
Prediction of sports injuries in football: a
recurrent time-to-event approach using

regularized Cox models
Lore Zumeta-Olaskoaga1,2, Maximilian Weigert3, Jon Larruskain4,

Eder Bikandi4, Igor Setuain5, Josean Lekue4,
Helmut Küchenhoff3 and Dae-Jin Lee1

1BCAM - Basque Center for Applied Mathematics, Spain
2Departamento de Matemáticas, Universidad del País Vasco UPV/EHU, Spain

3Statistical Consulting Unit StaBLab, Ludwig-Maximilians Universität München, Germany
4Medical Services, Athletic Club, Spain

5Department of Health Sciences, Universidad Pública de Navarra, Spain

Abstract
Data-based methods and statistical models are given special attention to the study

of sports injuries to gain in-depth understanding of its risk factors and mechanisms.
The objective of this work is to evaluate the use of shared frailty Cox models for
the prediction of occurring sports injuries, and to compare their performance with
different sets of variables selected by several regularized variable selection approaches.
The study is motivated by specific characteristics commonly found for sports injury
data, that usually include reduced sample size and even fewer number of injuries,
coupled with a large number of potentially influential variables. Hence, we conduct a
simulation study to address these statistical challenges and to explore regularized Cox
model strategies together with shared frailty models in different controlled situations.
We show that predictive performance greatly improves as more player observations are
available. Methods that result in sparse models and favour interpretability, e.g. best
subset selection and boosting, are preferred when the sample size is small. We include
a real case study of injuries of female football players of a Spanish football club.

Keywords— shared frailty models, regularized Cox methods, sports injury prevention, survival
analysis

1 Introduction
Sports injuries are “complex” phenomena, as recent views in sports medicine and injury prevention
suggest (Bolling et al., 2018). They result from the dynamic interaction of multiple risk factors and
have serious consequences on the athletes’ health. In this sense, vast efforts are directed to study
the underpinning mechanisms of injuries, since some may be addressed with injury prevention
programmes. That being so, the use of adequate statistical models could help medical staff in
monitoring the athletes’ health status by providing predictions on the risk of injury.

In recent years, an increasing tendency to use data-based analysis methods in the field of sports
injury prevention can be noticed. An overview of existing strategies to monitor and predict occur-
rence and duration of sports injuries comprising classical statistical and machine learning models
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is given by Ruddy et al. (2019) –who also mention several limitations due to the specific charac-
teristics of sports injury data. A proper statistical model for such a purpose should encompass the
complex time-varying and recurrent nature of injuries: a player’s injury susceptibility may change
over time, and moreover, a player can sustain more than one injury, as subsequent injuries are often
influenced by previous ones (Hägglund et al., 2006; De Visser et al., 2012). On this basis, models for
recurrent events are appealing for sports injuries prevention. Such models have been broadly used
in many biomedical studies, but their application has insufficiently been exploited in sports injury
research (Nielsen et al., 2016). Shared frailty Cox models are useful for analysing the association of
exposure variables to injury risk over time, while also handling the possible dependency of recurrent
injuries (Nielsen et al., 2019; Ullah et al., 2014). Applications of frailty models in the field of sports
injury include studies that identify risk factors for contact injuries, accounting for recurrence, in
professional rugby league players (Gabbett et al., 2012); analyse the training load and shoulder
injuries in a large youth handball cohort (Møller et al., 2017); study the genetic association with
hamstring injuries in soccer players (Larruskain et al., 2018). Also recently, several machine learn-
ing approaches have been applied, mainly based on classification techniques where a binary outcome
(injured/non-injured) is predicted (e.g. Rossi et al., 2018). While machine learning methods are
very appealing and a powerful tool in many applications, they usually require large sample size
for training and hyperparameter tuning. Besides, most classical machine learning methods do not
explicitly account for recurrent events or easily deal with imbalance classes (i.e. very few injured
players).

Another important aspect to account for in sports injury data analysis is the screening tests
made for monitoring the players’ health status. A high number of functional tests is widely used
in professional sports teams for injury prevention, rehabilitation or fitness conditioning. And the
number of these functional screening tests requires special attention in the modelling process, mainly
when the interest –from a practical perspective– lies on sparse and interpretable models. In addition,
when time-to-event analysis is considered for a large number of predictors, the estimation of frailty
terms is likely to undergo convergence problems when the number of parameters to be estimated
considerably increases (McGilchrist and Aisbett, 1991; Therneau et al., 2003). This may especially
be problematic for small sample data, as it often is the case for sports injury data. Thus, it is
desirable to reduce the number of parameters to be estimated, and efficiently select a subset of
relevant variables the risk of injury is associated with. Further, data are often limited to individual
teams or a small sample of individual players, and from a statistical point of view, the total number
of injuries is usually small.

In this study, we focus on lower-limb injuries that frequently occur in women football –one of
the fastest growing sports worldwide. Lower-limb injuries are of great concern due to the severity of
some of them, and given their high incidence in women football players (Crossley et al., 2020). Dur-
ing a regular season, the medical staff (which includes medical doctors, physiotherapists, strength
and conditioning coaches etc.) conduct regular screening tests intended to identify players predis-
posed to injury, and consequently, to optimize player’s (and team’s) performance and increase their
safety. They consist of a series of medical evaluations such as functional movement tests that assess
biomechanical factors and muscle imbalance. In these assessments, in football players it is frequent
to quantify inter-limb asymmetries. The asymmetry measurements may help to identify players
who are at increased risk of lower-limb injuries. Some studies have shown that bilateral strength
asymmetry may be a risk factor for musculoskeletal injury (Croisier et al., 2002, 2003; Knapik et al.,
1991; Hewett et al., 2005). However, the overall scientific level of evidence for the screening tests
remains scarce (see McCall et al., 2015; Bahr, 2016, for a review).

The aim of this paper is to study the adequacy and performance of a family of statistical methods
for time-to-event data analysis based on regularization techniques and Cox regression in the context
of sports injury data. We aim to compare the performance of frailty models that include different
sets of previously selected variables, with respect to prediction accuracy. Due to limitations caused
by the outlined characteristics of sports injury data, we explore several hypothetical controlled
situations in a simulation study. Our work consists of two major components, (i) a real data
example, containing information about a single team with 22 players, where the performance of
the different approaches is compared, and (ii) a simulation framework where all considered variable
selection methods are systematically evaluated for three different scenarios and varying size of the
data.

In the following, in Section 2, we present the data that motivated the study and methods
considered, including different regularized Cox models to perform variable selection and shared
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frailty models to fit the data with a reduced number of variables. We also describe the simulation
study carried out to evaluate the models’ performance and accuracy. In Section 3, we present the
results obtained from the case study data and from the simulation scenarios for various sample sizes
and different dependence structure for the covariates effects. Finally, in Section 4, we conclude with
a general discussion.

2 Data and Methods
2.1 Screening tests and lower-limb injury data
A female football team with 22 players, prospectively followed-up during the 2017-2018 season, is
analysed. The data contain players’ exposure, i.e. time spent training and competing in minutes,
as well as time-loss non-contact lower-limb injuries that were recorded by the club’s medical staff.
Lower-limb non-contact injuries were captured when a player was unable to participate in a future
training session or match due to a physical complaint resulting from football training or match
play, and was considered injured until the medical staff cleared the player for full participation in
training and match play (Fuller et al., 2006). During the season, players completed three times,
biomechanical and functional conditioning screening tests. A total of 28 variables were pre-selected
by the medical experts’ criteria, out of 200 variables measured in each of these screening tests,
see Supplementary Material Table 1. These variables gathered anthropometrics data and further
values of biomechanical functional tests, assessed as bilateral strength asymmetries of the lower
limbs based on Impellizzeri et al. (2007).

Figure 1 shows a complete picture of the injuries sustained by each player, days lost until the
complete recovery and return to competition, together with the screening tests completed by each
player. The information recorded on the third series of screening tests was not used, since the
players’ follow-up ended at that moment. A total number of 12 players suffered a lower-limb injury
from a total of 19 injuries that occurred in the team: 7 players were injured once, 4 players twice
and one player four times, while 45% of players never got injured. The median exposure time of a
player was 13,302 minutes and the total exposure time of the team roughly 250,000 minutes. The
team injury incidence and injury burden (i.e. the total number of days lost to injury per 1,000
hours of exposure) were 4.56 injuries and 178.67 days lost due to injury, respectively.
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Figure 1: Overview of the screening tests and lower-limb injury data. The timeline of the
football team players’ is depicted horizontally, the red cross indicates the exact moment of
the injury occurrence, the blue circle the moment when the player is totally recovered, the
bold black line the time lost due to injury, and the three vertical lines correspond to the
moment when the screening tests were performed
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2.2 The models
Regularized Cox models and shared frailty models are applied to the screening tests and lower-limb
injury data. A two-step strategy is followed, motivated by the large number of potential covariates
present in the data. In a first step, different variable selection techniques based on regularized
Cox models are applied which do not explicitly account for repeated measures. Secondly, the most
relevant variables, i.e. sets containing a reduced number of variables selected by each of the methods
in the previous step, are used to fit shared frailty models. Following, the notation for the Cox model
and regularized Cox methods is first introduced. Afterwards, in the “Frailty models” section, the
notation is extended to the case of recurrent events.

The primary outcome variable is defined as a player’s exposure time in minutes until the player
gets injured, denoted as a non-negative random variable T . Players’ follow-up started at the begin-
ning of the season, the time the first screening test was conducted, and continued until mid-season.
Having collected new covariates at this moment, the time origin of the primary outcome is set again
to 0. Hence, when a player does not get injured in the first or second half of the season, the exposure
time is set the time of the second screening –mid-season– or/and the end of the season, respectively,
and considered censored. In the following, the censorship is defined as a random variable C.

The observed data are then composed by the set {(Yi, δi, Xi), i = 1, . . . , N}, where Yi =
min{Ti, Ci} and δi = I{Ti ≤ Ci} is the censorship indicator and N the total number of observations.
We assume that censoring is non-informative and that given xi, yi and δi are independent.

The Cox model
All models used throughout this paper are based on the Cox proportional hazards model (Cox,
1972, 1975). Focused on sports injury data, the model assumes that hazard of a player i being
injured is related to covariates through

λi(t|xi) = λ0(t) exp(xiβ), i = 1, . . . , N,

where λ0(t) is a non-parametric baseline hazard function and β is a vector of regression parame-
ters that relates the vector of covariates xi. The estimation of β regression coefficients is performed
by maximising Cox partial likelihood (Cox, 1975), pL(β):

pL(β) =

N∏
i=1

(
exp(xiβ)∑

l∈R(Yi)
exp(xlβ)

)δi

,

where R(Yi) is the risk set, set of players at risk at the moment yi, i.e. R(Yi) = {l : Yl ≥ yi}.

Regularized Cox methods
Six different regularized Cox models are studied, namely, Best Subset Selection (BeSS) (Wen et al.,
2020), Least Absolute Shrinkage and Selection Operator (Lasso) (Tibshirani, 1997), Elastic Net
(Zou and Hastie, 2005), Ridge regression (Hoerl and Kennard, 1976), Group Lasso (Yuan and Lin,
2006) and Boosting in Cox regression (Bühlmann et al., 2007). Except for the latter, estimation of
these models, in the context of survival analysis, is performed maximising the penalized Cox partial
log-likelihood (Cox, 1972, 1975). That is,

argmax
β∈Rp

pl(β) − λ∥β∥0 = argmax
β∈Rp

pl(β) − λ

p∑
j=1

I{βj ̸= 0}) (Best Subset Selection)

argmax
β∈Rp

pl(β) − λ∥β∥1 = argmax
β∈Rp

pl(β) − λ

p∑
j=1

|βj | (Lasso regression)

argmax
β∈Rp

pl(β) − λ∥β∥2
2 = argmax

β∈Rp
pl(β) − λ

 p∑
j=1

β
2
j

 (Ridge regression)

argmax
β∈Rp

pl(β) − λ
(
(1 − α)∥β∥2

2 + α∥β∥1

)
(Elastic Net)

argmax
β∈Rp

pl(β) − λ
G∑

g=1

∥βl∥2 = argmax
β∈Rp

pl(β) − λ
G∑

g=1

√
(β2

1 + . . . + β2
ng

) (Group Lasso)
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where λ ≥ 0 and α ∈ (0, 1) are the regularization tuning parameters and pl(β) is the Cox
partial log-likelihood to be maximized subject to a constraint, a penalty function to be multiple of
a L1 or L2-norm, or a L0-seminorm. For Group Lasso, the vector of coefficients is partitioned in G
groups of size ng, i.e. β = (β′

1, . . . ,β
′
G)

′. The type of test is used as grouping factor, and all these
G groups are equally penalized, see Supplementary Material Table 1. For the sake of simplicity,
Elastic Net with α = 0.5 is considered only. The best regularization parameter λ is estimated
by 10-fold cross-validation, for which the same cross-validation splits are used across all models
to enable a fair comparison of their performance. It is worth noticing that, although the Ridge
regression technique itself is not a variable selection method, it is included as a regularized method
for the comparisons. Hence, the estimated coefficients’ 95% confidence intervals are generated via
bootstrap, and it is checked whether the interval includes zero or not. The variables are assumed
to be selected when zero is not included in their corresponding coefficients’ 95% confidence interval
(Chatterjee and Lahiri, 2010; Sartori, 2011).

The sixth regularization method considered, a Boosting approach in Cox regression, relies on a
rather different idea. Instead of directly optimizing the penalized likelihood, coefficients are obtained
via an iterative process. For the scope of this study, we focus on likelihood-based boosting (Tutz
and Binder, 2006). The negative partial log likelihood is used as a loss function f(·) in the negative
gradient algorithm –or L2-Boosting. The algorithm results in refitting residuals multiple times, so
that the solution of the partial log likelihood is updated by a small factor in each boosting iteration.
Regularization is implicitly achieved through early stopping the algorithm, and through updating a
single coefficient in each iteration variable selection is performed. The number of boosting iterations
mstop, the tuning parameter, is selected via a 10-fold cross validation.

Frailty models
The occurrence of non-contact lower-limb injuries is fitted by shared frailty Cox models (Hougaard,
1995; McGilchrist and Aisbett, 1991). Such a model considers the dependence, that observations
within the same player possibly share, by including a subject-specific random effect that acts on
the baseline hazard in a multiplicative way. The frailty term aims to account for unobserved het-
erogeneity, since observations within each player might be correlated and individual characteristics
(variables that make individual players different from one another) might often be unobserved –and
might sometimes be unmeasurable.

Now, let specify the total number of players by K, where the k-th player has nk observations
indexed by j, so that the repeated measures are explicitly accounted for the data observed, i.e.
{(Yjk, δjk, Xjk), k = 1, . . . ,K and j = 1, . . . , nk}, being N the total number of observations, the
sum of each player’s number of observations N =

∑K
k=1nk. For Yjk recurrent events the so-called

gap time approach (Kelly and Lim, 2000; Ullah et al., 2014) is considered. This determines the risk
interval of each player, in such a way that a new risk interval is set every time the player has totally
recovered from a sustained injury and starts to train. Thus, each recurrent event is represented by
a separate interval and each recurrent episode is “at-risk” from the starting point of the previous
event recovery, which is reset to time 0, see Figure 2.
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Figure 2: Illustration of a risk interval formulation. Left a general case study; right the gap
time approach. Each time to an event or censoring is a separate risk interval

Technically, each observation of the data set corresponds to a single player: some players had
not got injured at all, during the follow-up, and contributed to censored survival times; others,
sustained at least an injury and are thus represented by one or multiple survival times.
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The hazard rate of injury at time t, for the j-th observation of the k-th player, is given by:

λjk(t|αk,xjk) = αkλ0(t) exp(xjkβ) = (1)
= λ0(t) exp(xjkβ + zjkbk), j = 1, . . . , nk, k = 1, . . . ,K,

where λ0 is the unspecified baseline hazard, p the number of covariates, β = (β1, . . . , βp) the vector
of coefficients, xjk the corresponding row of this observation in the design matrix Xand αk or
bk = ln(αk), the player’s frailty term, where matrix Z is a sparse matrix N ×K such that zjk = 1,
when j-th observation corresponds to player k and 0 otherwise. Penalized partial likelihood is
used to estimate the regression coefficients and the frailty terms (Ripatti and Palmgren, 2000).
As stated by Gasparini et al. (2019), the choice of a particular parametric frailty distribution has
minimal impact on the estimation and testing of regression coefficients. Here, we assume the log-
normal distribution for the frailty term αk, i.e. the Gaussian distribution for bk = ln(αk), following
that the models fitted to real data gave best fits with this distribution according to the Akaike
information criterion.

Equivalently, the marginal survival function, i.e. the probability of a player not sustaining an
injury at time t, given the covariates, can be derived from Equation (1) and integrating out the
frailty term from the conditional survival probability,

S(t|x) =
∫ ∞

−∞
S(t|b,x)g(b) db = (2)

=

∫ ∞

−∞
S0(t)

exp(Xβ+Zb)g(b) db,

where b = (b1, ..., bK) represents the vector of the frailties, which follows a Gaussian distribution,
and g(·) its density function.

Based on the survival function, it is possible to predict players’ injury probabilities for times
t > 0. In particular, the marginal approach of the survival function, i.e. a population-averaged
probability, Equation (2), includes predictions for new players which have not been part of the data
used to fit the model. Contrary to the conditional survival probability approach, that do not allow
estimating predictions of new players –in this case player-specific predictions– since their frailties
are unknown. The chosen gap time approach for recurrent events allows predictions to be made
for future survival times after injury, constrained to the maximum event time followed in the data
used to fit the model.

Evaluation of frailty models
The predictive performance of frailty models is assessed through the Brier score (BS) and the
Integrated Brier Score (IBS), i.e. the area under the BS curve (Gerds and Schumacher, 2006; Graf
et al., 1999). The choice of adequate performance measures is an essential task for a valid comparison
of different models. The BS is a time-dependent predictive measure to calculate a model’s overall
performance (Steyerberg et al., 2010). It is commonly used in survival analysis since it copes with
the point that risk prediction in this field is made in terms of probabilities.

Formally, the BS at time point t is a weighted mean squared error between predicted survival
probability and observed survival status. Besides, inverse probability of censoring weighting (IPCW)
(Gerds and Schumacher, 2006) is used to account for observations under risk, regardless they are
eventually censored or not, and thus to make use of all available. Let G(t) = P (C < t) be the
censoring distribution and N be the total number of observations. Then, the BS is formulated as

BS(t|Ŝ(t|x)) = 1

N

N∑
i=1


(0−Ŝ(t|xi))

2

Ĝ(ti)
ti ≤ t, δi = 1

(1−Ŝ(t|xi))
2

Ĝ(t)
ti > t

0 ti ≤ t, δi = 0

(3)

The BS has a range between 0 and 1, with smaller values corresponding to a better predic-
tion. Then, the IBS can be calculated, following Equation (3), as an overall measure of the model
performance at all available time points:

IBS(BS(t), τ) = 1

τ

∫ τ

0

BS(u, Ŝ)du
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where τ = tmax, or 0 < τ < tmax.
Due to the lack of external validation data and to avoid overfitting, the so-called “bootstrap

.632+ approach” (Efron and Tibshirani, 1997) is used which has been demonstrated to lead to
more accurate estimations (Binder and Schumacher, 2008) and balances both the apparent and
the bootstrap BS estimate. See section B in the Supplementary Material for more detail on this
estimate.

2.3 Simulation framework
Our simulation study aims to evaluate the applicability and robustness of the outlined statistical
approaches, by establishing three hypothetical controlled situations that may stem in the context
of sports injury data. Apart from assessing model performance in these scenarios, the impact of
varying sample sizes is of particular interest.

The simulation procedure can be summed up in the following three steps, following in part the
structured strategy proposed by Morris et al. (2019) to the planning of simulation studies:

Step 1: Generation of the data
The underlying data generating process is designed to mimic the original sports injury data as

closely as possible, i.e. time-to-event outcome variable, highly right-skewed, many censored obser-
vations and a high number of covariates. Three different scenarios are considered: (i) augmenting
the original case study, of screening tests and lower-limb injury data, by bootstrap re-sampling and
adding a random noise; and generating time-to-event observations that arise from covariates that
share (ii) a weak correlation, and lastly, from covariates with (iii) a high correlation. The three
scenarios considered are explained in detail in the following specific subsection “Parameters defining
simulation setting”.

In this regard, a modified version of the random spline method proposed by Harden and Kropko
(2019) is used to produce the true underlying data generating process. This method does not assume
any distributional form for the baseline hazard function, thus it matches the Cox model’s inherent
flexibility. It requires to initially determine the number of points –or knots– to be drawn to fit a
cubic spline for the baseline hazard function. To represent the recurrent nature of sports injury
data, the method is modified in a way to include a multiplicative random effect, i.e. a frailty term.

Step 2: Fitting the models
The six regularized Cox methods described in the previous Section 2.2 are fitted to the data

to preselect small sets of variables. Afterwards, for each of the six sets of selected variables shared
frailty Cox models (1) are fitted to the data, accounting for the players’ unobserved variability. It
is assumed that the frailty term follows a Gaussian distribution, in accordance with the real case
study.

Step 3: Performance Measures
The previous two steps are repeated Nsim times, for a given prespecified configuration. Finally,

the models are assessed by a number of different measures that evaluate both, (i) the model per-
formance and (ii) the predictive accuracy of the final shared frailty models. On the one hand, we
compare the model performance by assessing how well the estimated models represent the under-
lying true model. Thus, the selection of significant variables is evaluated through the measures
presented in Table 1; and additionally, differences in estimated and true coefficients are measured
by the mean squared error (MSE), defined as,

MSE =
1

Nsim

Nsim∑
i=1

p∑
j=1

(β̂
(i)
j − βj)

2.
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Table 1: Summary of the measures used to evaluate the performance of variable selection
methods. The optimal value in the first column refers to the value one would obtain if the
variable selection method always found the correct model. When the value is more than one
–for average model size– it refers to each one of the settings.

Measure Description
(Optimal value) (Abbreviation)
Average model size The average number of variables included in
(2,6,4,5,5,5,5,5,5) model (AMS).

Average number of falsely The average number of variables incorrectly
selected variables (0) selected (ANFS).

Average number of falsely The average number of incorrectly excluded
non-selected variables (0) variables, i.e. variables that really have an effect

and their corresponding coefficient is estimated as
zero (ANFNS).

On the other hand, the predictive accuracy of the shared frailty models is assessed by means of
the measures presented in Section 2.2, i.e. the BS and the IBS. This evaluation is repeated for each
Nsim replica. To summarize the overall predictive accuracy, the medians of the IBS in the [0,1000]
and [0,3500] minutes time intervals are reported.

Parameters defining simulation settings
In this section, the three scenarios considered are described in detail including the parameters that
define the scenarios. See Table 2 and Table 3 for a summary. Table 2 shows parameters that
are fixed throughout the settings, and Table 3 parameters that are specific for each setting, i.e.
parameters that are allowed to vary across the settings such as the true vector of coefficients, true
vector of frailties, number of players and number of observations per each.

The first scenario is designed according to the results obtained from the real data analysis. Three
different settings are considered based on the estimated coefficients obtained from these data. In
the first setting, the vector of coefficients β, that generates the underlying true data, is fixed to
be the vector of coefficients estimated by the frailty model based on BeSS selected variables. The
second and third settings are constructed in the same way. The second setting uses the vector
of coefficients β obtained by the frailty model based on Lasso, Elastic Net and Ridge regression;
whereas the third setting uses the one obtained by the frailty model based on Cox Boosting selected
variables. Further, it is assumed that the data consists of 66 players, i.e. three average-sized teams,
K = 66, each with three repeated observations, nk = 3 for all k = 1, . . . ,K and p = 28 variables.
The design matrix of the real data is augmented through resampled rows, by drawing bootstrap
samples with replacement and repeating each sampled value three times with an added random
noise. The grouping vector for performing Group Lasso is kept the same as in real data, which was
determined concerning the type of screening test.

Conversely, the second scenario and third scenario’s design matrices are generated from equally
distributed normal variables, the vector of coefficients β is set to be the same in both scenarios (see
Table 3) and the frailty term is assumed to follow a normal distribution centered at 0 and standard
deviation of 0.3. The scenarios differ in the correlation structure among the variables. Scenario 2
assumes independent variables, whereas Scenario 3 considers a pairwise correlation between xi and
xj , ρi,j to be 0.65|i−j|. Within both scenarios, four different sample sizes are regarded, varying
the number of players K, K ∈ {22, 66, 132, 220} players –or 1, 3, 6 and 10 football teams with
an average number of 22 players– each with a different random number of observations of p = 50
variables. The number of observations per each player is generated following a truncated Poisson
distribution with mean 3, that gives rise to a total number of 60, 191, 391 and 670 number of
observations. Note that the number of observations per each player and the vector of frailties is the
same among the settings of the second and third scenarios. The grouping vector for performing the
Group Lasso is set to be ten groups of five variables each, i.e. G = 10 and ng = 5.
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Table 2: Fixed parameters of the simulation study.
Parameter Value
Number of simulated data (Nsim) 100
Maximum observed time (Tmax) 4000
Censorship 75%
Frailty distribution Gaussian
Knots 500

Table 3: Parameter settings for each scenario of the simulation study.
Scenario Vector of coefficients Frailty term Sample size

β αk Nobs =
∑K

k=1 nk

Scenario 1

True model:
frailty (BeSS)

β6 = −0.754, β15 = 1.034, Estimated frailties 198
otherwise βl = 0 in frailty (BeSS)

True model:
frailty (Lasso,
Elastic Net, Ridge)

β5 = 0.175, β6 = −0.731, Estimated frailties

198β10 = −0.825, β12 = 0.155, in frailty (Lasso)
β15 = 0.424, β24 = −0.580

otherwise βl = 0

True model:
frailty (Boosting)

β6 = −1.048, β10 = −0.552, Estimated frailties
198β12 = 0.076, β15 = 0.990, in frailty (Boosting)

otherwise βl = 0

Scenario 2
β1 = 0.4, β2 = 0.2, β3 = 0.2,

∼ N(0, 0.32) 60, 191, 391, 670β4 = 0.2, β5 = 0.2,
otherwise βl = 0

Scenario 3
β1 = 0.4, β2 = 0.2, β3 = 0.2,

∼ N(0, 0.32) 60, 191, 391, 670β4 = 0.2, β5 = 0.2,
otherwise βl = 0

2.4 Software issues
All computations are performed with the open source statistical software R 3.6.2 (R Core Team,
2019), in a 64-bit linux platform with an Intel Core 2.2 GHz CPU of 2 cores and 243.4 GByte RAM.
The six regularized methods are implemented through BeSS (Wen et al., 2020), glmnet (Friedman
et al., 2010), grpreg (Breheny and Huang, 2015) and CoxBoost (Binder, 2013) packages. Shared
frailty models are fitted using the coxph function of the survival (Therneau, 2020) package and
pec (Mogensen et al., 2012) is used for the BS and IBS computations. The code for the simulations is
available in the following GitHub repository: https://github.com/lzumeta/TimeToEvent-InjurySim.

3 Results
3.1 Results of the screening tests and lower-limb injury data
The results derived from the variable selection techniques emphasize the distinct characteristics of
each method. Group Lasso tends to select more variables –all variables within the same group–
whereas all other techniques, BeSS, Lasso, Elastic Net, Ridge regression and Cox Boosting, are more
restrictive in selecting relevant variables. Figure 3 graphically displays a summary of the variables
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selected and not selected by each of the methods. In this respect, BeSS leads to the sparsest
model, it estimates 2 out of 28 to be non-zero. Lasso, Elastic Net and Ridge regression, though
using different penalizations, select the same variables. ‘ASLR lumbar strength LSI’ and ‘Drop
jump vertical propulsion LSI’ are the only variables selected by all considered methods, followed by
‘Horizontal jumping impact forces LSI’ and ‘Drop jump mechanical power LSI’ which are selected
by five of them.

Ankle dorsiflexion ROM LSI

Anterior−posterior knee laxity LSI

ASLR lumbar strength LSI

ASLR ROM LSI

Core side plank LSI

Drop jump impact forces 1st landing LSI

Drop jump impact forces 2nd landing LSI

Drop Jump mechanical power LSI

Drop jump vertical propulsion LSI

Hamstring strength isometric AKE LSI

Hamstring strength isometric knee flexion 15º LSI

Height
Hip extension ROM LSI

Horizontal jumping distance LSI

Horizontal jumping forces LSI

Horizontal jumping impact forces LSI

Internal−external hip rotation ROM LSI

Isokinetic concentric knee extension 60º LSI

Isokinetic concentric knee flexion 60º LSI

Isokinetic isometric RTD knee extension 90º LSI

Isokinetic isometric RTD knee flexion 30º LSI

Knee flexion ROM LSI

Previous injury

SEBT knee extended LSI

SEBT knee flexed LSI

Sum of 6 skinfolds

Tibia+Femur length

Weight

Boosting

Group Lasso

Ridge

Elastic net

Lasso

BeSS

Not selected Selected

Figure 3: Summary of the selected variables (in dark blue) by each of the regularized Cox
method

In Figure 4, we show the effect of the selected variables on the injury risk along with their
confidence intervals, except the ones from Group Lasso. The frailty term is found to be significant
for all models, emphasizing the need for such a multiplicative random effect. Further, the predictive
performance of each shared frailty model is shown in Figure 5, calculated as the prediction error
curve, i.e. Brier Score using the Bootstrap 0.632+ strategy. In general, except for the model based
on Group Lasso selected variables, only small differences in the prediction error are visible between
the different regularization approaches. The model fitted with variables that BeSS selected shows
the best predictive behaviour, followed by the model based on Cox Boosting selected variables.
Models based on Lasso, Elastic Net and Ridge regression selected variables show slightly better
performance than the model without any covariate information and no frailty term, i.e. a Kaplan-
Meier curve for all observations. Among all models, the one fitted with variables that Group Lasso
selected gives the poorest prediction performance, which might be explained by the fact that the
variables selected by the other regularization methods come from several groups of screening tests.
In general terms, the prediction error at early times is low and similar for all models. Later time
points lead to higher errors, since less information is available.

3.2 Simulation results
Table 4 summarizes the simulation results of the three different settings considered within Scenario
1. In the first setting, data were generated based on the results obtained from the frailty model fitted
to the two variables BeSS selected on the real data. The best performing model is the frailty model
based on BeSS selection. The second best method is Ridge regression, with an average number of
wrongly selected variables of 4.17, a MSE of 3.78 and medians of the IBS between [0, 1000] and
[0, 3500] exposure time intervals, of 0.045 and 0.086 respectively. Also, the frailty model based on
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●

●

Sum of 6 skinfolds

Knee flexion ROM LSI

Horizontal jumping impact forces LSI

Drop Jump mechanical power LSI

Drop jump vertical propulsion LSI

ASLR lumbar strength LSI

0.3 0.5 1.0 3.0 5.0
Hazard Ratios and 95% CI

Shared frailty models
●

●

●

Lasso, Elastic Net, Ridge selected variables
CoxBoost selected variables
BeSS selected variables

Associations to non−contact lower limb injuries

Figure 4: Hazard ratios and confidence intervals of shared frailty models fitted with the
set of variables that BeSS, Lasso, Elastic Net, Ridge regression and Cox Boosting selected.
Log-scale is used for the x-axis

Time [in minutes of exposure]

0 2000 4000 6000 8000

0.0

0.1

0.2

0.3

0.4

0.5

8500

Shared frailty models

Reference (no vars.)
BeSS selected vars.
Lasso, Elastic Net and Ridge selected vars.
Group Lasso selected vars.
CoxBoost selected vars.

Bootstrap 632+ Prediction Error Curve

Figure 5: Bootstrap .632+ estimates of the Brier Score curves, i.e. prediction error curve,
based on 30 bootstrap samples. Four Gaussian frailty models, each fitted with the set of
variables that selected BeSS, Lasso –and Elastic Net and Ridge regression–, Group Lasso,
Cox Boosting and a Kaplan-Meier estimator –no variables and no frailty term considered–
referred to as the reference model, are compared

Cox Boosting selection performs well. Regarding the second setting, there are no clear differences in
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the methods and model performances from which the setting has been generated from –that is the
frailty model containing six variables of the real data, the ones that selected Lasso, Elastic Net and
Ridge regression– and other selection methods. In fact, among the aforementioned three methods,
Ridge is the best in terms of MSE. Subsequently, BeSS is the second best performing model in
terms of the average number of wrongly selected variables (1.35), MSE (5.05) and Brier Score. Cox
Boosting also behaves well with respect to the medians of the IBS. Last, with regards to the latter
setting of Scenario 1, results indicate that not only Cox Boosting performs well –the method in
which the setting is based on–, but also BeSS and Ridge regression methods are adequate. Indeed,
when it comes to some metrics, BeSS method is notably better, particularly with respect to the
average number of wrongly selected variables (0.62 versus 6.89 of Cox Boosting) and MSE (5.24
versus 6.17 of Cox Boosting). Both have similar IBS median values (0.044 BeSS and 0.045 Cox
Boosting between [0, 1000] and 0.080 BeSS and 0.082 Cox Boosting between [0, 3500]).

Table 4: Simulation results for the three different settings within Scenario 1, for 66 players
with 3 observations each, that results in a sample size of 198. Average model size (AMS),
the average number of falsely selected variables (ANFS), the average number of coefficients
incorrectly estimated as zero (ANFNS), mean squared error (MSE) and the median of the
integrated Brier scores between [0, 1000] and [0, 3500] time intervals, for all models, are
reported.

Model AMS (2,6,4) ANFS
(0)

ANFNS
(0)

MSE (0) IBS (0)

[0,1000] [0, 3500]

True model: frailty (BeSS)
BeSS 2.62 0.72 0.10 3.85 0.045 0.084
Lasso 7.91 5.93 0.02 4.29 0.046 0.087
Elastic Net 11.36 9.38 0.02 4.84 0.047 0.089
Ridge 6.11 4.17 0.06 3.78 0.045 0.086
Group Lasso 16.61 14.66 0.05 9.24 0.048 0.095
Boosting 7.38 5.39 0.01 4.29 0.046 0.086

True model: frailty (Lasso)
BeSS 4.94 1.35 2.41 5.05 0.050 0.083
Lasso 11.47 6.41 0.94 5.67 0.050 0.085
Elastic Net 14.15 8.76 0.61 6.26 0.051 0.087
Ridge 8 3.33 1.33 4.66 0.050 0.084
Group Lasso 22.51 16.8 0.29 14.57 0.056 0.097
Boosting 11.47 6.36 0.89 5.65 0.050 0.085

True model: frailty (Boosting)
BeSS 3.42 0.62 1.20 5.24 0.044 0.080
Lasso 10.19 6.77 0.58 6.06 0.045 0.083
Elastic Net 13.46 9.84 0.38 7.15 0.045 0.085
Ridge 7.32 4.16 0.84 5.50 0.045 0.082
Group Lasso 19.79 15.86 0.07 12.38 0.048 0.090
Boosting 10.10 6.89 0.59 6.17 0.045 0.082

Table 5 shows the simulation results within Scenario 2 and Scenario 3, for sample sizes Nobs =
{60, 191, 391}. The results for the setting with 670 observations can be found in the Supplemen-
tary Material. On the whole, differences between frailty models diminish when the sample size is
increased, either concerning the MSE or the IBS. As the boxplots of the IBS, in the follow-up time
interval, of the fitted models in Figure 6 show, prediction errors get smaller with more observations
available. For example, in Scenario 2, for the frailty models based on BeSS selected variables and
for the frailty models based on Group Lasso selected variables, the range of prediction errors (i.e.
maxprediction error − minprediction error) decreases by 67.9% (from 0.131 to 0.042) and 72.1%
(0.176 to 0.049), respectively, when the number of teams –and thus the sample size– is increased
from 1 to 10 teams. In Scenario 3 the decrease in the range of prediction errors, for previously
mentioned models, is of 67.8% (from 0.112 to 0.036) and 78.1% (from 0.183 to 0.04), respectively.
An important point is that the prediction error depends on the time interval considered. In a [0,
1000] time interval the IBS of different models are similar, as the predictions of the frailty models
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Table 5: Simulation results for Scenarios 2 and 3, that consider different correlation
structures of covariates, ρij = 0 and ρij = 0.65|i−j|, for different number of players
K ∈ {22, 66, 132} that give rise to Nobs ∈ {60, 191, 391} number of observations. Average
model size (AMS), average number of falsely selected variables (ANFS), average number
of coefficients incorrectly estimated as zero (ANFNS), mean squared error (MSE) and the
median of the integrated Brier scores between [0, 1000] and [0, 3500] time intervals, for all
models, are reported.

Sample size
(Nobs)

Correlation
structure
(i ̸= j)

Frailty model
including vars.
that selected

AMS (5) ANFS (0) ANFNS
(0)

MSE (0) IBS (0)

[0,1000] [0, 3500]

Nobs = 60

ρij = 0

BeSS 1.65 1.45 4.80 3.69 0.030 0.108
Lasso 1.74 1.48 4.74 56.37 0.030 0.115
Elastic Net 2.91 2.53 4.62 271.34 0.031 0.116
Ridge 4.83 4.28 4.45 57.02 0.033 0.121
Group Lasso 4.05 3.50 4.45 > 105 0.034 0.125
Cox Boosting 1.86 1.55 4.69 42.77 0.030 0.113

ρij = 0.65|i−j|

BeSS 1.67 1.04 4.37 4.90 0.040 0.109
Lasso 2.92 2 4.08 2.72 0.040 0.118
Elastic Net 5.31 3.83 3.52 2758.8 0.044 0.130
Ridge 7.49 5.36 2.87 776.0 0.047 0.138
Group Lasso 8.65 6.70 3.05 > 105 0.052 0.144
Cox Boosting 2.87 1.92 4.05 2.92 0.040 0.118

Nobs = 191

ρij = 0

BeSS 1.98 1.08 4.10 0.96 0.037 0.114
Lasso 4.75 3.28 3.53 1.10 0.037 0.114
Elastic Net 6.23 4.47 3.24 1.21 0.037 0.114
Ridge 6.23 4.23 3.00 1.21 0.037 0.114
Group Lasso 15.05 11.2 1.15 3.39 0.030 0.123
Cox Boosting 4.73 3.15 3.42 1.18 0.037 0.112

ρij = 0.65|i−j|

BeSS 2.23 0.85 3.62 1.28 0.039 0.108
Lasso 7.33 4.78 2.45 1.54 0.039 0.106
Elastic Net 9.72 6.69 1.97 1.78 0.040 0.108
Ridge 8.61 4.84 1.23 1.50 0.040 0.109
Group Lasso 19.4 14.7 0.30 > 105 0.044 0.122
Cox Boosting 6.44 3.97 2.53 1.48 0.039 0.107

Nobs = 391

ρij = 0

BeSS 2.16 0.49 3.33 0.57 0.034 0.109
Lasso 7.67 4.78 2.11 0.82 0.035 0.106
Elastic Net 9.87 6.67 1.80 0.89 0.035 0.107
Ridge 6.74 3.72 1.98 0.74 0.034 0.107
Group Lasso 17.7 12.7 0 1.09 0.035 0.112
Cox Boosting 6.22 3.62 2.40 0.79 0.034 0.106

ρij = 0.65|i−j|

BeSS 2.82 1.11 3.29 1.02 0.039 0.107
Lasso 12.14 8.53 1.39 1.18 0.039 0.104
Elastic Net 14.66 10.64 0.98 1.27 0.039 0.105
Ridge 8.90 4.82 0.92 0.99 0.039 0.105
Group Lasso 25.95 20.95 0 2.40 0.040 0.114
Cox Boosting 8.74 5.57 1.83 1.12 0.039 0.103

at early times are similar; while at farther times, differences in IBS are more apparent between
the models studied. At [0, 1000] the medians of the IBS of the settings of Scenario 2 are slightly
lower than those of Scenario 3, but conversely, at [0, 3500] the medians of the IBS of the settings
of Scenario 3 are slightly lower with respect to the ones of Scenario 2. When there is almost no
dependence between covariates of the data sets, sparse models, i.e. models with fewer variables, are
obtained. Following this fact, the average model sizes of the models of Scenario 2, when ρij = 0
for all i ̸= j, are closer to the average size of the true model, whose size is five. In both scenarios,
the lower the sample size, the bigger the differences in the prediction error curves, as well as in
the different variable selection methods identifying the true effects. For the smallest sample size,
prediction errors for Group Lasso and to some extent Ridge regression and the Elastic Net show a
remarkably high range and median compared to the other methods. This tendency is even enhanced
with correlated covariates as in Scenario 3.

BeSS is the method that selects the fewest number of variables, followed by Ridge regression.
In contrast, Group Lasso is the method selecting the largest number of variables, and leading to the
most complex models. In this sense, the average number of falsely selected variables and average
number of coefficients incorrectly estimated as 0, are in line with the number of variables that each
method tends to select. Since BeSS selects fewer variables, the number of falsely selected variables
is generally lower. That is, the variables selected by this method are few and in addition, correspond
to the true effect. On the other hand, with respect to Group Lasso, the average number of falsely
selected variables is very high due to its tendency to select more variables. Inversely, Group Lasso
yields a low average number of coefficients incorrectly estimated as 0, i.e. almost every true effect
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Figure 6: Comparison of the six frailty models’ predictive performance by means of IBS for
Scenarios 2 and 3, that consider different correlation structure of covariates, ρij = 0 and
ρij = 0.65|i−j|, for different number of teams consisting of K ∈ {22, 66, 132, 220} players.

is correctly captured, since lower number of coefficients are estimated as 0, whereas BeSS performs
worse regarding this metric. Overall, the obtained simulation results from all considered scenarios
show that methods that result in sparse models, i.e. best subset selection and boosting, perform
best, particularly when the sample size is small, and as sample size increases, differences between
models disappear except for Group Lasso.

4 Discussion
Recurrent event models have been broadly used in many biomedical studies, but to our knowledge,
only a few studies have applied them in the field of sports injury prevention. The present study
aimed at providing an appropriate statistical modelling strategy for sports injury data in football,
which holds some challenges, rather than providing evidence about lower-limb injuries’ risk factors.
Research on sports injuries is undergoing a remarkable shift, with an increasing emphasis on more
powerful analytical methods. We believe that overcoming the limitations of the illustrated real
case study, recurrent time-to-event methods hold great potential for sports injury research. Further
investigation in larger cohorts, including several subsequent seasons and/or various sports teams,
appears to be required to apply the proposed methodological approach and increase knowledge
about the risk factors for sports injuries. In this respect, it should be noted that other levels of
nesting would possibly be introduced, another random effect, for instance, accounting for team-
specific issues due to different training styles (see Rondeau et al., 2012).

The analyses and simulation studies performed in this work suggest that the methodology
presented is useful to identify screening tests associated with the risk of injury (variable selection),
addressing the recurrent time-varying nature of sports injury data (frailty), for the sports medicine
practice in a professional football team. However, as statisticians it is important to convey to
medical service in a professional sports team that despite obtaining a large number of screening
tests, the small sample size of individuals and lower-limb injury events limit the usefulness for
predicting the risk of injury.

Moreover, the results obtained from our simulation study underline the described assumptions
on reliability and robustness of estimated effects based on such small data. Across all scenarios, the
predictive performance of the estimated models for a sample size of 22 players corresponding to the
real data example, heavily depends on the chosen variable selection technique. Our results imply
that Best Subset Selection and likelihood-based Boosting cope best with the specific situation of
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small sample sports injury data present in many practical applications. Obtained prediction errors
for Group Lasso and to some extent Ridge regression and the Elastic Net, however, indicate that
these type of models are not the right choice in this case. Except for Group Lasso, differences
between methods are negligible when the number of players increases. Consequently, the variable
selection technique for larger cohorts is a less crucial choice.

Our study puts attention on the Cox model as one of the most classical approaches for modelling
time-to-event data, and its extension to recurrent events data, the shared frailty Cox model. In a
first step regularized Cox models were applied, motivated by the large number of covariates present
in the data; and secondly, shared frailty Cox models were fitted to a set of reduced number of
variables selected. We are aware though that the techniques used in the first step do not consider
the correlation between groups of observations, and note that this could consequently lead to a
flawed selection. A preferable choice would be to jointly perform both steps, i.e. selecting the
important variables and fitting the model. We now discuss the choice of the methods employed and
also, the ongoing research on the (simultaneous) regularization of frailty models.

Though we focused on statistical regularization techniques, modelling approaches enabling vari-
able selection are not restricted to them. More methods exist and are useful (Witten and Tibshirani,
2010), mostly coming from the field of machine learning, such as tree-based survival techniques
–recursive partitioning, random forests–, survival principal component analysis, support vector
machines etc (LeBlanc and Crowley, 1992; Bair et al., 2006; Li and Luan, 2002). However, the un-
derlying theory of most machine learning algorithms assumes that the training data is independent
and identically distributed (i.i.d), they also require large training sets and are said to not perform
so well with imbalanced cases (i.e. in our context very low number of injuries). Thus, without
modifications, most machine learning algorithms are not directly applicable to non i.i.d data. Fu-
ture research intends to integrate such machine learning survival techniques into the comparison
of available methods for sports injury data. Benchmark studies taking into account machine learn-
ing survival approaches already exist for some survival tasks from other research areas, e.g. for
modelling disease outcomes with genome data (Herrmann et al., 2020) or multivariate and random
survival trees (Su and Fan, 2004; Ishwaran et al., 2008), but most of those methods relies on large
sample sizes to train and tune the parameters.

On the other hand, other alternative survival methods for recurrent events data might be con-
sidered, such as the parametric survival models, variance-corrected Cox models and spline-based
survival models. But, for our statistical analyses based on real data, shared frailty model was the
preferred method over all these alternatives. Parametric survival models (e.g. accelerated failure
time models (Pan, 2001)), require distributional assumptions to be made for the time-to-event out-
come. Variance-corrected Cox models (e.g. Andersen-Gill 1982, Prentice-Williams-Peterson 1981,
and Wei-Lin-Weissfeld 1989), account for correlation using robust standard errors, modelling the
marginal distribution of each event time with corrected variance; as opposed to the shared frailty
Cox model that corrects dependence among recurrent event times considering a random effect, i.e.
assuming that some players are intrinsically more or less prone to experience an injury. Further,
spline-based survival approaches offer a very compelling framework, such as generalized survival
models (Liu et al., 2017) or piece-wise exponential additive mixed models (Bender et al., 2018),
which can estimate the baseline hazard with smooth functions, include random effects and also
allow high flexibility for a variety of covariate effects; nonetheless, they require more parameters to
be estimated and are more data hungry than the frailty Cox approach.

Lastly, the literature provides some strategies to simultaneously perform variable selection and
frailty model estimation. A first approach was proposed by Fan and Li (2002), who used a penalized
likelihood estimator with smoothly clipped absolute deviation penalty (SCAD), to variable selection
for gamma frailty models. Androulakis et al. (2012) extend this penalized gamma frailty model
methodology to other frailty distributions. However, no open source software implementation is
available yet. A recent penalization approach was developed by Groll et al. (2017) to obtain variable
selection in frailty models with time-varying coefficients such that single varying effects are either
included, included in the form of a constant effects or totally excluded. The method is implemented
in the PenCoxFrail R package (Groll, 2016). These method was beyond the scope of our study,
since we do not consider time-varying covariate nor time-varying effect settings. Newly, Hohberg
and Groll (2020) proposed a more general Lasso Cox frailty approach allowing to perform variable
selection, also for non-time-varying covariates.

In conclusion, the results of our study reveal existing potential of considered shared frailty
Cox models in the context of sports injury prediction. Though conclusions from models based on
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a very small sample size (e.g. a single football/sports team of about 20 players) should always
be drawn with caution due to high variability, taking into account three or six teams already
lead to strong improvements. Thus, we want to emphasize that –regardless of the chosen modelling
strategy– a major key to increase predictive performance of the models and to obtain more accurate
predictions of players’ injuries lies in the size of available data. To really gain valuable new insights
into prediction and monitoring of sports injuries based on data analytics, a practical advice to
sports clubs is to put effort into the collection of as many data as possible, e.g. by performing
regular screening tests for several of their teams.
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