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Abstract. An effective way to cope with classification problems, among
others, is by using Fuzzy Rule-Based Classification Systems (FRBCSs).
These systems are composed by two main components, the Knowledge
Base (KB) and the Fuzzy Reasoning Method (FRM). The FRM is re-
sponsible for performing the classification of new examples based on
the information stored in the KB. A key point in the FRM is how the
information given by the fired fuzzy rules is aggregated. Precisely, the
aggregation function is the component that differs from the two most
widely used FRMs in the specialized literature. In this paper we provide
a revision of the literature discussing the generalizations of the Choquet
integral that has been applied in the FRM of a FRBCS. To do so, we
consider an analysis of different generalizations, by t-norms, copulas, and
by F functions. Also, the main contributions of each generalization are
discussed.

Keywords: Choquet integral, generalizations Choquet integral, pre-
aggregation function

1 Introduction

A classification problem [1] is a research field in the area of data mining [2], which
can be tackled in two different ways. An approach to deal with this problem is
known as supervised learning, where a function (classifier) is generated from the
available and labeled data (classes). Then, when a new example needs to be
classified, the learned classifier is responsible to perform the prediction.
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In the literature it is possible to find several methods that aim to cope with
these problems using supervised learning, such as Support Vector Machines
(SVM) [3], decisions trees [4] and neural networks [5]. Here, the focus is on
Fuzzy Rule-Based Classification Systems (FRBCCs) [6], because they provide
the user with interpretable models by using linguistic labels [7] in their rules.
Another reason is related with their accurate results and versatility, as shown in
the many different fields where they have been applied like health [8], security [9],
economy [10], food industry [11].

An important role in any FRBCS is played by the Fuzzy Reasoning Method
(FRM) [12]. This method is responsible to perform the classification of new ex-
amples. For that, it makes usage of the information available in the rule base and
the database. Moreover, in order to perform the classification, this mechanism
uses an aggregation operator in order to aggregate, by classes, the information
provided by the fired fuzzy rules when classifying new examples.

A widely used FRM considers the function Maximum as aggregation oper-
ator. By using this aggregation function, for each class, the FRM performs the
selection of the best fired rule since it has the highest compatibility with the ex-
ample [13]. The issue of this inference method is that the information provided
by the remainder fired fuzzy rules is ignored. The Maximum is an averaging
aggregation operator, since the obtained result is within the range between the
minimum and the maximum of the aggregated values (in this case, obviously,
the result is always the maximum).

To avoid the problem of ignoring information, it was proposed a FRM that
applies the normalized sum [12] to perform the aggregation of the available in-
formation given by the fired rules. In this way, for each class, all information
is taken into account in the aggregation step. This aggregation operator is con-
sidered as non-averaging since the result of this function can leave the range
minimum–maximum.

In [14] the authors introduced a FRM considering the usage of the Choquet
integral (CI) [15], which is an averaging operator. In this way, this approach
mixes the characteristics of the previous FRMs considering an averaging op-
erator that uses the information provided by all the fired rules of the system.
Moreover, the CI is defined in terms of a fuzzy measure, which provides it with
the nice properties to take into account the interaction among the data to be
aggregated [15].

The objective of this paper is to discuss different methodologies that change
the aggregation step performed in the FRM, when considering different gen-
eralizations of the CI, which are supported by solid theoretical studies [16],
varying from the generalization by t-norms (CT -integrals) [17], by copulas (CC-
integrals [18–20]) and functions F( CF -integrals [21] and CF1F2-integrals [22,
23]). Moreover, for each generalization it is provided provide a discussion of the
main obtained results of each study (we highlight that our focus here are re-
lated with the main conclusions and not the specific obtained results of each
approach).
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This paper is organized as follows. Section 2 present the main components
of a FRBC, showing an example of how the aggregation function is used in
this context. Sections 3 to 6 discuss the theoretical and applied contributions of
different generalizations of the CI. Section 8 is the conclusion.

2 The role of aggregation functions in the FRM

Fuzzy Rule-Based Classification Systems (FRBCSs) [6] are extensions of the
rule-based system by using fuzzy sets in the antecedents of the rules. The best-
known FRBCSs are the ones defined by Takagi-Sugeno-Kang (TSK) [24] and
Mamdani [25], which is the one that it is adopted. The standard architecture of
the Mamdani method is presented in Figure 1.
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Fig. 1. A structure of FRBCS of the Mamdani type.

Where the Knowledge Base (KB) is composed by:
Data Base (DB) – Stores the membership functions associated with the lin-
guistic labels considered in the fuzzy rules.
Rule Base (RB) – Is composed by a collection of linguistic fuzzy rules that
are joined by a connective (operator and). Here we consider that a classification
problem ins composed by t training patterns xp = (xp1, . . . , xpm), p = 1, 2, . . . , t.
where xpi is the i-th attribute and with the rules having the following structure:

Rule Rj : Ifx1 isAj1 and . . . andxn isAjn (1)

then Class isCj withRWj ,

where Rj is the label of the j-th rule, Aji is a fuzzy set modeling a linguistic term,
modeled by a triangular shaped function. Cj is the class label and RWj ∈ [0, 1]
is the rule weight [26].

The fuzzyfication interface converts the inputs (real values) into fuzzy val-
ues. In case of categorical variables, each value is modeled by a singleton and,
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consequently, its membership value is either 1 or 0. Once the input is fuzzified,
the inference process is the mechanism responsible for the use of the information
stored in the KB to determine the class in which the example will be classified.
The generalizations discussed in this paper are applied at this point.

Once the knowledge has been learnt and a new example xp = xp1, . . . , xpn
has to be classified, the FRM [27] is applied to perform this task, where M is
the number of classes of the problem and L is the number of rules that compose
the RB. The stages of the FRM are:
Matching degree: It represents the importance of the activation of the if-part
of the rules for the example to be classified xp, using a t-norm as conjunction
operator:

µAj
(x) = T (µAj1

(x1), . . . , µAjn
(xn)). (2)

with j = 1, . . . , L. and µAj1 as the membership function with relation to a
membership function.
Association degree: For each rule, the matching degree is weighted by its rule
weight:

bkj (x) = µAj
(x) ·RW k

j , (3)

with k = Class(Rj) and j = 1, . . . , L.
Example classification soundness degree for all classes: For each class k,
the positive information bkj (x) > 0, given by the fired fuzzy rules of the previous
step, is aggregated by an aggregation function A:

Sk(x) = Ak

(
bk1(x), . . . , bkL(x)

)
, (4)

with k = 1, . . . ,M.
In what follows, three different well-known FRMs are presented. Observe that

their main difference is in the use of a different aggregation function to perform
the aggregation of the information provided by the rules:
Winning Rule (WR) – For each class, it only considers the rule having the
maximum compatibility with the example.

Sk(x) = max
Rjk
∈RB;

bj(x). (5)

Additive combination (AC) – It aggregates all the fired rules, for each class k,
by using the normalized sum.

Sk(x) =

∑Rjk
∈RB

j=1 bj(x)

f1max

, (6)

where f1max = maxk=1,...,M

∑Rjk
∈RB

j=1 bj(x).
The Choquet integral (CI) – It is the function Cm : [0, 1]n → [0, 1], defined, for
all of x ∈ [0, 1]n, by:

Cm(x) =

n∑
i=1

(
x(i) − x(i−1)

)
·m
(
A(i)

)
, (7)
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Table 1. Association degrees for each class.

C1 C2 C3

Ra 0.94 0.15 0.89
Rb 0.10 0.40 0.88
Rc 0.25 0.10 0.85

where N = {0, . . . , n}, m : 2N → [0, 1] is a fuzzy measure3,
(
x(1), . . . , x(n)

)
is

an increasing permutation on the input x, that is, 0 ≤ x(1) ≤ . . . ≤ x(n), with
x(0) = 0, and A(i) = {(i), . . . , (n)} is the subset of indices corresponding to the
n− i+ 1 largest components of x. Then:

Sk(x) =

Rjk
∈RB∑

j=1

Cm(bj(x)). (8)

where C is the standard CI and m the fuzzy measure.
Classification: For the final decision, the class that maximizes all the example
classification soundness degrees is considered, using the function F : [0, 1]M →
{1, . . . ,M}:

F (S1, . . . , SM ) = arg max
k=1,...,M

(Sk). (9)

To exemplify the role of different aggregation operator in the FRM, consider
a classification problem composed by 3 classes (C1, C2 and C3). For each one,
3 generic fuzzy rules, Ra, Rb and Rc are fired when classifying a new example
(they can be different for each class). We present the information about this
problem in Table 1. Notice that the numbers in this table represent the positive
association degree (Step 2 of the FRM) obtained for each fired rule. Having
into account that three fuzzy rules are fired for each class, by columns, three
aggregations have to be computed (one for each class).

Since the CI is defined with respect to a fuzzy measure, in this example
the standard cardinality (see [28]) is considered as fuzzy measure. The values
computed for each class using these three FRMs are the following ones:

– C1

• WR = 0.94
• AC = 0.94+0.1+0.25

2.62 = 0.49
• Choquet = ((0.1 - 0) 3

3 ) + ((0.25 - 0.1) 2
3 ) + ((0.94 - 0.25) 1

3 ) = 0.43
– C2

• WR = 0.4
• AC = 0.15+0.4+0.1

2.62 = 0.24
• Choquet = ((0.1 - 0) 3

3 ) + ((0.15 - 0.1) 2
3 ) + ((0.4 - 0.15) 1

3 ) = 0.21
– C3

• WR = 0.89
• AC = 0.89+0.88+0.85

2.62 = 1.0

3 A fuzzy measure m is an increasing function on 2N such that m(∅) = 0 and m(N) = 1.
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• Choquet = ((0.85 - 0) 3
3 ) + ((0.88 - 0.85) 2

3 ) + ((0.89 - 0.88) 1
3 ) = 0.87

Once the example classification soundness degree for each class has been
computed, the predicted class is the one associated with the largest value (step
4 of the FRM):

– WR = arg max[0.94, 0.4, 0.89] = C1

– AC = arg max[0.49, 0.24, 1.0] = C3

– Choquet = arg max[0.43, 0.21, 0.87] = C3

It is observable that the usage of the maximum as an aggregation operator
predicts class 1, since it only considers the information provided by one fuzzy
rule (having the maximum compatibility). However, if we look in detail at the
association degrees presented in Table 1, this prediction may not be ideal, since
that class 1 has one rule having high compatibility whereas class 3 has three
rules having high compatibilities (slightly less than that of class 1). Then, class
3 seems to be the most appropriated option. This fact is taken into account by
the CI and the AC, since the information given by all the fuzzy rules and not
only by the best one is considered and, consequently, the prediction assigns class
3.

In this example, it is noticeable the non-averaging behavior of AC. Observe
that the result of this function for class C3 is greater than the maximum value.
This fact does not occur for averaging functions. In the case of WR, the result
is always the maximum, meanwhile for the CI the result is a value between
the minimum and the maximum. Another interesting point that raises with this
example, is that the usage of different aggregation in the FRM is directly related
with the performance of the classifier.

3 The CT -integral and pre-aggregations

This study was originally based on [14], where the authors modified the FRM
of the Chi et al. algorithm [29] by applying the CI to aggregate all available
information for each class. Furthermore, they introduced a learning method using
a genetic algorithm in which the most suitable fuzzy measure for each class
was computed. We highlight that this fuzzy measure is considered in all the
applications of the generalizations of the Choquet integral.

For the first proposed generalization, the product operator of the standard
CI was replaced by different other t-norms [30]. In this way, the manner how the
information was aggregated would be different, consequently leading into differ-
ent FRMs that could present performances even more accurately. The Choquet
integral generalized by t-norms T , known as CT -integral [17], is defined as:

Definition 1. [17] Let m : 2N → [0, 1] be a fuzzy measure and T : [0, 1]2 → [0, 1]
be an t-norm. A CT -integral is the function CT

m : [0, 1]n → [0, 1], defined, for all
x ∈ [0, 1]n, by

CT
m(x) =

n∑
i=1

T
(
x(i) − x(i−1),m

(
A(i)

))
, (10)
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where x(i) and A(i) are defined as in Eq. (7).

Observe that some CT -integrals are not aggregation function. E.g., take the
minimum t-norm TM (x, y) = min(x, y) and the cardinality measure (see [17,28]),
and consider x1 = (0.05, 0.2, 0.7, 0.9) and x2 = (0.05, 0.1, 0.7, 0.9), where x1 >
x2. However, CTM

m (x1) = 0.7 and CTM
m (x2) = 0.8. Thus, the primordial condition

of increasingness of any aggregation function is not fulfilled by CTM
m .

Yet, it is noticeable that the monotonicity property is not crucial for ag-
gregation functions. Take for example a well-known statistical tool, the mode.
It is not considered as an aggregation since the monotonicity of this function
is not fulfilled, although it is useful. In [31], Bustince et al. introduced the no-
tion of directional monotonicity, which allows monotonicity to be fulfilled along
(some) fixed ray. So, with this in mind, the concept of pre-aggregation functions
was introduced in [17]. These functions respect the boundary condition as any
aggregation function, however, they are directional increasing:

Definition 2. [31] Let r = (r1, . . . , rn) be a real n-dimensional vector, r 6=
0. A function F : [0, 1]n → [0, 1] is directionally increasing with respect to r
(r-increasing, for short) if for all (x1, . . . , xn) ∈ [0, 1]n and c > 0 such that
(x1 + cr1, . . . , xn + crn) ∈ [0, 1]n it holds that

F (x1 + cr1, . . . , xn + crn) ≥ F (x1, . . . , xn). (11)

Similarly, one defines an r-decreasing function.

Now, as the Chi algorithm it is not a state-of-the-art fuzzy classifier, the
CT -integrals were applied in the FRM of a powerful fuzzy classifier like FARC-
HD [32]. The quality of the proposal was analyzed by applying these general-
izations to cope with 27 classification problems. The considered datasets are
available in KEEL [33] dataset repository. When comparing the different gener-
alizations among themselves, it can be noticed that the one based on Hamacher
t-norm was superior to the remaining ones. This fact occurred with four out the
five considered fuzzy measures. The best accuracy was obtained when combining
the Hamacher product with the power measure. To evaluate the quality of this
best generalization, the study has compared it against the classical FRM of WR,
since both FRMs apply averaging aggregation functions. In this comparison, it
was empirically demonstrated that this generalization is statistically superior to
WR and the standard CI.

4 Copulas and CC-integrals

The usage of the generalizations of the CI in a powerful fuzzy classifier has pro-
duced satisfactory results to cope with classification problems. However, these
generalizations were pre-aggregation functions, that is, the monotonicity is not
satisfied. Then, with this in mind, generalizations that are idempotent and av-
eraging aggregation functions were developed. For that, in Eq. (7), firstly the
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distributivity property of the product operation is considered with the subtrac-
tion and then replaced the two instances of the product by copulas [30], obtaining
the CC-integrals [18]:

Definition 3. Let m : 2N → [0, 1] be a fuzzy measure and C : [0, 1]2 → [0, 1] be
a bivariate copula. The CC-integral is defined as a function CC

m : [0, 1]n → [0, 1],
given, for all x ∈ [0, 1]n, by

CC
m(x) =

n∑
i=1

C
(
x(i),m

(
A(i)

))
− C

(
x(i−1),m

(
A(i)

))
, (12)

where x(i) and A(i) are defined as in Eq. (7).

To demonstrate the efficiency of the CC-integrals to tackle classification prob-
lems, an experimental study considering 30 numerical datasets is considered.
This study was conducted in two different ways. The first one was focused on
comparisons per family of copulas (t-norms, overlap functions [34,35] and specific
copulas), in order to find the function that presented the best generalization.
Then, this best generalization is compared with 1) the classical FRM of WR
(considering that both functions are averaging); 2) to the standard CI and 3)
the best pre-aggregation function achieved in the previous study (CT -integral),
the one based on the Hamacher t-norm. The best CC-integral is the CMin-
integral, constructed with the Minimum copula4. The obtained results showed
that the CMin-Integral is statistically equivalent to the CI and the CT -integral
and superior than the WR..

5 CF -integrals

The acquired knowledge from the previous studies shows that the function re-
sponsible to generalize the CI is very important. At this point only generaliza-
tions with averaging characteristics were presented. Having this in mind, the
CI was generalized by special functions, in order to produce more competitive
generalizations, allowing to produce non-averaging integrals. To achieve it, its
used a family of left 0-absorbing aggregation functions F , which satisfy: (LAE)
∀y ∈ [0, 1] : F (0, y) = 0. Moreover, the following two basic properties are also
important:
(RNE) Right Neutral Element: ∀x ∈ [0, 1] : F (x, 1) = x;
(LC) Left Conjunctive Property: ∀x, y ∈ [0, 1] : F (x, y) ≤ x;

Any bivariate function F : [0, 1]2 → [0, 1] satisfying both (LAE) and (RNE)
is called left 0-absorbent (RNE)-function.

Then, the so-called CF -integral [21] is defined as:

Definition 4. [21] Let F : [0, 1]2 → [0, 1] be a bivariate function and m : 2N →
[0, 1] be a fuzzy measure. The CF -integral is the function CF

m : [0, 1]n → [0, 1],

4 Examples of special CC-integrals were studied in [19,20].
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defined, for all x ∈ [0, 1]n, by

CF
m(x) = min

{
1,

n∑
i=1

F
(
x(i) − x(i−1),m

(
A(i)

))}
, (13)

where x(i) and A(i) are defined as in Eq. (7).

In [21, Theorems 1 and 2], it was proved that the set of conditions that the
function F should fulfill for the CF -integral to be a pre-aggregation function
is one of the following ones: Theorem 1 ((LAE) and (RNE)) or Theorem 2
((LAE), F (1, 1) = 1 and (1, 0)-increasingness). Moreover, for the CF -integral to
be averaging F must satisfy (RNE) and (LC). This means that there exist a lot
of non-averaging CF -integrals.

The quality of the CF -integrals to cope with classification problems was
tested considering 33 different datasets. The experimental study was conducted
considering CF -integrals with and without averaging characteristics. Considering
the non-averaging functions, six CF -integrals were studied. In order to support
the quality of this approach, a comparison with the best non-averaging CF -
integral with the FRM of AC and a FRM considering the probabilistic sum -
PS (since it is an operator with non-averaging characteristics) is provided. The
results showed that the non-averaging CF -integrals-integrals, as expected, offer a
performance superior than the averaging ones, and the best CF -integral, based
on the function FNA2 5 provides results that are statistically superior than
all classical FRMs, and also, very competitive with the classical non-averaging
FRMs like AC or PS.

6 CF1F2-integrals

The previous study demonstrated that the generalization of the standard Cho-
quet integral by functions F resulted in satisfactory results. Then, this study
combine the ideas of previous approaches, precisely, it take the same idea of
CC-integrals, generalizing the each of the two instances of copulas by a pair of
functions F , called F1 and F2, as consequence obtaining the CF1F2

-integrals [22]:

Definition 5. Let m : 2N → [0, 1] be a symmetric fuzzy measure and F1, F2 :
[0, 1]2 → [0, 1] be two fusion functions fulfilling:

(i) F1-dominance (or, equivalently, F2-Subordination): F1 ≥ F2;
(ii) F1 is (1, 0)-increasing,

A CF1F2
-integral is defined as a function C

(F1,F2)
m : [0, 1]n → [0, 1], given, for all

x ∈ [0, 1]n, by

C(F1,F2)
m (x) = (14)

min

{
1, x(1)+

n∑
i=2

F1

(
x(i),m

(
A(i)

))
−F2

(
x(i−1),m

(
A(i)

))}
,

5 The function FNA2 : [0, 1]2 is defined, for all x, y ∈ [0, 1] by F (0, y) = 0, F (x, y) =
x+y
2

if 0 < x ≤ y and F (x, y) = min(x
2
, y), otherwise, which satisfies the conditions

of [21, Theorems 2].
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where x(i) and A(i) are defined as in Eq. (7).

In this paper, twenty-three different functions, F , were considered. As con-
sequence, 201 different pairs of functions that could be used as F1 and F2 could
be combined, respecting the dominance property. An important question that
could appear is related to the choice of the function to be selected as F1 and the
one to act as F2. Therefore, a methodology to reduce the scope of the study have
been proposed by using the concept of Dominance and Subordination Strength
degree, DSt and SSt respectively.

Definition 6. Let F = {F1, . . . , Fm} be a set of m fusion functions. The dom-
inance and subordination strength degrees, DSt and SSt, of a fusion function
Fi ∈ F are defined, respectively, for j ∈ {1, . . . ,m}, by as follows:

DSt(Fi) =
1

m

m∑
j=1

{
1 if Fi ≥ Fj ,
0 otherwise

· 100%

SSt(Fi) =
1

m

m∑
j=1

{
1 if Fi < Fj ,
0 otherwise.

· 100%

The generalizations provided in this study are non averaging. Moreover, they
satisfy the boundary conditions of any (pre) aggregation function. However, con-
sidering the monotonicity, we observed that these functions are neither increasing
nor directional increasing. In fact, they are Ordered Directionally (OD) mono-
tone functions [36]. These functions are monotonic along different directions
according to the ordinal size of the coordinates of each input.

The CF1F2
-integrals were used to cope with classification problems in 33

different datasets. When analyzing the results that were obtained by the usage
of these generalizations, it is noticeable that the combination of a function having
a high dominance as F1 combined with a function with high subordination as
F2 presented the best results of this study (from the top ten of the best global
accuracies from the 81 pairs, eight have this characteristic). We also observed
that the opposite, for each function F2, is also true and that its best results are
achieved when using a F1 with a high dominance.

The performance of this proposal is analyzed by comparing them against dis-
tinct state-of-the-art FRBCSs, namely: FARC-HD [32], FURIA [37], IVTURS [38],
a classical non-averaging aggregation operator like the probabilistic sum, P ∗,
and, the best CF -integral that was selected from the previous study, FNA2. In
this comparison, FURIA was the fuzzy classifier that achieved the highest ac-
curacy mean, however, our new approach achieved a close classification rate.
Furthermore, the number of specific datasets where the performance of our gen-
eralization is the worst among all the methods in the comparison is less than
that of FURIA. The function representing the CF -integrals also achieved good
results, meanwhile the remainder cases (IVTURS, P ∗ and FARC-HD) where
inferior and similar among themselves.

The 81 pairs of combinations considered to construct CF1F2
-integrals were

compared against IVTURS, P ∗, FARC-HD and FNA2. The results highlighted
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the quality of our new method because an equal or greater average result was
obtained by 39, 36, 34 and 12 different combinations in these comparisons.

Finally, from the considered pairs, it was observed that five different CF1F2-
integrals were considered as control variable in the statistical test in which all
methods are compared, including FURIA. The last generalization only presented
statistical differences with respect to FARC-HD. However, for any remaining
pair, it is statistically equivalent when compared to FURIA and to FNA2 and
superior to IVTURS, P ∗ and FARC-HD.

7 Detailed Results

In this section the results obtained by the usage of different aggregation operator
are shown. We highlight that these results consider the same 33 datasets as in [21,
22] and [28]. Also, the results are related with the power measure, as mentioned
previously, take into consideration the 5-fold cross validation technique [2] and
are applied in the FRM of the FARC-HD [32] fuzzy classifier6.

The results are provided in Table-2 where each cell correspond to the mean
accuracy among all folds, the rows are related with the different considered
datasets and the columns are the results obtained by classical FRMs such as: of
the Additive Combination (AC), Probabilistic Sum (PS), Winning Rule (WR),
Choquet integral (CI), CT -integrals (due to lack of space were summarized to
int, in all integrals) with is defined by the Hamacher product t-norm, CC-integral
that use the copula of the minimum, CF -integral considering the FNA2 function
and CF1F2 -integrals using the pair GM–FBPC.

From the detailed results, we can noticed that classic FRM of the WR is
the one that achieved the lowest global mean, indicating that the usage of all
information related with the problem is an interesting alternative. Moreover, it is
also observable that all non-averaging generalizations (AC, PS, CF -integrals and
CF1F2-integrals) presents superior results when compared against the averaging
ones (WR, IC, CT -integral and CC-integral).

The results also showed that the generalizations of the CI (CT , CC, CF ,
CF1F2

-integrals) provided a superior performance in comparison to the standard
CI. Finally, as mentioned before, the largest performance is obtained when the
CF1F2-integral is used to cope with classification problems.

8 Conclusions

The application of the Choquet integral (CI) in the Fuzzy Reasoning Method
(FRM) of Fuzzy Rule-Based Classification Systems (FRBCSs) modified the way
in which the information was used and enhanced the system quality. After that,
many generalizations of the CI were proposed and also applied in FRM, obtaining

6 The considered datasets and the fuzzy classifier are available in KEEL repository.
Available at https://www.keel.es
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Table 2. Detailed results achieved in test by different generalizations of the CI.

Dataset AC PS WR CI CT − int CC-int CF -int CF1F2
-int

App 83.03 85.84 83.03 80.13 82.99 85.84 85.84 86.80
Bal 85.92 87.20 81.92 82.40 82.72 81.60 88.64 89.12
Ban 85.30 84.85 83.94 86.32 85.96 84.30 84.60 84.79
Bnd 68.28 68.82 69.40 68.56 72.13 71.06 70.48 71.30
Bup 67.25 61.74 62.03 66.96 65.80 61.45 64.64 66.96
Cle 56.21 59.25 56.91 55.58 55.58 54.88 56.55 56.22
Con 53.16 52.21 52.07 51.26 53.09 52.61 53.16 54.72
Eco 82.15 80.95 75.62 76.51 80.07 77.09 80.08 81.86
Gla 65.44 64.04 64.99 64.02 63.10 69.17 66.83 68.25
Hab 73.18 69.26 70.89 72.52 72.21 74.17 71.87 72.53
Hay 77.95 77.95 78.69 79.49 79.49 81.74 79.43 78.66
Ion 88.90 88.32 90.03 90.04 89.18 88.89 89.75 88.33
Iri 94.00 95.33 94.00 91.33 93.33 92.67 94.00 94.00
Led 69.60 69.20 69.40 68.20 68.60 68.40 69.80 70.00
Mag 80.76 80.39 78.60 78.86 79.76 79.81 79.70 80.86
New 94.88 94.42 94.88 94.88 95.35 93.95 96.28 96.74
Pag 95.07 94.52 94.16 94.16 94.34 93.97 94.15 95.25
Pen 92.55 93.27 91.45 90.55 90.82 91.27 92.91 92.91
Pho 81.70 82.51 82.29 82.98 83.83 82.94 81.44 81.42
Pim 74.74 75.91 74.60 74.60 73.44 75.78 74.61 75.38
Rin 90.95 90.00 90.00 90.95 88.78 87.97 89.86 91.89
Sah 68.39 69.69 68.61 69.69 70.77 70.78 70.12 71.43
Sat 79.47 80.40 79.63 79.47 80.40 79.01 80.41 79.47
Seg 93.12 92.94 93.03 93.46 93.33 92.25 92.42 93.29
Shu 95.59 94.85 96.00 97.61 97.20 98.16 97.15 96.83
Son 78.36 82.24 77.42 77.43 79.34 76.95 83.21 85.15
Spe 77.88 77.90 77.90 77.88 76.02 78.99 79.77 79.39
Tit 78.87 78.87 78.87 78.87 78.87 78.87 78.87 78.87
Two 90.95 90.00 86.49 84.46 85.27 85.14 92.57 92.30
Veh 68.56 68.09 66.67 68.44 68.20 69.86 68.08 68.20
Win 96.03 94.92 96.60 93.79 96.63 93.83 96.08 95.48
Wis 96.63 97.22 96.34 97.22 96.78 95.90 96.78 96.78
Yea 58.96 59.03 55.32 55.73 56.53 57.01 57.08 58.56
Mean 80.12 80.07 79.15 79.22 79.69 79.58 80.52 81.02

success as well. In this paper the main contributions, theoretical and applied, of
the generalizations are summarized and discussed.

The first generalization was built by the replacement of the product operator
of the standard CI by different t-norms. These generalizations were supported by
an important theoretical concept known as pre-aggregation functions. Differently
from a simple aggregation function, a pre-aggregation function is monotonic only
in a determined direction. This first generalization produced averaging functions
and its applications to cope with classification problems showed that the gener-
alization by the Hamacher product t-norm was superior than the FRM of the
Winning Rule (WR) and the CI.

The second step aimed in generalizations of the CI that produce aggregation
functions. To do so, the IC was used in its expanded form and generalized by
copula functions, introducing the concept of Choquet-like Copula-Based aggrega-
tion functions, the so called CC-integrals. These functions also present averaging
characteristics. The results of their applications demonstrated that the classical
WR was statistically overcame.

It is observable that up to this point only generalizations with averaging
characteristics were presented. On the otter hand, fuzzy classifiers known as
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state-of-the-art take into account the usage of non-averaging functions. Thus, to
produce more competitive generalizations, a family of fusion functions F were
introduced. The generalization of the Choquet integral by F functions introduced
the concept of CF -integrals. This generalization has averaging and non-averaging
characteristics, it depends on the considered function. It was observed that the
application of any non-averaging function statistically overcome any averaging
one. Also, the developed operators outperforms the classical WR and Additive
Combination (AC).

The generalization of the expanded CI by two functions F , F1 and F2, intro-
duced the concept of CF1F2-integrals. These functions present an Ordered Direc-
tional increasing functions (OD increasing) and, therefore, represent a different
level of aggregation operators. The summit of the performance in the classifi-
cation problems was reached in this generalization. To do so, a methodology
to select different functions as F1 and F2 were presented, based on the concept
of degrees of dominance and subordination. For the considered CF1F2 -integrals,
in five different cases the generalizations are equivalent, or even superior, in
comparison with fuzzy classifiers found in the literature.

Taking as basis the analysis provided by this paper, some interesting research
points emerge. For example, the application of these generalizations in the FRM
of different fuzzy classifiers. Also, considering that the generalizations are based
on the Choquet integral, the usage of a different operator, such as the Sugeno
integral can produce even more powerful operators. Finally, the combinations
with different fuzzy measures are an alternative with great potential.
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