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ABSTRACT 

K-Nearest Neighbor algorithm has been proven to be a simple and effective 

method for classification problems in machine learning. This Final Degree Project 

is based on the investigation of the KNN (K-Nearest Neighbors) algorithm 

introducing some changes that improve said algorithm: fuzzy logic, fuzzy intervals 

and evolutionary algorithms.  

First, a model using fuzzy logic and a model with fuzzy intervals are created, 

which improve to a certain extent the accuracy of the original model (KNN). Next, 

the evolutionary algorithm is used to try to improve the performance of the model 

further. The problem is the time required for the convergence of this last 

algorithm. Therefore, it is intended to make a comparison between all these 

models and see the difference between them in both performance and time. 

 

Key Words: Classification, KNN, Fuzzy, evolutionary, algorithm. 
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1. INTRODUCTION AND OBJECTIVES 
 

Nowadays, we are collecting massive amount of data and using it for several 

purposes. The main purpose is to make more accurate decisions and to make 

them quicker. The way we do that is through different machine learning 

algorithms that use this data to make better predictions. It can be applied to 

several fields such as personalised marketing, self-driving cars, fraud detection, 

voice assistants… 

Machine learning, according to IBM, is a branch of artificial intelligence (AI) and 

computer science which focuses on the use of data and algorithms to imitate the 

way that humans learn, gradually improving its accuracy [1]. Machine learning 

models have the ability to observe patterns that humans would overlook. It uses 

the data continuously to learn over time. 

One of the most important tasks that can be achieved with this great amount of 

data using machine learning is classifying. The aim in classification is to label in 

groups, so we are able to make better decisions creating the ability to predict. 

There are some well-known big companies (Google, Meta…) that are using 

classification to get more knowledge about our interests such as creating groups 

of people with similar hobbies. 

A simple and powerful algorithm for these classification problems is the 

supervised machine learning K-Nearest Neighbor (KNN) algorithm [2]. This 

model is trained saving all the training labelled data, so it would be like a model 

itself, and then makes predictions based on this previous data that is already 

labelled. For the prediction of the class, it takes into account the k nearest 

neighbors data points of the example we want to classify based on the training 

examples it saved at the beginning.  

Although KNN is a very powerful algorithm for classification, there have been 

presented some improved versions of this original KNN model such as the 

original Fuzzy K-Nearest Neighbor (FKNN), Fuzzy K-Nearest Neighbor with 

Intervals (IVFS KNN) and the Evolutionary K-Nearest Neighbor with Intervals 

version, which each of these models is supposed to improve the previous one. 

This Fuzzy version [3] makes use of fuzzy logic to increase KNN’s original 

accuracy. It assigns a membership from [0, 1] to a class for each instance so it 

describes how sure it can be that an example belongs to a specific class making 

use of a parameter called kInit. It removes the full membership that original KNN 

used and instead applies the idea that instances which are close to the center of 

their class will have almost full membership, on the other hand, instances nearby 

the decision boundaries will share about half of their membership between the 

different classes. Then, the memberships are weighted to generate a final vote 
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for each neighbor and class and achieve an improved classification introducing 

another parameter m.  

The IVFSKNN [4] model is used to try to reduce the difficulty in assigning values 

to the hyper parameters of FKNN. It uses fuzzy interval logic to achieve that 

assigning an interval for each membership. The minimum and maximum value 

will change based on how relevant and how many neighboring instances there 

are near the training point. Moreover, this model also makes use of the parameter 

kInit and two m values ma and mb  for the interval making it more flexible. 

As explained, both previous versions of KNN introduce the parameters kInit and 

m to make the classification. Although other optimization algorithms could be 

applied for selecting the best values for these parameters, the evolutionary 

version [5] is introduced for that. It uses the genetic algorithm CHC with a double 

codification of the chromosome mixing binary representation for the kInit 

parameter selection and real representation for ma and mb optimization.  

The main objective of this project is to make a comparison between these 

improved algorithms and check if they really have a better performance than the 

original KNN algorithm and achieve more accurate predictions. Another feature 

to take into account is the time it takes to train these different models. As it is 

known, the last Evolutionary KNN model is a genetic algorithm which needs a 

huge amount of time to finish its execution. Therefore, will it really be worth using 

this algorithm considering the time it takes to finish its training? 
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2. PRELIMINARIES 
 

2.1. MACHINE LEARNING 

 

We could describe machine learning as a branch of artificial intelligence (AI) 

that uses computer systems and the use of data and algorithms to learn like 

humans do and make decisions. With machine learning, the precision of the 

decisions made improve through experience with the use of more and more 

data. 

Machine learning algorithms are used in a wide variety of applications, such 

as in medicine, email filtering, speech recognition, and computer vision, where 

it is difficult or unfeasible to develop conventional algorithms to perform the 

needed tasks [6].  

Machine learning programs can perform tasks without being explicitly 

programmed to do so. It involves computers learning from data provided so 

that they carry out certain tasks.  

There are simple tasks assigned to computers where it is possible to program 

algorithms telling the machine exactly how to do the thing, we want to execute 

to solve the problem; the computer doesn’t need to learn anything. For more 

complex tasks, it can be challenging for a human to manually create the 

needed algorithms. It turns out to be more effective to let the machine create 

its own algorithm and probably with more time and more data it will improve 

that algorithm. This way we don’t need anyone programming a specific 

algorithm. 

Machine learning is known more and more every day. More people hear about 

it and there are more advances and uses in this discipline.  

 

 

Figure 1: Number of machine learning Google searches over time from Google Trends 
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In Figure 1, we can see the huge increase on the numbers of machine learning 

Google searches these last years. This huge increase comes because the words 

machine learning or artificial intelligence appears a lot more in the news, on our 

mobile phones and on our daily life in general. 

 

Machine learning is usually divided into 3 categories: Supervised Learning, 

Unsupervised Learning and Reinforcement Learning. 

 

2.1.1.  SUPERVISED LEARNING 

 

The machine receives data from some inputs and some goal outputs. Then, it 

creates a mathematical model to learn and get a generalised rule that relates 

those inputs and outputs and can make future predictions for new unseen inputs 

[7]. 

The first input and outputs data given to the machine that is used for training is 

known as training data. As we see in a graphic summary in Figure 2, when the 

model has learned this training data, we will be sure it really has learned when 

we set some test data that the machine has never seen and it predicts the output 

for those new examples and we obtain the performance of the system. 

The algorithms that are used in supervised learning are classification and 

regression. Classification algorithms are used when the outputs are restricted to 

a known set of values (1, 2, 3) and regression algorithms are used when the 

outputs can have any numerical value. (124.2, 148…). 

An example of classifications algorithms would be the spam mail filtering. The 

output would be “spam” (1) or “no spam” (0). We would have the emails has input 

and we can see the output is restricted to only 2 values. On the other hand, an 

example of regression algorithms would be a house’s price prediction based on 

the number of dormitories and bathrooms it has. The outputs in this case could 

be any number such as 127.201$ or 523.125$. 

One of the great uses of supervised learning is looking for similarities. We can 

use both classification and regression algorithms for measuring how similar 2 

things are. We see this type of learning in important applications such as 

YouTube, that used recommendations systems making classifications on how 

one person has similar interests with another one. It is also used in face 

recognition systems, sentiment analysis, speaker verification, spam detection, 

image recognition… 

Some of the main algorithm that are used in supervised learning are Neural 

Networks, which imitates the neurons in the human brain to learn some data 
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using weights for each connection which adjust based on the loss function 

calculated by the process of gradient descendent [8]; Naïve Bayes, that is a 

classification approach that makes use of the principle of class conditional 

independence from the Bayes Theorem and it is used a lot in problems such as 

spam detection and text classification; Linear Regression, which is used to make 

predictions based on one or more variables; Logistic Regression, unlike Linear 

Regression, it is used when the dependent variable is categorical and not 

continuous (0 or 1); Support Vector Machine (SVM), which it creates an 

hyperplane where the distance between 2 classes is at its maximum and it is 

used for both classification and regression problems; Random Forest, it is a group 

of decision trees which join for reducing variance and making better predictions 

[9]; and finally K-Nearest Neighbor (KNN), which classifies data bases on the 

distance to other data, the idea is that 2 data points that are found near each 

other are similar. This last algorithm will be explained better later because it will 

have great importance in this project. 

 

 

Figure 2: Supervised Learning 

 

 

2.1.2. UNSUPERVISED LEARNING 

 

In unsupervised learning, unlike supervised learning, it only takes a set of input 

data and finds a proper clustering of the data points. So basically, this type of 

method learns from data points that have not being classified before and it 
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identifies possible groups from the data as we can observe in Figure 4. The goal 

is to find patters in the data that classifies them without the need for human 

intervention. 

When we have some clusters created, we assume that the data points in one 

group are similar between them and are not similar with the ones in another 

cluster. 

We have several unsupervised learning algorithms such as association rules, 

dimensionality reduction, autoencoders or apriori algorithms but one of the main 

ones is Clustering, which we can observe in Figure 3 the functionality it has. It 

identifies similarities and differences between data points and we can difference 

between exclusive and overlapping, hierarchical and probabilistic clustering. 

 

 

Figure 3: Clustering 

 

Unsupervised learning is used for categorizing texts in their respective topic, for 

computer vision and object recognition, anomaly detection, recommendations 

engines… 

 

Figure 4: Unsupervised Learning 
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2.1.3. REINFORCEMENT LEARNING 

 

Reinforcement learning [10][11] is based on some agents placed in a specific 

environment and have to take actions so their reward maximizes. Basically, when 

the agent does something “good” in the environment, it will receive a positive 

reward meaning that action that it took in that environment was good, otherwise, 

when the agent does something “bad”, it will receive a negative reward meaning 

it doesn’t have to take that action in that scenario as we can observe in Figure 5. 

It is used in many disciplines such as game theory, simulations, information 

theory, statistics and genetics algorithms. 

 

Figure 5: Reinforcement Learning 

 

Unlike supervised learning, this type of learning doesn’t need labelled input and 

output data. Instead, it uses exploration and exploitation to learn which are the 

optimal actions for the different states in the environment. The environment is 

typically in the form of Markov decision process. 

Reinforcement learning is usually used in learning to play a game against a 

human, autonomous vehicles, trading… 

 

 

2.2. CLASSIFICATION 
 

As explained before, classification is a supervised learning problem in which the 

computer program learns from the given data and makes new predictions or 

classifications based on the trained model.  
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2.2.1. PERFORMANCE METRICS AND MODEL EVALUATION 

 

The most important part after we have finished training our model is the 

evaluation of it to check its accuracy and efficiency. One of the most common 

problems in machine learning can be overfitting. This occurs when the model 

knows “too well” the data which it has trained with and gets a very good accuracy 

in it, but later in the unseen data doesn’t perform well enough. There are several 

ways in which we can evaluate a classifier and prevent this mentioned problem. 

We can check them below: 

 

- Holdout Method 

It is the most common way to evaluate the classifier. The data is divided into 

2 parts in this method, one train set and one test set over 80% and 20% 

respectively as an example. The first set is used for training the model with its 

data and the second set is unseen data which will be used to test how well 

the model is predicting this new data. 

 

 

- Cross-Validation 

K-fold-cross-validation can be used to check if the model is over fitted. 

 

Figure 6: Cross Validation from https://scikit-learn.org/stable/modules/cross_validation.html 

This method works by making a random partition of the data set into k 

exclusive data subsets as we see in Figure 6, where each of them is of the 

same size. One of these k subsets is kept for testing and the others are used 

to train the model. For the classification, a procedure called stratification that 
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maintains the same percentage of examples of each class in each k fold is 

used. The same process is used for all k folds. In this project we will use this 

method with a k fold of 10. 

 

Now, these are the ways to be sure how well is predicting our classifier: 

 

- Confusion Matrix 

Each row of the matrix represents the instances of the real class while each 

column represents the instances of the predicted class. This is a good way to 

check if the model is having trouble predicting some of the classes. 

 

Figure 7: Confusion Matrix 

 

As we see in Figure 7 which presents the confusion matrix, we need to 

understand some concepts: 

- True Positive (TP): Number of correct predictions where the 

instance is positive. 

 

- True Negative (TN): Number of correct predictions where the 

instance is negative. 

 

- False Positive (FP): Number of incorrect predictions where the 

instance is positive. 

 

- False Negative (FN): Number of incorrect predictions where the 

instance is negative. 
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- Accuracy 

It is the relationship between the number of correct predictions and the total 

number of predictions done. 

Accuracy = 
Num.Correct Predictions 

Num.Total Predictions
 

 

- Error rate 

It is the relationship between the number of incorrect predictions and the total 

number of predictions done. 

Error Rate = 
Num.Incorrect Predictions 

Num.Total Predictions
 

 

These 2 last methods can give problems when there are a lot more instances of 

one class than from another. For example, in a cancer detection problem, the 

chances of actually having cancer are very low. For this example, let’s say 10% 

of the patients have cancer and the other 10% don’t have it. In this type of 

problem, we really don’t want to miss a patient who is having cancer but isn’t 

detected. If the model say that anyone has cancer gives, it will give an accuracy 

of 90%. The model didn’t really work well but it only predicted all the examples 

as the same class. For this reason, we need better metrics like the next ones: 

 

- Precision 

It is the relationship between the number of instances that result to be positive 

which the classifier has predicted as positive. 

Precision = 
TP 

TP+FP
 

- Recall 

It is the relationship between the number of instances that are positive and 

the ones which the model identified. 

Recall = 
TP 

TP+FN
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- True Negative Rate 

It is the percentage of negative instances out of the total actual 

negative instances. 

True Negative Rate = 
TN 

TN+FP
 

 

- F-Score 

It is the harmonic mean of the precision and recall values 

F-Score = 2 ∗
Precision∗Recall 

Precision+Recall
 

 

 

- ROC Curve 

A ROC curve (Receiver Operating Characteristic Curve) is a graph for 

visualizing the performance of a classification model showing the relationship 

between the true positive rate and the false positive rate [12]. 

TPR = 
TP 

TP+FN
              𝐹𝑃𝑅 = 

FP

FP+TN
 

 

 TPR = True Positive Rate    FPR = False Positive Rate   

TP = True Positive      FP = False Positive  

FN = False Negative     TN = True Negative 

 

           

Figure 8: ROC Curve from https://commons.wikimedia.org/wiki/File:Roc_curve.svg 
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As we can observe in Figure 8, when the curve produced by the TPR and FPR is 

a straight line from the bottom left corner to the top right corner (red one) is when 

the model is classifying randomly, it is just guessing without any previous 

learning. From that base, we see that if the line goes below it, the model will get 

worse, so the objective is having the curve at the top left corner and be an almost 

perfect classifier so when the FPR is getting higher the TPR gets really high at 

the beginning almost to 1 and continues at very high values over the increase of 

FPR. 

 

2.3. FUZZY LOGIC 

 

2.3.1. DESCRIPTION 

 

The term fuzzy logic was introduced with the 1965 proposal of fuzzy set theory 

by scientist Lotfi Zadeh. Fuzzy logic had, however, been studied since the 1920s, 

as infinite valued logic by Łukasiewicz and Tarski [13][14]. 

The term “fuzzy” refers to something that is difficult to perceive, indistinct or 

vague. Sometimes it is difficult to say if something is either true or false, it can be 

something in the middle. 

Classical logic only makes statements that are either true or false (1 or 0). 

However, there are also propositions with variable answers. In the fuzzy system 

there is no true or false, there is no absolute truth, there is an intermediate value 

which is partially true or false.  

This degree of partial truth has a range between 0 and 1 that states the probability 

of knowledge or ignorance of the statement as Figure 9 shows. 

Fuzzy logic is based on the observation that people make decisions based on 

imprecise information which doesn’t use a number quantification. Fuzzy models 

can recognise, represent and use data and information that are vague and lack 

precision. 
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Figure 9: Fuzzy Logic Example from https://www.edureka.co/blog/fuzzy-logic-ai/ 

 

Fuzzy logic has been applied to many areas, from control theory to artificial 

intelligence. 

This type of logic is used for the second KNN model created. It doesn’t take into 

account complete memberships, on the contrary, it uses partial memberships 

from a range from 0 to 1. A fuzzy set is defined as a group of elements which 

have degrees of membership defined by a membership function. 

 

2.3.2. MEMBERSHIP FUNCTION 

 

The membership function is a function that defines how each point in the input 

space is mapped to a membership value between 0 and 1. 

It allows to quantify different terms and represent a fuzzy set graphically. A 
membership function for a fuzzy set A on the universe of discourse X is defined 
as μA:X → [0,1] 

It quantifies the degree of membership of the element in X to the fuzzy set A. 

 x-axis represents the universe of discourse. 

 y-axis represents the degrees of membership in the [0, 1] interval. 

There are largely three types of fuzzifiers:   

 Singleton fuzzifier 
 Gaussian fuzzifier 
 Trapezoidal or triangular fuzzifier 

 
 

https://www.edureka.co/blog/fuzzy-logic-ai/
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Figure 10: Triangle membership graph 

 

 

 

2.4. INTERVAL VALUED FUZZY SETS 

 

An interval valued fuzzy set (IVFS) is defined by a mapping F from the universe 

U to the set of intervals in [0, 1]. Let F(u) = [F∗(u), F∗ (u)]. The union, intersection 

and complementation of IVFS is obtained by canonically extending fuzzy set 

operations to intervals [14].  

The main difference between fuzzy and intervals is that in the first case it tells us 

that the membership value of an element to a specific set is a number within the 

range [0, 1] and on the other hand, interval describes not as a number, but as an 

interval membership. 

This interval-valued fuzzy sets are used in the third model created for KNN to 

improve the original one. 

 

2.5. GENETIC ALGORITHMS 
 

Optimization is the process to generate the final best solution to a given problem. 

Each optimization problem consists of 3 elements: 

- Objective function: It is the function that needs to be optimized. 

We can have a problem that in the optimization a maximizing function is 

used and others that need a minimizing optimization. 
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- Variables: These are variables that directly affect to the objective 

function 

 

- Restrictions: These are conditions that allow the variables to have 

some values and don’t permit them to have other values. 

The type of optimization that genetic algorithm use is much more effective than 

other algorithm in very large solutions spaces because if not suing this algorithm 

it may never finish the search for th optimal solution.  

Moreover, this method is better than other machine learning algorithms because 

are much less sensitive to variations in the initial parameters. 

 

A genetic algorithm is a search heuristic process inspired by Charles Darwin’s 

theory of natural evolution. This algorithm selects the fittest individuals, by a 

natural selection process, and merges them as reproducing in a way that new 

individuals appear as offspring on the next generation. This type of algorithm will 

be used for the fourth algorithm developed in this project. 

Genetic algorithms are a part of evolutionary computing. They are adaptive and 

use the information observed in time to guide the future search. 

 

2.5.1. SEARCH OF SOLUTIONS 

 

The set of all the possible solutions to a given problem forms the search space 

or set of solutions. Each solution is a point in that space and genetic algorithms 

will search for the best solution inside this search space.  

Not all the space is going to be known by this algorithm, it is going to start by 

knowing some of it and then later, it will generate new points in that search space 

until it founds the solution. 

 

2.5.2. GENETIC ALGORITHM PROCESS 

 

The process of the genetic algorithm usually looks like this: 

1- Initial population 

A random population is created with N individuals in it called 

chromosomes, which are the solutions, that are a group of genes 

(parameters). So firstly, each individual has random genes. 
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2- Fitness function 

 

This function determines how fitted each individual is and each individual’s 

fit score will be used later as a probability for being selected for the next 

generation. 

 

3- Selection 

 

At this moment, it is time to select the fittest individuals which will 

reproduce and pass their DNA to the next generation.  

 

4- Crossover 

 

For each pair of parents selected based on their fitness score, there will 

be new offspring created by a crossover function that will join the genes 

from each parent. These new offspring will be then added into the new 

population 

 

 

5- Mutation 

 

Some of the genes of some individuals will be mutated with a low random 

probability set at the beginning of the process. Mutation is used for creating 

diversity within the population. 

 

6- Replacement 

 

The final step in in a genetic algorithm’s iteration is replacement. It 

replaces the old population with a new population based on the generated 

offspring. 

 

2.5.3. CHROMOSOME REPRESENTATIONS 

 

A chromosome is a group of genes where all the information from an individual 

is. It can represent the information in several ways: 

 

- Binary coding 

It is a very common way to represent chromosomes. Each chromosomes 

uses a ones and zeros sequence like this:  

0 1 0 0 1 0 1 
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where each gene corresponds to one bit. 

This could be use, if we want to activate or use some attributes and not 

others. In the previous example attributes 2, 5 and 7 will be used but 

attributes 1, 3, 4 and 6 will not be used for that specific chromosome. 

 

- Integer coding 

There are problems when it is better to use other type of representations 

rather than using binary coding. In this representation, the chromosomes 

are strings or integers. 

Generally, the individual  

1 0 4 7 2 

 

will have five genes each of them being 1, 0, 4, 7 and 2. 

 

- Real coding 

When using this representation, the chromosomes are real values which 

are inside and interval previously established. 

Generally, the individual  

13.2 6.8 

 

will have two genes each of them being 13.2 and 6.8. 

 

- Permutation coding 

This representation is very useful when the order is important in the 

specific problem. Each gene of the chromosome will be a position inside 

this representation of the chromosome and are given by strings of integers.  

For example, 

1 5 4 3 6 2 

 

could be a chromosome that represents the order to use to visit some cities 

travelling the least number of kilometres possible, so it in this example it 

will start in city 1 and finish in city 2 in the order of the genes of the 

individual. 
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2.5.4. CROSSOVER AND MUTATION METHODS 

 

For each for these representations, there are different ways to proceed with the 

crossover and mutation process [15]: 

 

1. Crossover 

a. Crossover on a point 

Given two binary chromosomes of length N, choose an integer x between 

0 and N-1 and mix the first x genes of chromosome 1 with the N-1 second 

genes of chromosome 2 and then mix the first x genes of chromosome 2 

with the N-1 second genes of chromosome 1. 

 

b. Crossover on n points 

It is a generalization of the previous one taking n points instead of 1. 

c. Uniform Crossover 

In contrast to the previous cases, the uniform crossing considers each 

binary gene individually and decides randomly from which parent it will be 

inherited. For this process, we generate a string of N random values 

between 0 and 1. If the value is below a specific parameter (normally 0.5), 

the value of the first parent is taken for that gene. If not, the value of the 

second parent. The second descendant is obtained by the inverse 

operation. 

d. HUX Crossover 

The idea is to introduce diversity generating very different offspring from 

their parents. It exchanges half of the genes which are different from their 

parents. With this type of crossover, we guarantee that the offspring have 

a maximum Hamming distance to their respective parents. It is used for 

binary representations. 

The Hamming distance is a metric for comparing two binary data strings. 

While comparing two binary strings of equal length, Hamming distance is 

the number of bit positions in which the two bits are different. It is used a 

lot in binary representation problems and it will be used later in one of the 

models. 
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Figure 11: Hamming distance 

e. Blend Crossover (BLX) 

It is used for real coding chromosomes. Having 2 chromosomes X and Y, 

BLX generates a new individual by choosing randomly a value in the 

interval: 

[Cmin – I * α, Cmax + I * α] 

Cmax = max{xi, yi}, Cmin = min{xi, yi} 

I = Cmax - Cmin , αƐ [0, 1] 

 

 Exploration       Exploitation 

 

Exploitation 

This way, we achieve the pursuit of both exploration and exploitation as 

we can observe in the image above. 

f. Parent Centric Crossover (PCBLX) 

PCBLX is very similar to BLX, it gets 2 individuals X and Y and generates 

a new chromosome choosing a random value between the interval: 

[xi – I * α, xi + I * α] where 

I = abs(xi - yi), αƐ [0, 1] 
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In BLX, exploration was on both chromosomes and also exploration 

between them, on the contrary, in PCBLX there is exploitation and 

exploration nearby each chromosome but each offspring will be similar 

only to one of the parents. This crossover is also used for chromosomes 

using real representations. 

 

2. Mutation 

a. Binary Mutation 

Each gene is considered separately. The idea is that each gene can 

change its value, from 0 to 1 and from 1 to 0, with a probability p. 

b. Random Reset Mutation 

It works the same way as binary mutation, but using integer coding. Taking 

into account a probability p, a gene of the chromosome will be changed for 

another one choosing it randomly from the possible values. 

c. Random Reset Mutation 

It is used for integer representations and it works adding a small positive 

or negative value to each of the genes of the individuals with a probability 

p. It uses a symmetric probability distribution, meaning that the probability 

for choosing x and -x is the same and the closer x is to 0, the more likely 

to be chosen.  

d. Uniform Mutation 

The value of a floating coding gene is changed to another random value 

in the interval [k1, k2] with a probability p. 

e. Non-Uniform Mutation 

It is one of the most common mutation processes for floating point 

encodings. The idea is to set a gaussian probability distribution with zero 

mean and a previously set deviation. For each of the genes, we choose a 

random real value according to the gaussian distribution with a probability 

p. We add this value which can be positive or negative and we get the new 

value for that specific gene. If the sum or subtraction is outside the interval 
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of all the possible values, we will take the respective border value of the 

interval. 

f. Exchange Mutation 

The simplest procedure for permutation encoding chromosomes is to 

simply swap two positions so the 2 genes will be exchanged. 

g. Shake Mutation 

The positions of a substring of th genes are randomly exchanged. 

 

3. Selection 

a. Roulette Method 

It assigns a proportional selection probability to the fitness value of that 

chromosome, so the probability of an individual to be chosen would be:     

P (Ci) = f (Ci) / (f (C1) + ... + f (Ck)). 

It can have premature convergence problems when the fitness values are 

very different from each other because the individuals which have a better 

fitness value will dominate the population easily. Moreover, when the 

fitness values are very similar, the new population will be selected 

randomly. 

b. Lineal Order Method 

It is based on the fitness values order of the individuals. Each chromosome 

has a selection probability Si based on that order.  

It uses ranges for making sure that all individuals have positive 

probabilities and it avoids the creation of individuals that provoke a 

premature convergence. 

P(Si) = 
𝑟𝑎𝑛𝑔𝑒(𝑓𝑆𝑖)

𝑁∗(𝑁+1)/2
 

c. Tournament Method 

It is one of the most used selection methods in genetic algorithms. The 

idea of the method is to make the chromosomes compete in “tournaments” 

with each other in groups and choosing the winner or winners of each 

tournament.  

First, we select n individuals with the same probability, they will compete 

and be selected based on their fitness function and finally we repeat the 

process until we achieve the desired number of parents. There existed two 

types of tournaments: with replacement and without replacement. 



 
Javier Sospedra Legarda 

 

27 
 

d. Random Selection Method 

For each i position, we obtain a random position between 1 and N and we 

exchanged it with the position i we are in. N/2 crossovers are made, being 

the parents 2*i and 2*i-1.  

 

4. Replacement 

It is the process in which the individuals of the population are replaced by the 

generated offspring. There are random and deterministic replacement methods. 

It differs depending on the genetic algorithm model.  

There are two important genetic algorithm models: the generational model, which 

generates a completely new population with new chromosomes; and the 

stationary model, which two parents are chosen with the selection method and 

then the genetic operators are used. It works very efficiently when the worst 

individuals are replaced. 

 

 

Generational Model 

 

a. Classic Replacement 

The complete population is replaced for the new offspring. 

b. Elitism 

The best chromosome of the population is never being replaced so we 

never remove the best individual.  

c. High Elitisim 

It merges the old population with the new one and then select the best N 

individuals. 

 

Stationary Model 

 

a. Replacement the worst individual 

It generates high selective pression. It only replaces the chromosome if 

the offspring is better than the worst individual of the actual population. 

b. Restricted tournament 

The most similar one among N individuals is replaced (usually N=3).  
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c. Oldest replacement 

 

The oldest chromosome is replaced. 

 

d. Random replacement 

A random chromosome is replaced. 

e. Worst among like 

The worst chromosome of the set of N individuals which are most similar 

of the generated offspring is replaced. It looks for some balance between 

diversity and selective pression. 

 

 

 

2.5.5. CHC 

 

2.5.5.1. DESCRIPTION 

 

CHC (Crossover elitism population, Half uniform crossover combination, 

Cataclysm mutation) is one of the most used genetic algorithms nowadays due 

to its balance between diversity and convergence [16]. 

It introduces new concepts to genetic algorithms like elitism replacement, 

selection and crossover diversity with the HUX crossover method for binary 

chromosomes and incest prevention methods and the concept of reset. 

 

2.5.5.2. METHODS 

 

The idea is to generate new offspring different from their parents preserving the 

best individuals of the population. For this reason, CHC uses a random selection 

method explained previously. Moreover, it introduces this wanted diversity with 

the Uniform Crossover (HUX), also explained previously, which exchanges half 

of the genes which are different from their parents and it guarantees having a 

maximum Hamming distance. CHC is also characteristic because it doesn’t use 

a mutation method. 
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2.5.5.3. INCEST PREVENTION 

 

As this algorithm wants to prevent crossing very similar chromosomes, it 

introduces the idea of incest prevention. Hamming distance is used for calculating 

the distances between parents and then crossing the ones which are different 

from each other. 

There exists a crossover threshold for crossing parents which differ in a certain 

number of bits. If the different number of bits is less than the threshold the 

individual is not copied.  

The crossover_threshold starts with a value n/4 being n the length of the 

chromosome. The condition used is if half the Hamming distance divided by two 

is greater than the crossover threshold, then the crossover will be made. If there 

aren’t new offspring created the threshold will be decreased by 1. 

 

2.5.5.4. RESET 

 

When the population has reached to a premature convergence, CHC renews the 

population as we observe in Figure 13. This occurs when the crossing threshold 

is less than 0. There are two ways for doing this process: 

o Using the best element and including a copy of it. 

 

o Using the best or parts of the best individuals and choosing the rest     

ones randomly 

 

When the reset is done, the threshold value is also reset to its initial value n/4. 

 

Figure 12: CHC evolutive model 
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2.5.5.5. STOP CRITERION 

 

There are three main reasons the algorithm will stop for which are: when the 

optimal solution is achieved, when the number of maximum iterations has been 

reached and when there have passed three resets without improvement. 

 

2.5.5.6. CODIFICATIONS 

 

Although, CHC is designed for binary codification, it can be used with real 

codification too making some adaptions. 

For real codification BLX or PCBLX crossover methods are used for maintaining 

a balance between exploitation and exploration. Moreover, the reset process 

maintains the best individual and the rest ones are generated randomly. 

For incest prevention, a transformation from real to binary is needed. The real 

values are coded in binary using #Bitsgene, a number of bits per gen previously 

established, being n*#Bitsgene the length of the binary transformed 

chromosome. The initial threshold in this case is (n * #Bitsgene) / 4. In this 

procedure, Gray codification is used for this reason to transform a real value into 

a sequence of bits and then later calculate the Hamming distance. 

It uses the Hamming distances too and the real coded threshold is reduced by 

#Bitsgene when resetting. 

 

2.5.5.7. DOUBLE CODIFICATION 

 

There are problems in which we will have to mix both real and binary encoding. 

In these cases, the methods for crossover will be applied differently for each part 

of the chromosome. 

When using this multiple codification, there will be 2 thresholds, the one for real 

representation (n1*#Bitsgene)/4 and the one for binary representation n2/4, being 

n1 the length of real values in the chromosome and n2 being the length of binary 

genes in the chromosome. That means, n1+n2=n and n will be the total length of 

the chromosome. 

 

For crossover, PCBLX will be applied to the real coded part and HUX for the 

binary part checking in both cases its respective thresholds. When using this 

double codification, the incest prevention will be applied as follows: 
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being RDistance and BDistance the Hamming distances for real and binary 

encoding respectively and RThreshold and BThreshold the thresholds for real 

and binary encoding respectively. 

 

 

 

2.6. DEVELOPMENT ENVIRONMENT 

 

2.6.1. PYTHON 

 

The programming language selected for this project is Python due to several 

reasons.  

Python is very easy to understand and has a simple syntaxis. Moreover, a lot of 

people use of Python so there is a big community that comes in handy for doubts 

or errors that a programmer can have while coding. Finally, one of the main 

reasons is because this project is about a machine learning algorithm (KNN) and 

Python is very useful in this area because it has lots of big libraries about this 

topic. 

 

2.6.2. JUPYTER NOTEBOOK 

 

The chosen framework for making all the experiments and analysis of this final 

degree project is Jupyter Notebook. 

Jupyter Notebook is a web-based interactive computational environment for 

creating notebook files (.ipynb) based on cells that can contain text or code.  

Jupyter Notebook is very easy to use specifically when you want to have all 

organised and you can just execute each cell at a time. It is also extremely useful 

for making experiments and for making analysis of different executions.  
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2.6.3. DEAP LIBRARY 

 

As explained previously, the fourth model developed in this project (the 

evolutionary one) has been developed using a genetic algorithm. 

The Distributed Evolutionary Algorithms in Python (DEAP) library is an 

evolutionary computation framework for fast prototyping and testing ideas in 

Python that has been used for this purpose. This library is very powerful because 

it has many types of crossover functions, mutation functions, different 

chromosome types developed in it so it makes easier and quicker to developed 

any idea or project someone wants to develop. 

 

 

3. PROBLEM STATEMENT 
 

The goal of this project is to make a comparison of four different K-Nearest 

Neighbor algorithms: original K-Nearest Neighbor (KNN), original Fuzzy K-

Nearest Neighbor (Fuzzy-KNN), Fuzzy K-Nearest Neighbor with Intervals (IVFS 

KNN) and the Evolutionary K-Nearest Neighbor with Intervals version. 

 

3.1. ORIGINAL K-NEAREST NEIGHBOR 

 

3.1.1. DESCRIPTION 

 

This algorithm is the base one, the original K-Nearest Neighbor (KNN) [2][17]. It 

is an easy to implement supervised machine learning algorithm that can be used 

for both regression and classification problems. Although it is an easy to 

implement algorithm, it works very well in many problems and different situations. 

This KNN approach doesn’t create a whole model, it saves all the data so it could 

be defined as a model itself. The idea is based on using a distance as similarity 

function between the training data points and the test point that we want to 

classify, so it assumes that points that are near each other, have things in 

common. It finds K points of the data set that have more in common with the test 

point so that we classify it taking into account this K objects. That is the reason 

the KNN algorithm is an example of what it is called a lazy learning technique, 

that is, a technique that waits until it gets the test point to generalize using the 

training data. 
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Figure 13: K-Nearest Neighbor Algorithm with K = 3 from https://www.jparzival.com/blog/algoritmo-knn/ 

 

As we can see in Figure 14, the training points are the ones in yellow and blue 

and the test point which we want to classify is the star one. We are using K=3 so 

the approach will take into account the 3 training points which are nearer the star 

point. In this case we get 2 yellow ones and 1 blue point, so the prediction we will 

give is to classify the test point as yellow class. 

 

3.1.2. ALGORITHM 

 

The basic algorithm would be: 

 

Algorithm 8.1 provides a summary of the nearest-neighbor classification method. 

Given a training set D and a test object z, which is a vector of attribute values and 

has an unknown class label, the algorithm computes the distance (or similarity 
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between z and all the training objects to determine its nearest-neighbor list. It 

then assigns a class to z by taking the class of the majority of neighboring objects. 

Ties are broken in an unspecified manner, for example, randomly or by taking the 

most frequent class in the training set. 

The storage complexity of the algorithm is O(n), where n is the number of training 

objects. The time complexity is also O(n), since the distance needs to be 

computed between the target and each training object. However, there is no time 

taken for the construction of the classification model. Thus, KNN is different from 

most other classification techniques which have moderately to quite expensive 

model-building stages, but very inexpensive O(constant) classification steps. 

 

 

3.1.3. METRIC’S EVALUATION 

 

An important issue is the selection of the distance measure. The most common 

ones are the Euclidean (Figure 15) and Manhattan (Figure 16) distances: 

 

d(x, y) = √∑ (𝑦𝑖 − 𝑥𝑖)2𝑛
𝑖=1     d(x, y) = √∑ |𝑦𝑖 − 𝑥𝑖|𝑛

𝑖=1  

  Euclidean distance   Manhattan distance 

 

We know that the Euclidean distance gives problems when the number of 

attributes increases. Attributes need to be scaled for not giving more importance 

to attributes with high values such as price of a house over attributes like 

number of bathrooms in a house which are lower. 

 

One of the other main concerns that can affect the KNN’s performance is the 

selection of the k value. When we choose a too low value for k it will affect 

negatively as it will be affected by noise points. On the contrary, when a too large 

k value is used, the neighborhood might be too big an contain many points 

including many points from other classes. 

 

There are different methods to combine the votes for each class. In first place, 

we have the main and simple way that is taking a majority vote between these k 

instances. This approach can be a problem due to the k neighbors can vary a lot 

in their distance to the test point, so it would be interesting to take more into 

account the vote from one neighbor that is the closest than the one which is 
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farther away. This gives the idea to use a more complex method that takes into 

account weights of each instance’s distance to the test point. The approach used 

is using the reciprocal of the squared distance: 

w = 
1

𝑑(𝑦,𝑧)2
 

 

 

 

3.2. ORIGINAL FUZZY K-NEAREST NEIGHBOR 

 

3.2.1. DESCRIPTION 

 

In this version [3], training instances of KNN are labelled using a different method. 

It uses memberships in the range of [0, 1] and not full membership as it was in 

original KNN where it was just 0 if the instance wasn’t in that class or 1 if it was. 

For the contrary, this approach uses a degree of membership for each class. For 

instance, an example that would be mainly of class A and not much of class B, 

might have membership of 0.95 of class A and a membership of 0.05 of class B. 

This approach has been shown to be an effective improvement of the original 

KNN algorithm achieving better accuracy rates in classification problems. 

 

This membership is obtained by this function: 

 

Figure 14: Membership Function Fuzzy KNN 

were nnc are the number of instances that belong to class c found between the 

kInit (usually a value between 3 and 9) neighbors of x. This works because we 

are setting the class of an instance to which originally belonged with more than 

half of the membership (0.51), on the other hand, the rest is divided between 

the rest of the other classes depending on the neighbourhood of the instance. 

Using the Euclidean distance in this method is the main choice when the 

attributes are normalized in the [0, 1] range.  
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Later for the final vote for each class and neighbor we use the next equation: 

 

V(kj, c) = 
𝑈𝑐(𝑘𝑗)∗1 /(||𝑄−𝑘𝑗||)2/(𝑚−1)

∑ 1/(||𝑄−𝑘𝑖||)2/(𝑚−1)𝑘
𝑖=1

 

 

 

m being a parameter generally 2 and m > 1 and kj being the j-th nearest 

neighbor, Q is the instance to classify and Uc(kj) is the membership value of the 

kj neighbor to the class c. 

The votes are obtained by taking into account the memberships of the k 

neighbors, the Euclidean norm and the memberships are weighted to get the 

final classification. 

Although, the vote selection is pretty similar to the original KNN talking about 

the majority of votes, in the case of Fuzzy KNN, the use of this weight labeling 

approach and the weighted votes allows getting a more precise classification 

among the instances which are near the decision boundaries. Moreover, this 

method lets one example vote for more than one class at a time taking into 

account its neighborhood. 

 

3.3. FUZZY K-NEAREST NEIGHBOR WITH INTERVALS 

 

3.3.1. DESCRIPTION 

 

Although, Fuzzy K-Nearest Neighbors is a great improvement in this KNN 

algorithm, it lacks in knowledge just taking into account one value between [0, 1] 

for the memberships’ assignation, contrary to the possibility of giving an interval 

valued membership as the new model we are going to describe. This has direct 

relation with the two parameters: m for the voting process of the k nearest 

neighbors and kInit for the initial memberships process. 

The solution for this problem is Fuzzy K-Nearest Neighbor with Intervals (IVFS 

KNN) [4], an improvement for the original Fuzzy algorithm. IVFS introduces fuzzy 

sets as memberships with a lower and upper bound. This interval is also used at 

the final moment of the voting process and gives us more flexibility as far as the 

selection of kInit and m parameters is concerned. We also should take in mind 

that the length of the interval, the difference between the upper bound and the 
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lower bound, gives us information about the degree of uncertainty the 

classification may have. 

 

3.3.2. MEMBERSHIP PROCESS 

 

The use of intervals for the memberships can help with the use of several values 

for kInit at the same time obtaining each membership with the next equation: 

 

 

 

getting a membership value for each instance x and kInit value. So finally, the 

interval membership of an instance x of the training set to a class will be 

represented as an interval like this: 

Uc(x) = [Uc-left(x), Uc-right(x)] 

Uc-left(x) = min[Uc (x, kInit)] 

Uc-right(x) = max[Uc (x, kInit)] 

 

This way, a better and more accurate classification is obtained because of the 

aggregation of the different kInit’s results so that the final election becomes less 

relevant and because of several important points: 

- Training points identified incorrectly (noise) that only have instances 

of other classes nearby will get only half membership ([0.51, 0.51]), on the 

contrary, the membership to the other classes will descript the real nature 

of these training points. 

 

- Training points detected at the center of their classes that are only 

surrounded by other instances of the same class will have all the 

membership ([1.0, 1.0]) and no membership ([0.0, 0.0]) to the rest of the 

other classes. This works the same way as original KNN and original 

Fuzzy KNN. 
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- Training points located over the boundaries and surrounded by 

different training instances that belong to different classes being some of 

them of the same class, but other instances belonging to other classes will 

have a special membership: 

 

o The lower value of the membership to c, min[Uc(x, kInit)] (Uc−left(x)), 

can be used for measuring how relevant and how many neighboring 

instances with a class different to c are. The higher the number of 

neighboring instances and closer to the training instance they will 

be, the closer to 0.51 this lower value will be so that this 

membership assures to be more than half because of its proximity 

to instances of the same class. 

 

o The upper value of the membership to c, Uc−right(x), can be used for 

measuring how far away the first neighbor not belonging to c is. It 

will be 1.0 if it is not among the first nearest neighbors (taking into 

account the parameter kInit chosen), and it would be a bit lower if 

the number and position of the neighboring instances not belonging 

to c is slightly bigger. 

 

o The lower value of the membership to the rest of classes will be 0.0, 

unless one of the first nearest neighbors belongs to that class. The 

upper value can be used too as a relative way of measuring the 

presence of this class among the neighborhood of the training 

instance, never greater than 0.49 to assure it doesn’t get more than 

half of the membership due to its lack of proximity to instances of 

the same class.  

 

 

3.3.3. VOTING PROCESS 

 

The votes cast by each neighbor in the computation of the decision rule can also 

be represented by intervals. In this expression, the parameter m can be used to 

vary the influence of the neighbors, depending on the specific value chosen. 

If m = 2, the vote of each neighbor is weighted by the reciprocal of the squared 

Manhattan distance. As m increases, distances between the different neighbors 

will be evenly weighted, and therefore the relative distances will have less effect 

on the determination of the votes (with m = 3 the weight becomes the reciprocal 

of the Euclidean distance). Similarly, if m is decreased, the relative distances will 

have a greater effect, reducing the contribution of the furthest instances (as m 

approaches 1).  
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Although the choice recommended was to simply let m = 2, it is possible to 

consider this parameter in a more flexible way, by introducing intervals. This 

allows a range of possible values of m to be considered instead of a single one, 

resulting in a more general voting mechanism. 

To represent this, the equation becomes: 

V(kj, c) = Uc(kj) * D(kj) 

Where 

D(kj) = [min(D(kj, ma), D(kj, mb)), 

    max(D(kj, ma), D(kj, mb))] 

 

D(kj, m) = 
1 /(||𝑄−𝑘𝑗||)2/(𝑚−1)

∑ 1/(||𝑄−𝑘𝑖||)2/(𝑚−1)𝑘
𝑖=1

 

and ma, mb are the minimum and maximum values chosen for the parameter m. 

Note that since the elements of D(kj) are intervals, their product must be 

computed as: 

[a1, a2] * [b1, b2] = [a1*b1, a2*b2] 

 

 

3.3.4. COMBINATION OF VOTES 

 

Once the votes have been calculated, we obtain the final classification as the 

class with the highest vote value. In the case of IV-KNN, the votes to each class 

are calculated as follows: 

V(c) = ∑ 𝑉(𝑘𝑗, 𝑐)𝑘
𝑗=1  

where the addition of two intervals is obtained by  

[a1, a2] + [b1, b2] = [a1+b1, a2+b2] 

After all votes for each and every class have been computed, all the intervals are 

converted to a single value getting the center of the interval so the final 

classification is obtained as the class which has the highest center of interval. In 

the case of a tie, only the first nearest neighbor is considered to untie the 

classification. 
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3.4. EVOLUTIONARY KNN WITH INTERVALS 
 

3.4.1. DESCRIPTION 

 

As is detailed previously, the performance of the classifier is dependent on the 

selection of parameter values kInit, ma and mb parameters. Although these values 

could be searched and fixed experimentally, the proposal in this case is the use 

of evolutionary algorithms for optimizing this selection.  

There are two optimizations needed, for parameters ma and mb, the optimization 

process needs to find two real values within a range. On the other hand, the 

selection process of a set of values for kInit can be more complicated.  

Furthermore, as the goal is to obtain the optimal values for this representation of 

the configuration, an optimization algorithm has to be used. For this reason, 

genetic algorithms are a suitable option for this algorithm given its great 

capabilities for optimization problems and in this case, the well-known CHC 

algorithm is used to get an approach solution. 

For this improvement of the KNN with intervals version, the equations for 

obtaining memberships for each instance and for the voting procedure are the 

same ones as for the KNN with intervals version one. Even though, with this new 

version the parameter values (kInit and m) used for classification in membership 

and voting procedures will be optimized with a genetic algorithm so the 

classification accuracy is higher. 

 

 

3.4.2. REPRESENTATION 

 

The representation has two parts, the part for selecting de kInit value that uses a 

binary codification where the maximum value for kInit is chosen and it is created 

an array with same number of genes as that maximum value; and on the other 

hand, the other part for choosing the ma and mb values using real codification 

which will be the last two genes of the final chromosome. 

The idea is to define a process for choosing some specific values which don’t 

have to be a whole interval like {1, 2, 3, 4, 5, 6, 7, 8, 9} for kInit but to create the 

possibility of just using some of the kInit values being non-correlative between 

them with a maximum value of 9 in this example [5]. 
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Figure 15: Valid configuration of Evolutionary KNN. The values of kInit chosen are 2, 3, 4 and 8 (from the interval (1, 
9)) and the values of ma and mb are 1.48 and 2.07. 

In Figure 19, we can observe an example of a valid configuration for the 

evolutionary KNN version. It is constructed by a binary array of Sn digits, in which 

a value Sn = 1 shows that n is chosen as a value for kInit, and on the other hand, 

a value Sn = 0 shows that n is not chosen, and finally two real values which are 

ma and mb.  

In the example in Figure 19, the values 2, 3, 4 and 8 have been chosen for the 

kInit parameter as we see ones in their respective place of Sn, moreover, the 

interval [1.48,2.07] has been chosen for the m parameter. This configuration 

could be useful in such cases where the memberships should be constrained to 

the four nearest neighbors of each training instance, but then extended by 

considering an instance at a greater distance. 

 

3.4.3. METHODS 

 

The crossover methods used are the ones typically used in the CHC genetic 

algorithm.  

There is a real coded part for the m values where the PCBLX crossover method 

will be applied. On the other hand, there is a binary coding for kInit parameters 

where HUX method will be applied. 

As we know, we are not applying any mutation method for CHC. But we apply a 

similar method as the random selection method but choosing the odd individuals 

and the even ones. 

Moreover, we are using a high elitism replacement method where we introduce 

the best individual of the population in the next generation population and where 

both parents and offspring compete for being in the next generation population. 

The fitness function for these chromosomes will be the accuracy on the training 

set. 
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4. RESULTS 
 

The aim of this project is to compare these four versions of the KNN algorithm 

and to observe the different accuracy they obtain. For this reason, these four 

algorithms have been tested with several known datasets. 

 

 

4.1. DATASETS 

 

The datasets used are some well-known Keel datasets [18] used a lot for testing 

machine learning models which appear with their respective number of instances 

or examples, their attributes or variables and the number of classes that the 

respective KNN algorithm version has to predict: 

 

Table 1: Datasets considered in the study 

Dataset Instances Attributes Classes 

appendicitis 96 7 2 

balance 562 4 3 

banana 4770 2 2 

bands 334 19 2 

bupa 310 6 2 

cleveland 267 13 5 

dermatology 323 34 6 

ecoli 303 7 8 

glass 196 9 7 

haberman 276 3 2 

hayes 144 4 3 

heart 243 13 2 

hepatitis 69 19 2 

ionosphere 316 33 2 

iris 135 4 3 

led7digit 450 7 10 

mammographic 744 5 2 

marketing 6185 13 9 

monk 388 6 2 

movement_libras 324 90 15 

newthyroid 194 5 3 

page 4925 10 5 

penbased 9892 16 10 

phoneme 4864 5 2 

pima 691 8 2 
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ring 6660 20 2 

satimage 5792 36 7 

segment 2079 19 7 

sonar 188 60 2 

spambase 4138 57 2 

spectfheart 241 44 2 

tae 136 5 3 

texture 4950 40 11 

thyroid 6480 21 3 

titanic 1981 3 2 

twonorm 6660 20 2 

vehicle 762 18 4 

vowel 891 13 11 

wdbc 513 30 2 

wine 160 13 3 

winequality 1440 11 11 

winequality 4409 11 11 

wisconsin 616 9 2 

yeast 1336 8 10 

 

There are 44 datasets with many different numbers of examples, attributes and 

classes per dataset. Here there is a simple description of mean, median and other 

interesting data about the datasets: 

 

 Instances Attributes Classes 

count 44.0 44.0 44.0 

mean 1964.39 17.73 4.73 

std 2548.15 17.96 3.62 

min 69.0 2.0 2.0 

25% 261.0 6.0 2.0 

50% 537.5 12.0 3.0 

75% 4205.75 20.0 7.0 

max 9892.0 90.0 15.0 
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4.2. PERFORMANCE METRIC AND CONFIGURATIONS 

 

After having explained where our models are going to be tested, an evaluation 

method needs to be described. The accuracy score metric is used for testing 

each dataset and getting its results. Moreover, for this approach, a 10 K cross-

validation method is used, so the final result for each dataset will be the mean of 

the 10 different accuracies we get for each of the groups of validations there are.  

The configuration for the Fuzzy K-Nearest Neighbor will be: kInit = 3 and m = 2. 

On the other hand, the Interval-Valued Fuzzy KNN will have [4, 5, 6, 7, 8] as the 

interval for the kInit parameter and finally, ma will be 1.5 and mb will be 2. The 

original KNN doesn’t use kInit or m parameters, so for all the models a 

comparison for different k values, which is the parameter all models have in 

common, will be done for searching the best k values for future comparison with 

the evolutionary algorithm. 

 

4.3. K VALUE COMPARISON 
 

All the four models have a common parameter k, the k nearest neighbors’ 

number, which hasn’t been selected yet. For these first three models, a search 

for an optimal value for this parameter has been made. 

 

We can observe Table 2, 3, 4 and 5 which show an analysis of the first three 

version of KNN for different k values where each column is a different model and 

each row is a dataset. Each column contains the accuracy of each model for a 

specific dataset. Moreover, we can observe the second to last row in which the 

average accuracy for each model for all the 44 datasets is calculated and in the 

last row we can see the number of datasets in which each model has achieved 

the best accuracy value.  

 

For Table 2 and k = 3, there is an improved accuracy for the FKNN and the 

intervals models with no difference between these two while the original KNN 

gives the worst result. Moreover, taking into account the number of wins in the 

last row there isn’t any special improvement as we can see that the original KNN 

and the IVFS model finish with a tie with more wins than the Fuzzy model. 
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Table 2: Analysis of different KNN algorithms for k = 3 

Dataset KNN Fuzzy Iv Fuzzy 
appendicitis 83.36 83.36 81.45 
balance 81.27 81.6 81.44 
banana 88.6 88.62 88.13 
bands 69.35 70.13 72.05 
bupa 59.63 61.7 61.99 
cleveland 54.54 54.54 54.27 
dermatology 96.9 96.9 96.9 
ecoli 80.97 82.49 82.48 
glass 71.95 74.29 73.18 
haberman 70.27 69.3 67.33 
hayes-roth 55.62 65.62 66.25 
heart 77.41 77.04 77.04 
hepatitis 81.99 81.99 81.99 
ionosphere 85.18 85.46 85.46 
iris 94.0 94.0 94.0 
led7digit 69.2 69.0 69.0 
mammographic 79.28 79.01 78.77 
marketing 29.41 29.78 29.32 
monk-2 96.55 79.96 78.59 
movement_libras 83.06 85.56 86.39 
newthyroid 95.37 96.32 97.23 
page-blocks 95.91 96.02 96.0 
penbased 99.36 99.36 99.38 
phoneme 88.64 90.08 90.43 
pima 73.06 72.93 72.79 
ring 71.77 67.58 71.2 
satimage 90.83 90.63 90.85 
segment 96.02 96.23 96.75 
sonar 83.07 84.5 85.0 
spambase 89.62 91.04 91.08 
spectfheart 72.68 72.32 72.68 
tae 53.75 67.0 65.71 
texture 98.75 98.8 98.91 
thyroid 93.97 93.88 93.79 
titanic 70.1 70.1 70.1 
twonorm 96.54 96.58 96.51 
vehicle 71.51 71.28 71.76 
vowel 97.88 98.59 98.69 
wdbc 96.13 96.3 96.12 
wine 95.52 95.52 95.52 
winequality-red 58.85 66.79 66.23 
winequality-white 58.78 66.5 66.52 
wisconsin 96.52 96.96 97.25 
yeast 54.99 56.94 56.0 
Average 79.73 80.51 80.51 
Number of wins 16.0 12.0 16.0 
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For Table 3 and k = 5, there is an improved accuracy for the FKNN and IVFS 

models also with no much difference between them while the original KNN gives 

the worst result again. In this case, in terms of number of wins there is a clear 

difference because the IVFS model wins 19 of the 44 datasets while the first two 

models share about the other half of the wins almost equally. 

 

Table 3: Analysis of different KNN algorithms for k = 5 

Dataset KNN Fuzzy Iv Fuzzy 
appendicitis 85.0 87.0 85.09 
balance 83.2 87.2 87.2 
banana 89.09 89.38 88.98 
bands 68.86 70.0 70.71 
bupa 61.06 63.17 62.31 
cleveland 56.31 56.64 57.0 
dermatology 96.33 96.35 96.62 
ecoli 80.99 82.77 83.38 
glass 70.18 71.66 71.66 
haberman 67.92 67.32 66.01 
hayes-roth 44.38 65.62 65.62 
heart 80.74 79.63 80.37 
hepatitis 86.27 83.42 83.42 
ionosphere 85.17 84.33 84.6 
iris 96.0 95.33 95.33 
led7digit 68.4 70.4 70.4 
mammographic 80.85 79.65 79.75 
marketing 29.95 30.46 30.61 
monk-2 94.98 89.43 81.33 
movement_libras 80.56 82.22 83.89 
newthyroid 93.98 93.98 95.41 
page-blocks 95.8 95.96 96.13 
penbased 99.25 99.23 99.3 
phoneme 87.99 89.64 90.04 
pima 73.06 72.66 73.06 
ring 69.2 60.47 62.96 
satimage 90.78 90.26 90.44 
segment 95.63 96.28 96.49 
sonar 84.52 83.57 85.02 
spambase 90.06 90.97 91.47 
spectfheart 73.45 75.73 73.83 
tae 55.04 66.29 66.38 
texture 98.53 98.49 98.67 
thyroid 94.0 93.97 94.07 
titanic 74.28 74.28 74.28 
twonorm 96.99 96.95 96.92 
vehicle 72.1 70.69 71.16 
vowel 95.15 96.87 98.28 
wdbc 96.65 96.65 96.83 
wine 95.49 96.05 95.49 
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winequality-red 59.66 68.48 68.35 
winequality-white 57.57 67.58 67.52 
wisconsin 96.95 97.11 97.39 
yeast 57.01 59.23 58.56 
Average 79.75 80.98 80.96 
Number of wins 13.0 12.0 19.0 

 

 

 

 

For Table 4 and k = 7, we start to observe a clear improvement in the average 

accuracy of the IVFS model with more than 81% average accuracy and a slightly 

worse result for the Fuzzy model compared with k = 5 even though it still improves 

original KNN’s average accuracy. In this case, there is a clear winner too in terms 

of number of wins with IVFS model winning 21 out of the 44 datasets, that is 

nearly 50% of wins for all the datasets while the first two models share about the 

other half of the wins with a greater number of wins for part of the original model 

of KNN. 

 

 

Table 4: Analysis of different KNN algorithms for k = 7 

Dataset KNN Fuzzy Iv Fuzzy 
appendicitis 87.0 87.0 87.0 
balance 88.32 88.65 88.49 
banana 89.55 89.7 89.62 
bands 70.32 69.58 70.84 
bupa 61.95 64.6 65.21 
cleveland 56.99 57.62 57.31 
dermatology 96.34 96.06 96.06 
ecoli 82.77 82.76 82.17 
glass 69.79 70.36 71.77 
haberman 70.23 70.92 68.29 
hayes-roth 34.38 60.0 64.38 
heart 78.89 78.89 80.0 
hepatitis 86.77 88.76 88.67 
ionosphere 84.03 84.31 84.6 
iris 96.67 95.33 94.67 
led7digit 68.6 69.0 69.6 
mammographic 80.25 79.52 79.75 
marketing 30.21 30.86 31.01 
monk-2 89.4 83.23 81.64 
movement_libras 75.56 76.11 81.67 
newthyroid 92.58 92.58 93.98 
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page-blocks 95.54 95.69 96.02 
penbased 99.12 99.1 99.16 
phoneme 87.71 89.16 90.06 
pima 72.92 73.71 73.19 
ring 67.47 56.23 58.91 
satimage 90.57 89.93 90.09 
segment 95.11 95.93 96.19 
sonar 81.17 77.83 83.12 
spambase 89.78 90.76 91.28 
spectfheart 77.21 78.68 77.17 
tae 51.08 65.0 65.0 
texture 98.25 98.25 98.42 
thyroid 93.97 93.81 93.97 
titanic 73.74 73.74 73.74 
twonorm 97.11 97.03 97.05 
vehicle 72.57 70.69 71.16 
vowel 90.0 94.14 97.47 
wdbc 97.18 97.01 97.18 
wine 94.93 94.93 94.93 
winequality-red 59.48 67.73 69.23 
winequality-white 57.02 66.58 68.58 
wisconsin 97.1 97.25 96.81 
yeast 58.22 59.71 59.77 
Average 79.26 80.42 81.02 
Number of wins 14.0 9.0 21.0 

 

 

 

For Table 5 and k = 9, we can observe a worse result for all the models compared 

with other almost all the other k values. IVFS is still the best one followed by the 

Fuzzy one with the worst model being again KNN, but with a decrease in average 

accuracy in all of them. On the other hand, in this last comparison, there is also 

a clear winner too in terms of number of wins with IVFS model winning 24 out of 

the 44 datasets, that is more than 50% of the wins for all the 44 datasets while 

the first KNN model gets 18 wins which is also great and finally we have the worst 

result for the Fuzzy model with just 2 wins for all the datasets. 

 

Table 5: Analysis of different KNN algorithms for k = 9 

Dataset KNN Fuzzy Iv Fuzzy 
appendicitis 87.0 87.0 87.0 
balance 89.29 88.8 88.8 
banana 89.89 89.77 89.7 
bands 69.67 69.84 70.21 
bupa 62.72 65.37 65.99 
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cleveland 55.28 57.92 57.97 
dermatology 95.5 95.5 95.79 
ecoli 82.75 82.17 83.06 
glass 69.0 67.05 70.33 
haberman 71.24 71.58 71.26 
hayes-roth 30.0 47.5 61.88 
heart 80.37 80.0 81.11 
hepatitis 85.52 84.09 84.32 
ionosphere 84.32 83.75 84.31 
iris 95.33 94.67 94.0 
led7digit 70.0 70.8 71.6 
mammographic 80.49 80.24 79.52 
marketing 30.64 31.16 30.94 
monk-2 82.0 79.02 79.96 
movement_libras 71.11 71.67 78.33 
newthyroid 92.55 92.55 92.55 
page-blocks 95.49 95.43 95.69 
penbased 99.04 99.0 99.13 
phoneme 87.16 88.71 89.56 
pima 73.58 73.32 73.72 
ring 65.89 53.88 55.82 
satimage 90.29 89.57 90.05 
segment 94.98 95.28 95.93 
sonar 74.95 71.64 75.45 
spambase 89.84 90.21 90.99 
spectfheart 76.79 77.54 77.56 
tae 54.33 62.38 65.67 
texture 98.16 98.02 98.27 
thyroid 94.03 93.72 93.82 
titanic 76.69 76.69 76.69 
twonorm 97.19 97.15 97.19 
vehicle 70.8 68.68 70.8 
vowel 83.74 90.81 96.57 
wdbc 97.18 97.01 97.01 
wine 94.93 94.38 94.93 
winequality-red 59.23 66.23 68.35 
winequality-white 56.37 65.01 67.62 
wisconsin 97.1 96.66 96.81 
yeast 59.03 59.78 60.18 
Average 78.66 79.35 80.60 
Number of wins 18.0 2.0 24.0 
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4.4. FINAL COMPARISON 
 

As observed in Tables 2, 3, 4 and 5, original KNN algorithm has its best 

performance with k = 5 with an average accuracy in the 44 datasets of 79.75%. 

Secondly, the improved Fuzzy KNN version performed with an 80.98% of 

average accuracy in the 44 datasets with k = 5 too. Finally, the Interval-Valued 

Fuzzy KNN version had the best performance with 81.02% average accuracy in 

the 44 datasets using k = 7. 

The objective of this project was to study the supposed improvement of the other 

KNN algorithms. The results are clear, the Fuzzy KNN model makes an 

improvement in the average accuracy of its predictions comparing it with the 

original KNN. Moreover, the Interval-Valued Fuzzy version outperformed not only 

the original version, but the Fuzzy version one too with a final accuracy of 

81.02%. With this study, it is sure that the fuzzy and interval fuzzy theory can be 

used for making the K-Nearest Neighbor algorithm more accurate. 

The best configurations for the k parameter previously calculated will be used for 

the final comparison with the evolutionary KNN model.  

The evolutionary model will use a configuration of: a k neighbors value of 7 

because of the previous study that gave the best result for the previous model 

IVFS with a k value of 7, the kInit possible values will be within the interval [0, 9], 

the 2 m possible values will be within (1, 4] and the population size used in the 

genetic algorithm for the parameters search will be 50. 

 

Table 6 has the same structure of the previous tables in terms of how rows and 

columns are presented which the addition of a new column for the Evolutionary 

model.  

In Table 6 we can observe the improvement of each model in the average row. 

The Evolutionary model outperforms the IVFS models with an average accuracy 

for the 44 datasets of 81.43%. The accuracies for the other models decrease the 

closer we get to the original KNN. In terms of number of wins, there is a new clear 

winner which is also the Evolutionary model with 19 wins out of the 44 datasets, 

followed by the past winner IVFS with 13 wins. These two models really 

outperformed KNN and FKNN models in this last row with more than double of 

wins. 
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Table 6: Accuracy comparison between different KNN algorithms 

Dataset KNN Fuzzy Iv Fuzzy Evolutionary 
appendicitis 85.0 87.0 87.0 84.85 
balance 83.2 87.2 88.49 88.36 
banana 89.09 89.38 89.62 89.37 
bands 68.86 70.0 70.84 67.12 
bupa 61.06 63.17 65.21 62.17 
cleveland 56.31 56.64 57.31 57.68 
dermatology 96.33 96.35 96.06 95.32 
ecoli 80.99 82.77 82.17 82.35 
glass 70.18 71.66 71.77 67.51 
haberman 67.92 67.32 68.29 70.31 
hayes-roth 44.38 65.62 64.38 65.62 
heart 80.74 79.63 80.0 77.78 
hepatitis 86.27 83.42 88.67 86.11 
ionosphere 85.17 84.33 84.6 92.46 
iris 96.0 95.33 94.67 95.56 
led7digit 68.4 70.4 69.6 70.25 
mammographic 80.85 79.65 79.75 82.97 
marketing 29.95 30.46 31.01 30.77 
monk-2 94.98 89.43 81.64 87.12 
movement_libras 80.56 82.22 81.67 83.33 
newthyroid 93.98 93.98 93.98 95.45 
page-blocks 95.8 95.96 96.02 96.29 
penbased 99.25 99.23 99.16 99.55 
phoneme 87.99 89.64 90.06 91.07 
pima 73.06 72.66 73.19 73.31 
ring 69.2 60.47 58.91 64.66 
satimage 90.78 90.26 90.09 90.89 
segment 95.63 96.28 96.19 95.96 
sonar 84.52 83.57 83.12 87.3 
spambase 90.06 90.97 91.28 90.94 
spectfheart 73.45 75.73 77.17 78.17 
tae 55.04 66.29 65.0 65.42 
texture 98.53 98.49 98.42 98.79 
thyroid 94.0 93.97 93.97 93.7 
titanic 74.28 74.28 73.74 74.62 
twonorm 96.99 96.95 97.05 96.35 
vehicle 72.1 70.69 71.16 69.46 
vowel 95.15 96.87 97.47 99.33 
wdbc 96.65 96.65 97.18 99.42 
wine 95.49 96.05 94.93 96.3 
winequality-red 59.66 68.48 69.23 67.42 
winequality-
white 

57.57 67.58 68.58 66.63 
wisconsin 96.95 97.11 96.81 96.6 
yeast 57.01 59.23 59.77 58.17 
Average 79.75 80.98 81.02 81.43 
Number of wins 6.0 7.0 13.0 19.0 
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Table 7: Time comparison between different KNN algorithms 

Dataset KNN Fuzzy Iv Fuzzy Evolutionary 
appendicitis 0.05 0.07 0.09 121.78 
balance 0.06 0.31 0.36 736.06 
banana 0.25 2.66 3.89 6212.18 
bands 0.06 0.32 0.24 397.64 
bupa 0.06 0.15 0.21 369.68 
cleveland 0.07 0.24 0.26 384.75 
dermatology 0.06 0.34 0.36 536.29 
ecoli 0.04 0.34 0.37 511.72 
glass 0.04 0.2 0.25 303.71 
haberman 0.04 0.12 0.25 319.62 
hayes-roth 0.05 0.1 0.12 178.02 
heart 0.05 0.12 0.18 291.3 
hepatitis 0.04 0.06 0.07 85.03 
ionosphere 0.05 0.17 0.23 401.06 
iris 0.04 0.09 0.12 171.33 
led7digit 0.06 0.59 1.04 880.86 
mammographic 0.06 0.29 0.87 903.4 
marketing 1.56 17.3 17.82 18710.62 
monk-2 0.05 0.18 0.26 519.31 
movement_libras 0.08 0.76 0.78 887.41 
newthyroid 0.04 0.13 0.16 269.25 
page-blocks 0.48 7.52 10.16 10386.99 
penbased 2.74 37.47 38.96 38635.97 
phoneme 0.29 4.33 6.25 7182.49 
pima 0.05 0.6 0.44 889.22 
ring 1.76 16.01 22.04 19148.53 
satimage 1.35 13.14 18.69 147130.55 
segment 0.2 3.56 3.98 4915.25 
sonar 0.03 0.11 0.14 274.58 
spambase 2.29 12.5 16.31 13631.15 
spectfheart 0.08 0.12 0.17 338.2 
tae 0.06 0.09 0.11 193.64 
texture 1.18 12.62 15.87 24289.39 
thyroid 2.5 15.5 20.96 17330.22 
titanic 0.11 0.8 1.29 2617.3 
twonorm 1.9 17.11 22.75 21191.05 
vehicle 0.08 0.57 0.71 1233.04 
vowel 0.12 1.25 2.06 2007.56 
wdbc 0.06 0.28 0.43 745.89 
wine 0.03 0.1 0.15 228.91 
winequality-red 0.12 2.84 3.64 3251.1 
winequality-
white 

1.46 11.41 18.47 13037.09 
wisconsin 0.12 0.42 0.48 844.18 
yeast 0.17 1.93 3.03 3182.54 
Average 0.45 4.2 5.34 8315.36 
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In Table 7 the structure changes, the four columns are the same four different 

models, but the rows are no longer accuracies but the time of execution for each 

dataset and model. The last row is the average time it took each model for the 

execution of each dataset. 

We can clearly observe in Table 7 that the time execution for these four models 

is very important to take into account. The first three models have a really low 

time of average execution with less than 6 seconds per dataset all of them. On 

the other hand, the Evolutionary model takes more than a thousand times more 

to finish its execution than the previous models. 

Figure 18 is a bar graphic comparing for all the 44 datasets the number of 

instances and the time of execution for the Evolutionary model. As we can 

observe, when the number of instances increases the time of execution also 

grows.  

 

Figure 16: Bar figure representing number of instances and time of execution for the Evolutionary model for all the   
44 datasets 

 

Moreover, Figure 19 shows for all the 44 datasets the number of instances in axis 

x and the time of execution for the Evolutionary model in axis y. It clearly shows 

the relation between the number of instances and the time of execution required. 

When using the genetic algorithm each individual has to go over all the training 

instances each iteration, so when the instances increase it makes the same effect 

in the time needed for execution, while the number of classes or the number of 

attributes of the datasets doesn’t really affect it. 
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Figure 17: Scatter figure with regression line representing the number of instances and time of execution for the 
Evolutionary model in all the 44 datasets 

 

This final study in Tables 6 and 7 presents clearly how each version of the KNN 

algorithm improves the previous one. That is a good sign and demonstrates the 

power of the interval fuzzy theory and genetic algorithms. The evolutionary 

version finished with the best average accuracy of all the datasets. It searched 

the proper configuration for the parameters for each dataset using the CHC 

genetic algorithm and then, uses that configuration to predict the test set and 

obtain its final accuracy. The other fact to take into account that is the enormous 

time we have seen the Evolutionary model takes to execute which really gets you 

thinking if this last model is really worth it. 
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5. RESULTS AND FUTURE LINES 
 

It has been demonstrated that there are techniques to use that can be applied to 

simple algorithms such as K-Nearest Neighbor to improve its ability to predict. In 

this case, these techniques were fuzzy theory, interval fuzzy theory and genetic 

algorithms.  

The ability to create memberships for the instances with interval fuzzy theory has 

really helped improving the performance of the algorithm without taking a lot of 

time to train these models as observed in Table 7. On the other hand, genetic 

algorithms, specifically CHC in our study, has also outperformed all the other 

presented versions of KNN including the Interval Fuzzy one. Unfortunately, the 

amount of time it takes to execute the Evolutionary KNN with Intervals is 

incredibly huge. Is this time really worth it taking into account the little 

improvement (in comparison with the time) it has? 

In my opinion, if there is an important task to carry out and there is enough 

hardware available to improve the time to execute the evolutionary version of 

KNN can really be helpful. Otherwise, the use of the Interval-Valued Fuzzy 

algorithm will be adequate due to the good performance it has too and the low 

amount of time it takes to execute in comparison with the evolutionary one. 

In the future, we expect to continue studying more techniques that can improve 

the prediction of different models within classification and moreover the machine 

learning area. The idea is to find new methods to improve accuracy and also 

increasing the speed of execution. An aspect to take into consideration would be 

using better hardware for being able to use this accurate evolutionary version of 

KNN making a huge improvement in speed too. Other possible methods could be 

using other type of genetic algorithms for the evolutionary model or trying to 

modify the parameters of the algorithm such as number of individuals or selection, 

crossover and replacement methods of the evolutionary population. 
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