enhance soil microbial biomass and activity, leading 
to accumulation of SOM and, hence, an increase in nutrient availability. 
Patches of B. rupestre developing within high-diversity grasslands are 
grazed much less intensively than the surrounding vegetation, so its 
biomass accumulates, producing a thick layer of dead matter. Hurst and 
John (1999) detected more nitrate in soils under patches of B. rupestre 
than in adjacent soils suggesting that B. rupestre may create fertility 
islands, similar to those created under shrubs in arid and semi-arid 
ecosystems. The fertility island hypothesis has been tested by 
comparing vegetated and bare soil microhabitats in arid and semi-arid 
plant communities, but not in humid temperate grasslands with 
continuous vegetation cover. 

Our objectives in the study presented here were to determine if nu-
trients and soil organic matter (SOM) accumulate under B. rupestre 
patches, creating fertility islands, and if these islands disappear with the 
consolidation of B. rupestre monodominance promoted by the recurrence 
of burnings. We hypothesized that if litter accumulates under B. rupestre 
clumps (Fig. 1b), fertility islands will be established (spots with high 
SOM and nutrient contents) due to the increase in resource inputs. In 
contrast, in frequently burned B. rupestre grasslands (Fig. 1c), fire will 
prevent litter accumulation, so the fertility island effect will disappear. 
To test whether the fertility-island effect occurs in the focal humid 
temperate grassland with continuous vegetation cover, we applied 
spatially explicit sampling, geostatistical analysis and piecewise struc-
tural equation modelling to study spatial patterns of B. rupestre biomass 
and soil variables. We examined the patterns in both a B. rupestre 
monodominant grassland (B. rupestre cover >75%, Fig. 1c) and a 
grassland that had not been completely invaded, where B. rupestre 
patches coexisted with high-diversity patches (B. rupestre cover 25–50%, 
Fig. 1b). We specifically tested two contrasting models. According to 
one, B. rupestre biomass and litter influence soil microbial biomass and 
SOM directly and soil nutrient availability indirectly (Figure S1, SM1). 
According to the other model, soil microbial biomass and SOM directly 
influence nutrient availability for the growth of B. rupestre after burning 
(Figure S2, SM1). 

2. Material and methods 

2.1. Study site 

Empirical data were acquired at a site on the Spanish-French border 
between the Aezkoa (Spain) and Cize (France) valleys in the Western 
Pyrenees (43◦2′ N, 1◦10′ W; Fig. 2). The mean annual temperature and 
precipitation here are 9.3 ◦C and 1890 mm, respectively, according to 
data collected during 1989–2019 at the nearest climatic station, Irabia, 
located ca. 5 km from the sampling plots at 822 m asl (Gobierno de 
Navarra, n.d.). Soils at the site, which developed from sandstones and 
calcareous clays, are acidic (pH 4.3–5.3) with high organic matter 
content (5.8–14.5% SOM content) and loamy or clay-loamy textures 
(See Table 1 for a classification of the soils). The vegetation is a mosaic 
of beech forests, shrubland communities dominated by Ulex gallii 
Planch. and Erica vagans L., and grassland communities dominated by 
perennial grasses such as Festuca rubra gr., Agrostis capillaris L., 
B. rupestre, Danthonia decumbens (L.) DC. and Avenula sulcata (J. Gay ex 
Boiss.) Dumort., forbs such as Galium saxatile L., Potentilla erecta (L.) 
Räeusch and Hipochaeris radicata L., and legumes such as Trifolium repens 
L. 

The area is a communal pastureland grazed by French and Spanish 
livestock. Free-ranging sheep, cows and horses use these grasslands 
during the mild season (from May to October). Domestic herbivores 
intensively grazed the area for centuries, but due to socio-economic 
changes during the second half of the 20th century and depopulation 
of the rural areas livestock numbers have declined by ca. 50% in the last 
two decades, which has facilitated the expansion of B. rupestre in many 
areas. Every year B. rupestre builds up a ca. 5 tonnes/ha layer of dead 
matter, which is frequently eliminated by winter surface burnings. 
Consequently, the traditional pastoral fire regime to prevent shrub 
encroachment (every 6–7 years on uneven clumps of ungrazed vegeta-
tion) has been replaced by a new regime with more frequent fires (every 
2–4 winters) in the less intensively grazed areas (Canals et al., 2019). 
Usually, in these low-severity burnings of grasslands the soil is heated to 
30–60 ◦C at 5 cm depth and ca. 200 ◦C at the surface (Múgica et al., 
2018; Úbeda et al., 2005). 

Fig. 1. Observed phases of B. rupestre expansion in the Western Pyrenees.  
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2.2. Sampling design 

A 12 × 12 m plot was established in a B. rupestre patchy grassland in 
Errozate (1091 m asl) and one in a monodominant grassland 1 km away 
in Arpea (943 m asl) (Fig. 2), where the B. rupestre cover was <50% and 
>80%, respectively. Table 1 summarizes selected characteristics of both 
locations. We systematically sampled soil and vegetation at the nodes of 
a grid of 8 × 8 sampling points with 1.5 m spacing. The sampling was 
designed to capture the spatial structure of B. rupestre cover distribution 
in the patchy grassland, where B. rupestre patches have diameters of ca. 3 
m, so the 1.5 m sampling distance ensured the acquisition of replicate 
samples of patches within the grid. We sampled the patchy grassland in 
late May 2017 and the monodominant grassland in early June 2017. The 
patchy grassland had not been burned for at least 8 years and the 
monodominant grassland was burned at the end of the previous winter 
(as part of a biennial cycle). At each of the 64 sampling points in each 
plot, we took two soil cores: one of 6 cm diameter and 10 cm depth for 
analysis of soil parameters and the other of 4.5 cm diameter and 10 cm 
depth for belowground plant biomass estimations. Soil samples were 
kept at 4 ◦C until analysis. We also established a subplot of 15 × 15 cm 
per sampling point, in which we recorded the plant species present and 
harvested the vegetation at ground level. The aboveground biomass was 
separated into dead and green fractions, and the green biomass was 
further separated into species. The plant material was oven-dried at 
65 ◦C for 72 h and its dry weight was recorded. The belowground 
biomass in the subplot was also collected, cleaned with water, separated 
into two categories (rhizomes solely of B. rupestre and roots of both 
B. rupestre and other plants), dried and weighed. This provided estimates 
of total root biomass in both grasslands and B. rupestre root biomass in 
the monodominant grassland, where B. rupestre dominance was suffi-
ciently high to ignore contributions of other species to the root biomass. 
We could not obtain estimates of B. rupestre root biomass in the patchy 
grassland since we could not separate roots into species or distinguish 
B. rupestre roots from other species. We calculated B. rupestre dominance 
as the percentage of B. rupestre biomass in the total aboveground 

biomass. 

2.3. Soil analysis 

We measured soil physico-chemical parameters, soil nutrients, soil 
enzyme activities and soil microbial biomass. The soil parameters were 
analysed as described by Canals et al. (2019). Briefly, the main physical 
and chemical parameters were determined by standard methods in a 
certified laboratory (Nasertic, Pamplona, Spain): SOM by oxidation with 
chromate in the presence of sulfuric acid, total N by the Dumas method, 
available P by the Olsen method and exchangeable Al by titration. The 
soil water content (SWC) was measured gravimetrically. Ammonium 
and nitrate pools were extracted in 2 M KCl, then quantified using an 
AA3 segmented flow analyser (Braun + Luebbe, Norderstedt, Germany). 
Microbial biomass C and N (MBC and MBN, respectively) contents were 
determined by chloroform fumigation-direct extraction (Davidson et al., 
1989), assuming a fumigation efficiency of 0.54 (KN and KC) (Joergensen 
et al., 2011). Dissolved organic carbon (DOC) and dissolved organic 
nitrogen (DON) contents were measured and calculated as described by 
San Emeterio et al. (2014). Soil enzyme activities were determined in 
homogenised and freshly-sieved (2 mm) soil samples. β-glucosidase and 
acid phosphatase activities were measured using a 96-well microplate 
approach (German et al., 2011) as described by San Emeterio et al. 
(2016). Urease activity was measured following the method published 
by Kandeler and Gerber (1988) and modified byRodriguez-Loinaz et al. 
(2008). Microbial biomass and enzyme activities were determined 
within 2 weeks after soil sampling. Total amino acid contents were 
determined following the spectrofluorometric method presented by 
Jones et al. (2002) and modified by Darrouzet-Nardi et al. (2013). 

2.4. Statistical analyses 

We used geostatistical techniques implemented in R (R Core Team, 
2018) to evaluate the above- and below-ground spatial patterns of 
biomass and soil properties in our grasslands, regarded as representing 

Fig. 2. Location of the study area showing Navarra in Spain and Aquitaine in France (shaded), and the sampling sites in Arpea (monodominant grassland) and 
Errozate (patchy grassland). 

Table 1 
General description of the study sites.  

Site Grassland type Altitude (m asl) Slope (◦) Aspect Soil types 

Errozate B. rupestre-patched 1091 33 NW Lithic Udorthents 
Arpea B. rupestre- monodominant 943 26 NE Typic Dystrudepts  
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two phases of B. rupestre expansion. 

2.4.1. Spatial autocorrelation 
We used the coefficient of variation (CV) as a measure of global 

variation in the vegetation and soil parameters, and correlograms and 
semi-variogram modelling to assess spatial autocorrelation (local vari-
ation) (Das Gupta et al., 2015). 

We applied correlogram analysis with Moran’s I index to assess the 
significance of the spatial patterns of plant and soil variables (Legendre 
and Fortin, 1989), regarding a correlogram as statistically significant if 
at least one coefficient was significant at p < 0.05 after Holm correction 
(Borcard et al., 2018). 

Semi-variograms were adjusted to the most commonly used models 
(nugget, spherical, exponential and wave). We assumed that there was 
no spatial dependence for distances larger than the range. (See SM2 for 
details of lag distances and fitting of the semi-variograms). Greater CV 
values and shorter spatial autocorrelation ranges indicate greater spatial 
heterogeneity. We used the nugget to total variance ratio to determine 
spatial dependency, and classified it as weak (<0.25), moderate 
(0.25–0.75, or strong (>0.75) (Cambardella and Elliott, 1994). We 
estimated values of the variables at non-sampled points by ‘ordinary 
kriging’ interpolation using the four semi-variograms (Cressie, 1993). 
We subjected the models to leave-one-out cross-validation and used the 
root mean square error (RMSE) as a measure of precision, mean error 
(ME) as a measure of bias and mean squared deviation ratio (MSDR) of 
the residuals to the prediction error, which is close to one for a correctly 
specified model. We selected the model with the lowest RMSE and in 
case of a tie the model with the MSDR closest to 1. Map contours were 
generated with the best model for each variable. Semivariogram plots 
and the models’ cross-validation statistics are presented in the supple-
mentary material (SM3). We used the ncf R package to construct the 
correlograms (Bjornstad, 2018) and the gstat R package (Gräler et al., 
2016) for calculating and adjusting the semi-variograms, the kriging, 
and contour maps. 

2.4.2. Spatial associations 
We used cross-correlograms to study the spatial associations between 

B. rupestre biomass and soil variables (Jiménez et al., 2011, 2014). A 
cross-correlogram shows the correlation between two variables sepa-
rated by some lag and represents the correlation for all the distances of 
interest. At zero distance, the correlation is equal to the Pearson corre-
lation coefficient. To test the hypothesis that ‘fertility islands’ were 
present in the sampled areas we compared cross-correlograms and map 
contours (spatial distribution of patches) of B. rupestre shoot biomass 
and soil variables. We considered that fertility islands were present if the 
size (range of the semivariograms) and spatial distribution of patches 
were similar and the cross-correlogram was significant at short, but not 
longer, distances. 

2.4.3. Piecewise structural equation models 
We used piecewise SEMs to construct a probabilistic model repre-

senting the relationships between response and predictor variables using 
a network of pathways, each representing a hypothesized causal rela-
tionship based on prior studies and scientific knowledge. A good fit does 
not prove a causal assumption, but indicates that it is plausible (Bollen 
and Pearl, 2013). In this sense, rather than deriving causal relationships 
from the model, we were interested in testing whether our data sup-
ported the conceptual model (see SM1). We used piecewiseSEM and 
nlme packages (Lefcheck, 2016; Pinheiro et al., 2018) to fit a battery of 
general least square models with spatially autocorrelated errors that 
were combined into a network of pathways. We tested effects of 
B. rupestre litter inputs on microbial biomass, SOM and ultimately 
nutrient availability in the B. rupestre-patched grassland (Figure S1 in 
SM1). In the B. rupestre-dominated grassland, the fire in the previous 
year had eliminated most of the litter and we lack data on the distri-
bution of ash after the fire. Thus, we could not model nutrient inputs in 

the ecosystem and did not expect a good fit for the model of relationships 
in this grassland. Instead, we decided to test effects of microbial biomass 
on SOM, nutrient availability and ultimately the B. rupestre biomass 
production after fire (Figure S2 in SM1). More details on the models and 
a detailed justification for the pathways can be found in the supple-
mentary material (SM1). 

3. Results 

3.1. Descriptive statistics 

The soil in the monodominant grassland had slightly higher pH but 
lower nutrient contents and microbial biomass than the soil in the pat-
chy grassland. Activities of soil enzymes involved in C and P cycles were 
higher in the monodominant than in the patchy grassland soil, but the 
activity of urease (involved in N cycling) was higher in the patchy 
grassland soil (Table 2). The variability of most measured soil parame-
ters was similar in the two grasslands. However, CVs for nitrate content, 
DON content and C:N ratio were substantially higher in the mono-
dominant grassland soil than in the patchy grassland soil. 

B. rupestre patches covered approximately 30% of the plot in the 
patchy grassland and was locally dominant (cover >60%) at 12% of the 
sampling points. In the monodominant grassland, B. rupestre cover 
exceeded 95% in the whole plot and 80% at 94% of the sampling points. 
The total green aboveground biomass was twice as high in the patchy 
grassland as in the monodominant grassland, but the total belowground 
biomass in the plots was very similar (Table 2). In the patchy grassland, 
the dead biomass was almost twice as high as the total green above-
ground biomass, whereas in the monodominant grassland the dead 
biomass had been consumed by the previous burning except at a few 
points (Table 2). We found greater variability in all plant variables 
(higher CVs) in the patchy than in the monodominant grassland, except 
for dead biomass (Table 2). 

3.2. Spatial patterns and spatial autocorrelation 

3.2.1. Plant biomass variables 
Biomass of B. rupestre had strongly heterogeneous spatial structure in 

the patchy grassland and no significant spatial structure in the mono-
dominant grassland according to the correlograms and semi-variograms. 
Moran’s I correlograms indicated significant spatial autocorrelation of 
B. rupestre biomass variables, including positive spatial autocorrelation 
in green biomass of the species at distances less than 4 m, in the patchy 
grassland (Fig. 3). These results are consistent with the semi-variograms. 
Spherical models provided the best fits to semi-variograms for B. rupestre 
biomass variables in the patchy grassland, except for the rhizome 
biomass (for which a wave model was best). Their ranges varied from ca. 
2 m for rhizomes and ca. 4 m for shoot biomass (Table 3 and Figure S3 in 
SM3). The distribution of the total aboveground biomass in the patchy 
grassland had much weaker spatial dependence than the B. rupestre 
biomass, reflecting the high production in B. rupestre patches and much 
lower production in the diverse patches (Table 3). We detected no sig-
nificant spatial structure in the total belowground biomass, although we 
found clumps of B. rupestre rhizomes. 

In contrast, the correlograms indicated that the only spatially auto-
correlated biomass variables at short distances (<2.5 m) in the mono-
dominant grassland were B. rupestre root and total belowground biomass 
(Fig. 3). The semi-variogram for the B. rupestre root biomass was 
adjusted to an exponential model with a range (166 m) well above the 
maximum sampling distance (Table 3). For the rest of the biomass 
variables the correlograms were not significant (Fig. 3) and no spatial 
structure was found at the scale of this study (Table 3, Figure S4 in SM3). 

3.2.2. Soil variables 
In the patchy grassland, we detected strong spatial structure in the 

physicochemical variables but weak, or no, spatial structure in 
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distributions of soil nutrients (Table 3, Fig. 3). All the correlograms for 
soil physicochemical variables except DOC were significant and indi-
cated positive autocorrelations at the shortest distance classes (Fig. 3). 
Accordingly, semi-variograms were adjusted to spheric models for SWC, 
pH and C/N ratio, and to exponential models for SOM and aluminium. 
The ranges varied between 2.2 and 5.7 m for SWC and SOM, respec-
tively. No spatial structure in the distribution of DOC was detected at the 
scale of this study (Table 3, Figure S3 in SM3). In contrast, no correlo-
grams for soil nutrients, soil enzyme activities or soil microbial bio-
masses in the patchy grassland were significant at short distances except 
for amino acids (p < 0.10) (Fig. 3). Despite the lack of significance of the 
correlograms, we obtained semi-variograms with adequate fits for some 
of these soil variables. P, ammonium, phosphatase and MBN were 
adjusted to wave models, and amino acids and MBC to spherical models, 
with ranges varying between 1.6 and 7.6 m for phosphatase and MBC, 

respectively (Table 3, Figure S3 in SM3). 
In the monodominant grassland, no spatial structure was detected in 

the soil physicochemical variables, but we found spatial dependence for 
some soil nutrients, soil enzyme activities and soil microbial biomass 
(Table 3, Fig. 3). We obtained no significant correlograms for soil 
physicochemical variables (Fig. 3), and accordingly we found no spatial 
structure at the scale of this study for these soil variables (Table 3, 
Figure S4 in SM3). For soil nutrients we obtained significant correlo-
grams with positive autocorrelations at the shortest distance classes for 
P and amino acids (Fig. 3). Accordingly, we adjusted semi-variograms to 
a spherical model for P and amino acids. We were also able to adjust the 
semi-variograms of ammonium and DON to spherical and exponential 
models, respectively. Ranges of these semi-variograms varied between 
1.1 and 4.7 m for DON and ammonium, respectively (Table 3, Figure S4 
in SM3). For the other soil nutrients we obtained non-significant 

Table 2 
Descriptive parameters of plant biomass and soil variables of the B. rupestre-patched and B. rupestre-monodominant grasslands.  

Variablea Site Mean SD Median Skewness Kurtosis CV 

Plant biomass (kg ha− 1) 
B. rupestre shoots Patchy 655 781 258 1.24 0.51 119  

Monodominant 853 484 793 0.60 0.23 56.7 
B. rupestre rhizomes Patchy 416 739 0.00 2.07 3.98 177  

Monodominant 1900 1300 1700 1.15 1.78 71.2 
B. rupestre roots Patchy Data not available  

Monodominant 5020 2200 4840 0.24 − 0.28 43.9 
Total aboveground Patchy 1890 1380 1500 1.80 3.59 72.9  

Monodominant 884 481 835 0.60 0.10 54.5 
Total belowground Patchy 7040 3660 6030 0.84 0.05 51.0 

Monodominant 7270 2690 7120 0.44 0.05 37.1 
Litter Patchy 1180 1520 457 1.98 3.70 129 

Monodominant 62.7 221 4.89 4.89 23.8 352 
BR dominance (%) Patchy 27.6 23.9 18.9 0.84 − 0.34 86.4 

Monodominant 94.4 16.1 100 − 3.97 17.6 17.0 
Soil physicochemical parameters 
SWC (kg kg− 1) Patchy 0.37 0.04 0.37 − 0.32 − 0.52 10.4  

Monodominant 0.35 0.04 0.35 − 0.29 − 0.18 10.8 
pH Patchy 4.62 0.10 4.63 − 0.32 0.22 2.19  

Monodominant 5.01 0.14 5.00 0.40 0.60 2.70 
C:N Patchy 11.2 0.68 11.2 0.04 − 0.67 6.05  

Monodominant 10.2 1.04 10.1 1.05 1.88 10.1 
DOC (mg C kg− 1) Patchy 108 24.7 104 2.46 10.2 22.8  

Monodominant 44.3 11.9 43.4 − 0.12 0.36 26.9 
SOM (g kg− 1) Patchy 109 156 110 0.12 − 0.87 14.3  

Monodominant 7.71 1.10 7.56 1.13 0.95 14.27 
Al (cmol (+) kg− 1) Patchy 6.22 0.68 6.27 − 0.31 − 0.47 11.0  

Monodominant Data not available 
Soil nutrients 
P (mg P2O5 kg− 1) Patchy 9.00 4.32 8.84 0.26 − 1.03 48.0  

Monodominant 5.07 2.65 4.60 1.28 1.53 52.3 
Nitrate (mg N kg− 1) Patchy 0.39 0.13 0.38 1.01 2.05 33.6  

Monodominant 0.51 0.16 0.47 4.88 29.3 31.9 
Ammonium (mg N kg− 1) Patchy 6.28 1.78 5.90 2.62 10.4 28.4  

Monodominant 4.60 1.59 4.01 1.70 2.28 34.5 
Total Aa (μmol kg− 1) Patchy 622 104 605 0.16 − 0.56 16.7  

Monodominant 464 81.8 450 − 0.01 − 0.03 17.6 
DON (mg N kg− 1) Patchy 21.9 4.77 21.1 2.33 6.98 21.7  

Monodominant 10.6 3.93 10.4 1.14 3.51 37.2 
Total N (g kg− 1) Patchy 5.7 0.8 5.6 0.26 − 0.33 13.7  

Monodominant 4.4 0.5 4.3 0.98 0.95 12.1 
Soil enzyme activities 
Urease (mg N kg− 1 h− 1) Patchy 49.1 10.5 48.4 0.64 0.77 21.4  

Monodominant 27.5 7.21 26.3 0.45 − 0.31 26.2 
Phosphatase (nmol PN k− 1 h− 1) Patchy 203 40.8 191 0.95 0.40 20.1  

Monodominant 242 37.2 247 0.06 − 0.98 15.3 
Glucosidase (nmol PN g− 1 h− 1) Patchy 82.8 11.9 81.5 − 0.30 − 0.08 14.4  

Monodominant 95.8 11.1 93.8 0.02 − 0.44 11.6 
Soil microbial biomass 
MBC (mg C kg− 1) Patchy 1110 322 1090 0.55 0.56 28.8  

Monodominant 586 106 570 1.37 2.08 18.1 
MBN (mg N kg− 1) Patchy 870 141 869 0.30 − 0.02 16.2  

Monodominant 545 126 544 − 0.74 1.53 23.2 

aSWC, soil water content; DOC, dissolved organic carbon; SOM, soil organic matter; Aa, amino acids; DON, dissolved organic nitrogen; PN, p-nitrophenol; MBC, 
microbial biomass carbon; MBN, microbial biomass nitrogen. 

L. San Emeterio et al.                                                                                                                                                                                                                          



Soil Biology and Biochemistry 163 (2021) 108455

6

Fig. 3. Correlograms of plant variables (light green), soil physicochemical variables (light blue), soil nutrients (pink), soil enzyme activities (orange) and microbial 
biomass (yellow) in the B. rupestre-patchy grassland (navy blue lines) and B. rupestre-monodominant grassland (orange lines). Black, grey and open circles indicate p 
< 0.05, p < 0.10, and no significant correlation at the corresponding distance classes. Overall significance: ns, p > 0.10; +, p < 0.10; *, p < 0.05, **, p < 0.01; ***, p 
< 0.001. BR, Brachypodium rupestre; SWC, soil water content; DOC, dissolved organic carbon; SOM, soil organic matter; Aa, amino acids; DON, dissolved organic 
nitrogen; MBC, microbial biomass carbon; MBN, microbial biomass nitrogen. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the Web version of this article.) 
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correlograms (Fig. 3) and detected no significant spatial structure 
(Table 3, Figure S4 in SM3). For soil enzyme activities and soil microbial 
biomasses we obtained significant correlograms for phosphatase and 
MBN, but with no significant autocorrelation at the shortest distances. 
We adjusted the semi-variograms of phosphatase, MBN and MBC to a 
wave model, with ranges between 1.6 and 3.7 m for microbial biomass 
and phosphatase, respectively (Table 3, Figure S4 in SM3). We obtained 
no significant correlograms for the other enzyme activities (Fig. 3) and 
detected no spatial structure at the covered scale (Table 3, Figure S4 in 
SM3). 

Spatial correlation ranges for soil variables in the monodominant 
grassland were similar to, or smaller, than those in the patchy grassland, 
except for ammonium (4.7 and 38 m in the monodominant and patchy 
grassland, respectively) and MBN (3.7 m and 2.6 m in the 

monodominant and patchy, grassland). Extrapolated ranges (above or 
below the maximum and minimum sampling distance, respectively) for 
variables such as B. rupestre root biomass and DON in the monodominant 
grassland, and B. rupestre cover in the patchy grassland, should be 
interpreted with caution. 

3.3. Spatial associations between plant and soil variables in the patchy 
grassland 

In the patchy grassland, we detected similar patterns in the spatial 
associations of B. rupestre shoot and rhizome biomass with some soil 
variables (Fig. 4). Positive correlations with B. rupestre shoot biomass at 
the shortest distances were found with C/N ratio, SOM and amino acids. 
An opposite pattern was found for pH, with a negative correlation in the 

Table 3 
Parameters of the best fitted semi-variograms for B. rupestre biomass and soil variables of the patchy and monodominant grasslands.  

Variablea site Modelb Nugget Sill Range Spatial dependence Dependence class r2 

Plant biomass 
BR shoots Patchy Sph 0.072 0.411 3.76 0.82 Strong 0.999  

Monodominant Nug 0.149     0.906 
BR rhizomes Patchy Wave 0.005 0.018 2.23 0.38 Moderate 0.996  

Monodominant Nug 0.022     0.939 
BR roots Patchy  Data not available      

Monodominant Exp 0.085 1.08 166 0.92 Strong 0.999 
Total aboveground Patchy Sph 0.324 0.494 4.31 0.34 Moderate 0.996 

Monodominant Nug 0.136     0.949 
Total belowground Patchy Nug 0.294     0.975 

Monodominant Nug 0.150     0.962 
Litter Patchy Sph 0.162 0.50 3.75 0.68 Moderate 0.999 

Monodominant Nug 0.119     0.958 
BR dominance Patchy Exp 0.00 7.50 1.25 1 Strong 0.999 

Monodominant Nug 1.49     0.951 
Soil physicochemical parameters 
SWC Patchy Sph 0.000 0.000 2.21 1 Strong 0.993  

Monodominant Nug 0.001     0.971 
pH Patchy Sph 0.004 0.01 4.5 0.42 Moderate 0.999  

Monodominant Nug 0.017     0.976 
C_N Patchy Sph 0.000 0.42 2.64 1 Strong 0.997  

Monodominant Wav 0.001 0.01 1.7 0.91 Strong 0.991 
DOC Patchy Nug 493     0.965  

Monodominant Nug 143     0.971 
SOM Patchy Exp 1.580 2.96 5.57 0.47 Moderate 0.997  

Monodominant Wave 0.564 1.22 1.66 0.54 Moderate 0.989 
Al Patchy Exp 0.035 0.513 2.31 0.93 Strong 0.999  

Monodominant Data not available 
Soil nutrients 
P Patchy Wave 0.266 0.296 3.18 0.1 Weak 0.981  

Monodominant Sph 0.029 0.289 2.94 0.9 Strong 0.999 
Nitrate Patchy Nug 0.059 0.066 3.13 0.1 Weak 0.974  

Monodominant Nug 0.064     0.922 
Ammonium Patchy Wav 0.047 0.058 3.76 0.18 Weak 0.996  

Monodominant Sph 0.053 0.089 4.72 0.40 Moderate 0.999 
Total Aa Patchy Sph 0.002 0.011 2.96 0.78 Strong 0.999  

Monodominant Sph 0.000 0.007 2.88 1 Strong 0.999 
DON Patchy Nug 24.900     0.943  

Monodominant Exp 5.300 17.1 1.1 0.69 Moderate 0.981 
Total N Patchy Nug 0.006     0.975  

Monodominant Nug 0.014     0.973 
Soil enzyme activities 
Urease Patchy Nug 108     0.925  

Monodominant Nug 51.3     0.977 
Phosphatase Patchy Wave 1140 1360 1.6 0.16 Weak 0.932  

Monodominant Wave 1170 1370 1.66 0.14 Weak 0.904 
Glucosidase Patchy Nug 144     0.972  

Monodominant Nug 123     0.933 
Microbial biomass 
MBC Patchy Sph 0.064 0.094 7.56 0.32 Moderate 0.998  

Monodominant Wave 0.011 0.028 1.55 0.61 Moderate 0.986 
MBN Patchy Wave 0.017 0.024 2.67 0.29 Weak 0.996  

Monodominant Wav 0.071 0.102 3.71 0.31 Moderate 0.999 

aSWC, soil water content; DOC, dissolved organic carbon; SOM, soil organic matter; Aa, amino acids; DON, dissolved organic nitrogen; MBC, microbial biomass carbon; 
MBN, microbial biomass nitrogen. 
bNug, nugget; Sph, spherical; Exp, exponential. 
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Fig. 4. Cross-correlograms of B. rupestre (BR) shoot and rhizome biomasses with soil variables in B. rupestre patchy grassland. Black, grey and open circles indicate p 
< 0.05, p < 0.10 and no significant correlation at the corresponding distance class, respectively. The correlation at zero distance is indicated below each sub-plot title. 
Aa, amino acids; SOM, soil organic matter; DOC, dissolved organic C; MBC, microbial biomass C; MBN, microbial biomass N. 
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shortest distance class (Fig. 4). For B. rupestre rhizomes, the spatial as-
sociation pattern showed positive correlations at the shortest distance 
with SOM, DOC, N, amino acids, and P. All the cross-correlograms of the 
shoot and rhizome biomass with the soil variables are listed in the 
supplementary material (Tables S1 and S2 of SM4). 

Patches of high B. rupestre shoot biomass coincided with patches of 
high P and Aa concentrations, but not patches of high ammonium con-
centration (Fig. 5). Patches of B. rupestre shoots also coincided with areas 
with high SOM and MBC, but the patch sizes of both soil variables were 
considerably larger than the patch size of the B. rupestre shoot biomass. 
Regarding pH, hot-spots of acidity approached the contour of B. rupestre 
shoot patches (Fig. 5). Contour maps for other plant and soil variables in 
the patchy grassland are shown in Figures S5 (SM5) and for biomass and 
soil variables in the monodominant grassland in Figure S6 (SM5). 

3.4. Structural equation models 

The proposed model for the relationships in the B. rupestre-patched 
grassland provided a good fit with the acquired data (Fisher’s C = 34.54; 
df = 32; p = 0.347). In this grassland, B. rupestre biomass was clearly 
correlated positively with the availability of the nutrients amino acids, 
ammonium and P (Fig. 6a). Moreover: the abundance of litter was 
positively affected by production of B. rupestre biomass (p < 0.001), 
positively correlated with MBC (p = 0.030) and negatively correlated 
with pH (0.028). In addition, pH and SOM were significantly negatively 
correlated (p = 0.002), MBC and MBN were positively correlated (p =
0.007), MBC was positively correlated with Aa availability (0.039), 
while MBN was negatively correlated with both SOM (p < 0.001) and P 
availability (p = 0.020). SOM was positively correlated with amino 
acids, ammonium, and P availability (p = 0.004, p = 0.037 and p <
0.001, respectively), and amino acid contents were positively correlated 
with ammonium and nitrate contents (p < 0.001 and p = 0.003, 
respectively). Finally, variations in nutrient availability were better 
explained (r2 = 0.62, 0.50, 0.36 and 0.15 for ammonium, P, amino acids 
and nitrate, respectively) and SOM (r2 = 0.22) than variations in mi-
crobial biomasses (r2 = 0.08 and 0.00 for MBC and MBN, respectively. 

The proposed model for the B. rupestre-monodominant grassland also 
provided a good fit to the data (Fisher’s C = 24.1; df = 20; p = 0.238). In 
this frequently burned grassland, the abundance of microbial biomass 
positively affected the incorporation of SOM into the soil, nutrient 
availability, and ultimately production of B. rupestre biomass after fire 
(Fig. 6b). In more detail, MBN and MBC were positively correlated (p =
0.003), while MBN was positively correlated with SOM (p = 0.052) and 
amino acid availability (p = 0.006). In addition, SOM was positively 
correlated with availability of both P (p < 0.001) and amino acids (p =
0.048), negatively correlated with ammonium availability (p = 0.011), 
and not significantly correlated with pH (p = 0.335). Moreover, amino 
acid availability was negatively correlated with nitrate availability ni-
trate (p = 0.002) and positively correlated with ammonium availability 
(p < 0.001), which was positively correlated with nitrate availability (p 
< 0.001). Finally, B. rupestre biomass was positively correlated with P 
and amino acid availability (p = 0.001 and p < 0.001, respectively), but 
negatively correlated with ammonium and nitrate availability (p =
0.029 and p = 0.019, respectively). The model explained between 25 
and 37% of the variance in nutrient availability (r2 = 0.25, 0.28, 0.30 
and 0.37 for amino acids, P, ammonium and nitrate, respectively) and 
38% of the variance in B. rupestre shoot biomass production. 

4. Discussion 

4.1. Fertility islands in the patchy BR grassland and potential plant-soil 
feedback pathways 

Results of our measurements and spatially explicit modelling indi-
cate that we can partially accept the tested hypothesis: some nutrients 
accumulated under B. rupestre clumps, but their accumulation can only 

Fig. 5. Contour maps of B. rupestre (BR) biomass and soil variables in the 
patchy grassland. B. rupestre shoot and rhizome biomass (kg ha− 1), Phos-
phorus (mg P2O5 kg− 1), Ammonium (mg N kg− 1), Total amino acids (Aa) 
(μmol kg− 1), Soil organic matter (SOM) (%), Microbial biomass C (MBC) (mg C 
kg− 1), Microbial biomass N (MBN) (mg N kg− 1). 
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be partially explained by increases in microbial biomass and SOM. We 
found ‘fertility islands’ with higher concentrations of P and amino acids 
(but not other nutrients such as nitrate and ammonium) than in the 
surrounding areas under B. rupestre patches (Figs. 4 and 5). The spatial 
patterns of amino acids and P patches coincided with the spatial patterns 
of B. rupestre biomass, but not the ammonium patches Fig. 5), and we 
detected no significant spatial structure in nitrate availability at the 
scale of the study (Fig. 3 and Table 3). Hurst and John (1999) found that 
nitrate accumulated under B. pinnatum patches in chalk grasslands with 
soil pH over 7, but in our acidic soil the dominant form of mineral N is 
ammonium (Table 2) and the slow rates of nitrification expected at low 
pH may prevent nitrate accumulation. 

The distribution of amino acid and P contents can be partially 
explained by SOM accumulation under B. rupestre patches. Litter inputs 
from B. rupestre were positively correlated with microbial biomass 
directly and with SOM indirectly, via a positive correlation with soil 
microbial biomass and a negative correlation with pH (Fig. 6a). Litter 
inputs can either increase or decrease soil pH, depending on the litter’s 
ability to supply exchangeable base cations and initial pH of the soil 
(Sayer, 2006). In our poor-nutrient and acid soil, litter inputs from 
B. rupestre shoot biomass showed a negative correlation with soil pH, 
probably due to the inverse relationship between residence times of 
SOM fractions (coarse and labile) and soil pH, at least within a relevant 
pH range of 3.9–5.9 according to Leifeld et al. (2013). 

However, the mismatches in spatial patterns of B. rupestre patches 
and both soil microbial biomass and SOM patches (Fig. 5), together with 
the low amount of variance explained by the SEM (r2 for MBC = 0.08; 
MBN = 0, and SOM = 0.22) indicate that factors other than B. rupestre 
biomass and litter inputs are the main determinants of soil microbial 
biomass and SOM. Other factors that may contribute to microbial 

biomass growth and SOM accumulation (and ultimately soil fertility) 
include microclimate, litter quality and C inputs from belowground 
plant biomass. C inputs from rhizodeposition and root decomposition 
are retained longer in soils than those from aboveground tissues (Rasse 
et al., 2005), so their role in microbial growth and SOM accumulation 
could be even more important. However, in the B. rupestre patchy 
grassland we found no significant differences in amounts of total 
belowground biomass between B. rupestre patches and high diversity 
patches. We also detected no spatial structure in total belowground 
biomass in the top 10 cm of the patchy grassland. However, the C to N 
ratio of the belowground biomass probably differs between B. rupestre 
and diverse patches, since the proportion of legumes in the latter is 
greater. 

4.2. Relationships between above- and below-ground spatial patterns in 
the monodominant grassland 

In the frequently burned monodominant grassland, the lack of spatial 
structure in the vegetation cover (Tables 2 and 3) prevented analysis of 
the spatial associations between B. rupestre biomass and soil parameters. 
However, the homogeneous distribution of B. rupestre biomass was not 
reflected in homogeneous distributions of the soil variables. Most of the 
measured soil parameters had more heterogeneous spatial patterns in 
the monodominant grassland than in the patchy grassland: their co-
efficients of variation (Table 2) were similar or higher, whereas their 
autocorrelation ranges were similar or shorter, except for ammonium 
(Table 3). 

The frequent burnings could maintain or even increase the spatial 
heterogeneity of soil properties in the monodominant grassland. Fire can 
alter soils’ mineral nutrient contents and distributions through heating 

Fig. 6. Structural equation models for the model in the B. rupestre-patchy grassland (A) and the model in the B. rupestre-monodominant grassland (B). Boxes indicate 
measured variables. Arrows represent unidirectional relationships among variables. Green and red arrows indicate positive and negative relationships, respectively. 
Doubled-headed arrows represent correlations. Non-significant paths (p ≥ 0.05) are not represented, except the pathway between MBN and SOM in B (p = 0.052). 
The thickness of each significant path is scaled according to the magnitude of the standardized regression coefficient displayed next to the arrow. r2 values indicate 
percentages of variance explained. BR, B. rupestre; SOM, soil organic matter; Aa, amino acids; MBC, microbial biomass carbon; MBN, microbial biomass nitrogen. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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(which enhances mineralization, pyrolysis and volatilization) and ash 
deposition (Rice, 1993). The post-fire distribution of microbial biomass 
may be driven by changes in microbial microhabitats and resource 
availability (Smithwick et al., 2012). Fire ashes’ deposition and redis-
tribution may be key determinants of spatial patterns of soil nutrients 
and microbial biomass. Our results suggest that spatial patterns of soil 
parameters in the monodominant grassland may be driven by the 
frequent fire regime. 

Regarding organic matter, effects of fire on soil organic C depend on 
the temperature: significant consumption of organic matter starts at 
around 200 ◦C and it is completely consumed at around 460 ◦C (Gio-
vannini et al., 1988). In the study area, the soil temperature reached in 
the burnings is unlikely to trigger significant losses of organic matter and 
nutrients through volatilization or pyrolysis except in the top milli-
metres of the soil (Múgica et al., 2018; San Emeterio et al., 2016). 
Frequently burned soils in the B. rupestre monodominant grassland had 
lower SOM contents than soils in the B. rupestre patchy grassland 
(Table 2). This was probably at least partly due to reductions in litter 
inputs caused by recurrent elimination of the vegetation by combustion, 
which causes marked declines in soil C stocks over time according to a 
recent meta-analysis (Xu et al., 2021). 

Since we had no data on the spatial distribution B. rupestre biomass 
pre-burning, or spatial patterns of ash distribution, resource inputs into 
the soil in the monodominant grassland could not be modelled top- 
down. Instead, we applied a bottom-up approach to test effects of soil 
nutrients on B. rupestre shoot biomass. SEM revealed tendencies for P 
and amino acids to accumulate in the soil and immobilization of mineral 
N with strong competition between microbial populations and 
B. rupestre (Fig. 6b). According to this model, in contrast to the patchy 
grassland model, pH had no apparent effects on SOM or indirectly on 
nutrient availability, probably due to absence of the potential effect of 
litter addition. 

4.3. Limitations of the study and future research 

Although our hypothesis was partially accepted, the huge sampling 
effort needed for our spatially explicit approach and analysis of fresh 
samples required to characterize microbial processes did not allow 
appropriate replicate sampling to extrapolate the results beyond the 
plot- and time-scale (late spring period). However, many interesting 
patterns were detected in this complex study, which may inform future 
research that includes more replicates and considers, for instance, po-
tential feedback effects of the amount and quality of the resource inputs 
(litter, ashes and belowground biomass) during the following growing 
seasons. 
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