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Abstract—From the more than two hundred partial orders for
fuzzy numbers proposed in the literature, only a few are total.
In this paper, we introduce the notion of admissible order for
fuzzy numbers equipped with a partial order, i.e. a total order
which refines the partial order. In particular, it is given special
attention to the partial order proposed by Klir and Yuan in 1995.
Moreover, we propose a method to construct admissible orders
on fuzzy numbers in terms of linear orders defined for intervals
considering a strictly increasing upper dense sequence, proving
that this order is admissible for a given partial order. Finally, we
use admissible orders to ranking the path costs in fuzzy weighted
graphs.

Index Terms—Fuzzy numbers, orders on fuzzy numbers,
admissible orders, fuzzy weighted graphs.

I. INTRODUCTION

FUZZY numbers were introduced by Zadeh [1] to deal
with imprecise numerical quantities in a practical way.

The concept of a fuzzy number plays a fundamental role in
formulating quantitative fuzzy variables, i.e. variables whose
states are fuzzy numbers.

The study of admissible orders over the set of closed
subintervals of [0,1], i.e. orders which refine the natural order
for intervals, starts with the work of Bustince et al. [2] and
from then several pieces of research on this topic have been
made, for example in [3], [4]. Lately, this notion was adapted
for other domains in [5], [6], [7], [8], [9].

From the more than two hundred partial orders for fuzzy
numbers proposed in the literature, only a few are total, for
example [10], [11], [12], [13], [14]. Moreover, no study on
admissible orders for fuzzy numbers or a subclass of them
has been made so far. In order to overcome this lack and
motivated mainly by the application potential of this subject,
in this work we introduce and analyze the notion of admissible
orders for fuzzy numbers with respect to a partial order and
in particular, we explore the case where this partial order is
the given in [15].

On the other hand, fuzzy weighted graphs are a generaliza-
tion of the weighted graphs where fuzzy numbers are used
to model the uncertainty in the weights of the edges (c.f.
[16]). The fuzzy shortest path problem was first enunciated
in [17] and since then several algorithms have been proposed
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to determine the fuzzy shortest path length in fuzzy weighted
graphs (see for example [16], [18], [19]). It is worth to note
that the order considered on fuzzy numbers is fundamental
to such algorithms. In [16] it is formalized and proposed
an algorithm to determine the fuzzy shortest path (routes)
length on fuzzy weighted graphs. It pays special attention to
the ranking methods of the routes, based in a defuzzification
method. Nevertheless, the approach presents a problem with
the center of gravity defuzzification method. In this paper,
we present a solution to what was raised in [16]. It does
not consider defuzzification thanks to the given definition of
admissible order.

This paper is organized as follows: In Section 2, in addition
to establishing the notation used, we recall some essential
notions for the remaining sections. In Section 3 we see
the most basic partial order on fuzzy numbers, and a total
order proposal in [14]. The notion of admissible order for
fuzzy numbers is studied in Section 4. Section 5, presents an
application of admissible orders in the Shortest Path problem.
Section 6, we present another application in graphs, this time
for the travelling salesman problem considering the capitals
of the Brazilian Northeast. Finally, Section 7 provides some
final remarks.

II. PRELIMINARY CONCEPTS

In this section, we introduce notations, definitions and
preliminary facts which are used throughout this work.

Given a poset ⟨P,≦⟩ where ≦ is a partial order, or just an
order and a, b ∈ P , we denote by a ∥ b when a and b are
incomparable, i.e. when neither a ≦ b nor b ≦ a. When all the
elements of P are comparable we will call the order of linear
or total. We will denote the set of real numbers by R and N
will denote the set of natural numbers.

Based on [20], [21] we consider the following definitions
of left and right continuity of real functions.

Definition II.1. Let a ∈ R, f ∶]−∞, a[→ R and g ∶]a,+∞[→ R
be functions. Then f is left-continuous if for each x ∈]−∞, a[
and increasing sequence (xi)i∈N of real numbers with xi → x,
as i → ∞ we have that lim

xi→x
f(xi) = f( lim

xi→x
xi). Dually, g

is right-continuous if for each x ∈] − ∞, a[ and decreasing
sequence (xi)i∈N of real numbers with xi → x, as i →∞ we
have that lim

xi→x
g(xi) = g( lim

xi→x
xi).

A. Admissible Orders on the Real Closed Interval Set

Let IR be the set of all the non-empty, closed and bounded
intervals of real numbers, i.e.

IR = {[a, b] ∶ a, b ∈ R, a ≤ b}.
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Closed intervals of real numbers will be called just of intervals.
Degenerate intervals, that is, intervals [a, a] will be written
in the simplified form [a]. Given an interval [a, b], its lower
bound is denoted by [a, b], and its upper bound is denoted by
[a, b], i.e. [a, b] = a and [a, b] = b for every [a, b] ∈ IR.

Since intervals are sets, the inclusion determines an order.
Observe that the inclusion order for intervals can be deter-
mined exclusively on their extremes as follows

[a, b] ⊆ [c, d]⇔ c ≤ a and b ≤ d.

Auxiliarly, we also define the following strict order on IR:

[a, b] ⋐ [c, d]⇔ c < a and b < d.

Notice that, [3,4] ⊆ [3,5] but [3,4] /⋐ [3,5]. Therefore, ⊆≠⋐.
In [22] consider the following order for IR:

[a, b] ≤KM [c, d]⇔ a ≤ c and b ≤ d.

Nowadays, this order, which is inherited from the usual one
between real numbers, is the most widely used for IR. But this
order is not linear, i.e. is not total, and, in some situations a
linear order is fundamental (see for example [23]). Of course,
there are infinitely many linear orders on IR. This motived [2],
in the context of interval-valued fuzzy sets, i.e. in L([0,1]) =
{[a, b] ∈ IR ∶ 0 ≤ a ≤ b ≤ 1}, to introduce the notion of
admissible linear orders. For Bustince et al., in [2], an order
only is admissible if it is linear and refines or encompasses
the usual order on L([0,1]), i.e., ⟨L([0,1]),≤KM ⟩.

But, it is clear that this notion can be adapted in a straight-
forward way for IR:

Definition II.2. A relation ⪯ on IR is called an admissible
order, if
(i) ⪯ is a linear order on IR;

(ii) for all A, B on IR, A ⪯ B whenever A ≤KM B.
In addition, ⪯ is compatible with the addition if, for each
[a, b], [c, d], [e, f] ∈ IR, we have that [a+e, b+f] ≺ [c+e, d+f]
whenever [a, b] ≺ [c, d].
Example II.1. Admissible orders on IR

1) Lexical 1: [a, b] ⪯Lex1 [c, d]⇔ a < c or (a = c and b ≤ d);
2) Lexical 2: [a, b] ⪯Lex2 [c, d]⇔ b < d or (b = d and a ≤ c);
3) Xu-Yager (adapted from [24]):

[a, b] ⪯XY [c, d]⇔ a+b < c+d or (a+b = c+d and b−a ≤ d−c);

4) Twice Xu-Yager (adapted from [3, Ex. 4]):

[a, b] ⪯2XY [c, d]⇔ a + 3b < c + 3d

or (a + 3b = c + 3d and b − a ≤ d − c).

Observe that all this order are compatible with the addition.

B. Fuzzy sets

The following definitions can be found in [15], [25] and
in most of the introductory books on fuzzy sets theory. In all
this section X will be a non-empty reference set with generic
elements denoted by x.

Definition II.3. A fuzzy set A on X is a function A ∶ X Ð→
[0,1]. In addition,

(i) The support of A, is the set supp(A) = {x ∈X ∶ A(x) >
0};

(ii) The kernel of A, is the set ker(A) = {x ∈X ∶ A(x) = 1};
(iii) Given α ∈ ]0,1], the α-cut of A is the set A/α = {x ∈X ∶

A(x) ≥ α};
(iv) The height of A is h(A) = sup

x∈X
A(x).

If h(A) = 1, then the fuzzy set A is called of normal fuzzy
set. Clearly, in a finite set X , we have that, A is normal if and
only if ker(A) ≠ ∅.

C. Fuzzy numbers

There are several different definitions of fuzzy numbers
in the literature, for instance [13], [15], [25], [26], [27],
[28], [29], [30]. Most of them vary in the kind of continuity
required for the membership function. For example, in [13],
[29] is considered upper semi-continuity whereas in [26], [27]
is required piecewise continuity and in [15], [25], [28] no
continuity constraint is required. Another difference can be
that some require that the kernel of the fuzzy number be a
singleton, another one is that it should be non-empty. Besides,
in some definitions the support is bounded (c.f. [28]) whereas
in others it is unbounded (c.f. [30]). Here we adopted the
approach given in [15] which only considers fuzzy numbers
with bounded support.

Definition II.4. A fuzzy set A on R is called a fuzzy number
if it satisfies the following conditions

(i) A is normal;
(ii) A/α is a closed interval for every α ∈ ]0,1];

(iii) the support of A is bounded.

Henceforth, F(R) will denote the set of all fuzzy numbers.
We note that Definition II.4 is equivalent to that which

appears in [25, p.44].

Remark II.1. Since the support of a fuzzy number of A is
bounded, there exist ω1, ω2 in R, s.t. cl(supp(A)) = [ω1, ω2],
where cl is a topological closure operator with respect to
the usual topology on R. In addition, we will use the no-
tation supp(A)− and supp(A)+ for ω1 and ω2, respectively.
Analogously, since the kernel of A is a closed interval [a, b],
we will use the notation ker(A)− and ker(A)+ for a and b,
respectively.

The next theorem gives a full characterization of fuzzy
numbers.

Theorem II.1. [15, Theorem 4.1] Let A be a fuzzy set on
R. Then, A ∈ F(R) if and only if there exist a closed
interval [a, b] ≠ ∅, a function l from ] − ∞, a[ to [0,1]
which is right-continuous, increasing and l(x) = 0 for each
x ∈ ]−∞, supp(A)−], and a function r from ]b,+∞[ to [0,1]
which is left-continuous, decreasing and r(x) = 0 for each
x ∈ [supp(A)+,+∞[, such that

A(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if x ∈ [a, b],
l(x), if x ∈ ] −∞, a[,
r(x), if x ∈ ]b,+∞[.

(1)
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Corollary II.1. For each interval [a, b] ∈ IR their character-
istic function [̃a, b] ∶ R→ [0,1] defined by

[̃a, b](x) = { 1, if x ∈ [a, b],
0, if x /∈ [a, b]

is a fuzzy number.

So, in some sense, we can think that fuzzy numbers gen-
eralize the set of closed intervals of real numbers, i.e. that
IR ⊆ F(R) and therefore R ⊆ F(R) too, once degenerated
intervals can be seen as real numbers and instead of writing
[̃a, a] or [̃a] we just use ã. A fuzzy number ã is called a
crisp number or fuzzy singleton in [26]. A fuzzy number A
is called a triangular fuzzy number whenever ker(A) = [a],
l(x) = x−supp(A)−

a−supp(A)− for all x ∈ ]supp(A)−, a[ and r(x) =
supp(A)+−x
supp(A)+−a for all x ∈ ]a, supp(A)+[, and is denoted by the
triple (supp(A)−, a, supp(A)+).

Remark II.2. From [25, Remark 3.3.2.] we have that each
fuzzy number A is an upper semi-continuous function and
therefore, the definition given in [13], [29] is equivalent to
Definition II.4.

In the proof of Theorem II.1, Klir and Yuan, provide a
characterization of the α-cut of fuzzy numbers based on the
functions l∗ ∶ [0,1]→ ]−∞, a[ and r∗ ∶ [0,1]→ ]b,∞[ defined
by

l∗(α) = inf {x ∈ ] −∞, a[ ∶ l(x) ≥ α}

and
r∗(α) = sup{x ∈ ]b,∞[ ∶ r(x) ≥ α}

with the convention that if {x ∈ ] −∞, a[ ∶ l(x) ≥ α} =
{x ∈ ]b,∞[ ∶ r(x) ≥ α} = ∅ then l∗(α) = a and r∗(α) = b,
and given by

A/α =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[supp(A)−, supp(A)+], if α = 0,

[l∗(α), r∗(α)], if α ∈ ]0,1[,
[a, b], if α = 1.

(2)

Example II.2. Consider the fuzzy number A (see Figure 1)
given by:

A(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if x ∈ [3,4],
l(x), if x ∈ ] −∞,3[,
r(x), if x ∈ ]4,+∞[,

where l and r are:

l(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x+1
4
, if 2 ≤ x < 3,

1
2
, if 1 ≤ x < 2,

0, if x < 1,

and

r(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

20−3x
8

, if 4 < x ≤ 5
6−x
3
, if 5 < x ≤ 6,

0, if x > 6,

verify the conditions of the Theorem II.1. Let’s calculate the

Figure 1. Fuzzy Number A.

α-cut of A, starting with l, i.e.:

l∗(α) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

4α − 1, if α ∈ [ 3
4
,1] ,

2, if α ∈ ] 1
2
, 3
4
[ ,

1, if α ∈ [0, 1
2
] .

(3)

To continue, with r it’s analog, we have

r∗(α) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

20−8α
3

, if α ∈ [ 5
8
,1] ,

5, if α ∈ [ 1
3
, 5
8
[ ,

6 − 3α, if α ∈ [0, 1
3
[ .

(4)

Therefore, from Eq. (2), we express the α-cut of A given by:

A/α = { [l∗(α), r∗(α)], if α ∈ [0,1[,
[a, b] , if α = 1

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[4α − 1, 20−8α
3

] , if α ∈ [ 3
4
,1] ,

[2, 20−8α
3

] , if α ∈ [ 5
8
, 3
4
[ ,

[2,5] , if α ∈ ] 1
2
, 5
8
[ ,

[1,5] , if α ∈ [ 1
3
, 1
2
] ,

[1,6 − 3α] , if α ∈ [0, 1
3
[ .

Proposition II.1. [15, p. 109-110] Let A,B ∈ F(R) then the
fuzzy sets A ∧B and A ∨B defined for each x ∈ R by

A ∧B(x) = sup
x=min{y,z}

min{A(y),B(z)}

and
A ∨B(x) = sup

x=max{y,z}
min{A(y),B(z)},

are fuzzy numbers. In addition, ⟨F(R),∧,∨⟩ is a distributive
lattice.

The arithmetic operations on fuzzy numbers are defined
based on the Zadeh extension principle. Let A and B be two
fuzzy numbers and ⋆ ∈ {+,−, ⋅,÷} and the fuzzy set A ⋆ B
defined for z in R [28] as A⋆B(z) = sup

z=x⋆y
min{A(x),B(y)}.

Then A ⋆ B is also a fuzzy number [15, Theorem 4.2].
Nevertheless, to A÷B be a fuzzy number it is necessary that
0 /∈ supp(B) [28, pp. 64].

An alternative form to define the arithmetic operations on
F(R) is based on the Klir and Yuan decompositional theorem
[15, Theorem 2.5] which proves that each fuzzy set can be
recovered from its α-cut. Thereby, when either 0 /∈ supp(B)
or ⋆ ≠ ÷, A ⋆B is the fuzzy set whose α-cut are

A⋆B/α = A/α◇B/α, (5)
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where ◇ ∈ {+,−, ⋅,÷} is the respective arithmetic operation
on IR (see [31]) for all α ∈ ]0,1]. In addition, when A
and B are triangular fuzzy numbers then A + B and A − B
are also triangular fuzzy numbers, but A ⋅ B and A ÷ B can
not be triangular fuzzy numbers [25, Section 3.5] and [32].
Indeed, A = (a1, a2, a3) and B = (b1, b2, b3) then A + B =
(a1+b1, a2+b2, a3+b3) and A −B = (a1 − b3, a2 − b2, a3 − b1).
Notice also that for each r ∈ R and a triangular fuzzy number
A = (a1, a2, a3) we have that r̃ ⋅ A = (a1 ⋅ r, a2 ⋅ r, a3 ⋅ r) if
r ≥ 0 and r̃ ⋅A = (a3 ⋅ r, a2 ⋅ r, a1 ⋅ r) if r < 0. For the product
of two fuzzy numbers see [15], [25], [32], [33].

D. Order on fuzzy numbers

The following partial order in F(R) was proposed by Zadeh
in [1].

Definition II.5. Let A and B be two fuzzy numbers. We write:

A ≤Z B ⇐⇒ A(x) ≤ B(x) for all x ∈ R.

The Figure-2a shows a case where A ≤Z B.
The Zadeh’s order can be characterized in terms of the

inclusion order on their α-cut.

Proposition II.2. [15, Theorem 2.3-viii] Let A and B ∈ F(R).
Then A ≤Z B if and only if ∀α ∈ ]0,1] A/α ⊆ B/α.

The problem with this order is that it does not generalize
the usual order on the real numbers. In fact, given x, y ∈ R
such that x < y, we have that x̃ /≤Z ỹ.

Klir and Yuan in [15] proposed the following partial order
on F(R):

Let A and B ∈ F(R). Then

A ≤KY B ⇐⇒ A ∧B = A.

Proposition II.3. [15, p. 114] Given fuzzy number A and B,
the following assertions are equivalents

1) A ≤KY B;
2) A ∨B = B;
3) A/α ≤KM B/α for each α ∈ ]0,1].
Observe that the Klir-Yuan partial order, when restricted

to intervals, corresponds to the Kulisch-Miranker order and
when restricted to real numbers it agrees with the usual order.
The problem is that there are pairs of fuzzy numbers which
are non-comparable under this order. The Figures 2a and 2b
present the two generic cases of pairs of fuzzy numbers which
are non-comparable by the partial order ≤KY and therefore,
≤KY is not a linear order.

From the above observation, we get the following charac-
terization of the non-comparable fuzzy numbers for this order.

Corollary II.2. Let A and B be fuzzy numbers. A and B are
non-comparable in the order ≤KY if and only if one of the
following assertions holds:

1) There exists α ∈ ]0,1] such that A/α ⋐ B/α or B/α ⋐ A/α;
2) There exist α,β ∈ ]0,1] such that A/α <KM B/α and

B/β <KM A/β.

Remark II.3. Since for each positive real number r and
A ∈ F(R) we have that A−r/α <KM A/α <KM A+r/α, for all

(a)

(b)
Figure 2. General cases of pairs of non-comparable fuzzy number with respect
the Klir-Yuan order.

α ∈ ]0,1] and where A−r(x) = A(x+ r) and A+r(x) = A(x−
r), the distributive lattice ⟨F(R),∧,∨,≤KY ⟩ is not bounded
and therefore not a complete lattice. Also, ⟨F(R),+, ⋅,≤KY ⟩
is a subdistributive lattice (see [15, p. 104, point 4]) which is
not bounded and therefore it is not a complete lattice.

1) Wang-Wang order: Wei Wang and Zhenyuan Wang in
[14] propose a total order for the set of fuzzy numbers based
on α-cut from a special type of sequence in [0,1].

Definition II.6. ([14]) Let S = (αi)i∈N be a sequence in ]0,1].
Then S is upper dense if, for every point x ∈ ]0,1] and any
ε > 0, there exists i ∈ N such that αi ∈ [x,x + ε[.

Remark II.4. If S = (αi)i∈N is an upper dense sequence in
]0,1] then

1) inf S = 0 and supS = 1;
2) for all n ∈ N there are i < j ∈ N such that n ≤ i, αi < αi+1

and αj+1 < αj;
3) for all n ∈ N the sequence Sn = (α′i)i∈N with α′i = αn+i

is also an upper dense sequence in ]0,1];
4) for all α ∈ ]0,1], the sequence Sα = (α′i)i∈N with α′i =

αi−1 for each i ≥ 2 and α′1 = α is also an upper dense
sequence in ]0,1];

5) in Definition II.6, when say αi ∈ [x,x + ε[, we have that
x+ε not need belong to [0,1] but αi ∈ ]0,1] and therefore
αi ∈ [x,x + ε[ ∩ [x,1].

Remark II.5. When you take x = 1 in the Definition II.6
then there is a i ∈ N such that αi ∈ [1,1 + ε]. Then in all
upper dense sequence S = (αi)i∈N exists k such that αk = 1.
But, by the Remark II.4-(3), the sequence Sk+1 is upper dense
and therefore α′j = 1 for some j ∈ N. So, each upper dense
sequences has infinite copies of 1. Therefore, max(S) = 1.
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Examples of these sequences can be found in [14, Example
1 and 2].

Definition II.7 ([14]). Let A be fuzzy numbers. For a given
upper dense sequence S = (αi)i∈N in ]0,1], we define ci ∶
F(R)Ð→ R given by

ci(A) =
⎧⎪⎪⎨⎪⎪⎩

r∗(α i
2
) − l∗(α i

2
), if i is even,

l∗(α i+1
2
) + r∗(α i+1

2
), if i is odd.

Definition II.8 ([14]). Let A and B be two fuzzy numbers and
an upper dense sequence S = (αi)i∈N in ]0,1]. We say that
A <SWW B when there exists a positive integer n0 such that
cn0(A) < cn0(B) and ci(A) = ci(B) for all positive integers
i < n0. We say that A ≤SWW B if and only if A <SWW B or
A = B.

As it is well know, any fuzzy set A can be fully identified
with its α-cut in the following sense:

A(x) = sup
α∈(0,1]

α ⋅ χA/α(x),

where χA/α is the characteristic function of the interval A/α.
This is called decomposition theorem [15, Theorems 2.5].
There are some variants of this theorem such as [14, Theorem
3] and [15, Theorems 2.6 and 2.7]. In particular, Wang and
Wang variant proves that any fuzzy number is recovered from
just a countably subset of their α-cut.

Theorem II.2. [14, Theorem 3] Let A be a fuzzy number and
S = (αi)i∈N be an upper dense sequence in ]0,1]. Then

A(x) = sup
i∈N

α ⋅ χA/αi(x).

Corollary II.3. Let A and B be two fuzzy numbers and S =
(αi)i∈N be an upper dense sequence in ]0,1]. Then A = B if
and only if A/αi = B/αi, for all i ∈ N.

Proof. Straightforward from Theorem II.2.

Theorem II.3. [14] Let S be an upper dense sequence in
]0,1]. Then ≤SWW is a linear order on F(R).

Remark II.6. There exist several pairs of upper dense se-
quences S1 and S2 in ]0,1] which determine distinct linear
orders, i.e. ≤S1

WW≠≤S2

WW . Therefore, we are dealing with a
family of linear orders (see [14, Example 3]).

III. ADMISSIBLE ORDERS ON FUZZY NUMBERS

Definition III.1. Let ≦ and ⪯ be two orders on F(R). The
order ⪯ is called an admissible order w.r.t. ⟨F(R),≦⟩, if
(i) ⪯ is a linear order on F(R);

(ii) for all A, B in F(R), A ⪯ B whenever A ≦ B.

Thus, an order ⪯ on F(R) is admissible for ⟨F(R),≦⟩ if it
is linear and refines the order ≦. In particular, when the order
≦ is ≤KY we will call ⪯ just of admissible order on F(R).
Furthermore, if ≦ is a linear order then ⪯ and ≦ are the same.

Proposition III.1. Let ⪯ be an admissible order on F(R).
Then, there are not greatest or smallest elements in F(R).

Proof. Straightforward from Definition III.1 and Remark II.3.

Definition III.2. Let A,B ∈ F(R) and S = (αi)i∈N be an
upper dense sequence in ]0,1]. Then define m(A,B) by

m(A,B) = { min{i ∈ N ∶ A/αi ≠ B/αi}, if A ≠ B,
0, if A = B.

Observe that m(A,B) = m(B,A) and that, by Corollary
II.3, m(A,B) is well defined.

Proposition III.2. Let S = (αi)i∈N be an upper dense
sequence in ]0,1] and A,B ∈ F(R). Then {αi ∈ S ∶ A/αi ≠
B/αi} ≠ {1}.

Proof. If A = B then {αi ∈ S ∶ A/αi ≠ B/αi} = ∅ ≠ {1}.
If A ≠ B then, by Corollary II.3, we have that A/αi ≠ B/αi
for some i ∈ N. Suppose that αi = 1 then we have four cases:
ker(A)− < ker(B)−, ker(A)− > ker(B)−, ker(A)+ < ker(B)+
or ker(A)+ > ker(B)+. In the first case, take x = ker(A)−.
Then A(x) = 1 and B(x) < 1. So, for α = B(x)+1

2
, we have

that x ∈ A/α and x /∈ B/α, i.e. A/α ≠ B/α. So, since S is an upper
sequence in ]0,1], there exists j ∈ N such that α ≤ αj < 1.
Since, x ∈ A/αj and x /∈ B/αj , then A/αj ≠ B/αj and therefore,
{αi ∈ S ∶ A/αi ≠ B/αi} ≠ {1}.

The other three cases can be similarly proved.

Definition III.3. Let S = (αi)i∈N be an upper dense sequence
in ]0,1], ⪯ be an order on IR, and A,B ∈ F(R). Then,

A ⊴S B ⇐⇒ A = B or A/αm(A,B) ≺ B/αm(A,B).

Observe that, taking as convention that A/0 =
[supp(A)−, supp(A)+] then A ⊴S B ⇐⇒ A/αm(A,B) ⪯
B/αm(A,B).
Theorem III.1. Let ⪯ be an admissible order on IR and S =
(αi)i∈N be an upper dense sequence in ]0,1]. The relation ⊴S
is an admissible order on F(R).

Proof. Let S = (αi)i∈N be an upper dense sequence in ]0,1].
Reflexivity: Straightforward from Definition III.3.
Antisymmetry: Let A, B be fuzzy numbers such that A ⊴S B
and B ⊴S A. Suppose that A ≠ B then, from Corollary II.3,
{i ∈ N ∶ A/αi ≠ B/αi} ≠ ∅. Let m = m(A,B) = min{i ∈ N ∶
A/αi ≠ B/αi} = m(B,A), then, from the former A/αm ⪯ B/αm
and B/αm ⪯ A/αm. So, because ⪯ is an order, A/αm = B/αm,
which is a contradiction. Therefore, A = B.
Transitivity: Let A, B, and C be three fuzzy numbers such that
A ⊴S B and B ⊴S C. If A = B or B = C then trivially A ⊴S C
and if A = C then, by antisymmetry, A = B = C. If A ≠ B
and B ≠ C then A ⊲S B and B ⊲S C. So, A/αk ≺ B/αk and
B/αm ≺ C/αm, where k =m(A,B) and m =m(B,C). If k ≤m
then B/αk ⪯ C/αk and since A/αk ≺ B/αk then A/αk ≺ C/αk. In
addition, if j < k then A/αj = B/αj and B/αj = C/αj , and
therefore A/αj = C/αj . Therefore, A ⊴S C. Analogously, if
m < k we prove that A ⊴S C. This means that the relation is
transitive.
Totallity: Let A and B be two fuzzy numbers such that A ≠ B.
Then, A/αm ≠ B/αm for m = m(A,B). Thus, because ⪯ is
linear A/αm ≺ B/αm or B/αm ≺ A/αm. Therefore, A ⊴S B or
B ⊴S A for all A,B ∈ F(R).
Refinement: Let A and B be two fuzzy numbers such that
A ≤KY B. If A = B then, since ⊴S is reflexive, we have that
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A ⊴S B. If A <KY B then, by Proposition II.3, A/α ≤KM B/α
for each α ∈ (0,1] and therefore, for m = m(A,B), we have
that A/αm <KM B/αm and A/αk = B/αk for each k ≤m. So, as
⪯ is admissible order on IR, A/αm ≺ B/αm and A/αi = B/αi for
each i <m. Thereby, A ⊴S B.
Therefore, ⊴S is an admissible order.

We will denote as ⊴SLex1, ⊴SLex2, ⊴SXY and ⊴S2XY the
admissible orders on F(R) generated by the admissible orders
⪯Lex1, ⪯Lex2, ⪯XY and ⪯2XY and an upper dense sequence
S = (αi)i∈N in ]0,1], respectively, according to Theorem III.1.

Definition III.4. Let ≤ be an admissible order on F(R). ≤
is compatible with the addition, if for each A,B,C ∈ F(R),
A +C < B +C whenever A < B.

Proposition III.3. Let S = (αi)i∈N be an upper dense
sequence in ]0,1] and consider an admissible order ⪯ on IR.
If ⪯ is compatible with the addition, then ⊴S also is compatible
with the addition.

Proof. If A ⊲S B then A/αm(A,B) ≺ B/αm(A,B) and A/αi = B/αi
for each i < m(A,B). So, because ⪯ is compatible with the
addition, A/αm(A,B) + C/αm(A,B) ≺ B/αm(A,B) + C/αm(A,B) and
A/αi + C/αi = B/αi + C/αi for each i <m(A,B). Therefore, by
Equation (5), A+C/αm(A,B) ≺ B+C/αm(A,B) and A+C/αi = B+C/αi
for each i <m(A,B). Hence, A +C ⊲S B +C.

Corollary III.1. The admissible orders ⊴SLex1, ⊴SLex2, ⊴SXY
and ⊴S2XY are compatible with the addition.

Proposition III.4. Let S = (αi)i∈N be an upper dense
sequence in ]0,1]. Then ⊴SXY =≤SWW .

Proof. Let A,B ∈ F(R). If A <SWW B then there exists n0 ∈
N such that cn0(A) < cn0(B) and ci(A) = ci(B) for each
i < n0. We consider two cases, namely:
Case 1. If n0 is even then taking m = n0

2
we have that

r∗A(αm)− l∗A(αm) < r∗B(αm)− l∗B(αm), r∗A(αm)+ l∗A(αm) =
r∗B(αm) + l∗B(αm), r∗A(αm−i) − l∗A(αm−i) = r∗B(αm−i) −
l∗B(αm−i) and r∗A(αm−i)+ l∗A(αm−i) = r∗B(αm−i)+ l∗B(αm−i)
for each i <m. Hence, r∗A(αm)−l∗A(αm) < r∗B(αm)−l∗B(αm),
r∗A(αm) + l∗A(αm) = r∗B(αm) + l∗B(αm), r∗A(αi) + l∗A(αi) =
r∗B(αi) + l∗B(αi) and r∗A(αi) − l∗A(αi) = r∗B(αi) − l∗B(αi) for
all i <m.
Case 2. If n0 is odd then taking m = n0+1

2
we have

that r∗A(αm) + l∗A(αm) < r∗B(αm) + l∗B(αm), r∗A(αm−i) −
l∗A(αm−i) = r∗B(αm−i) − l∗B(αm−i) and r∗A(αm−i) +
l∗A(αm−i) = r∗B(αm−i) + l∗B(αm−i) for each i < m. Hence,
r∗A(αm) − l∗A(αm) < r∗B(αm) − l∗B(αm), r∗A(αi) + l∗A(αi) =
r∗B(αi) + l∗B(αi) and r∗A(αi) − l∗A(αi) = r∗B(αi) − l∗B(αi) for
all i < m. Therefore, in both cases, A/αm ≺XY B/αm and
A/αi = B/αi for each i < m. Since, clearly m = m(A,B) it
follows that A ⊲SXY B.

Reciprocally, if A ⊲SXY B then A/αm ≺XY B/αm where m =
m(A,B). So, either l∗A(αm) + r∗A(αm) < l∗B(αm) + r∗B(αm)
or l∗A(αm) + r∗A(αm) = l∗B(αm) + r∗B(αm) and r∗A(αm) −
l∗A(αm) < r∗B(αm)+l∗B(αm). In the first case, take n0 = 2m−1
and in the second case n0 = 2m. In any of the cases we have
that cn0(A) < cn0(B) and since for each i < m we have that
A/αi = B/αi then ci(A) = ci(B). Thereby, A ≤SWW B.

Corollary III.2. For all upper dense sequence S = (αi)i∈N in
]0,1], the relation ≤SWW is an admissible order on F(R).

Proof. Straightforward from Theorem III.1 and Proposition
III.4.

Definition III.5. Let ⪯ be an admissible order on F(R). A
fuzzy number A is ⪯-positive if 0̃ ≺ A, is ⪯-negative if A ≺ 0̃,
is non ⪯-negative if 0̃ ⪯ A and is non ⪯-positive if A ⪯ 0̃.

Remark III.1. Clearly, each fuzzy number A is either ⪯-
positive, ⪯-negative or A = 0̃. Nevertheless, some fuzzy number
are ⪯1-positives for an admissible order ⪯1 but are ⪯2-negative
for an admissible order ⪯2. For example, the fuzzy triangle
number (−1,0,2) is ⊴SLex1-negative and ⊴SLex2-positive for any
upper dense sequence S = (αi)i∈N in ]0,1].

Proposition III.5. Let A ∈ F(R). Then A is ⪯-positive for
each admissible order ⪯ in F(R) if and only if A ≠ 0̃ and
0 ≤ supp(A)−.

Proof. Firstly, we assume A = 0̃ then, trivially, A is non ⪯-
positive for each admissible order ⪯. If 0 > supp(A)− then
[supp(A)−, supp(A)+] ≺Lex1 [0] and therefore, for any upper
dense sequence S = (αi)i∈N in ]0,1], A/αm ≺Lex1 [0] = 0̃/αm
for m = m(0̃,A) = min{i ∈ N ∶ 0̃/αi ≠ A/αi}. So, A ⊲SLex1 0̃
and therefore A is not ⊴SLex1-positive. Thus, this side of the
proposition holds by contraposition.

On the other hand, if A ≠ 0̃ and 0 ≤ supp(A)−, then 0̃/α =
[0] ≤KM A/α and [0] <KM A/αm for m =m(0̃,A). So, 0̃ <KY
A and therefore for any admissible order ⪯ we have that 0̃ ≺ A,
that is A is ⪯-positive.

Proposition III.6. Let A ∈ F(R). Then A is ⪯-negative for
each admissible order ⪯ in F(R) if and only if A ≠ 0̃ and
supp(A)+ < 0.

Proof. Using similar steps to Proposition III.5, we obtain the
result.

Corollary III.3. Let A ∈ F(R) be such that supp(A)− < 0 <
supp(A)+. Then there exist admissible orders ⪯1 and ⪯2 such
that A is ⪯1-positive and A is ⪯2-negative

Theorem III.2. Let A ∈ F(R), S = (αi)i∈N be an upper dense
sequence in ]0,1] and m =m(0̃,A). Then

1) A is ⊴SLex1-positive if and only if 0 ≤ l∗A(αm) and A ≠ 0̃,
2) A is ⊴SLex2-positive if and only if 0 < r∗A(αm),
3) A is ⊴SXY -positive if and only if −l∗A(αm) ≤ r∗A(αm) and

A ≠ 0̃,
4) A is ⊴S2XY -positive if and only if A ≠ 0̃ and −l∗A(αm) ≤

3r∗A(αm).

Proof. Let A ∈ F(R) and m = m(0̃,A) = min{i ∈ N ∶ 0̃/αi ≠
A/αi} =min{i ∈ N ∶ [0] ≠ A/αi}, we have:

1) A is ⊴SLex1-positive if and only if 0̃ ⊲SLex1 A if and only
if 0̃/αm = [0] ≺Lex1 A/αm if and only if 0 < l∗A(αm) or,
l∗A(αm) = 0 and 0 < r∗A(αm) if and only if 0 ≤ l∗A(αm)
and A ≠ 0̃.

3) A is ⊴SXY -positive if and only if 0̃/αm = [0] ≺XY A/αm if
and only if 0 < l∗A(αm)+r∗A(αm) or, l∗A(αm)+r∗A(αm) =
0 and 0 < r∗A(αm) − l∗A(αm) if and only if −l∗A(αm) <

pply.
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r∗A(αm) or, −l∗A(αm) = r∗A(αm) and l∗A(αm) < r∗A(αm)
if and only if −l∗A(αm) ≤ r∗A(αm) and A ≠ 0̃.

The proof for 2 and 4 is analagous.

Corollary III.4. Let A ∈ F(R) and S = (αi)i∈N be an upper
dense sequence in ]0,1]. If A ≠ 0̃ and m =m(0̃,A) then

1) A is ⊴SLex1-positive if and only if 0 ≤ l∗A(αm),
2) A is ⊴SLex2-positive if and only if 0 < r∗A(αm),
3) A is ⊴SXY -positive if and only if −l∗A(αm) ≤ r∗A(αm),
4) A is ⊴S2XY -positive if and only if −l∗A(αm) ≤ 3r∗A(αm).

Example III.1. Consider the triangular fuzzy numbers A =
(−2,5,6), B = 0̃, C = (0,2,4) and D = (−1,2,5) which are
illustrated in Figure 3.

Figure 3. Fuzzy Numbers A, B, C and D.

Then, for each α ∈]0,1], A/α = [7α− 2,6−α], B/α = [0,0],
C/α = [2α,4 − 2α] and D/α = [3α − 1,5 − 3α]. Taking
an upper dense sequence S = (αi)i∈N in ]0,1] such that
α1 = 1 and α2 = 0.5 then m(C,D) = 2 and m(X,Y ) = 1
whenever X ≠ Y and {X,Y } ≠ {C,D}. So, B ⊲SLex1
D ⊲SLex1 C ⊲SLex1 A and B ⊲ST C ⊲ST D ⊲ST A for each
T ∈ {Lex2,XY,2XY }. Therefore, A, C and D are ⊴ST -
positives for each T ∈ {Lex1, Lex2,XY,2XY }. Now, if
α1 = 0.1 then m(X,Y ) = 1 for each X ≠ Y ∈ {A,B,C,D}.
So,

● A ⊲SLex1 D ⊲SLex1 B ⊲SLex1 C;
● B ⊲SLex2 C ⊲SLex2 D ⊲SLex2 A;
● B ⊲SXY A ⊲SXY C ⊲SXY D;
● B ⊲S2XY C ⊲S2XY D ⊲S2XY A.

Therefore, A and D are ⊴SLex1-negatives whereas C is ⊴SLex1-
positive and A, C and D are all ⊴ST -positives for each
T ∈ {Lex2,XY,2XY }. So, the ranking of these fuzzy numbers
is fully dependent of the generator order and of S. Never-
theless, there are fuzzy numbers where S is unrelevant. Take
for example, trapezoidal fuzzy numbers whose corners are
E = (0,4,6,10) and F = (1,3,7,9). Then for any upper dense
sequence S we have that F ⊲SLex1 E, F ⊲SLex2 E, E ⊲SXY F
and E ⊲S2XY F .

A natural property of the arithmetic of real numbers is
that the sum of two positive numbers is always positive
and the sum of two negative numbers is also a negative
number. However, this natural property does not work for each
admissible order considering the addition of fuzzy numbers
given in the Preliminary section. Indeed, take an upper dense
sequence S = (αi)i∈N in ]0,1] such that α1 = 0.8 (By
item 3 of Remark II.4 such S there exists), and consider the
triangular fuzzy numbers A = (−3,1,2) and B = (−4,0,2).

Then, A/α1 = [0.2,1.2], B/α1 = [−0.8,0.4] and therefore both
are ⊴S2XY -positive. However, A+B/α1 = [−0.6,1.6] and hence
A +B is ⊴S2XY -negative.

So, the next result analyses which of the other three admis-
sible orders verifies this natural property.

Proposition III.7. Let S = (αi)i∈N be an upper dense
sequence in ]0,1] and A,B ∈ F(R). Then

1) If A and B are ⊴SLex1-positive then A+B is also ⊴SLex1-
positive;

2) If A and B are ⊴SLex1-negative then A+B is also ⊴SLex1-
negative;

3) If A and B are ⊴SLex2-positive then A+B is also ⊴SLex2-
positive;

4) If A and B are ⊴SLex2-negative then A+B is also ⊴SLex2-
negative;

5) If A and B are ⊴SXY -positive then A +B is also ⊴SXY -
positive;

6) If A and B are ⊴SXY -negative then A +B is also ⊴SXY -
negative.

Proof. Let A,B ∈ F(R) and mA =m(0̃,A), mB =m(0̃,B).
From Theorem III.2 we have:

1. If A and B are ⊴SLex1-positive then by Theorem III.2-
(1) we have that A ≠ 0̃, B ≠ 0̃, 0 ≤ l∗A(αmA) and 0 ≤
l∗B(αmB). Without loss of generality we can suppose that
mA ≤ mB . Then, for each i < mA, by Eq. (5) we have
that A+B/αi = A/αi + B/αi = [0] + [0] = [0] and, since 0 ≤
l∗B(αmB), then 0 ≤ l∗A(αmA) ≤ l∗A(αmA) + l∗B(αmA) =
l∗A+B(αmA). Therefore, mA = m(A +B, 0̃) and thereby
0̃ ⊲SLex1 A +B.

3. If A and B are ⊴SLex2-positive then 0 < r∗A(αmA) and
0 < r∗B(αmB). Without loss of generality we can suppose
that mA ≤ mB . Then, for each i < mA, by Eq. (5) we
have that A+B/αi = A/αi + B/αi = [0] + [0] = [0] and
since r∗A+B(αmA) = r∗A(αmA)+r∗B(αmA) > 0 then mA =
m(A +B, 0̃) and therefore, 0̃ ⊲SLex2 A +B.

5. If A and B are ⊴SXY -positive then −l∗A(αmA) < r∗A(αmA)
and −l∗B(αmB) < r∗B(αmB). Without loss of generality
we can suppose that mA ≤ mB . Then, for each i < mA,
by Eq. (5) we have that A+B/αi = A/αi+B/αi = [0]+ [0] =
[0] and since l∗A+B(αmA) = l∗A(αmA) + l∗B(αmA) and
r∗A+B(αmA) = r∗A(αmA) + r∗B(αmA) then l∗A+B(αmA) <
r∗A+B(αmA). So, mA =m(A+B, 0̃) and therefore, 0̃ ⊲SXY
A +B.

The proof for 2, 4 and 6 is analogous.

IV. RANKING PATH COSTS IN FUZZY WEIGHTED GRAPHS

Weighted graphs arise from the necessity to model practical
problems where the edges in a graph have an associated cost
as, for example, the well-known problem of the traveling
salesman. This problem consists of going through a list of
towns, visiting each one exactly once and featuring the origin
and in such a way that the travelling total time (the cost) is
minimized [34]. When we consider that such cost is imprecise,
as the time dispensed in the travel of car from a city X to a city
Y , the use of F(R) to model the costs is more appropriate.

 



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2022.3160326, IEEE
Transactions on Fuzzy Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

(a)

(b)
Figure 4. Examples of directed and undirected fuzzy weighted graphs.

Definition IV.1. [16] A fuzzy weighted graph is a triple
G = ⟨V,E, c⟩ where V is a set whose elements are called
vertices, E ⊆ V × V is a set of edges and c ∶ E → F(R)
is the cost (or weight) function. Given v, u ∈ V , a (v, u)-
path in G is a finite and non empty sequence of edges
p = (e1, . . . , en) = ((v1, u1), . . . , (vn, un)) such that vi = ui−1
for each i = 2, . . . , n, v1 = v and un = u. A (v, u)-path is a
cycle if v = u.

In order to simplify the notation, we will denote the
(v1, un)-path p = ((v1, u1), (v2, u2), . . . , (vn, un)) by p =
(v1, . . . , vn, un).

A fuzzy weighted graph G = ⟨V,E, c⟩ such that E is
symmetric, i.e. (v, u) ∈ E if and only if (u, v) ∈ E, and
c(v, u) = c(u, v) for each (v, u) ∈ E will be called of
undirected fuzzy weighted graph.

Example IV.1. The Figure 4 is an example of a directed and
of an undirected fuzzy weighted graph with triangular fuzzy
numbers as cost.

The cost of a (v, u)-path p = (e1, . . . , en), denoted by c(p)
is given by the addition of the cost of each edge in the path,
i.e. c(p) =

n

∑
i=1
c(ei). Given a pair of vertices (v, u) in a fuzzy

weighted graph G there can be several, or even none, (v, u)-
paths. Given an admissible order ⪯ on F(R), a fuzzy weighted
graph G = ⟨V,E, c⟩, and v, u ∈ V , we say that a (v, u)-path p
is ⪯-minimal if c(p) ⪯ c(q) for each (v, u)-path q in G.

Example IV.2. In the case of the (directed) fuzzy weighted
graph in Figure 4, the Table I presents all the possible paths
from v1 to v7 and their costs. Given an upper dense sequence
S = (αi)i∈N in ]0,1] such that α1 = 0.8 we have the following

ranking with respect to the orders:
For ⊴SLex1:

p1 ⊲SLex1 p4 ⊲SLex1 p6 ⊴SLex1 p7 ⊲SLex1 p5
⊲SLex1 p3 ⊲SLex1 p2 ⊲SLex1 p9 ⊲SLex1 p8 ⊲SLex1 p10.

For ⊴SLex2:

p1 ⊲SLex2 p4 ⊲SLex2 p6 ⊲SLex2 p5 ⊲SLex2 p7
⊲SLex2 p3 ⊲SLex2 p2 ⊲SLex2 p9 ⊲SLex2 p8 ⊲SLex2 p10.

For ⊴SXY :

p1 ⊲SXY p4 ⊲SXY p6 ⊲SXY p7 ⊲SXY p5
⊲SXY p3 ⊲SXY p2 ⊲SXY p9 ⊲SXY p8 ⊲SXY p10.

Observe that ranking based on ⊴SLex1 and ⊴SXY is the same
and differs from the given by ⊴SLex2 in the positions of p5 and
p7. So, the minimal path from v1 to v7, with respect to all the
three admissible orders, is p1.

Table I
PATHS OF THE FUZZY WEIGHTED GRAPH IN FIGURE 4A.

Identification Paths Cost α1-cut
p1 (v1, v2, v5, v7) (5,8,12) [7.4,8.8]
p2 (v1, v2, v3, v5, v7) (9,15,20) [12.2,16]
p3 (v1, v2, v3, v7) (6,12,17) [10.8,16]
p4 (v1, v3, v7) (3,9,13) [7.8,9.8]
p5 (v1, v3, v5, v7) (6,12,16) [10.8,12.8]
p6 (v1, v4, v6, v7) (2,10,13) [8.4,10.6]
p7 (v1, v4, v3, v7) (2,12,18) [10,13.2]
p8 (v1, v4, v3, v5, v7) (5,15,21) [13,16.2]
p9 (v1, v4, v6, v3, v7) (4,15,21) [12.8,16.2]
p10 (v1, v4, v6, v3, v5, v7) (7,18,24) [15.8,19.2]

We note, according to a Figure 4a, that we obtain

W =
⎛
⎜⎜
⎝

0 (1,2,3) (2,5,6) (1,7,8) − − −
− 0 (2,6,7) − (1,2,4) − −
− − 0 − (1,3,5) − (1,4,7)
− − (0,1,3) 0 − (0,1,2) −
− − − − 0 − (3,4,7)
− − (2,3,4) − − 0 (1,2,3)
− − − − − − 0

⎞
⎟⎟
⎠

where − denotes that there is no path and 0 is the null distance.

The Algorithm 1 is used to determine the ⪯-minimal (v, u)-
path in a fuzzy weighted graph G = ⟨V,E, c⟩ which is based
on an adaptation of Floyd-Warshall algorithm (see [35], [36]).

V. ILLUSTRATIVE EXAMPLE

Consider the road distances between the neighbor capitals
of the 9 Brazilian Northeast States obtained from the sites

1) http://www.distanciasentrecidades.com/,
2) https://www.rotamapas.com.br/,
3) https://www.melhoresrotas.com/s/

distancia-entre-cidades,
4) http://rotasbrasil.com.br,

From such site, we observed, for example, that the distance
between the cities of Natal and João Pessoa vary (178 km,
179 km, 181 km, 182 km, 189 km, 214 km). From this date
we generate the triangular fuzzy number (178,181.5,214) by
taking the minimum, median and maximum of such distances,

http://www.distanciasentrecidades.com/
https://www.rotamapas.com.br/
https:// www.melhoresrotas.com/s/distancia-entre-cidades
https:// www.melhoresrotas.com/s/distancia-entre-cidades
http://rotasbrasil.com.br


This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2022.3160326, IEEE
Transactions on Fuzzy Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

i.e., (min,Me,max). In the Table II and Figure 5, abbrevi-
ations of cities will be used, i.e., São Luis by SL, Teresina
by T, Fortaleza by F and so on. Besides, in Figure 5, each
cij is the TFN of the position (i, j) in the Table II, i.e. the
cost or weight to go from the i-th to j-th cities in such Table.
For example, c45 = (178.8,180,182) is the cost to go from
Natal to João Pessoa. There are 362,880 possible routes for
the travelling salesman problem.

Algorithm 1 Minimal path between two nodes in a fuzzy
weighted graph
Require: A fuzzy wegthed graph G = ⟨V,E, c⟩ and vs, vf ∈ V with
V = {v1, ...., vn}
Ensure: Solution alternative: vector p =min−path(vs, vf) and d(n)s,f

1: M = 1̃ +∑(vi,vj)∈E c(vi, vj)
2: for i = 1 to n
3: for j = 1 to n
4: if i = j
5: then d(0)ij = 0̃

6: π
(0)
ij = NIL

7: else if (vi, vj) ∈ E
8: then d(0)ij = c(vi, vj)
9: π

(0)
ij = i

10: else d(0)ij =M
11: π

(0)
ij = NIL

12: for k = 1 to n
13: for i = 1 to n
14: for j = 1 to n
15: If d(k−1)ij ⪯ d(k−1)ik + d(k−1)kj

16: then d(k)ij = d(k−1)ij

17: π
(k)
ij = π(k−1)ij

18: else d(k)ij = d(k−1)ik + d(k−1)kj

19: π
(k)
ij = π(k−1)kj

20: k = 1
21: m = 2
22: Repeat
23: While π(n)

p(k)p(k+1)
≠ p(k)

24: for i = k + 1 to m
25: p(m − i + k + 2) = p(m − i + k + 1)
26: p(k + 1) = π(n)

p(k)p(k+1)
27: m =m + 1
28: k = k + 1
29: Until k =m
30: Return p, d(n)sf

From the Table II we observe that the distance from
Fortaleza to João Pessoa is different from Fortaleza to Natal
and from Natal to João Pessoa, we have:

(665,668,698.3) ≠ (511,515,531.8) + (178.8,180,182)
= (689.8,695,713.5),

from where (665,668,698.3) <KY (689.8,695,713.5).
Then by definition of admissible order (665,668,698.3) ≺
(689.8,695,713.5).

In the case of the (directed) fuzzy weighted graph in Figure
5, the Table III presents some routes chosen possibilities
among the 362,880 randomly and their cost from any capital
city of the Brazilian northeast until returning to it, having
passed through all the other capitals.

SL

T

F

N

JP

R

M

A

S

c
1
2

c
2
1

c13

c31

c 2
3

c 3
2

c25
c52

c62
c26

c27

c72

c
82

c
28

c
9
2

c
2
9

c43

c34

c
5
4c
4
5

c
6
5c
5
6

c 7
6

c 6
7

c 8
7

c 7
8

c 9
8

c 8
9

Figure 5. Directed weighted graph based on Table II.

We note that the possible routes of the Table III r1 and r10
cannot be compared with the partial order ≤KY . Indeed, since
r1/α ≤KM r10/α for α ∈ ]α0,1] and r10/α ⊆ r1/α for α ∈ ]0, α0[,
with α0 = 938

2027
, then by Proposition II.3, r1 ∥ r10.

In Figure 6 we have ordered the costs in Table III from the
smallest (r2 and r17)to the greatest (r7), according to the ≤KY
partial order. We note that the routes r1, r2, r5, r10, r12, r13,
r14, r15, r17, r18, r19 and r20 are incomparable with at least
another route. Given an upper dense sequence S = (αi)i∈N in
]0,1] such that α1 = 0.8 we have the following ranking with
respect the orders:
For ⊴SLex1:

r17 ⊲SLex1 r2 ⊲SLex1 r14 ⊲SLex1 r8 ⊲SLex1 r11 ⊴SLex1 r6
⊲SLex1 r16 ⊲SLex1 r4 ⊲SLex1 r15 ⊲SLex1 r20 ⊴SLex1 r12
⊲SLex1 r18 ⊲SLex1 r5 ⊲SLex1 r3 ⊲SLex1 r19 ⊲SLex1 r13

⊲SLex1 r1 ⊲SLex1 r10 ⊲SLex1 r9 ⊲SLex1 r7.

For ⊴SLex2:

r17 ⊴SLex2 r2 ⊲SLex2 r14 ⊲SLex2 r8 ⊲SLex2 r11 ⊲SLex2 r6
⊲SLex2 r16 ⊲SLex2 r4 ⊲SLex2 r15 ⊲SLex2 r20 ⊲SLex2 r12
⊲SLex2 r18 ⊲SLex2 r5 ⊲SLex2 r3 ⊲SLex2 r19 ⊲SLex2 r1

⊲SLex2 r13 ⊲SLex2 r10 ⊲SLex2 r9 ⊲SLex2 r7.

For ⊴SXY :

r17 ⊲SXY r2 ⊲SXY r14 ⊴SXY r8 ⊲SXY r11 ⊲SXY r6
⊴SXY r16 ⊲SXY r4 ⊴SXY r20 ⊴SXY r15 ⊲SXY r12
⊴SXY r18 ⊲SXY r5 ⊲SXY r3 ⊴SXY r19 ⊲SXY r13

⊴SXY r1 ⊲SXY r10 ⊴SXY r9 ⊲SXY r7.
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Km SL T F N JP R M A S lines
(433, (878, (1395, (1549, (1557, (1552, (1563, (1627,

SL 439, 1169.1, 1408, 1556, 1664, 1563, 1584, 1658, 1
610.8) 1177.9) 1753.9) 1825.6) 1738.4) 1733.3) 1819) 1834.7)

(432, (592, (1040, (1156, (1127, (1125.7, (1133, (1196,
T 435, 593.5, 1097.6, 1160.8, 1127.5, 1126.5, 1143.15, 1226.55, 2

609.1) 594.4) 1146.2) 1251.5) 1130.7) 1139) 1159) 1233)
(879, (592, (511, (665, (771.9, (957.4, (1089.9, (1190,

F 900, 593.9, 515, 668, 773, 1027, 1119, 1203.25, 3
1179) 594) 531.8) 698.3) 798.5) 1050.5) 1130) 1205)
(1396, (1041, (511, (178.8, (285, (535, (782, (1093,

N 1418, 1107, 520, 180, 285.1, 539.85, 788.5, 1095, 4
1756.9) 1149) 530) 182) 286) 543) 794.8) 1101.5)
(1550, (1155, (665, (175.9, (116, (366, (613, (924,

JP 1571, 1158.8, 671.05, 180, 116.6, 370.85, 620.5, 927, 5
1831.4) 1257) 684) 182) 117) 375) 625.8) 932.4)
(1557, (1126, (773, (285.8, (116, (154.7, (497, (808,

R 1673.5, 1127.5, 781, 286, 118, 253, 504.9, 811, 6
1735.6) 1127.7) 803.2) 290) 119.2) 258) 510) 816.4)
(1552, (1124, (964, (537, (367, (251, (271, (581,

M 1561.5, 1126.2, 1028, 539.05, 371.25, 253.8, 279.25, 588.1, 7
1733.2) 1137) 1051.2) 543) 373) 258) 291) 593)
(1561, (1131, (1095, (782, (613, (497, (270, (325,

A 1583, 1142.05, 1119.5, 783.4, 615.1, 497.65, 271, 325.95, 8
1821.7) 1158) 1130) 794) 624) 508) 289) 338)
(1626, (1196, (1188, (1091, (922, (805.6, (580, (321.8,

S 1655, 1222.75, 1200.4, 1093.55, 924.75, 807.5, 581, 326, 9
1831.3) 1232) 1204) 1096) 926) 810) 591) 349)

rows 1 2 3 4 5 6 7 8 9
Table II

TRIANGULAR FUZZY NUMBERS DEFINED BY (min,Me,max) FOR DISTANCES BETWEEN CAPITALS IN THE BRAZILIAN NORTHEAST .

Route Paths Cost
r1 SL,JP,R,S,M,F,A,T,N,SL (8673.9,8869.25,9592.3)

r2 N,T,SL,F,A,R,JP,S,M,N (6094.9,6492.84,6759.6)

r3 N,F,JP,T,A,R,S,SL,M,N (8484,8653.85,8983.3)

r4 N,JP,A,F,SL,S,M,T,R,N (7509.6,7598.7,8100)

r5 JP,SL,A,F,T,R,N,M,S,JP (8250.8,8334.6,8857.1)

r6 JP,T,F,R,A,M,S,SL,N,JP (7066.7,7132,7809.1)

r7 JP,N,S,T,M,F,A,R,SL,JP (9247.5,9498.4,9904.9)

r8 JP,S,N,A,R,F,SL,T,M,JP (6871.7,6924.45,7436.2)

r9 A,JP,T,N,M,SL,S,R,F,A (9190.5,9333.35,9881.3)

r10 S,T,M,A,F,JP,SL,R,N,S (8838.5,9092,9351.6)

r11 N,R,F,JP,M,SL,T,S,A,N (6988.7,7051.05,7638.7)

r12 A,N,JP,S,SL,R,M,T,F,A (8028.4,8301.1,8597.5)

r13 M,SL,F,S,R,JP,T,A,N,M (8681.6,9073.55,9341.3)

r14 F,R,T,SL,N,JP,S,A,M,F (6383.5,6475.5,7092.8)

r15 M,F,R,S,JP,T,SL,A,N,M (7932.9,8037.8,8612.2)

r16 M,A,N,S,JP,SL,F,T,M (7213.7,7592.9,7854.8)

r17 SL,S,R,F,N,JP,A,M,T,SL (6334.4,6394.2,6822.6)

r18 A,N,M,T,R,SL,F,JP,S,A (7918.3,8340.05,8497.9)

r19 F,R,N,SL,M,S,JP,T,A,F (8028.4,8301.1,8597.5)

r20 F,M,S,T,A,SL,JP,R,N,F (7890.2,8040.6,8618.8)

Table III
PATHS WITH THEIR COST OF THE FUZZY WEIGHTED GRAPH IN FIGURE 5

AND α ∈ ]0,1].

For ⊴S2XY :

r17 ⊲S2XY r2 ⊲S2XY r14 ⊲S2XY r8 ⊲S2XY r11 ⊲S2XY r6
⊲S2XY r16 ⊲S2XY r4 ⊲S2XY r15 ⊲S2XY r20 ⊲S2XY r12
⊲S2XY r18 ⊲S2XY r8 ⊲S2XY r3 ⊲S2XY r19 ⊲S2XY r13

⊲S2XY r1 ⊲S2XY r10 ⊲S2XY r9 ⊲S2XY r7.

Observe that rankings based on ⊴SLex1, ⊴SXY and ⊴S2XY are the
same and differs from the given by ⊴SLex2 in the position of
r1 and r13. So, in the case of Table III, the minimum route to
travel the capitals of the Brazilian Northeast of the Travelling
salesman problem is r17.

VI. FINAL REMARKS

In this paper, we generalize the notion of admissible order
on the set of closed subintervals of [0,1] to the set of fuzzy
numbers equipped with an arbitrary order. Although the Klir

r1

r7

r9

r10

r13

r19

r3

r5

r12r15r18

r20

r4

r16

r6

r11

r8

r2 r14

r17

Figure 6. Ranking of the routes in Table III considering the order ≤KY .

and Yuan order is not consensually accepted as the natural
order for the set of fuzzy numbers, most of the orders proposed
for fuzzy numbers refine this order. So we deal with the Klir-
Yuan order as the “natural” one for F(R) and explore the
admissible order with respect to this order.
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a) Answer:: Applications of admissible orders on several
domains have been successfully developed in several areas
as can be seen in [6], [8], [37], [38], [39], [40]. Thus, since
there are many application of fuzzy numbers where the order
is important, such as [10], [32], [41], [42], [43], [44], the
present study on admissible orders for fuzzy numbers can be
useful in such applications. Thus, it may be expected that in a
future efforts can be made to develop interesting applications
of admissible orders on F(R).

In [2] a construction method of admissible orders over
the set of closed subintervals of [0,1] based on aggregation
functions is provided and lately generalized in [3]. As a future
work, we will intend to introduce a generation method of
admissible orders on F(R).

Namely, in [16] is one of the many proposals in the literature
regarding weighted fuzzy graphs. Our use of admissible orders
is what guarantees that the final cost of all possible paths can
be ordered linearly, thus always obtaining the shortest way.

Finally, in [45] are listed 9 properties that methods to
rank classes of fuzzy numbers must satisfy. Trivially, each
admissible order satisfies the 5 firsts, the 6th (A5) is not
applicable in this context, and the 7th and 8th follows from
Proposition III.3 for each admissible order ⊴S . Nevertheless,
the last property deserves to be investigated in a future work,
but it is clear that for some admissible orders of the type ⊴S
it will be held whereas for others not.
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