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Abstract

In this paper we derive new recurrence relations for the following families of poly-
nomials: Nörlund polynomials, generalized Bernoulli polynomials, generalized Euler
polynomials, Bernoulli polynomials of the second kind, Buchholz polynomials, genera-
lized Bessel polynomials and generalized Apostol-Euler polynomials. The recurrence
relations are derived from a differential equation of first order and a Cauchy integral
representation obtained from the generating function of these polynomials.
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1 Introduction

Several families of polynomials arise in many different areas of mathematics with important
applications in overall branches of science. The study of different properties and repre-
sentations for these families, such as explicit representations, symmetries, limit relations,
recurrence relations and derivatives, integral representations, generating functions, zeros,
differential equations, asymptotic expansions, etc., have been subject of investigation dur-
ing centuries. In this paper, we consider the following families of polynomials: Nörlund
polynomials Bα

m, generalized Bernoulli polynomials Bα
m(x), generalized Euler polynomials

1

This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of Difference Equations and 
Applicationson, 2021, available online: http://www.tandfonline.com/ https://doi.org/10.1080/10236198.2021.1999432.



Eα
m(x), Bernoulli polynomials of the second kind bαm(x), Buchholz polynomials P a

m(x), ge-
neralized Bessel polynomials Y a

m(x) and generalized Apostol-Euler polynomials Eα
m(x;λ).

Several (more or less involved) explicit formulas, recurrence relations and properties of the
generalized Bernoulli polynomials may be found in [3,4,6,8,19,22,23,28,29,31]; of the gene-
ralized Euler polynomials in [6,8,12,29,31]; of the Bernoulli polynomials of the second kind
in [9,25,30]; of the Buchholz polynomials in [1,2,7,18]; of the generalized Bessel polynomials
in [10, 13, 16, 24]; and of the generalized Apostol-Euler polynomials in [5, 14, 20, 21, 27, 32].
See also references therein for further information.

In this paper, we investigate new recurrence relations for the above mentioned families
of polynomials. The starting point is the generating function fα(t, x, λ) of these polynomials
pαm(x;λ), that is of the form

fα(t, x, λ) := (g(t, x, λ))αh(t, x) =
∞∑
m=0

pαm(x;λ)t
m, (1)

where g(t, x, λ) and h(t, x) are given in Table 1 for the different families of polynomials
considered in this paper. For the sake of simplicity in the analysis, the polynomials pαm(x;λ)
that we consider here differ by a factorm! from the standard polynomials p̃αm(x;λ) considered
so far in the literature, that is: pαm(x;λ) := p̃αm(x;λ)/m!.

On the one hand, upon taking the logarithmic derivative of fα(t, x, λ) in (1) we get

uα(t, x, λ)f
′
α(t, x, λ) = vα(t, x, λ)fα(t, x, λ), (2)

where uα(t, x, λ) and vα(t, x, λ) admit a Taylor expansion at t = 0. By substituting the
Taylor expansion at t = 0 of uα(t, x, λ), vα(t, x, λ), fα(t, x, λ) and f ′α(t, x, λ) in (2), and
equating the coefficients of equal powers of t, we obtain a recurrence relation for pαm(x;λ) in
terms of pαk (x;λ), for k = 0, 1, 2, . . . ,m− 1 with pα0 (x;λ) given (second column of Table 2).

On the other hand, we consider the Cauchy integral representation of pαm(x;λ),

pαm(x;λ) =
1

2πi

∮
fα(t, x, λ)

dt

tm+1
, (3)

where the integration contour is a simple closed loop, traversed in the positive sense, that
encircles the point t = 0 and does not encircle any singularity of fα(t, x, λ). A simple
algebra lets us write pαm(x;λ) in terms of pα+1

k (x;λ) for k = 0, 1, 2, . . . ,m (except in the case
of Buchholz polynomials, that is written in terms of pα−1k (x;λ)). Integrating by parts in (3),
we obtain a relation between some pα+1

k (x;λ) for k = 0, 1, 2, . . . ,m, and some pαk (x;λ) for k =
0, 1, 2, . . . ,m. Solving the two equations for {pαm(x;λ), pα+1

m (x;λ)} ( for {pαm(x;λ), pα−1m (x;λ)}
in the case of the Buchholz polynomials), we get a recurrence relation for pα+1

m (x;λ) in terms
of pα+1

k (x;λ) for k = 0, 1, 2, . . . ,m − 1, and some pαk (x;λ) for k = 0, 1, 2, . . . ,m − 1 (third
column of Table 2).

Except in the case of the generalized Apostol-Euler, these polynomials pαm(x;λ) are also
polynomials in α of degree m (of degree bm/2c for the Buchholz polynomials). Therefore,
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Polynomials pαm(x;λ) g(t, x, λ) h(t, x) t

Nörlund Bα
m

t

et − 1
1 |t| < 2π

Generalized Bernoulli Bα
m(x)

t

et − 1
ext |t| < 2π

Generalized Euler Eαm(x)
2

et + 1
ext |t| < π

Bernoulli of the second

kind
bαm(x)

t

log(1 + t)
(1 + t)x |t| < 1

Buchholz P am(x)
sin t

t
e

x
2
(cot t− 1

t
) |t| < π

Generalized Bessel Y a
m(x)

2

1 +
√
1− 2xt

e2t/(1+
√
1−2xt)

√
1− 2xt

|2xt| < 1

Generalized Apostol-Euler Eαm(x;λ)
2

λet + 1
ext

|t| < | log(−λ)|

λ 6= −1

Table 1: Functions g(t, x, λ) and h(t, x) in equation (1) for the families of polynomials considered
in this paper.

they can be written in the form

pαm(x;λ) =
m∑
k=0

amk (x, λ)α
k, (4)

as well as in the form

pαm(x;λ) =
m∑
k=0

bmk (α, λ)x
k. (5)

Then, by replacing the expansions (4) and (5) into the relation obtained by integration by
parts that we have mentioned above, we get recurrence relations for the coefficients amk (x, λ)
(Table 3) and bmk (α, λ) (Table 4).

The paper is organized as follows. In Section 2, we summarize the recurrence relations
derived for the different families of polynomials considered in the paper and based on the
techniques explained above, that are based on the differential equation (2) and the integral
representation (3). The proofs of the results given in Section 2 are given in Section 3.
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2 Main results
In Table 2 we show the recurrence relations satisfied by the different families of polynomials
considered in the paper and obtained by applying the method based on the differential
equation (2) (second column) and the method based on the Cauchy integral representation
(3) of pαm(x;λ) (third column). Table 3 includes the expansion of pαm(x;λ) in powers of α
(4) and the corresponding recurrence relations for the coeficients amk (x, λ), and Table 4 the
expansion of pαm(x;λ) in powers of x (5) and a recurrence relation for the coeficients bmk (α, λ).

For all these polynomials, pα0 (x;λ) = 1, except for the generalized Apostol-Euler poly-
nomials, for which pα0 (x;λ) =

(
2

λ+1

)α. From either of the two recursive formulas given in
Table 2, it is obvious that, except in the case of the generalized Apostol-Euler polynomials,
pαm(x;λ) is a polynomial in α of degree m (of degree bm/2c for the Buchholz polynomials).

As far as we know, the recurrence relations given in Tables 2, 3 and 4 are new, with the
exception of the one given for the Nörlund polynomials in the second column of Table 2, that
is proved in [11, Theorem 2.1]. An alternative recursive formula for the Nörlund polynomials
to the one given in the third column of Table 2 may be found in [17], although it is more
intricate. Other more or less involved recurrence relations may be found in the literature
cited in the Introduction and references therein.

3 Proofs of the results in Section 2
In this section we give a complete and detailed proof of the different recurrence relations
obtained for the generalized Euler polynomials in Tables 2, 3 and 4. For the other families
of polynomials we provide the more important details of the demonstration and refer to the
proof for the generalized Euler polynomials.

3.1 Generalized Euler polynomials

The generalized Euler polynomials, Eα
m(x), are generated by the function [23, chap. 6]

Gα(x, t) :=

(
2

et + 1

)α
ext =

∞∑
m=0

Eα
m(x)t

m, |t| < π. (6)

It is clear that Eα
0 (x) = 1. The recurrence relation given in the fourth line and second

column of Table 2 can be proved by introducing the expansion (6) into the partial differential
equation

(et + 1)
∂Gα(x, t)

∂t
=
[
et(x− α) + x

]
Gα(x, t) (7)

and equating the coefficients of equal powers of t.
In order to prove the recurrence relation given in the fourth line and third column of

Table 2, consider α > 1. From (6) we have that

Eα
m(x) =

1

2πi

∮ (
2

et + 1

)α
ext

dt

tm+1
, (8)
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where the integration contour is a closed loop around the point t = 0, contained inside the
disk D0(π) and traversed once in the positive sense. Then, on the one hand, a simple algebra
shows that

Eα
m(x) =

1

2πi

∮ (
2

et + 1

)α+1

ext
et + 1

2

dt

tm+1

=
1

2πi

∮ (
2

et + 1

)α+1

ext
dt

tm+1
+

1

2

m∑
k=1

1

k!

1

2πi

∮ (
2

et + 1

)α+1

ext
dt

tm−k+1

= Eα+1
m (x) +

1

2

m∑
k=1

Eα+1
m−k(x)

k!
.

(9)

On the other hand, integrating by parts in (8) we find that, for m = 1, 2, 3, . . .,

mEα
m(x) = (x− α)Eα

m−1(x) +
α

2
Eα+1
m−1(x). (10)

Solving the two equations (9) and (10) for {Eα
m(x), E

α+1
m (x)} we find the recurrence relation

given in the fourth line and third column of Table 2.
In order to prove the recurrence relation given in Table 3, replace the right hand side of

Em(α) =
m∑
k=0

amk (x)α
k into formula (10), by writting

Eα+1
m−1(x) =

m−1∑
k=0

am−1k (x)(α + 1)k =
m−1∑
k=0

am−1k (x)
k∑

n=0

(
n

k

)
αn =

m−1∑
k=0

αk
m−1∑
n=k

(
n

k

)
am−1n (x).

We obtain, for m = 0, 1, 2, . . .,

mam0 (x)− xam−10 (x) +
m∑
k=1

[
mamk (x)α

k + am−1k−1 (x)
]
αk − x

m−1∑
k=1

am−1k (x)αk

=
1

2

m∑
k=1

αk
m−1∑
n=k−1

(
n

k − 1

)
am−1n (x).

(11)

When we identify the coefficients of every power αk, k = 0, 1, 2, . . . ,m, we obtain the re-
currence relation given in Table 3.

In order to prove the recurrence relation given in Table 4, replace the right hand side of

Em(α) =
m∑
k=0

bmk (α)x
k into formula (10). We obtain, for m = 0, 1, 2, . . .,

mbm0 (α)+m
m−1∑
k=1

bmk (α)x
k +mbmm(α)x

m =
m−1∑
k=1

bm−1k−1 (α)x
k + bm−1m−1(α)x

m

− α bm−10 (α)− α
m−1∑
k=1

bm−1k (α)xk +
α

2
bm−10 (α + 1) +

α

2

m−1∑
k=1

bm−1k (α + 1)xk.

(12)

When we identify the coefficients of every power xk, k = 0, 1, 2, . . . ,m, we obtain the re-
currence relation given in Table 4.
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=
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=

1
2
m

−
1

( x 2

∑ m−
1

k
=
0
(−
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pαm(x;λ) Recurrence relation pαm(x;λ) =
∑m

k=0 a
m
k (x, λ)α

k

Bα
m

a00 := 1; am0 := 0, m = 1, 2, 3, . . . ; amm := (−1)m
2mm! ,

and for k = m− 1,m− 2,m− 3, . . . , 1, and m = 2, 3, 4, . . .

amk = − 1

m+ k

[
am−1k−1 +

m∑
n=k+1

(
n

k − 1

)
amn

]
.

Bα
m(x)

a00(x) := 1; am0 (x) := xm

m! , m = 1, 2, 3, . . . ; amm(x) :=
(−1)m
2mm! ,

and for k = m− 1,m− 2,m− 3, . . . , 1, and m = 2, 3, 4, . . .

amk (x) = −
1

m+ k

[
am−1k−1 (x)− xa

m−1
k (x) +

m∑
n=k+1

(
n

k − 1

)
amn (x)

]

Eαm(x)

a00(x) := 1; am0 (x) := xm

m! , m = 1, 2, 3, . . . ; amm(x) :=
(−1)m
2mm! ,

and for k = m− 1,m− 2,m− 3, . . . , 1, and m = 2, 3, 4, . . .

amk (x) =
1

m

[
−1

2
am−1k−1 (x) +

(
x+

k

2

)
am−1k (x) +

1

2

m−1∑
n=k+1

(
n

k − 1

)
am−1n (x)

]

Table 3: Expansion of pαm(x;λ) in powers of α (4) and the corresponding recurrence relations for
the coefficients amk (x, λ).

3.2 Generalized Bernoulli polynomials

The generalized Bernoulli polynomials, Bα
m(x), are generated by the function [23, chap. 6]

Fα(x, t) :=

(
t

et − 1

)α
ext =

∞∑
m=0

Bα
m(x)t

m, |t| < 2π. (13)

It is clear that Bα
0 (x) = 1. The recurrence relations given in Tables 2 and 3 may be proved

as in subsection 3.1 replacing, respectively, formulas (7), (9), (10) and (11) by

t(et − 1)
∂Fα(x, t)

∂t
=
(
α[(1− t)et − 1] + xt(et − 1)

)
Fα(x, t),

Bα
m(x) =

1

2πi

∮ (
t

et − 1

)α+1

ext(et − 1)
dt

tm+2

=
m+1∑
k=1

1

k!

1

2πi

∮ (
t

et − 1

)α+1

ext
dt

tm+2−k =
m∑
k=0

Bα+1
m−k(x)

(k + 1)!
,
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pαm(x;λ) Recurrence relation pαm(x;λ) =
∑m

k=0 b
m
k (α, λ)x

k

Eαm(x)

b00(α) := 1; bm0 (α) := α
2m [bm−10 (α+ 1)− 2bm−10 (α)], m = 1, 2, 3, . . . ; bmm(α) :=

1
m! ,

and for k = m− 1,m− 2,m− 3, . . . , 1, and m = 2, 3, 4, . . .

bmk (α) =
1

m

[
bm−1k−1 (α)− αb

m−1
k (α) +

α

2
bm−1k (α+ 1)

]

Eαm(x;λ)

b00(α, λ) :=
(

2
λ+1

)α
; bm0 (α, λ) := α

2m [bm−10 (α+ 1, λ)− 2bm−10 (α, λ)], m = 1, 2, 3, . . .

bmm(α, λ) :=
1
m!

(
2

λ+1

)α
,

and for k = m− 1,m− 2,m− 3, . . . , 1, 0, and m = 2, 3, 4, . . .

bmk (α, λ) =
1

m

[
bm−1k−1 (α, λ)− αb

m−1
k (α, λ) +

α

2
bm−1k (α+ 1, λ)

]

Table 4: Expansion of pαm(x;λ) in powers of x (5) and the corresponding recurrence relations for
the coefficients bmk (α, λ).

mBα
m(x) = α

[
Bα
m(x)−Bα

m−1(x)−Bα+1
m (x)

]
+ xBα

m−1(x),

and

mam0 (x)− xam−10 (x) +
m∑
k=1

[
mamk (x)α

k + am−1k−1 (x)
]
αk − x

m−1∑
k=1

am−1k (x)αk

=
m+1∑
k=1

[
amk−1(x)−

m∑
n=k−1

(
n

k − 1

)
amn (x)

]
αk.

3.3 Nörlund polynomials

Nörlund polynomials in the variable α, Bα
m, are a particular case of the generalized Bernoulli

polynomials Bα
m(x) considered in subsection 3.2 with x = 0.

3.4 Bernoulli polynomials of the second kind of order α

The Bernoulli polynomials of the second kind of order α, bαm(x), are generated by the function
[9]

Hα(x, t) :=

(
t

log(1 + t)

)α
(1 + t)x =

∞∑
m=0

bαm(x)t
m, |t| < 1. (14)

It is clear that bα0 (x) = 1. The recurrence relations given in Table 2 may be proved as in
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subsection 3.1 replacing, respectively, formulas (7), (9) and (10) by

t(t+ 1) log(1 + t)
∂Hα(x, t)

∂t
= [α(1 + t) log(1 + t)− αt+ xt log(1 + t)]Hα(x, t),

bαm(x) =
1

2πi

∮ (
t

log(1 + t)

)α+1
(1 + t)x

log(1 + t)

dt

tm+2

=
m+1∑
k=1

(−1)k+1

k

1

2πi

∮ (
t

log(1 + t)

)α+1
(1 + t)x

tm+2−k dt =
m∑
k=0

(−1)k

k + 1
bα+1
m−k(x),

and

mbαm(x) = αbαm(x)− α
m∑
k=0

(−1)kbα+1
m−k(x) + xbαm−1(x− 1). (15)

3.5 Buchholz polynomials

Buchholz polynomials, P a
m(x), are generated by the function [7, Sec. 3]

H(x, a, t) := e
x
2
(cot t− 1

t
)

(
sin t

t

)a
=

∞∑
m=0

P a
m(x)t

m, |t| < π. (16)

It is clear that P a
0 (x) = 1. The recurrence relation given in the second column of Table 2

may be proved as in subsection 3.1 replacing formula (7) by

t2
∂H(x, a, t)

∂t
=
[x
2
(1− t2 csc2 t) + at(t cot t− 1)

]
H(x, a, t).

In order to prove the recurrence relation given in the third column of Table 2, consider
a > 1, and integrate by parts in

P a
m(x)(x) =

1

2πi

∮
e

x
2
(cot t− 1

t
)

(
sin t

t

)a
dt

tm+1
,

where the integration contour is a closed loop around the point t = 0, contained inside the
disk D0(π) and traversed once in the positive sense.

3.6 Generalized Bessel polynomials

The generalized Bessel polynomials, Y a
m(x), were first introduced in [16] and are generated

by the function [13]

H(x, a, t) :=

(
2

1 +
√
1− 2xt

)a
e2t/(1+

√
1−2xt)

√
1− 2xt

=
∞∑
m=0

Y a
m(x)t

m. (17)

9



It is clear that Y a
0 (x) = 1. The recurrence relations given in Table 2 may be proved as

in subsection 3.1 replacing, respectively, formulas (7), (9) and (10) by

∂H(x, a, t)

∂t
=

(
x

1− 2xt
+

ax√
1− 2xt(1 +

√
1− 2xt)

+
1√

1− 2xt

)
H(x, a, t),

Y a
m(x) =

1

2πi

∮ (
2

1 +
√
1− 2xt

)a+1
e2t/(1+

√
1−2xt)

√
1− 2xt

1 +
√
1− 2xt

2

1

tm+1
dt

= Y a+1
m (x) +

1

2

m∑
k=1

(−1)k(2x)k
(

1
2

k

)
Y a+1
m−k(x),

and

mY a
m(x) =

x

2πi

∮ (
2

1 +
√
1− 2xt

)a
e2t/(1+

√
1−2xt)

√
1− 2xt

1

1− 2xt

1

tm
dt

+
1

2πi

∮ (
2

1 +
√
1− 2xt

)a
e2t/(1+

√
1−2xt)

√
1− 2xt

1√
1− 2xt

1

tm
dt

+
ax

2

1

2πi

∮ (
2

1 +
√
1− 2xt

)a+1
e2t/(1+

√
1−2xt)

√
1− 2xt

1√
1− 2xt

1

tm
dt

=x
m−1∑
k=0

(2x)kY a
m−k−1(x) +

m−1∑
k=0

(−1)k(2x)k
(
−1

2

k

)
Y a
m−k−1(x)

+
ax

2

m−1∑
k=0

(−1)k(2x)k
(
−1

2

k

)
Y a+1
m−k−1(x).

3.7 Generalized Apostol-Euler polynomials

The generalized Apostol-Euler polynomials, Eα
m(x;λ), are generated by the function [21, eq.

11]

Gα(x, t, λ) :=

(
2

λet + 1

)α
ext =

∞∑
m=0

Eα
m(x;λ)t

m, |t| < | log(−λ)|, λ 6= −1. (18)

It is clear that Eα
0 (x;λ) =

(
2

λ+ 1

)α
. The recurrence relations given in Tables 2 and 4

may be proved as in subsection 3.1 replacing, respectively, formulas (7), (9), (10) and (12)
by

(λet + 1)
∂Gα(x, t, λ)

∂t
=
(
λet(x− α) + x

)
Gα(x, t, λ),

10



Eα
m(x;λ) =

1

2πi

∮ (
2

λet + 1

)α+1

ext
λet + 1

2

dt

tm+1

=
λ+ 1

2

1

2πi

∮ (
2

λet + 1

)α+1

ext
dt

tm+1
+
λ

2

m∑
k=1

1

k!

1

2πi

∮ (
2

λet + 1

)α+1

ext
dt

tm−k+1

=
λ+ 1

2
Eα+1
m (x;λ) +

λ

2

m∑
k=1

Eα+1
m−k(x;λ)

k!
,

mEα
m(x;λ) = (x− α)Eα

m−1(x;λ) +
α

2
Eα+1
m−1(x;λ),

and

mbm0 (α,λ) +m

m−1∑
k=1

bmk (α, λ)x
k +mbmm(α, λ)x

m =
m−1∑
k=1

bm−1k−1 (α, λ)x
k + bm−1m−1(α, λ)x

m

− α bm−10 (α, λ)− α
m−1∑
k=1

bm−1k (α, λ)xk +
α

2
bm−10 (α + 1, λ) +

α

2

m−1∑
k=1

bm−1k (α + 1, λ)xk.
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