

PV POWER FORECAST USING A PARAMETRIC MODEL

Mikel Muñoz*, Iñigo de la Parra, Miguel García, Luis Marroyo

Dept. of Electrical and Electronic Engineering

& Institute of Smart Cities

Public University of Navarre, Campus Arrosadía, 31006, Pamplona (Spain). (mikel.munoz@unavarra.es)

Model Validation

ABSTRACT

- Nowadays, both system operators and PV plant owners can benefit from an accurate AC power output forecast of PV plants.
- After analyzing the existing commercial services of PV production forecast it has been identified the potential to improve the models used to calculate the AC power output.
- Therefore, in this poster, a parametric model is proposed in order to improve the forecast performance.
- A tool to implement this parametric methodology has been built upon the Matlab environment.
- The tool has been developed to provide the PV plant production one day in advance.
- It has been evaluated and validated using historical data of a fixed PV generator (2,24kWp) and a large PV power plant (45MWp).

OBJECTIVES

- Study and validation of a **PARAMETRIC MODEL** to provide the output AC power

 (Energy) of the PV plant using as forecast input variables:
 - -Ambient temperature (T_a).
 - •Global horizontal irradiance (G₀).

PARAMETRIC MODEL

Parts of the model

- **PART 1**: Transform global horizontal irradiance into effective irradiance in the plane of the PV array (G_l) and then both ambient temperature and irradiance in the array plane into cell temperature (T_c) .
 - Calculate G₁ from G₀.
 - Decomposition model that estimates diffuse and beam components from the global horizontal irradiance.

•(Erbs et al. 1982).

- •Translation of irradiance values from the horizontal surface to the plane of PV modules and discount of power losses caused by shading, dirt, incidence angle and spectrum.
 - Position of the sun, PV generator and incidence angle (Lorenzo 2011).
 - Shaded surface on the PV generator.
 - Irradiance on the PV generator plane (Hay & Mckay 1985)(Perez et al. 1987).
 - Dirt and incidence angle losses (Martin & Ruiz 2001).
 - Shading losses (Ruiz 1999).
 - Spectral corrections (Fuentes et al. 2007).
- •Calculate T_c from T_a and G_I.
- PART 2: Simulate the losses in each element of the PV installation using:

where

- Model PV panel performance.
 - •(Evans 1981, Osterwald 1986).
- Inverter characterization.
- "(Jantsch et al. 1992).

 Dower officiency of the transf
- Power efficiency of the transformers.

Wiring power losses.

•Calculated using a similar equation as P_{cu} .

Diagram of a general configuration of a grid-connected PV system

ACCURACY $\overline{\qquad}$

Model Part 2 (From T_c & G_l measure): ±1%
 Model Part 2 + Part 1 (From T_c & G_l measure): ±4%
 Complete model (From T_a & G₀ forecast): ±18%

TOOL OVERVIEW

CONCLUSIONS

- This parametric model offers an interesting solution to provide output AC power.
- The accuracy of the procedure mainly depends on the forecast precision.
- Greater accuracy is achieved at greater values of the clearness index where most of the energy production lies.
- If the forecast precision is not considered the parametric model has great accuracy.
- The tool is a useful solution to know the PV production plant one day in advance

