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A PV ramp-rate control strategy to extend battery lifespan using forecasting 
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H I G H L I G H T S  

• A ramp-rate control strategy is proposed to use minimum storage and reduce battery degradation. 
• The proposal and three benchmark strategies are simulated with 2-year real data of a multi-megawatt PV plant. 
• PV power forecasting, based on real publicly-available numerical weather prediction (NWP) series, is used to reduce battery cycling degradation. 
• Levelized cost of energy (LCOE) analysis shows that the proposed strategy is the most cost-effective among the evaluated techniques.  
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A B S T R A C T   

This study analyses and presents a new ramp-rate control algorithm for smoothing PV power fluctuations, 
designed to address three fundamental objectives: to reduce battery cycling, to meet minimum storage re-
quirements and to be able to operate, without ramp-rate violations, with real publicly-available forecasting. The 
algorithm was compared to three benchmark methods and, as a performance limit, also to a hypothetical perfect 
prediction. Different performance variables were analyzed for all the strategies within a restricted ramp-rate 
constraint (2%/min): minimum storage requirement, battery power distributions, throughput energy, state of 
charge (SOC) distributions, degradation (calendar and cycling), expected battery lifespan and levelized cost of 
energy (LCOE). The proposal proves to be the most cost-effective smoothing technique and the simulation results 
show that its performance is comparable to the obtained with the use of an assumed perfect prediction.   

1. Introduction 

Over the past decade, the photovoltaic (PV) power has increased 
dramatically worldwide. In fact, the global PV power capacity has 
increased more than 5000% between 2007 and 2018 [1]. At present, 
utility scale PV production is one of the most cost-effective generation 
technologies in terms of the levelized cost of energy (LCOE) [2,3,4]. For 
this reason, this growth pattern is expected to continue in the future. 
There are regions in which the increase of PV power has led to a sig-
nificant increase in the ratio between solar and conventional power 
generation. This can produce issues related with the characteristic 
intermittency of the solar resource, in special during cloudy scenarios 
[5,6]. The ratio of change of the PV plant’s power output mainly de-
pends on the cloud speed and the PV covered area [5,7,8,9]. Output 
power variations of up to 90%/min were reported for different locations 
and plant sizes [7,10,11,12]. Power fluctuations these type can produce 
grid quality problems related to frequency or even voltage stability 
[6,13,14,15]. As a result, different transmission system operators (TSOs) 

have established regulations limiting the maximum permitted rate of 
change for PV plants [16,17,18,19,20]. The range in which the ramp- 
rate (RR) limit is tolerated can vary between 1%/min, in the case of 
the most restrictive scenario in Mexico [17], to 10%/min, according to 
the Puerto Rican grid code [16]. The traditional approach to smooth PV 
fluctuations is to install an energy storage system (ESS) which can 
include: flow-batteries, super capacitors, fuel cells, Li-ion batteries or a 
combination of them [21]. Li-ion batteries are the most suitable ESS 
technology thanks to their technical development, performance [22] 
and expected price reduction [23]. All the same, the introduction of an 
ESS increases the initial investment of the project and the total cost of 
the generated energy [3,24,25]. Therefore, it is essential to minimize the 
additional cost incurred by the use of batteries in order to limit the loss 
of competitiveness in the PV LCOE. The increased LCOE depends on two 
main factors: the initial cost of the EES and the battery lifespan. As will 
be shown, the intrinsic characteristics of every ramp-rate strategy have 
considerable impact on both these factors. 

Among the different smoothing strategies the most commonly 

* Corresponding author. 
E-mail address: alejandro.gonzalez@unavarra.es (A. Gonzalez-Moreno).  

Contents lists available at ScienceDirect 

Applied Energy 

journal homepage: www.elsevier.com/locate/apenergy 

https://doi.org/10.1016/j.apenergy.2022.119546 
Received 18 October 2021; Received in revised form 3 June 2022; Accepted 24 June 2022   

mailto:alejandro.gonzalez@unavarra.es
www.sciencedirect.com/science/journal/03062619
https://www.elsevier.com/locate/apenergy
https://doi.org/10.1016/j.apenergy.2022.119546
https://doi.org/10.1016/j.apenergy.2022.119546
https://doi.org/10.1016/j.apenergy.2022.119546
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apenergy.2022.119546&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Applied Energy 323 (2022) 119546

2

studied [26] are the classical ramp-rate control [27] and the moving 
average filter [24]. The first one (hereinafter Strategy 0) permanently 
evaluates the PV power variation and charges/discharges the ESS when 
the desired smoothing is exceeded. Due to the fact that the sign of the 
next fluctuation is unknown, the battery must have the capacity to 
absorb/dispatch, at any time, the corresponding energy to the worst 
positive/negative fluctuation that can take place [9]. Therefore a stored 
energy control loop is required with the reference set at 50% and a 
minimum capacity that is twice as high as the energy associated with the 
worst-case fluctuation [9]. 

The moving average filter (hereinafter Strategy 1) injects the mean 
value of the PV power during a prefixed time window (introducing a 
fixed delay). The ESS handles the difference between the injected and PV 
power; as a consequence of the delay, the storage equipment perma-
nently cycles, and produces at least one deep cycle per day; however, the 
strategy demands a storage capacity close to half that of Strategy 0 [28]. 

With the aim of combining the advantages of strategies 0 and 1, i.e. 
non-intensive use and low storage requirements, [10] proposed the clear 
sky-dark sky technique (hereinafter Strategy 2) which is able to operate 
with the minimum storage established in [9]. The strategy uses the 
production limits of the PV plant, namely clear and overcast sky con-
ditions, and establishes the storage required to smooth possible 
maximum upward and downward fluctuations, i.e. from the instanta-
neous operating point to estimated clear and overcast sky conditions. In 
this way, the strategy modifies the energy stored in the battery in order 
to attenuate both these fluctuations. 

On the other hand, forecasting-based ramp-rate control strategies 
with no ESS have been proposed [29,30,31]. These change the plant 
operating point in advance, in a desirable way, e.g. with constant RR. If 
the forecast is completely accurate, it has been demonstrated that the 
energy wastage is low even for exigent smoothing requirements [32]. 
Nevertheless, the current high-resolution and intrahour forecasting 
techniques are far from this goal. 

However, PV power forecasting can be used to improve existing ESS 
dependent strategies. For example, Strategy 2 permanently makes a 
constant assumption of the worst-case scenarios, therefore, the strategy 
controls the battery in a pessimistic manner, preparing it, in many cases, 
for possible but nonexistent fluctuations, producing unnecessary 
cycling. This paper presents a control technique that outperforms 
Strategy 2 by limiting the expected fluctuations considering not only the 
clear and overcast limits, but also the predicted PV power. The proposed 
strategy is compared to other technics already proposed in bibliography, 
taking into account different performance parameters: minimum storage 
requirement, battery power distribution, throughput energy, state of 
charge (SOC) distribution, calendar degradation (CaD), cycling degra-
dation (CyD), expected lifespan and levelized cost of energy (LCOE). The 
simulations were carried out with real 5-second PV power production 
series and a real 1-hour publicly-available (costless) Numerical Weather 
Prediction (NWP) based forecast. The improvement is achieved through 
a significant reduction in ESS cycling, thereby extending the battery 
lifespan. 

A description of the data used is provided in Section 2, the minimum 
storage requirements are discussed in Section 3, the three benchmark 
strategies are briefly described in Section 4, the proposal strategy is 
presented and analyzed in Section 5, the comparison with benchmark 
strategies is carried out in Section 6, and the conclusions are set out in 
Section 7. 

2. Experimental data 

The PV power series is a 5-second sampled PV production recorded at 
the Amaraleja PV plant (38◦11′20′′N, 07◦12′08′′0W) in the course of two 
years. The plant comprises 2520 vertical solar trackers with a tilt angle 
of 45◦, the covered area is 250 ha and the ground cover ratio (GCR) is 
0.162. The peak plant power is 45.6 MW and the inverter rated power 
(P*) is 38.6 MW. 

The forecast used (FC) was a series based on a parametric plant 
model [33] that uses as inputs the results of a publicly-available (cost-
less) Numerical Weather Prediction (Meteogalicia’s THREDDS server), 
which has a spatial resolution of 12x12 km, a temporal resolution of 1 h, 
covers the region delimited by 21.58◦ W to 6.36◦ E and 33.64◦ N to 
49.57◦ N and uploads its methodological forecasting every six hours. 
The FC values obtained were placed at the beginning of each hour and 
then interpolated with the purpose of fitting them to the simulation time 
step (5s). 

3. Minimum storage requirement for ramp-rate control 

A key feature of any RR control strategy is the required storage. The 
minimum required capacity was data-based established in [9] and has 
been validated for different plant sizes (from 550 kW to multi-megawatt 
plants) and for different geographical regions (separated by more than 
500 km) [9], which allows the generalization of the results to different 
plant sizes and geographical locations. The amount of required energy 
(Ewf) is estimated with the model of the worst fluctuation (Fig. 1). This 
depends on the desired ramp restriction (r), the maximum expected 
power change (ΔPmax) and the PV plant dimensions and is independent 
of the geographical coordinates of the plant [9]. The PV power (Ppv) 
fluctuation is modelled as an exponential decay with time constant τ, the 
injected power (Pg) must vary with constant slope (r), the difference 
between them must be provided by the battery (Pb). The amount of 
energy that must be provided by the battery, which is equal to the in-
tegral of Pb, can be calculated, in per unit, as follows: 

Ewf = ΔPmax

(
ΔPmax

2r
− τ

)

(1) 

The time constant τ and the shortest dimension have been related in 
[9]: 

τ[s] = 42⋅L[km] − 0.55 (2) 

The worst fluctuation occurs in central daytime, when a cloud front 
covers (or leaves), at high speed, the PV plant following the direction of 
its shortest dimension (L). 

Once the storage capacity is determined, it is then possible to relate 
stored energy and state of charge (SOC), a crucial parameter in battery 
management. Taking into account the fact that capacity expressed in 
terms of charge (Cb [Ah]) and energy (Cb [kWh]) maintain a liner cor-
relation during the whole life of batteries [34], it is possible to use the 
energy instead of charge to avoid the need of a detailed battery model 
and to permit much faster long-term simulations: 

Fig. 1. Worst fluctuation model. G: Irradiance at a single point, Ppv: PV power, 
Pg : injected grid power with ramp-rate compliance. 
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SOC(t) =
Q(t)

Cb [Ah]
≈

∫
ηsign(Pb)Pb⋅dt [kWh]

Cb [kWh]
(3) 

For this reason, despite the fact that SOC and stored energy are not 
exactly equivalent, in the subsequent sections they are used indistinctly. 

4. Benchmark strategies 

In general, all PV RR strategies with battery have the same generic 
schema (it can be seen in Fig. 2), what differs from one strategy to 
another is the algorithm that determines the battery power (Pb) and the 
additional requirements to be able to function: additional measure-
ments, communications, forecasting, database consultation, etc. 

With the aim of comparing the performance of the proposed method, 
three representative control strategies were also simulated: classical 
ramp-rate control (Strategy 0), the one with minimum cycling degra-
dation [27]; mean average method (Strategy 1), the most extensively 
used in the bibliography[26]; and clear sky-dark sky technique (Strategy 
2), which permits the use of the minimum storage [9] and is the origin of 
the proposal. They are summarily described below. 

4.1. Strategy 0: Classical ramp-rate control 

This strategy modifies the power injected into electric grid (Pg) 
during each sampling period, in such a way that its rate of change does 
not exceed a predefined RR limit (r), i.e. during Ppv ramp violations, Pg 

evolves in a straight line with a constant gradient r [27]: 
⃒
⃒
⃒
⃒
ΔPg

Δt

⃒
⃒
⃒
⃒ ≤ r (4) 

The complete control diagram is presented in Fig. 3(a). The excess or 
lack of power between Pg and Ppv is Pb, and must be handled by the 
battery. A SOC control loop with the reference (E*

b) set to half the ca-
pacity is required; firstly, due to a discharge tendency during certain sky 
conditions and, secondly, to guarantee that at any time the battery can 
absorb or inject Ewf [9]. Therefore, the minimum battery capacity 
(C0,min) should at least be [27]: 

C0,min = 2⋅Ewf (5) 

The loop is completed with a proportional controller that sets the 
power (PΔ) needed to reach the reference. The difference between Ppv 

and PΔ, which is the desired injected power (P*
g), should be limited in 

order to achieve the required ramp-rate (r). 
The aim of this control method is to only use the battery when 

needed, e.g. when the ramp-rate (r) is violated. As can be seen in Fig. 3 
(b), this control method does not cycle the battery in excess, even on 
days with severe power fluctuations. As a result, the battery degradation 
will be low and, consequently, the battery lifespan is expected to be 

longer (discussion in section 6, strategies comparison and specific results 
in Table 5). However, as it is evidenced in (eq.5), the minimum capacity 
is twice that required for the worst fluctuation and, as a consequence, 
the expected purchase cost is high. 

4.2. Strategy 1: Mean average filter 

The moving average method is the most representative strategy 
among the filter-based ones [26]. The control diagram is shown in Fig. 4 
(a). Injected grid power (Pg) is calculated as the mean of Ppv over a 
predefined period of time (T). The battery absorbs or injects power (Pb) 
in order to manage the difference between the Ppv and Pg. The re-
quirements of this method were analytically established in [28]. In order 
to obtain a desired ramp limit (r), the length of the window (T) must be 
at least: 

T =
ΔPmax

r
(6) 

Furthermore, the minimum capacity (C1,min) is [28]: 

C1,min =
ΔPmax

2
(N − 1)⋅Δt (7)  

where N is the number of time samples included in the time window and 
Δt is the sampling period. 

The merit of this strategy over Strategy 0 is that requires nearly half 
of its capacity. However, as is evident when Fig. 4(b) is compared to 
Fig. 3(b), the battery is excessively cycled due to the intrinsic over 
smoothing introduced by the moving average [26,27]. 

Moreover, because of the delay between Pg and Ppv, the battery 
suffers a complete deep cycle even during clear days, resulting in a 
shorter expected lifespan. 

4.3. Strategy 2: Clear sky-dark sky method 

For the purpose of including the advantages of strategies 0 and 1 
(reduced cycling and reduced storage requirements) and mitigating 
their disadvantages (substantial storage requirements and severe 
cycling), the clear sky-dark sky ramp-rate control was proposed [10]. Its 
main goal is to permit implementation with the minimum capacity (Ewf, 
eq.1) 

C2,min = Ewf (8) 

The control scheme is basically the same as Strategy 0 (Fig. 3(a)), 
however, the SOC reference (E*

b) is not a fixed value. Instead, the 
reference is uploaded for each sampling time based on the difference 
between the current power (Ppv), and the upper and lower practical 
production limits, clear sky (Pc) and dark sky (Pd) conditions (Fig. 5(a)). 
The method to estimate Pc is detailed in [10] (we used as input for the 
global horizontal radiation the historical data available in [35]), Pd can 
be approximated as a small percentage of Pc, in this study 5% is used. 

By using the fact that the magnitude of the maximum fluctuation is 
limited, at any instant, by the difference between Pd and Pc, it is possible 
to estimate the energy that needs to be stored. When Ppv is close to Pc the 
only possible fluctuation is negative and the severest one is approxi-
mately Pd − Pc requiring a high storage level. In contrast, when Ppv is 
close to Pd the only possible fluctuation is positive and its maximum 
value is nearly Pc − Pd, therefore a low storage level is required. In any 
intermediate point, upward and downward fluctuations are possible, but 
their magnitudes are shorter (Pc − Ppv and Ppv − Pd, respectively). There 
exist some instants in which Ppv can be higher than Pc (as can be seen in 
Fig. 5(b)), but these events are produced by the reflection from nearby 
clouds and their associated energy and frequency of occurrence are low. 

The control process is described below. 
In each sampling period, the values of Pc, Pd and Ppv are uploaded 

and two differences are computed (shown in Fig. 7(a)): 
Fig. 2. Schematic diagram of a PV plant with battery storage and smoothing 
capabilities connected to the grid. 

A. Gonzalez-Moreno et al.                                                                                                                                                                                                                    



Applied Energy 323 (2022) 119546

4

Δ+(i) = Pc(i) − Ppv(i)
Δ− (i) = Ppv(i) − Pd(i)

(9) 

These values limit the two maximum power fluctuations that can 
occur at any time. By using eq.1 it is possible to estimate the energy 
required to smooth each one: 

E+ = Δ+
(Δ+

2r
− τ

)

E− = Δ−
(Δ−

2r
− τ

) (10) 

When the current SOC permits the simultaneous absorption of E+ and 
injection of E− , then the SOC reference (E*

b) remains constant. When the 
battery is unable to manage one of them, then the reference is set to the 
proper value. The logic is described by thenext pseudo code: 

if Eb + E+ > Emax

E*
b = Emax − E+

elseif Eb − E− < Emin

E*
b = Emin + E−

else
E*

b = Eb

(11) 

The strategy succeeds in reducing the extreme over-cycling of 
Strategy 1 with even less minimum storage. However, due to is pessi-
mistic approach, the permanent assumption of the worst possible power 
fluctuation, there are episodes in which Strategy 2 uses unnecessarily 
the battery. Two particular cases have special interest, they are shown in 
Fig. 6. The first one occurs when a low level of energy is stored in the ESS 
at the beginning of the day and the sky is clear or marginally covered 
(Fig. 6(a)); the second one occurs when a high level of energy is stored 
and the sky is vastly covered (Fig. 6(b)). In these conditions, the algo-
rithm prepares the battery to attenuate the worst possible fluctuation 
(according to the general power limits of the plant, even if it does not 
occur) and produces an unnecessary charge or discharge process. In 
Fig. 6(a) the initial state of the battery is low and, when solar radiation 
increases, the algorithm prepares the system for an eventual Sun 
obstruction by charging the battery, however it does not occur, pro-
ducing unnecessary deep half cycle. The inverse case is shown in Fig. 6 
(b), where a undesirable discharge produces another deep half cycle. 

Fig. 3. Classical ramp-rate control (Strategy 0). (a) Control diagram, (b) performance example during day with severe power fluctuations (r = 2%/min).  

Fig. 4. Mean average control (Strategy 1). (a) Control scheme, (b) example of 
day with severe power fluctuations (r = 2%/min). 
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The solution to this behavior is discussed in the next section. 

5. Proposal: Clear sky-dark sky with forecasting 

The proposed scheme is based on Strategy 2 but to improve some of 
its aspects: over-cycling due to the pessimistic assumption that the 
battery must be prepared to manage both instantaneous worst possible 
upward and downward fluctuations at any time (Eqs. (9) and (10)). 

If the control could have information about the future behavior of PV 
power, by using a forecasting method, and following the logic of Strat-
egy 2, it would be able to reduce the number of unnecessary changes in 
SOC (as in Fig. 6). As a result, it would be possible to reduce the battery 

cycling by taking into account forecasted PV limits instead of Pc and Pd 
(as in Fig. 7). Evidently, the performance of this approach is completely 
dependent on the accuracy of the forecasting available: if there is an 
overestimation of the possible fluctuation, then the cycling reduction 
would not be as much as it could; on the contrary, if there is an un-
derestimation, then there would be risk of ramp-rate non-compliance. 

Assuming the ideal case, perfect forecasting (FCp), the system would 
modify E*

b just when is needed, minimizing the battery cycling. With the 
aim of identifying the performance limit, Strategy 3 is defined. 

Fig. 5. Clear sky-dark sky control (Strategy 2). (a) Control diagram, (b) performance example during a day with severe power fluctuations (r = 2%/min).  

Fig. 6. Clear sky-dark sky control (Strategy 2). Over-cycling examples produced by Strategy 2. (a) Unnecessary charge, (b) unnecessary discharge. In both cases, the 
algorithm prepares the battery, unnecessarily, for fluctuations that do not occur. 
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5.1. Strategy 3: Perfect prediction (FCp) 

In the same way as Strategy 2, Strategy 3 estimates the maximum 
power fluctuation that can take place in the instant i. However, instead 
of using the pessimistic approach of the clear and dark sky limits (Pc(i) 
and Pd(i)), Strategy 3 determines Δ+ and Δ− , each sampling period, by 
taking into account present (Ppv) and maximum and minimum values of 
the forecasted production (PFC), within a temporal horizon (H) with N 
samples. Given that, within the horizon, the extreme values of PFC could 
be overpass the instantaneous limits of Ppv (Pc(i) and Pd(i)), the calcu-
lated values of Δ+ and Δ− should be limited in order to avoid over- 
cycling. Consequently eq.9 is modified as follows: 

Δ+(i) = min{max{PFC(i + 1, ..., i + N) },Pc(i) } − Ppv(i)
Δ− (i) = Ppv(i) − max{min{PFC(i + 1, ..., i + N) },Pd(i) }

(12) 

The subsequent steps of the algorithm remains unaltered (see sub-
section 4.3 Strategy 2). 

A schematic comparison between strategies 2 and 3 is presented in 
Fig. 7. In the case of Strategy 2 (Fig. 7(a)) the value of Δ− leads, ac-
cording to Eqs. (9) and (10), to high SOC’s set point, if the energy stored 
in the ESS is insufficient, then the proportional control will try to reach it 
by charging the battery (preparing the system for a potential severe 
downward fluctuation). However, the future path of the PV production 
is that shown in Fig. 7(b) and the charge produced with the logic of 
Strategy 2 would lead to over-cycling. 

5.2. Strategy 3w: Real prediction (FC) 

Considering the limitations of PV power prediction, some modifica-
tions should be made to Strategy 3 in order to avoid malfunctioning due 

Fig. 7. General case comparison between Strategies 2 and 3. (a) Strategy 2 with its pessimistic approach, (b) Strategy 3 with perfect forecast (FCp) and temporal 
horizon (H). 

Fig. 8. NWP based PV power forecast (FC) accuracy over the entire period (2 years). (a) Error (FC − Ppv) distribution frequency, (b) absolute error (|FC − Ppv|) 
cumulative distribution frequency and (c) 12 consecutive days with severe power fluctuations, clear and completely overcast sky. In (c), the data corresponding to the 
night-time have been omitted. 
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to forecasting inaccuracy and to be able to work with it. The PV power 
forecasting in this study (hereinafter FC) is a publicly-available (costless) 
hourly Numerical Weather Prediction. The summary of FC performance 
for the two years (in 5-second sampling time) is presented in Fig. 8 and 
Table 1. Fig. 8 shows some frequency distributions related to FC error 
(FC − Ppv) and 12 consecutive days (omitting nighttime), while Table 1 
contains different error metrics. 

Fig. 8(a) demonstrates a nearly symmetrical but negative-biased 
distribution, with its peak value shifted − 4% and a mean bias error 
(MBE) of − 6.46% (see Table 1), which means FC tends to underestimate 
the real power. 

The reader should bear in mind that this study is not focused on 
whether or not a forecasting method is satisfactory, and neither does it 
aim to develop an accurate forecasting algorithm, instead it seeks to 
prevent excessive cycling degradation while smoothing PV power fluc-
tuations (and the negative economic/environmental impact of battery 
replacement), even if the available forecast, due to its temporal resolu-
tion, is unable to foreseen those such power fluctuations. The reduction 
of cycling degradation will be produced by avoiding unnecessary battery 
reference variations. 

Given that FC is unable to capture the fast power transitions in intra 
hour horizon, as can be seen in Fig. 8, it is expected that, if used in the 
same way as FCp, there will be numerous violations of the RR re-
quirements. However, as it can be seen in Fig. 8(b), FC’s MAE is below 
20% for 60% of the time. Certainly, that kind of information could be 
used by the control algorithm to improve the cycling degradation, 
although the overall performance would depend on its ability to identify 
those times when FC is reliable. 

Numerical Weather Prediction, generally speaking, can accurately 
forecast clear and overcast days and in such cases, the forecast (like FC) 
resembles the real power production. Fig. 8(c) shows 12 consecutive 
days, just at daytime, and FC behavior. The performance during clear 
(1st) and fully overcast days (2nd, 9th and 11th) is satisfactory, while on 
cloudy days the instantaneous differences can be close to the entire peak 
power, as occurs during the afternoons of the 4th and 7th days. The 
previous outcomes are consistent with the fact that FC temporal reso-
lution cannot predict power fluctuations, which occur in the range of 
minutes, but makes it possible to know, in some cases, when no severe 
power fluctuations will take place. Then, by identifying these moments, 
the algorithm could avoid unnecessary cycling as in Fig. 6. 

By looking at MAE as a function of the minimum distance from FC, 
within the horizon H, to the instantaneous PV production limits (min{| 
PFC,max − Pd(i)|,|Pc(i) − PFC,min|}), an important result emerges (see 
Fig. 9): when the aforementioned metric is low (under 0.1) MAE is low 
(under 15%) and when it is close to its maximum, MAE reaches its 
maximum. 

With the aid of a weight parameter (w), the proposed strategy could 
dynamically combine both strategies 2 and 3. When the metric min{| 
PFC,max − Pd(i)|,|Pc(i) − PFC,min|} is high (the prediction is not reliable), 
Strategy 2 should take a prominent role in the control behavior (as can 
be seen in the figure, regardless of the value of H, MAE reaches its 
maximum for values above 0.5, therefore FC must be ignored for these 
values). While when the metric is low, the values of FC can be trusted. 
However, as is shown in Fig. 9, even for small values of the metric, the 
error does not disappear; therefore, a minimum weight ought to be given 
to Strategy 2 irrespectively of the metric. Finally, the weight (w) can be 
calculated as follows: 

w(i) = wmin + (1 − wmin)⋅
1

0.5
⋅min

{⃒
⃒PFC,max − Pd(i)

⃒
⃒,

⃒
⃒Pc(i)

− PFC,min
⃒
⃒, 0.5

}
(13)  

where wmin is the minimum weight applied to Strategy 2 (it could be zero 
depending on the forecasting quality). 

The value of w can vary between wmin and the unity, when min 
{|PFC,max − Pd|,|Pc− PFC,min|,0.5} varies from 0 to 0.5. If w is close to 1, FC 
is unreliable, and the opposite, when it is near wmin, FC can be considered 
to be reliable (as is shown in Fig. 9). Consequently, w is used for 
combining Strategy 2 and Strategy 3 in a weighted manner (Strategy 
3w): 

E+
3w = w⋅E+

2 + (1 − w)⋅E+
3

E−
3w = w⋅E−

2 + (1 − w)⋅E−
3

(14)  

where subscript 2 denotes the estimation provided by Strategy 2 (Eqs. 
(9) and (10)) and 3 is the one provided by Strategy 3 (Eqs. (12) and (10), 
computed in that order). 

Finally, in order to prevent RR non-compliances due to lack of 
temporal resolution and/or prediction inaccuracies, a safety margin (Es) 
is required at high and low energy storage levels. When the algorithm 
determines that it is not necessary to change the actual SOC (E*

b = Eb in 
Eq. (11)) an additional condition must be met: with the aim of pre-
venting fully charged or discharged conditions, due to unforeseen fluc-
tuation events, the stored energy must be sufficiently separated from 
those values (Emax and Emin, respectively). The modified SOC reference 
logic is described by the next pseudocode (Eq. (15)): 

if Eb + E+
3w > Emax

E*
b = Emax − E+

3w

elseif Eb − E−
3w < Emin

E*
b = Emin + E−

3w

else
if Eb > Emax − Es

E*
b = Emax − Es

elseif Eb < Emin + Es

E*
b = Emin + Es

else
E*

b = Eb

(15)  

Table 1 
Computed 5-second error metrics (FC − Ppv) through 2-year data series.  

Mean 
AbsoluteError 
MAE 

Mean Bias 
Error MBE 

Standard 
DeviationError SDE 

Root Mean Square 
ErrorRMSE  

0.172 − 0.0646  0.232  0.241  

Fig. 9. Mean absolute error (MAE) for different horizons as function of 
min

( ⃒
⃒PFC,max − Pd(i)

⃒
⃒,
⃒
⃒Pc(i) − PFC,min

⃒
⃒
)
. Error (PFC(i) − Ppv(i)) was evaluated 

along the entire data series of Ppv with 5-second sampling time. 
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5.3. Strategy evaluation 

A priori, the choice of the correct horizon (H) is not clear. For the 
strategy to function correctly, H must provide the control with sufficient 
time to reach the setpoint and, in the case of FC, absorb the temporal 
forecasting errors; additionally, the greater the proportional gain (K), 
the shorter the time required. Therefore, the method was tested for a 
wide range of horizons (1–60 [min]) and proportional gain values 
(0.1–6 [1/h]). 

Two performance variables were obtained: cycling degradation 
(CyD) and number of days with RR violations. The results are plotted in 
Fig. 10. The proposal was tested for the two years of PV production data 
and an exigent ramp-rate constraint of 2%/min. 

Fig. 10 shows different significant results. First: there is a region in 
which the number of RR violations is zero in the case of Strategy 3 (FCp), 
it is approximately enclosed by H > 15[min] and K > 2[1/h]. It is sig-
nificant that the minimum degradation partially coincides with the same 
region of full compliance. This means that PV smoothing, up to 2%/min, 
without RR violations, is feasible by knowing the maximum and mini-
mum values within a horizon of 15 min, it does not mean the precise 
moment in which the highest and lowest values occur, but just their 
values. 

As was expected, the using of Strategy 3 with FC leads to the 
appearance of a considerable number of RR non-compliances. The 
cycling degradation is reduced (compared to Strategy 2, see Table 5 in 
the next section), but not to the same extent as if FCp were used. The 
regions of minimum degradation and non-compliances do not match, in 
fact, they are opposed. 

Another relevant outcome is that the use of Strategy 3w can elimi-
nate the RR violations in exchange for a slight increase in degradation 
(compared to Strategy 3 (FCp)). Again, the regions of minimum RR non- 
compliance and degradation do not match; nevertheless, a well- 
balanced solution is possible, e.g. for K = 3 [1/h] and H = 45 [min] 
there are no RR violations and the expected degradation is about 2.85 
[%/yr], which is 43% higher than the minimum degradation in the case 
of perfect prediction. The reason why Strategy 3w can reduce cycling, 
compared to Strategy 2, even if the prediction fails, is because the 

highlighted problem on Fig. 6 is solved. The irradiation during very 
overcast and clear days has a smooth evolution and the NWP methods 
can predict its shape and general behavior with sufficient precision. 
Then, the PV production can be forecasted with similar accuracy and, 
therefore, the control would not change the SOC reference unnecessar-
ily. The same days and initial conditions in Fig. 6 are repeated in Fig. 11, 
but now using Strategy 3w, the improvement is evident. 

Based on the results shown in Fig. 10, in order to compare strategy 
performance, the selected combination of parameters were K = 3[1/h], 
H = 20[min], for Strategy 3 with FCp; and K = 3[1/h], H = 45[min], for 
Strategy 3w. The same example day used for illustrating the behavior of 
benchmark strategies is used to illustrate performance of the proposal in 
Fig. 12, showing the ideal condition of FCp (Fig. 12(a)) and the pro-
gressive improvement from using Strategy 3 with FC (Fig. 12(b)) to the 
complete weighted method (Fig. 12(c)). The initial stored energy is the 
same for all cases. However, the evolution during the day differs. There 
is an evident lack of temporal resolution of FC in order to capture the fast 
power transitions, which causes a non-compliance in Fig. 12(b), when 
the battery reaches its full charge (indicated with a blue arrow). The 
weighted method (Fig. 12(c)) proves its efficiency in smoothing PV 
fluctuations with FC, a free publicly-available hourly sampled predic-
tion; the battery evolution is quite similar to the one of Fig. 12(a), even if 
the two forecast series differ in quality. 

Henceforth, ‘3’ and ‘3w’ will denote Strategy 3 with FCp and Strategy 
3w with FC, respectively. 

6. Strategies comparison 

In order to compare and evaluate performance, each strategy was 
simulated for the same restricted scenario (r = 2%/min). The battery 
efficiency was assumed to be constant but not symmetrical, i.e. in 
charge/discharge 90%/95% were used [36,37]. During simulations, no 
charge or discharge at night-time was allowed. 

Despite the fact it does not depend on simulation but on ramp-rate 
limit, the required minimum storage was computed as an additional 
comparison between the strategies. 

Fig. 10. Forecast horizon (H) and control gain (K) impact on performance of strategies 3 and 3w for different available forecasts. Left column: cycling degradation 
(CyD); right column: number of days with RR noncompliances. Ramp limit: r = 2%/min and, for Strategy 3w, Es = 0.2Cb. 
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6.1. Minimum capacity 

The minimum capacity for each strategy is plotted as a function of 
the desired smoothing (r) in Fig. 13. The capacity required by strategies 
2–3 (Eq. (8)) is lower than any other in every circumstance, however its 
advantage in terms of capacity is more significant (compared to Strategy 
1, Eq. (7)) in low restricted scenarios, e.g. for RR limitations higher than 
6%/min. On the other hand, Strategy 0 demands the higher capacity 
under any circumstances (Eq. (5)). 

Despite the fact that Fig. 13 shows minimum storage limits for each 
strategy; the battery behavior introduces a further constraint. The full 
battery capacity should not be extracted as this would lead to a severe 
lifespan reduction, therefore, the total capacity must be higher. In this 
paper, for all strategies, the total capacity is considered to be 25% over 
the minimum one, which implies that the usable capacity represents 

80% of total storage. 

6.2. Charge/discharge power 

Power cumulative distributions are shown in Fig. 14. The total time 
of use is included in hours and as a percentage of the two years. The 
reader should be aware that the frequencies of each strategy are linked 
to its own time of use. 

Strategies 0 and 2 have a similar distribution but differ in their time 
of use. While for Strategy 0 it is 2850 h, that of Strategy 2 is 3512 h. 
Furthermore, among the strategies with no prediction, Strategy 0 is the 
one that uses its battery for fewer hours; in contrast, Strategy 1 exhibits 
severe usage (8057 h) with the highest frequencies in the entire power 
range. 

On the other hand, the availability of PV power forecasting allows 

Fig. 11. Over-cycling reduction by using Strategy 3 and FC (H = 15 [min], K = 3[1/h]). (a) Unnecessary charge solved, (b) unnecessary discharge solved.  

Fig. 12. Example of proposal behavior. (a) 3(FCp), (b) 3(FC), (c) 3w (FC) with Es = 0.2⋅Cb. In (a) forecasting is omitted as it is identical to Ppv.  
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strategies 3 (2221 h) and 3w (2643 h) to outperform the benchmark 
ones. As was expected, the use of a hypothetical perfect prediction leads 
to the lowest operating time. However, the accuracy of the prediction is 
not a critical factor in terms of achieving a significant improvement: 3 
and 3w show a difference of just 211 h per year and with practically 
identical distributions. Compared to Strategy 2, Strategy 3w reduces the 
temporal utilization by more than 800 h (400 each year). 

6.3. Throughput energy 

The energy handled by batteries is a natural consequence of the 
power distributions shown in Fig. 14. Table 2 presents the energy flow 

through the battery (Et) with two metrics: the number of equivalent 
cycles, a measure of the battery degradation, which is the ratio between 
energy and twice the capacity (Et/2Cb); and the ratio with the total 
photovoltaic energy (Et/Epv), useful for energy wastage analyses and for 
economic purposes. 

In terms of equivalent cycles and due to its high capacity, Strategy 
0 produces the lowest number (127), which would lead to the lowest 
cycling degradation and, consequently, longest lifespan. As was ex-
pected, Strategy 1 causes battery over-cycling, which is far greater than 
any of the other strategies, on average, more than one equivalent cycle 
per day (869). Strategy 3w reduces the number of cycles of Strategy 2 by 
40 (20 per year), the maximum reduction could be 44 cycles each year if 
perfect forecasting were available (Strategy 3). 

On the other hand, in terms of total energy (Et/Epv), two facts 
emerge: firstly, forecasting strategies outperform any of the benchmark 
methods, irrespective of whether FCp or FC are used. Secondly, the use of 
strategies 3 and 3w leads to comparable results: the energy flow is 25% 
higher for the weighted method in comparison to perfect forecast. Thus, 
the availability of a perfect forecast is not required in order to get a 
significant improvement. 

If the energy losses (Eloss) related to ESS usage are estimated as fol-
lows: 

Eloss =
(

1 − ηpe

(ηc

2
+

ηd

2

))
Et (16)  

where Et is the battery throughput energy (in pu), and ηpe, ηc and ηd are 
the efficiency of power electronics, charge and discharge, respectively. 
With a total efficiency of 90% (ηc = 90%, ηd = 95% andηpe = 97%), 
according to the results shown in Table 2, strategies 0, 2, 3 and 3w 
would have insignificant losses, between 0.37% and 0.5% of total pro-
duction; however, Strategy 1 would give a considerable loss of 1.5%. 

Fig. 15 shows plots of the SOC evolution over three consecutive days 
as well as the PV power and predicted production. The results are 
consistent with those of Table 2. The characteristic over-cycling of 
Strategy 1 is evident; in the same way, the consequences of the pessi-
mistic approach of Strategy 2 are clear (particularly on day one and 
two). It can be seen that strategies 3 and 3w behave in a similar way 
during clear and overcast days, even though there may be a few dis-
crepancies produced by inaccuracies in power forecasting (as can be 
seen on the morning of the first day). Additionally, the positive effect of 
the weight parameter (Eq. (13)) can be noted: at first day morning, 
strategy 3w performs a charge that is several times less than that which 
would be produced by strategy 2. In addition, strategies 3 and 3w suc-
cessfully avoid the heavy discharge that Strategy 2 produces at the 
beginning of the second day, avoiding excessive and unnecessary 
cycling. 

Furthermore, the reduced cycling of Strategy 0 is illustrated, and also 
its energy flux which is higher than that of strategies 3 and 3w (as can be 
seen in Table 2). On the third day, in the early morning, there is an 
upward fluctuation that charges the batteries of all the strategies, the 
change in SOC is related to the amount of degradation. While for stra-
tegies 3 and 3w the change is close to 20%, for Strategy 0 it is almost 
10%, due to its double capacity and, for the same amount of energy, the 
change in SOC of strategies 3-3w is twice that of Strategy 0. However, as 
can be seen in the zoom detail, Strategy 0 implies a higher energy flux 
because of the continuous attempt of its control loop to restore SOC to its 
reference value. Following the aforementioned fluctuation, the SOC of 
Strategy 3 evolves ‘freely’ with a slight increase in charge; in contrast, 
Strategy 0 tries to return the SOC to its setpoint with a discharge. The 
magnitude of the change in SOC is almost the same for both strategies 
(as can be seen with the aid of the scale on the zoom detail), therefore, 
the energy flux is almost twice for Strategy 0. The subsequent downward 
fluctuation, which discharges the batteries in all cases, is followed by a 
sharp upward fluctuation, in this case, the SOC variation of Strategy 0 is 
higher than that of Strategy 3 and practically the same as for Strategy 

Fig. 13. Minimum capacity requirements for different strategies. Red: Strategy 
0 (eq.5), green: Strategy 1 (Eq. (7)), blue: strategies 2–3 (Eq. (8), τ = 1[min]). 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 14. Cumulative frequency distributions for different strategies. The box 
shows the amount of time (in 2 years) that |Pb| is higher than 0, in hours and 
as percentage. 

Table 2 
Throughput energy (Et) managed by batteries of different strategies during two 
simulated years. Number of equivalent cycles (Et/2Cb) and energy as fraction of 
total PV energy (Et/Epv).  

Strategy 0 1 2 3 3w 

Et/2Cb[Eq.Cycles] 127 869 284 196 244 
Et/Epv[%] 4.5 15 5.0 3.7 4.3  
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3w, therefore, its throughput energy in this event doubles, at least, those 
of the strategies with forecasting. 

Finally, it can be observed that, for the whole day, Strategy 3w be-
haves similar to Strategy 3, even if its forecasting is far from perfect (as 
can be seen at the top of Fig. 15). During that day, their SOC curves 
remain close at every moment in time and, at the end of the day, their 
SOCs are almost the same as at the beginning. 

6.4. SOC distribution 

SOC relative frequency distributions are shown in Fig. 16. These 
were scaled down in order to get a more general picture: the SOCmin 
(Emin) value is referred as 0 and SOCmax as 1 (Emax). As the reader will 
remember, the simulations were carried out with Emin=0.2⋅Cb and 
Emax=Cb and a total capacity of 1.25 times the minimum one (Fig. 13). 
Table 3 shows the minimum, mean and maximum values for each of the 
SOC distributions. 

Strategy 0 has a clear mode in its reference value (50%), which is 

produced by the control loop. Strategy 1 has a clear bimodal shape, with 
its modes located close to SOCmin and SOCmax, that is due to the one- 
deep-cycle-per-day behavior; this pattern is very harmful for batteries 
because the high and low levels of SOC accelerate different degradation 
process [38,39,40]. Strategy 2 has an irregular behavior because of the 
variability of E*

b. On the other hand, the distribution of Strategy 3 is not 
as disperse as Strategy 2 and their values are more centered, which 
means that the battery stays longer at intermediate SOC values. In the 
case of 3w the main region is limited between 0.2 and 0.8, which is 
produced by the safety margin (Es) introduced in Eq. (15). Both of them 
reduce the mean value (compared to Strategy 2, see Table 3); finally, 
they exhibit similar extreme values (with an extremely low relative 
frequency) and are able to reduce the total range of SOC variation 
(compared to Strategy 2). 

6.5. Degradation and expected life 

Battery degradation is traditionally divided into two independent 
components: cycling degradation (CyD) and calendar degradation 
(CaD). Cycling degradation depends on the stress produced in the bat-
tery by all the conditions in which the charge and discharge processes 
occur, e.g. temperature, current, SOC variation and mean SOC 
[36,38,40,41,42,43]. Calendar degradation is produced when the bat-
tery is in standby, mainly by irreversible chemical parasitic processes 
that modify the original structure and reduce the amount of active 
material and its distribution [38,44]; it is principally affected by tem-
perature and the stand-by SOC level. 

According to the most common end of life criteria (EOL), a battery is 
considered “dead” when its capacity decays 20% from its original value. 
From this point onwards, the battery suffer an accelerated lack of per-
formance [38,39,40]. 

Fig. 15. SOC evolution during three consecutive days. (a) PV power and real NWP forecasting (FC). (b) Energy storage evolution during 3 simulated days.  

Fig. 16. Distributions of the SOC for different strategies over two simulated 
years. Y-axis is logarithmically scaled. 

Table 3 
Limits and mean values in SOC distributions of Fig. 16.  

Strategy 0 1 2 3 3w 

mean [%] 50 10 60 42 54 
min [%] 19 0 3.6 6.1 7.5 
max [%] 75 88 98 98 98  
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Manufactures provide two different plots that make it possible to 
estimate the CyD and CaD. The first can be calculated by using the 
cycling life plot, which reproduces the number of identical cycles (N) 
that causes the battery to reach the EOL criteria as a function of depth of 
discharge (DOD). With the use of the rain-flow counting method 
[45,46], complex SOC series can be decomposed into a series of different 
cycles of equal DOD, and assuming that each of these groups degrade the 
battery in a proportional manner, the total CyD is obtained: 

CyD =
1

TData

∑80

i=1

Ni

NI,max
(17)  

where TData is the period covered by the data series, i is the cycle depth, 
Ni is the number of cycles computed by the method, and Ni,max is the 
number of cycles defined by the cycling life plot. Fig. 17 is the curve used 
in this study. 

The rain-flow counting method plus the cycling life plot is a fast 
procedure that is commonly used [25,27,48,49,50,51]. However, its 
accuracy is low due to the fact that the method underestimates the 
actual degradation: it does not consider the influence of current and 
temperature (it is common that available cycling life plots show results 
at 25 ◦C, an unrealistic condition in most applications). Given that Dufo- 
Lopez [50] found the ratio between estimated and experimental lifetime 
was between 2 and 3, all the CyD results in this work were corrected by a 
factor of 2. 

The calendar degradation (CaD) can be estimated with the calendar 
life plot. It reproduces the years of expected life (up to the manufactur’s 
warranty, generally 20 years) as a function of temperature and SOC. 
Fig. 18 shows the plot used. 

The curves in Fig. 18 can be approximated to a function of the form: 
a1exp(a2⋅T) in which the coefficients a1 and a2 are obtained for each 
SOC level with a linear fitting (ai = mi⋅SOC[pu] + bi). Table 4 presents 
the coefficients that fit a1 and a2: 

It is important to highlight the fact that, for SOC levels below 50% an 
extrapolation is computed in the parameters a1 and a2 (based on the 
data presented in Fig. 18), while an interpolation is made for upper 
values. With the use of the previous fitting it is possible to estimate the 
calendar degradation by taking into account the different vales of SOC 
within the frequency distribution (SOCi), their relative frequencies (Fi) 
and the mean operational temperature (T): 

CaDi =
1

(m1⋅SOCi + b1)exp({m2⋅SOCi + b2}⋅T)
(18)  

CaD =
∑SOCmax

i=SOCmin

CaDi⋅Fi (19) 

Then, by using Eqs. (17) and (19), the expected battery lifespan is: 

Life[yr] =
1

CyD + CaD
(20) 

The result of CyD, CaD and expected life is presented in Table 5. In 
order to calculate CaD, a mean temperature of 35 ◦C was assumed. The 
results are consistent with those in previous sections. As was expected, 
Strategy 0 implies a higher battery longevity compared to other strate-
gies, due to its limited number of equivalent cycles. Strategy 1 has a poor 
expected lifespan as a result of its intrinsic over-cycling behavior. 
Prediction-based strategies can reduce CyD by 40%, in comparison to 
Strategy 2, and can almost reach the entire life of the project, irre-
spective of whether FCp is used or not. The difference between strategies 
3 and 3w, in terms of expected life, is close to 2.4 years. 

6.6. Levelized cost of energy (LCOE) 

Based on the expected life, which is affected by all the preceding 
parameters, the number of battery replacements is obtained. It is then 
possible to compute the aggregated cost of the energy produced by the 
PV project. A metric usually used for comparative purposes is the lev-
elized cost of energy (LCOE) [53,54,55], which considers the entire 
duration of the project. It is defined as: 

LCOE =
I0,pv + I0,b +

∑N
k=1Ik

∑N
k=1Ek(1 + r)− k (21) 

where:  

• I0,pv is the PV cost acquisition.  
• I0,b is the cost of initial battery acquisition. 

Fig. 17. Cycling life plot of a Li-ion battery [47] (DOD: depth of discharge, N: 
number of cycles). The y-axis is logarithmically scaled. 

Fig. 18. Characteristic calendar degradation as a function of SOC and Tem-
perature [52]. 

Table 4 
Coefficients and R2 for the linear fitting of a1 and.a2  

i mi bi R2 

1 1045 58  0.973 
2 − 0.058 − 0.054  0.999  

Table 5 
Comparative cycling degradation (CyD), calendar degradation (CaD) and ex-
pected life for Li-ion batteries depending on different strategies.  

Strategy 0 1 2 3 3w 

CyD [%/yr] 0.961 22.1 4.7 2.18 2.85 
CaD [%/yr] 3.15 3.72 3.65 3.25 3.40 
Expected life [yr] 24.3 3.87 12.0 18.4 16.0  
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• k is the year of the project under consideration.  
• N is the project’s duration. In this study, we consider a 20-year PV 

project.  
• Ik is the cost associated with the k-th year. It ought to include: capital 

and operational expenditures (CAPEX and OPEX, respectively).  
• Ek is the energy production during the k-th year.  
• r is the discount rate. 

The parameters used to compute the LCOE are shown in Table 6. 
Table 7 shows the results of the LCOE computation. As a reference, 

the case with no PV smoothing is also included. The base comparison 
reveals Strategy 3 to be the most cost-effective among the strategies 
analyzed with an LCOE of 66.7$/MWh. Although it does not have a 
perfect forecasting, Strategy 3w would imply a slight LCOE increase 
(67.1$/MWh). The cost increases, compared to the plant with no 
smoothing, would be 28% and 28.8%, for strategies 3 and 3w respec-
tively. Therefore, perfect prediction is not a hard requirement for the 
proposed control method, its hypothetical availability could reduce the 
LCOE increase to an insignificant 0.8% or 0.4 $/MWh. 

Even though Strategy 0 is the strategy with the highest expected 
lifespan, it increases LCOE in 48.4%, almost twice the increase of 
Strategy 3w. This is due to the fact that, at present prices, Strategy 
0 acquires twice the capacity of the method proposed and, although 
Strategy 3w would demand a battery replacement, so both of them ac-
quire the same amount of storage, such replacement for Strategy 3w 
would be postponed until the 17th year, involving an expected cost fade 
in batteries from 550 to 230 $/kWh. 

It is noteworthy that the inclusion of an ESS with demanding 
smoothing requirements (2%/min) can almost double the LCOE, if an 
inadequate control strategy is selected (as in the case of Strategy 1). 

7. Conclusion 

This work presents a novel ramp-rate control strategy that has the 
ability to operate with minimum storage requirement and uses PV power 
forecasting in order to reduce the battery cycling and therefore, increase 
its lifespan. The strategy was designed to be able to work with real 
publicly-available PV power prediction and deal with its intrinsic inac-
curacies and lack of temporal resolution. Furthermore, the strategy can 
be extrapolated to other plant sizes and locations following the battery 
size procedure and using the same control parameters (in per unit 
system). 

The proposed solution was compared to three benchmark strategies 
and their performances were analyzed in terms of minimum storage 
requirement, battery power distribution, battery throughput energy, 
SOC distribution, degradation, expected life and levelized cost of energy 
(LCOE). 

The proposed method outperforms the benchmark strategies in terms 
time of use and amount of throughput energy. For a demanding 
constraint of 2%/min, the simulations show that the proposal would use 
the battery for only 15.1% of the total time and that the energy passing 
through it would be 4.3% of the total available. These values are close to 
the performance limit of the strategy, which would be obtained with a 
hypothetical perfect prediction: 12.7% for the usage time and 3.7% for 
the amount of energy. 

The results of the LCOE analysis showed the proposed scheme to be 
the most cost-effective one. The increase produced by the PV smoothing 
system is 28.8%, compared to a plant with no smoothing capabilities, 
while benchmark strategies were between 31% and 95.8%. The pro-
posed strategy is capable of smoothing PV fluctuations and, at the same 
time, maintaining the price competitiveness of PV power production, 
which guaranties that the ramp-rate limitations imposed by the TSOs 
will not be a major concern for PV generation. 
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[9] Marcos J, Storkël O, Marroyo L, Garcia M, Lorenzo E. Storage requirements for PV 
power ramp-rate control. Sol Energy 2014;99:28–35. https://doi.org/10.1016/j. 
solener.2013.10.037. 

[10] de la Parra I, Marcos J, Garcia M, Marroyo L. Control strategies to use the minimum 
energy storage requirement for PV power ramp-rate control. Sol Energy 2015;111: 
332–43. https://doi.org/10.1016/j.solener.2014.10.038. 

[11] Lappalainen K, Valkealahti S. Output power variation of different PV array 
configurations during irradiance transitions caused by moving clouds. Appl Energy 
2017;190:902–10. https://doi.org/10.1016/j.apenergy.2017.01.013. 

[12] Lappalainen K, Wang GC, Kleissl J. Estimation of the largest expected photovoltaic 
power ramp rates. Appl Energy 2020;278:115636. https://doi.org/10.1016/j. 
apenergy.2020.115636. 

[13] Chalmers S, Hitt M, Underhill J, Anderson PM, Vogt PL, Ingersoll R. The effect of 
photovoltaic power generation on utility operation. IEEE Trans Power Appar Syst 
1985;PAS-104 (3):524–30. https://doi.org/10.1109/TPAS.1985.318968. 

[14] Cabrera-Tobar A, Bullich-Massague E, Aragues-Peñalba M, Gomis-Bellmunt O. 
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