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Abstract: A new method is proposed to tune the interferometric response of wavelength-based optical
fiber sensors. Using the nanoparticle in situ synthesis (ISS) technique, it is possible to synthesize
gold nanoparticles (AuNPs) within a pre-existing polymeric thin film deposited at the end-face of an
optical fiber. This post-process technique allows us to adjust the optical response of the device. The
effect of the progressive synthesis of AuNPs upon polymeric film contributed to a remarkable optical
contrast enhancement and a very high tuning capability of the reflection spectra in the visible and
near-infrared region. The spectral response of the sensor to relative humidity (RH) variations was
studied as a proof of concept. These results suggest that the ISS technique can be a useful tool for
fiber optic sensor manufacturing.

Keywords: polymers; optical fiber tip; gold nanoparticles; relative humidity; infrared; interferometric
response; in situ synthesis

1. Introduction

The great versatility of polymers has resulted in their extensive use in different sec-
tors [1,2], offering outstanding mechanical, dielectric, thermal, and optical properties at
a relatively low cost. They may be found in a variety of modern electronic device in-
dustries [3], such as aerospace transportation, 5G communication services [4], and 3D
printing [5]. Moreover, another interesting field for their use is in the optical sensor field,
where polymers have been used to create optical waveguides and special fibers [6]. Fur-
thermore, a wide variety of optical sensitive coatings have been used for the detection of
diverse variables, such as humidity, pH, temperature, electrical fields, chemicals, biological
agents [7–12], and many others. The utilization of these polymeric materials has allowed
us to obtain high precision sensors and improve the response of these sensors with better
sensitivity and selectivity [13]. The versatility of polymers makes it possible to use them in
different ways in sensitive coatings, whether playing an active role in the sensor [14,15] or
acting as a support material for other sensitive agents, such as dyes [16], fluorophores [17],
nanoparticles [18,19], etc. One interesting application of certain polymeric composites
is that they can be used as a synthesis medium, enabling the In Situ Synthesis (ISS) of
nanoparticles within the polymeric matrix using thermal treatments [20] or chemical re-
duction methods [21]. Compared to other techniques for the nanoparticle fabrication in
optical coatings that may require special conditions or complicated equipment [22–24],
the ISS technique is a wet-chemical synthesis route, capable of loading the nanoparticles
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gradually into previously existing optical coatings, under room conditions, while allowing
for the continuous monitoring of optical responses by sensors. It is a simple and promising
technique for nanoparticle synthesis and a good post-fabrication method to modify the
optical properties of sensitive coatings.

Regarding possible optical sensor approaches, it is possible to find alternatives regard-
ing intensity-based optical fiber sensors, through which sensed information is translated
into an intensity-based signal. This approach has many advantages, including low cost,
easy operation, and flexibility [25,26]. However, they do have some drawbacks, such as
certain stability issues, sometimes related to variations in the intensity of the light sources,
making it necessary to use additional referencing systems [27]. Alternatively, wavelength-
based optical fiber sensors use changes in the wavelength as their detection principle [28].
Although they may be more complex and require more sophisticated optical instrumenta-
tion, they are considered more robust compared to intensity-based ones [29] in as far as
their responses do not depend as much on the stability of light sources, etc. Some of the
most used devices for wavelength-based approaches are fiber Bragg gratings (FBGs), tilted
fiber Bragg gratings (TFBGs), long-period gratings (LPG), or interferometers. Some authors
have reported on the use of Fabry–Perot interferometers (FPI), which operate by means of
building thin films at the end-face of optical fibers [30]. This is a very simple interferometric
approach that has many advantages as an optical sensor. For this kind of application,
wavelength-based interferometric sensors can be read out with extremely high accuracy
and, furthermore, it is immune to the instabilities which plague its contemporaries, such as
optical systems, power levels, or polarization state [31].

This configuration is very compact and works using a reflective configuration that
makes it possible to work with an optical sensing probe, or optrode [22,32–37]. As pre-
viously commented upon, in some approaches, the polymers work in support of active
agents, such as luminescent materials or other elements [38]. Other schemes base their
sensing mechanism on the response of the polymer itself which acts as the only sensing
element, allowing us to detect changes in optical reflection [39]. Unfortunately, in these
last cases, the FPI cavities show moderately low optical contrast on their interferometric
reflection due to the similar refractive index of most of the polymers in relation to the fiber.
In addition to this issue, another challenge is tuning the optical spectral response of the FPI
to match its optimal active wavelength range with the optical instrumentation’s optimal
window [40].

In this research, the in situ synthesis (ISS) technique is proposed as a post-fabrication
method of immobilizing AuNPs within the optical fiber tip (FPI) cavity, just after the poly-
mer film fabrication. This synthesis technique has been successfully used by other authors,
such as Rubner and co-workers [41,42], as a powerful tool to synthesize nanoparticles inside
some coatings, such as LbL coatins, sol-gel matrices, hydrogels, etc. With ISS, the AuNPs
can be gradually loaded into a previously fabricated LbL coating at the end-face of an
optical fiber, while the optical response of the FPI is continuously monitored. The purpose
of the incorporation of these AuNPs is to enhance the contrast of the optical response of
nano-FPI cavities and, at the same time, to tune, if possible, the optical spectral response of
the nano-FPI.

2. Materials and Methods
2.1. Materials

The materials used to fabricate the polymeric multilayer thin film were poly (ally-
lamine hydrochloride) (PAH) (Mw ~ 15,000), acting as polycation, and a poly (acrylic acid)
(PAA) 35 wt% solution in water, acting as polyanion. In order to synthesize AuNPs, gold
(III) chloride trihydrate (HAuCl4·3H2O) was used as a precursor. Metallic nanoparticles
were reduced with a borane dimethylamine complex (DMAB). The pH value of the solu-
tions was adjusted by adding a few drops of HCl or NaOH. All the chemical reagents were
provided by Sigma-Aldrich (St. Louis, MO, USA).
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2.2. Optical Detection Setup

Optical fiber sensors were made from multimode optical fibers, 62.5/125 µm core,
and cladding, respectively, with FC/PC-FC/PC connectors (provided by Telnet Redes In-
teligentes S.A., Zaragoza, Spain). The sensor structure was fabricated on the perpendicular
cut end of the optical fiber in a reflection setup. The sensor was characterized using a
2:1 multimode optical fiber coupler (see Figure 1). One of the connectors of the optical
fiber coupler was connected to a halogen white source (model TAKHI from Pyroistech
S.L., Pamplona, Spain). The other end was connected to another fiber coupler to collect the
optical response in the visible and infrared region at the same time with a CCD spectrome-
ter (model HR4000-UV from Ocean Optics, Dunedin, FL, USA) and a NIR-Quest (Ocean
Insight, Hakuto Singapore Pte Ltd., Singapore).
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polyelectrolyte solutions. Some experimental parameters, such as polyelectrolyte concen-
tration, pH, and ionic strength strongly affect the properties of LbL coatings [43]. In this 
work, a solution of PAH (10 mM) was used as a polycationic solution, and a PAA solution 
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Figure 1. On the left, experimental setup. The blue arrows represent the light launched at the device
(schematically depicted at the zoom view), the grey arrow is the light reflected at the device and the
yellow arrows represent the reflected light that reaches the spectrometers. On the right, schematic
illustration of the layer-by-layer nano-assembly built-up (Step A) and a further in situ synthesis
(ISS) of the gold nanoparticles into the previously created LbL films (Step B). The construction of the
sensitive coating (PAH/PAA)n + (Au3+/DMAB)m was carried out on the end face of a 62.5/125 µm
multimode optical fiber (zoom view on the right).

2.3. In Situ Synthesis (ISS) of Gold Nanoparticles into Polymeric Layer-by-Layer (LbL) Films

The AuNPs are synthesized inside an existing polyelectrolyte coating, using this solid
structure as the stabilization medium where the AuNPs are going to be loaded. Therefore,
the fabrication process of the sensing coatings has been performed in two steps (Figure 1).
First (Step A), a polymeric coating was fabricated using the layer-by-layer assembly tech-
nique (LbL) by dipping the substrates into a sequence of oppositely charged polyelectrolyte
solutions. Some experimental parameters, such as polyelectrolyte concentration, pH, and
ionic strength strongly affect the properties of LbL coatings [43]. In this work, a solution of
PAH (10 mM) was used as a polycationic solution, and a PAA solution (10 mM) was used
as a polyanion. The optical fiber substrates were immersed in each charged solution for
5 min. After every polyelectrolyte adsorption step, it is necessary to rinse the assembled
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tools in ultrapure water with the same pH as the polyelectrolytes [44,45]. All solutions
were adjusted to pH = 4. Before starting the deposition of layer-by-layer, the end of the
optical fiber was immersed in KOH (1 M) for half an hour to achieve substrate surface
electrostatic charge.

Once the LbL coating that is going to act as the synthesis medium has been built-up,
the AuNPs are synthesized within. In this new process (Step B), the previous polymeric
matrix obtained by the LbL assembly was immersed in an aqueous solution of gold (III)
chloride trihydrate (HAuCl4·3H2O) at room temperature for 5 min, removed, and rinsed
with ultrapure water. During this step, some Au3+ cations were immobilized in the charged
groups present in the LbL polyelectrolytes. Afterward, those gold ions loaded (L) into
LbL polymeric coating have been reduced (R) by dipping again the LbL coatings in a
dimethylamine borane complex solution (DMAB 0.1 M) at room temperature for 5 min
and rinsed with ultrapure water. This reducing agent (DMAB) makes possible the in situ
chemical reduction of the gold cations (Au3+) to gold nanoparticles (Au0) [46]. This process
can be repeated as many times as desired, taking into account that each cycle is referred
to as a load/reduction (L/R) cycle. With every L/R cycle, new Au3+ ions are loaded into
the LbL thin film, and further reduced by the DMAB, contributing to the creation of new
AuNPs, as well as growing previously existing ones. The resultant AuNP loaded LbL films
were stable under the normal conditions of any other layer-by-layer coating, and no evident
degradation of the coatings was observed during the experiments.

3. Results
3.1. Layer-by-Layer and AuNPs In Situ Synthesis Characterization

Originally, before this investigation into the effects of sensing material upon optical
fiber, coatings were fabricated and placed on glass slides as substrates in order to char-
acterize the sensing material and to determine the progressive AuNPs’ load through the
analysis of the localized surface plasmon resonance (LSPR) peak of the in situ synthesized
nanoparticles in the LbL films. Thanks to this characterization, it was possible to analyze
the conditions necessary for obtaining an intense optical absorption band at 550 nm, typical
of AuNPs [47]. The synthesis of AuNPs in the LbL films was carried out with different
numbers of (PAH/PAA) bilayers and loading/reduction (L/R) cycles. After some previous
experimental work, LbL films of 15 and 25 (PAH/PAA) bilayers were selected for analysis.
Additionally, the ISS of AuNPs into the LbL films has been carried out using a number of
different L/R cycles.

The UV-VIS spectra can be observed in Figure 2, where the UV-VIS absorption spectra
of different LbL+ISS films are shown. It may be appreciated, even with the naked eye, that
substrates with 25 bilayers of PAH/PAA present a stronger violet coloration compared
to the samples with 15 bilayers of PAH/PAA (with the same number of L/R cycles). The
absorption values shown in Figure 2 corroborate this fact. It is appreciable that with every
L/R cycle, not only does absorption increase, but it also incurs a slight redshift of the
LSPR peak due to the aggregation of AuNPs within the LbL film. The LSPR center peak
was localized near 528 nm for the second cycle of loading/reduction, (L/R)2, and a small
redshift of the LSPR peak was observed, reaching a maximum of 552 nm for (L/R)5.

The results of the spectra show that the number of PAH/PAA bilayers affects the
absorbance values obtained from the Au-LSPR peak with a subsequent analysis of AuNPs
by L/R. When a higher number of L/R cycles has been performed, a more substantial
violet coloration in the LbL films can be observed in both cases, for 15 and 25 bilayers
of (PAH/PAA). The absorbance values of the coatings with 25 bilayers of PAH/PAA are
slightly higher than those of the coatings with 15 bilayers of PAH/PAA. Additionally, in
both cases, the L/R cycles evidence the same results: a strong LSPR peak and an appreciable
violet coloration obtained via the glass substrate. Since the results are similar for both 15
and 25 bilayers of PAH/PAA, in order to optimize experiments hereafter, it is recommended
that all subsequent experiments use polymeric coatings of 15 bilayers.
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3.2. Characterization of Sensitive Film

Once the films have been characterized on microscope glass slides, LbL+L/R coatings
are fabricated on perpendicular cut ends of optical fiber and their reflectivity is studied
(see Figure 1). In this case, the end face of the optical fiber is the sensitive region where
the LbL polymeric film is deposited and, later, the AuNPs are synthesized using the ISS
technique. The same process used in Section 3.1 was applied to the sensitive region to
deposit (PAH/PAA)15 + (L/R)m (m = 1, 2, 3, 4) and the optical response was registered.

Figure 3A shows the reflectivity, due to the FPI, constituted by the LbL (PAH/PAA)15
thin film without any AuNPs. Using halogen white light sources, it is possible to observe a
Fabry–Perot interferometric response, despite the low coherence of the optical source used
in this experiment [48]. It is known that any variation in physical or optical characteristics
of the polymeric thin film will induce changes in the optical response on the FPI cavity,
opening the door to the development of optical fiber sensors. However, if we only use
polymeric thin films, we obtain an interferometric response with a low contrast due to the
similar refractive indexes of the polymeric film and the fiber.

The next step is loading the thin film with AuNPs by means of ISS. Figure 3B shows
spectra evolution with every L/R cycle. In this figure, it is possible to observe the interaction
between two phenomena. First, the formation of a reflection peak in 580 nm is due to the
incorporation of AuNPs. Second, the interferometric redshift with an improvement in the
contrast of the optical response of nano-FPI cavities. Gouva et at. have reported similar
reflectivity responses in AuNP decorated optical fiber end faces [49]. In their work, the
authors also assume that the optical response is due to both the interferometric response
of the layer and the LSPR optical absorption of the AuNPs [50]. In the results shown in
Figure 3B, it is possible to observe that, with every L/R cycle, a reflectivity of around
560–580 nm was strongly increased, compared to the original LbL polymeric thin film.

Of special interest is the behavior of every L/R cycle (Figure 3B), apart from LSPR-
based reflectivity, increasing because there is a redshifted interferometric response. In the
first L/R cycle, a slight bending in the reflectivity curve around 740 nm can be observed,
suggesting a light interferometric maximum, and a minimum reflection of around 540 nm.
In the (L/R)2, while the LSPR is not noticeable, the minimum reflection redshifts to 560 nm,
while the maximum goes beyond the scope of the spectrometer (800 nm). In L/R cycles
3 and 4, the local minimum reflectivity continues its shift to 690 nm and 720 nm, respec-
tively, and both AuNPs-LSPR and FPI interferometry phenomena can be observed at the
same time.
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Figure 3. (A) Evolution of the spectral characteristic of the reflected light due to white light interfering
with the LbL-(PAH/PAA)15 thin film. (B) Optical reflectance of the LbL films when ISS of gold
nanoparticles is performed, from 1 to 5 L/R cycles. (C) Optical reflectance comparison between
LbL-(PAH/PAA)15 thin film (without AuNP) and (PAH/PAA)15 + (L/R)4.

Additionally, in Figure 3C it is possible to appreciate the improvement in the contrast
of the interferometric signal (visibility enhancement) after the use of ISS. More specifically,
for the (L/R)4 coating, the interferometric contrast was enhanced fourfold with respect to
the plain polymeric coating, from 16.8% to 70% ∆R. The LSPR center peak was localized
near 577 nm (Figure 3C).

3.3. Optical Fiber Sensor Characterization

With the objective of studying a proof-of-concept case, since the polymeric PAH/PAA
coating is sensitive to humidity [51], devices with plain PAH/PAA films and devices with an
enhanced spectral response by means of the ISS technique are characterized against relative
humidity (RH) variations. Five sensors were fabricated, from (PAH/PAA)15 + (L/R)0, or
plain PAH/PAA coatings, to (PAH/PAA)15 + (L/R)4, all under the same conditions, and
every sensor was exposed to the same cycles of humidity for the same amount of time in a
climatic chamber. The temperature in the climatic chamber was set at 20 ◦C during all the
experiments in order to avoid complications due to additional parameters.

The sensor with plain LbL polymeric thin film and no AuNPs (Figure 4A) shows
a reflective change of 2.86% for values of RH from 20 to 80%, with low contrast and no
noticeable wavelength change. For the sensors with 1 and 2 L/R cycles, the spectral shape of
the reflectivity response started to change, but still, no noticeable wavelength changes were
registered (Figure 4B,C), for 20–80% RH variations. With every L/R cycle, an improvement
of the interferometric response contrast was appreciable. Nevertheless, it is only from
the (L/R)3 cycle that it is possible to observe a clear reflective AuNPs-LSPR peak near
565 nm (Figure 4D), and a spectral response with peaks and valleys also spectrally sensitive
to RH changes; a redshift with a minimum reflection around 760 nm. Furthermore, in
Figure 4E, it is shown that the response of a (L/R)4 cycle sensor, is to exhibit an appreciable
redshift of 30 nm of the interferometric response when increasing RH from 20% to 80%. A
higher number of L/R cycles move the interferometric minimum to wavelengths beyond
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the limits of the spectrometer used in this experimental setup. Thus, in this case, (L/R)4
devices showed the optimal optical response. The optical responses shown in Figure 4 were
registered in a climatic chamber using repetitive 20–80% RH cycles, and all of them showed
good repeatability. One example of the sensors’ repeatability is shown in Figure 5A, where
the response shows very similar behavior when submitted to four RH cycles in a climatic
chamber, with no significative drift.

1 

 

 
Figure 4. Spectral response of (A) LbL-(PAH/PAA)15; (B) (PAH/PAA)15 + (L/R)1;
(C) (PAH/PAA)15 + (L/R)2; (D) (PAH/PAA)15 + (L/R)3; (E) (PAH/PAA)15 + (L/R)4 thin film
fabricated onto the end of the fiber tip for 20 and 80% values of relative humidity (RH).
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Figure 5. (A) Shift wavelength interferometric response of (PAH/PAA)15 + (L/R)4 with respect to
cycles of RH from 20 to 80% in climatic chamber. (B) Response of the second RH cycle in climatic
chamber in the rise interval. (C) Response of the second RH cycle in climatic chamber in the
fall interval.
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The wavelength shift of the minimum value of the interferometric response of the
sensor (PAH/PAA)15 + (L/R)4 was analyzed in the climatic chamber with 4 cycles from
20% to 80% of RH at 20 ◦C to study the dynamic response of the sensor. In Figure 5A it
is appreciable that the response of the sensor follows the evolution of the RH inside the
climatic chamber and each RH 20%–80%–20% cycle is registered as a wavelength shift of
approximately 9 nm in the sensor response.

The average RH rise (Figure 5B) and fall (Figure 5C) provide repetitive sensor behavior
with low hysteresis. The response time is limited by the climatic chamber. The slight differ-
ence in rise and fall responses can be attributed mainly to the use of polyelectrolytes like
PAH and PAA that exhibit swelling/deswelling hysteresis in humid air environments [52].
In the case of the RH fall (Figure 5C), the response of the sensors was very linear.

3.4. Effects of the Number of L/R Cycles on the Optical Fiber

One of the goals of this work is to demonstrate the use of the ISS technique as a
post-fabrication tool for tuning the optical properties of polymeric sensing coatings. In this
section, the amount of L/R cycles under study have been extended significantly in order to
study if it is possible to extend the appreciable interferometric response of the sensor to
higher wavelengths of visible and infrared regions. Figure 6 shows the reflectivity spectra
and the shift of the spectrometric response towards the infrared region with the increase in
the number of L/R cycles.
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Figure 6. A demonstration of the interferometric response of the sensor in the visible and infrared
region, increasing the L/R cycles.

In Figure 6 different sensor responses are represented, with L/R cycles varying from
1 to 20. It is apparent that two different phenomena coexist. Firstly, the LSPR-induced
reflectivity peak in the 550–580 nm band. Secondly, the interferometric behavior of the
AuNP-loaded LbL thin film. The presence of the AuNPs was critical to significantly enhance
the contrast in the interferometric optical response. The first 8 L/R cycles demonstrated the
build-up of the LSPR band and the initial displacement of the interferometric minimum to
higher wavelengths. There, the following maximum and the high-reflectivity LSPR band
still overlapped. Nevertheless, from cycle 12 on, the next interferometric maximum goes
apart from the LSPR band, appearing clearly visible. The increase in the AuNPs loaded into
the LbL thin film allows us to move the interferometric response to the near-infrared region
in a controlled way, so the spectral response of the sensor can be adjusted to the desired
wavelength window. In the L/R cycle 20, the minimum of the interferometric response
is centered at 1340 nm. Figure 7 shows the evolution of the FPI minima as the number of
L/R cycles were increased. As observed, there is a strong linear dependence between the
redshift of the FPI minimum and the amount of AuNPs loaded into the coating.
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Figure 7. Evolution of the wavelength of the minimum interferometric response from the Fabry–Perot
optical fiber interferometers and the number of L/R cycles carried out during its fabrication.

A video has been provided as supplementary material where (L/R)30 cycles were
registered, showing that with every L/R cycle the interferometric quality factor improves
and moves to infrared wavelengths.

4. Conclusions

In this investigation, the ISS technique has been presented as a tool for the incorpora-
tion of AuNPs into previously fabricated layer-by-layer polymeric sensing coatings. In this
case, the coatings under study were deposited at the end-face of optical fibers to fabricate
nano-FPI cavities. The ISS allowed us to tune the interferometric response of the nano-FPI
and improve the contrast of the optical response of the device.

The optimal fabrication condition was studied via a previous characterization of
polymeric coatings and ISS-AuNPs on glass substrates. Subsequently, combinations of
(PAH/PAA)15 with different (L/R) cycles were tested on optical fiber to achieve a higher
optical contrast of the interferometric response (visibility) with a fourfold enhancement. The
devices’ response to relative humidity was studied as a proof of concept of the application
of the ISS technique to improve the sensing characteristics of the sensors.

Furthermore, the ISS is a powerful post-process technique to adjust the optical proper-
ties of a polymeric thin film, which is especially useful in interferometric coatings. With
the addition of more L/R cycles, it was possible to tune the interferometric minimum
reflection valley from the VIS (600 nm) to NIR (more than 1400 nm). This opens up a
new possibility; to work with wavelength-based sensors that are capable of adjusting
interferometric parameters.
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