

A novel camera phone-based platform for sol-gel-derived fluorescence-based pH sensing

DCU

Upologica de Navarra

Nafarroako
Unibertsitate Publikoa

A.Urrutia¹, D Wencel², S. O'Driscoll², B. O'Reilly², T. Abel², M. Somers², P. J. Rivero¹, F. J. Arregui¹ and C. McDonagh²

(1) Upna Sensors, EEE Department, Public University of Navarra (UPNA), Campus Arrosadía s/n, PAMPLONA (SPAIN) (2) Biomedical Diagnostics Institute, School of Physical Sciences, Dublin City University, Glasnevin, DUBLIN 9 (IRELAND)

ABSTRACT

In this work a novel camera phone system for fluorescence-based sol-gel-derived pH sensing is presented. The sol-gel-based pH material, a microfluidic chip and a camera phone have been combined to obtain a fluorescence-based sensing system for fast and easy pH measurements.

STRENGTHS: • Fluorescence-based pH offers sensitivity and selectivity. • Sol-gel encapsulation provides stability and flexibility of coating. • Smart phone detection platform suitable for multiple applications in environmental and biomedical.

DIP COATING METHOD SUBSTRATES: Masked glass slides Remove mask 140 °C 4 h pH sensor SPOTS Diameter: 2 mm, thickness:600 nm

Microfluidic chip

Cast in Polydimethylsiloxane (PDMS)

Channel heigth: 50 µm

Liquid flows from to the pumpir covering sensor area

Liquid flows from the inlet to the pumping zone, covering the spot

PH sensor spot

PDMS chip

Figure 3

Figure 1:Calibration plot of the pH sensor spots using a Jasco spectrofluorometer and the camera-phone platform. Average for 3 samples. Inset: pH dependent emission spectra.

Figure 2:Reversibility, drift and response time (t rise=170 s and t fall =182 s) was measured using a spectrofluorometer.

Figure 3: pH sensor spot is excited with a 450 nm LED and the pH-dependent fluorescence at 515 nm is monitored with the camera phone-based setup.

CONCLUSIONS

- ☐ The pH sensor exhibits very good spot to spot reproducibility, short response time and has a dynamic range from pH 5.0 to 8.0.
- ☐ Camera phone dynamic range adequate to measure sensor spot brightness at different pH values.
- □ pKa' shift caused by the inherent non-linearity of the camera phone electronic image processing.
- ☐ This novel low-cost sensor system delivers reliable results in a simple, user-friendly way and is highly suitable for applications in remote or low-resource environments.
- ☐ This approach is suitable not only for pH sensing, but also, using appropriate analyte-sensitive dyes, for oxygen, carbon dioxide and ions optical sensing.

FUTURE WORK

- □ pH sensor spot integration with PDMS chip
- ☐ Implementation of dual excitation detection
- □ Development of an algorithm for an automated correction of mobile phone image sensor nonlinearity

Refs

D. Wencel et al, SNB 139 (2009) 208-213

D. Wencel et al, J. Mater. Chem. 22 (2012) 11720-11729

S. O`Driscoll et al, Anal. Methods 5 (2013) 1904-1908

ACKNOWLEDGMENT

This work was supported by a UPNA Research Grant