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1   |   INTRODUCTION

Agricultural soils face a major threat as consequence of 
decades of conventional agricultural practices (Pagliai & 
Vignozzi, 2002). Long-term depletion of soil organic matter 

(SOM) leads to physical degradation (Jensen et al., 2019; 
Kopittke et al., 2020), as the soil is more vulnerable to ero-
sion and compaction and less able to stabilize SOM.

Organic wastes, such as sewage sludge (SS), are a re-
source that can be converted to fertilizer (Metcalf & 
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Abstract
Soil degradation is a growing challenge to global agriculture and the United 
Nations' Sustainable Development Goals (SDGs). This has prompted calls for less 
use of mineral fertilizer and greater reliance on organic fertilizers. However, we 
need to understand better the long-term effects of organic fertilizer usage on soil 
structure to guide soil management practice, as many soil functions are sensitive 
to pore morphology and connectivity. In this study, we characterized topsoil (0–
30 cm) pore architecture in relation to soil physical properties in a long-term ex-
periment (LTE) site where calcareous soil had received 25 years of sewage sludge 
application. Two dosage rates (SSa, 20 and SSe, 80 Mg ha−1) were compared to 
mineral fertilization treatment and a control (no fertilization) in a random fac-
torial block design. Soil microstructure and the types of pores were character-
ized using micromorphological methods and image analysis, in soil thin sections. 
Long-term sewage sludge SSa application improved soil microstructure (crumb 
and sub-angular-blocky type) and increased the presence of biopores, while min-
eral fertilized soil showed a platy to apedal microstructure, with more elongated 
pores and lower faunal activity. Mineral fertilized soil had the lowest total poros-
ity values, with differences found in the aspect ratio of pores of equivalent diam-
eter 100–200 μm. These findings suggest a relation between the different types 
of fertilization and soil pore shape and network. Further exploration of these 
changes in soil functioning is needed for a complete assessment of the conse-
quences of SS application.
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Eddy,  2003; Singh & Agrawal,  2008). Long-term studies 
are important to understand the impact of applying SS, 
as it presents several risks to the environment by the ac-
cumulation of trace metals (TM) (McBride, 2003; Sharma 
et al., 2010; Zaragüeta et al., 2021) and resistance to antibi-
otics (Urra et al., 2019). Amending soils with SS generally 
improve some soil properties, such as SOM and nutrient 
contents, soil porosity, bulk density, aggregate stability 
or available water holding capacity (Annabi et al., 2011; 
Roig et al.,  2012; Singh & Agrawal,  2008; Skowrońska 
et al.,  2020; Soria et al.,  2021). These soil properties di-
rectly affect crop production as they regulate, among oth-
ers, root penetration (Lal, 1991), water flows and storage 
(Franzluebbers, 2002) and soil faunal diversity (Bottinelli 
et al.,  2015; Nunan et al.,  2017). Other authors, how-
ever, have reported adverse effects on these properties 
(Yu et al.,  2020) suggesting a soil- site- and SS-quality-
dependent effect.

Structure a key property of soil (Banwart et al., 2019), 
several approaches have been developed for assessing the 
quality of soil structure and its relation to soil management 
(Abiven et al., 2009). These include the study of aggregate 
stability, soil hydraulic conductivity or pore space charac-
terization. Rabot et al. (2018) highlighted the relevance of 
soil porosity, pore distances and pore connectivity to as-
sess soil functions. The study of soil thin sections allows a 
visual classification of voids (pores) based on their origin 
(Skvortsova & Utkaeva, 2008). They provide information 
on the complex pore network at microscales, in which the 
processes and reactions responsible for the characteristics 
and composition of the soil solution and the soil matrix 
occur (Pagliai & Vignozzi, 2002). In the context of poten-
tially toxic materials, such as SS, soil micromorphology 
also applies to the behaviour of sensitive organisms, such 
as earthworms (Valdez et al., 2020; Yagüe et al., 2016), for 
their limited mobility and high sensitivity to change in 
soil properties (Alvarez et al., 2021; Pulleman et al., 2005; 
Valdez et al., 2020). By providing a better understanding 
of these processes in the soil, micromorphology can guide 
soil management practice. In addition, morphological 
characteristics based on undisturbed samples can incor-
porate quantitative information on soil structure into soil 
models (Kravchenko & Guber, 2017).

Recent work on organic fertilization, carried out in 
the context of agriculture in the Ebro Valley in NE Spain, 
has shown the usefulness of micromorphology to assess 
soil quality. Yagüe et al. (2016) reported on a well drained 
Oxiaquic Xerofluvent soil with maize (Zea mays L.) irri-
gated monoculture fertilized with dairy cattle manure at 
different rates and mineral fertilization (MF). They found 
an increase in pores with diameter >400 μm without mod-
ifying their shape. Domingo-Olivé et al. (2016), under the 
same conditions comparing pig slurry, cattle manure and 

MF, reported a significantly higher porosity in the 65–
400 μm size range in treatments with slurry, comparing 
with MF. The opposite was detected for pores larger than 
400 μm. Valdez et al. (2020) reported on a calcareous xeric 
Entisol supporting an annual rainfed rotation of winter 
cereals. They observed that the application of composted 
SS decreased the amount of large horizontal cracks when 
compared with MF. The consequences of these changes 
and their relation to other soil properties and functionality 
remain poorly studied. Image analysis of soil thin sections 
is not a routine soil analytical technique, but represents a 
promising approach to understand changes related to soil 
management.

The objectives of this study were (i) to determine the 
effect of different SS application doses on soil physical sta-
tus and pore architecture of a tilled layer of calcareous soil 
after 25 years of SS application in Navarre (NE Spain) and 
(ii) to identify relationships between these changes and 
other soil properties related to the soil physical condition. 
Following previous studies on trace metal accumulation 
(Zaragüeta et al.,  2021), soil biological diversity (Urra 
et al., 2019) and the sensitivity of several soil quality indi-
cators (Simoes-Mota et al., 2021) at the same experimental 
site, we hypothesized that long-term use of SS would lead 
to soil structure better suited for soil functioning in terms 
of water movement and biological activity.

2   |   MATERIALS AND METHODS

2.1  |  Site and experimental design

A long-term experimental field site was established in 
Arazuri, Navarra, NE Spain (42°48′N, 1°43′W, 396 m a.s.l.) 
in 1992 to assess the effect of the continuous application of 
SS on agricultural soil quality and productivity (Figure 1). 
The area is temperate Mediterranean (Papadakis, 1961), 
with a xeric soil water regime (Soil Survey Staff,  2014). 
Mean annual precipitation is 750 mm year−1, and mean an-
nual Thornthwaite's evapotranspiration is 687 mm year−1 
(Gobierno de Navarra, 2021).

The soil is calcareous (approx. 20% of calcium car-
bonate in the tilled layer) with a clay-loam topsoil (31% 
clay, 30% silt, 39% sand) (Gee & Bauder, 1986). It has been 
classified as a Calcaric Cambisol (FAO, 2014) and is well 
drained and has no salinity problems. The experimental 
design consists of a random factorial block design with 
eight treatments and three replicates (n  =  3), each plot 
with an area of 35 m2 (10 m × 3.5 m). For this study, ag-
ronomic (SSa) and extreme (SSe) SS doses were chosen 
according to regional practice, being 20 t SS ha−1 per year 
established as the agronomic dose in the area (SSa) and 
80 t SS ha−1 per year the extreme dose chosen to follow 
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the crop and soil response to SS application above the 
recommendations (Zaragüeta et al.,  2021). In addition, 
mineral fertilization (MF) treatment and the unfertilized 
control (C) were studied. The SS came from a municipal-
ity wastewater treatment plant, involving primary and 

secondary treatments, and stabilized through anaerobic 
digestion and mechanical dewatering. Industrial waste is 
not processed in this plant. Sewage sludge characteristics, 
as described by (Zaragüeta et al., 2021), are summarized 
in Table 1. The equivalent annual NPK fertilization doses 
corresponding to MF, SSa and Sse were 180 Kg N ha−1 + 22 
Kg P ha−1 + 0 Kg K ha−1, 227 Kg N ha−1 + 95 Kg P ha−1 + 17 
Kg K ha−1 and 908 Kg N ha−1 + 380 Kg P ha−1 + 68 Kg K 
ha−1, respectively (Irañeta et al., 2013).

The soil main physical–chemical characteristics in the 
tilled layer (0–30 cm) at the control plots (treatment C) are 
summarized in Table 2.

The crops consist of a rotation of wheat (Triticum 
aestivum L.), with another extensive crop sunflower 
(Helianthus annuus L.), canola (Brassica napus L.) or 
peas (Pisum sativum L.), every 3 years. All treatments are 
managed with an annual tillage using a 30 cm deep mold-
board plough, and application of phytosanitary products 

F I G U R E  1   Ampling site context. (a) Arazuri, Navarre, North Spain; (b) The experimental field localization. Four out of eight treatments 
were sampled for this study (20ss, 80ss, MF, C).

T A B L E  1   Physical and chemical properties of the sewage 
sludge

Sewage sludge physical and chemical properties

pH 8.16 ± 0.03

Electric conductivity (μs cm−3) 1795 ± 28

Dry material (%) 18.1 ± 0.4

Volatile matter (% of dry substance) 62.8 ± 1.9

C/N 5.35 ± 0.08

Total N 5.85 ± 0.13

Ammonium-N 0.75 ± 0.02

Phosphorus (P2O5) 5.59 ± 0.22

Potassium (K2O) 0.62 ± 0.05

Iron (Fe) 1.68 ± 0.04

Calcium (CaO) 7.98 ± 0.29

Cadmium (Cd) 0.88 ± 0.09

Copper (Cu) 187 ± 11

Nickel (Ni) 32.1 ± 0.77

Lead (Pb) 39.0 ± 1.2

Zinc (Zn) 874 ± 0.003

Mercury (Hg) 0.003 ± 0.003

Chromium (Cr) 58.3 ± 3.2

Note: Values are given as the mean ± SD (n = 3).

T A B L E  2   Physical and chemical properties of the soil tilled 
layer (0–30 cm) for the control plots

Soil physical and chemical properties

pH (water 1:2:5) 8.67 ± 0.03

Electrical Conductivity (μs cm−3 at 25°C) (soil: 
water extract 1:2.5)

169 ± 10

Bulk density (g cm−3) 1.59 ± 0.08

Carbonates (%) 16.0 ± 2.1

Clay (%) 27.7 ± 1.03

Organic Carbon (%) (Walkley-Black) 1.35 ± 0.02

Note: Values are given as the mean ± SD (n = 3).
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according to the crops' needs each year. Twenty-five years 
after the onset of the experiment, wheat in each field rep-
licate was harvested with a plot-scale combine and grain 
yields were recorded. Grain weights were taken directly 
from the combine and grain samples were collected to 
analyse their water content, to get yield data on a dry-mass 
basis.

2.2  |  Soil sampling and analysis

Soil sampling was carried out at each treatment and repli-
cated, 25 years after the onset of the experiment. Disturbed 
soil samples were collected using an Edelman type auger 
(Ø = 5 cm) or a shovel. Three subsamples were collected 
per plot and combined to obtain a composite sample. 
Part of the sample was gently sieved (5 mm). Aggregates 
were air dried and used for aggregate stability determina-
tions. The remainder of the soil was air-dried and sieved 
to 2 mm. Undisturbed core samples were collected in trip-
licate using bevel-edged steel rings (Ø = 5 cm, total vol-
ume  =  100 cm3) to determine soil bulk density (ρb) and 
water retention characteristics.

Undisturbed soil samples as horizontal prisms were 
collected using Kubiëna boxes for thin section analysis 
(13 × 5 cm) at the soil upper depth (0–15 cm). Soil thin 
sections were prepared as described in Benyarku and 
Stoops  (2005) and described following Stoops  (2003) 
guidelines using a petrographic microscope Olympus 
BX51 connected to a Olympus SC20 camera. Image 
analysis was used to determine parameters related to 
macroporosity. Scanned images were obtained per thin 
section under two light conditions: parallel polarizers 
and crossed polarizers. Images were processed using 
Image J (Rasband, 2008) to obtain digital binary images. 
From each binarized thin section, five random images 
(10 × 10 mm) were selected using an adaptation of the 
method used by (Virto et al., 2013), where a grid of 27 
squares (1 cm2 each) was placed in each scanned section 
from which the eligible squares were chosen using a 
random number generator. Using ImageJ, total porosity 
and morphological descriptors data were determined for 
the whole surface of each 1-cm2 square. The parameters 
used were those described by Ferreira & Rasband (2012): 
Perimeter (which represents the length of the pores out-
side boundary), Feret diameter (the longest distance be-
tween any two points along the pore), circularity (with a 
maximum value of 1 indicating a perfect circle), aspect 
ratio (the ratio of major-to-minor axes of the pore) and 
solidity (area of the pore/convex area of the pore). Pores 
overlapping the square boundaries were excluded from 
the analysis.

Pore-size distribution analysis was based on a math-
ematical algorithm available at the Quantim4 library 
(Vogel,  2008). The area occupied by pores within each 
1-cm2 square was divided into five intervals according to 
the pore's apparent diameter: <100 μm; 100–200 μm; 200–
400 μm; >400 μm. The morphological study of the propor-
tion of area (equivalent to volume proportion over total 
soil volume) occupied by pores with diameters <400 μm 
was selected for this study, because of their special rele-
vance when describing structure (size of planar voids or 
fissures) and also because these pores can result from the 
activity of mesofauna (FAO, 2020).

Soil indicators were selected according to their rel-
evance for the pore network quality. Bulk density was 
determined with the core method (Carter,  1993). For 
wet aggregate stability, a constant shower-like flux 
(6 L min−1) of distilled water was applied from the top 
of the same set of sieves while sieving 4  g of 1–2 mm 
sieved soil (60 strokes min−1, 60s). A mechanical sample 
divisor (Retsch GmbH & Co.) was used to ensure that 
the initial distribution of aggregates was similar among 
replicates. Aggregate size-distribution and stability 
were expressed as the mean weight diameter (MWD) 
after wet sieving (Bosch-Serra et al.,  2017). The stabil-
ity of the aggregates was also evaluated using the mass 
proportion of water-stable aggregates (WSA) >0.25 mm 
(Franzluebbers, 2002).

Soil water retention at −33 kPa was determined on in-
tact soil cores and sieved (<2 mm). Soil samples were used 
for water retention assessment at −1500 kPa, using pres-
sure plate extractors (Soil Moisture Equipment Corp.). 
Available water-holding capacity (AWHC) was calculated 
as the difference between volumetric water content at 
field capacity (−33 kPa) and wilting point (−1500 kPa).

Soil organic C (SOC) was determined by wet oxi-
dation on air-dry sieved (<2 mm) samples (Nelson & 
Sommers, 1982). As other studies in the region have shown 
that earthworms can respond differently to different man-
agement strategies involving organic C inputs into the 
soil (Murchie et al., 2015; Valdez-Ibañez et al., 2019; Virto 
et al.,  2007), earthworms were sampled in the fall sea-
son. Earthworms were collected from 20 × 20 × 30 cm soil 
blocks, which were crumbled by hand, placed in a glass jar 
and weighed to obtain a fresh weight for each field repli-
cate (Baker & Lee, 1993). This allowed us to determine the 
total biomass (g per m−2), the abundance (number of in-
dividuals per m−2) and the average size (g per individual).

Crop sampling was carried out at physiological ma-
turity. Crop samples were oven-dried at 50°C for 7 days. 
Once dry, they were shelled with a 6 mm sieve to separate 
the grain from the straw and ground separately with an 
agate ball mill (Zaragüeta et al., 2021).
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2.3  |  Statistical analysis

For to the analyses of variance (ANOVA) among treat-
ments (SSa, SSe, MF and C), differences were consid-
ered significant when p < .05, unless otherwise indicated. 
All statistical analyses were performed using IBM SPSS 
Statistics 27.0 (SPSS Inc., 2021).

3   |   RESULTS

3.1  |  Micromorphological description

The groundmass composition of all thin sections was simi-
lar, due to the calcareous nature of the soil in the experimen-
tal field (Figure 2). The coarse/fine material (c/f) limit was 
set at 20 μm; the c/f ratio was 3:2 and the c/f related distribu-
tion pattern was single to close-spaced porphyric. The coarse 
material was composed of fine to very coarse sand (40%) 
made of subangular quartz grains; fine to medium sand 
(35%) of sparite; medium to very coarse sand of quartzite 
grains (10%); medium to very coarse sand (10%) of rounded 
limestone grains; and small amounts of shell fragments, me-
dium to coarse and very sand of calcareous sandstone grains 

(2.5%) (percentages are based on visual estimations). In the 
thin sections corresponding to the SSa treatment, biogenic 
(earthworms) calcite nodules and some charcoal fragments 
were present. The micromass consisted of a brownish speck-
led mixture of clay, fine silt, micrite and amorphous organic 
matter (OM), showing a crystalitic micritic b-fabric.

The qualitative description of the different typologies 
and characteristics of soil pores in the studied layer (0–
15 cm) showed that SS application induced changes re-
lated to the soil pore structure (Table 3). It was observed 
that long-term SS application changed the soil microstruc-
ture (crumb and sub-angular-blocky type) and the abun-
dance of compound packing voids and channels, while 
MF-treated soil showed a platy to apedal microstructure 
with lower faunal activity. The control treatment showed 
a crumb to apedal channel microstructure, with abun-
dance of faunal activity (compound packing voids, vughs 
and channels).

Fertilization affected soil porosity (Figure 3): Mineral 
fertilization showed the lowest percentage of total poros-
ity of pores >25 μm. Regarding the pore size-distribution 
over total porosity, no significant differences were, how-
ever, observed between treatments. A high variability was 
detected in some pore size-ranges.

F I G U R E  2   Crystalitic micritic b-fabric and evidence of biofaunal activity in a SSa thin section. Left PPL; right xPL. Red line represents 
1 mm scale.

T A B L E  3   Microstructures' description

Treatment Microstructure Types of voids

SSe Sub-angular blocky (Strongly to moderately 
separated); Crumb; Apedal Channel

Compound packing voids; Channels; Infilled Channels ~1 mm; 
Vughs

SSa Sub-angular blocky (Weakly separated); Crumb; 
Apedal Channel

Compound packing voids; Channels

MF Platy Compound packing voids; Fissures

C Crumb; Apedal Channel Compound packing voids; Channels; Vughs

Abbreviations: C = Control (n = 3); MF, Mineral Fertilizer (n = 3); SSe, SS 80 t ha−1 per year (n = 3); SSa, SS 20 t ha−1 per year (n = 3).
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The morphological characteristics of pores analysed 
through image analysis are summarized in Table 4. The 
morphology of the pores <100 μm, did not show signif-
icant differences between treatments. On the diameter 
range 100–200 μm, treatments showed significant differ-
ences for the aspect ratio: mineral fertilizer displayed a 
smaller aspect ratio than in the other treatments (SSa, 
SSe and C). The treatment without fertilization (C) had 
an intermediate behaviour between MF and those receiv-
ing SS.

The most relevant observation in the pore size range 
200–400 μm is that no pores within this size range were 
found to fit the 1-cm2 squares in MF. As such, it was not 
possible to determine it shape parameters. Although mor-
phological differences between the other treatments were 
not found, SSe treatments exhibit a trend of intermediate 
values between C, SSa.

3.2  |  Soil indicators

The fertilizer treatments induced changes among different 
indicators (Table  5). Significant differences were found 
on the gravimetric AWHC, separating SSa, with a lower 
value, from the other treatments. Regarding MWD, it was 
significantly smaller in SSe-treated soil than the other 
treatments. The SOC content differentiated SSe from SSa 
and both SS treatments from MF and C. For the earth-
worm indicators, C treatment was significantly different 
than the others, with higher biomass, abundance and 
average size, except for SSa on earthworm's average size, 
with no differences from treatment C. Regarding yield, 

SSa and MF had similar values, and higher yield than SSe. 
The control treatment displayed the lowest value of all.

4   |   DISCUSSION

4.1  |  Microstructure and porosity

Sewage sludge application induced changes in the soil 
physical structure. Thin section analysis was able to de-
tect these changes by enabling a qualitative evaluation 
of the soil pore network. Rabot et al.  (2018) highlighted 
the efficiency of image analysis techniques to assess soil 
aggregate microstructure, porosity and the type of pores 
existing, adding an important value when soil functions 
are under study.

We observed that long-term SS application improved 
the soil microstructure for root growth and faunal activity 
(crumb and sub-angular-blocky type), which is charac-
terized by the presence of biopores (compound packing 
voids, channels), while MF-treated soil showed a platy 
to apedal microstructure, with lower faunal activity. A 
crumb microstructure can be directly related to biological 
activity, as it usually appears mostly in the upper horizon 
of natural soils with its genesis on fine roots, organic de-
bris, fragments of faecal material, particularly earthworms 
(Fitzpatrick, 1993).

The observation of higher earthworm abundance in 
treatments receiving SS than in MF (Table  5) supports 
this finding as well as the information about pore mor-
phology issued from image analyses. The lowest observed 
earthworm abundance (Table 5) was in MF, the only treat-
ment without data regarding pores 200–400 μm (Table 4) 
which correspond to one of the intervals of mesofauna. 
The subangular blocky type of structure develops mostly 
from wetting and drying (Fitzpatrick, 1993). This type of 
structure allows good water movement and facilitates root 
growth (Pagliai & Vignozzi, 2002), and when strongly sep-
arated, as in our case for SSe, it represents a stable soil 
structure, which is also of interest in agricultural soils.

We found that aggregate stability, as expressed by WSA, 
was not different among treatments, which can be related 
to the abundance of Ca in this calcareous soil granting 
resistance to soil aggregates to the action of water in all 
treatments (Rabot et al.,  2018). However, data on MWD 
after submission to water sieving indicated that the high-
est dose of SS (SSe) resulted in smaller stable aggregates 
than in the treatments with a lower dose (SSa) or without 
SS (MF and C). This implies that the observed structural 
traits might not be directly related to aggregate stability in 
this case and supports the idea that the potential benefits 
of SS for soil structure are limited to their use within a 
certain dose range.

F I G U R E  3   Total porosity >25 μm (right axis) and pore size-
distribution (in % over total porosity, left axis) by pore diameter 
range on the pores >25 μm. C, Control (n = 3); MF, Mineral 
Fertilizer (n = 3); SSe, SS 80 t ha−1 per year (n = 3); SSa, SS 
20 t ha−1 per year (n = 3). Treatments with the same letters are not 
statistically different p < .05. Standard error bars. Each value is the 
average of five measurements.
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In relation to total porosity, the MF treatment was 
the one with the lowest total porosity >25 μm (Figure 2). 
This can be explained by the size and shape of pores 
within this size range, which were bigger in average 
than in the other treatments and included mostly large, 
elongated pores corresponding to horizontal fissures and 
compound packing pores (Table  1). As such, the pore 
area was probably larger than the 1 cm2-square used for 
the description, and the pore measurements could not be 
properly made (Mateo-Marín et al., 2021). Long-term MF 
can be therefore associated to the development of a less 
functional structure (laminar structure, with horizontal 
pores limiting infiltration and seed emergence) than SS 
addition or even no fertilization (C treatment). Other 
studies also show organic fertilization displaying a more 
diverse, connected and complex pore system than in MF 
soils (Dal Ferro et al., 2013; Schjønning et al., 2002).

Under an annually-tilled agricultural management 
type, connected pores >100 and <400 μm have an import-
ant role for soil functioning, as they represent the trans-
mission pores where water moves through and where the 
roots grow into (Pagliai & Vignozzi, 2002). In our study, 
within this apparent pore diameter interval, results sug-
gested that SS addition stimulated the development of big-
ger pores (Figure 2).

Within the size range 100–200 μm, the aspect ratio was 
higher within SS treatments compared to MF, with C dis-
playing an intermediate behaviour (Table 4). Aspect ratio 
translates the elongation of pores, and within this size-
range, more elliptical pores correspond to the sections of 
channels and assure a good network for water transmis-
sion. In comparison, rounded pores in MF-treated soil are 
sections of more spherical and, therefore, isolated pores, 
which are characteristic of poorly aggregated soils. The 
same trend was found (without significance) by Yagüe 
et al.  (2016), on a Oxiaquic Xerofluvent soil in a dry 
Mediterranean climate, where the treatments fertilized 
with dairy cattle manure showed a higher aspect ratio than 
MF. In contrast, in a study made on a Typic Xerofluvent soil 
also in a dry Mediterranean climate, but using pig slurry 
(Mateo-Marín et al.,  2021), control plots showed higher 
AR than the fertilized plots. The different results found 
in these studies highlight the site-dependency relevance 
on the changes in soil structure, as the three studies were 
each conducted in different textured soils. Additionally, 
the nature of the exogenous sources of organic C (in our 
case SS) seems pertinent in relation to the response of soil 
structure to their addition.

Finally, SS treatments tended to have a higher propor-
tion of pores in all categories (not significant difference), 

Perimeter 
(μm) Feret (μm) Circularity Aspect ratio Solidity

<100 μm

SSe 1.958 ± 0.11 0.731 ± 0.03 0.561 ± 0.00 2.089 ± 0.10 0.677 ± 0.01

SSa 0.207 ± 0.07 0.762 ± 0.02 0.549 ± 0.02 2.097 ± 0.04 0.676 ± 0.01

MF 0.197 ± 0.07 0.745 ± 0.00 0.554 ± 0.02 2.146 ± 0.02 0.687 ± 0.01

C 0.218 ± 0.15 0.800 ± 0.03 0.520 ± 0.02 2.212 ± 0.02 0.663 ± 0.01

NS NS NS NS NS

100–200 μm

SSe 10.42 ± 1.64 2.759 ± 0.30 0.215 ± 0.04 2.213 ± 0.26 B 0.524 ± 0.04

SSa 8.858 ± 0.85 2.527 ± 0.18 0.254 ± 0.04 2.316 ± 0.15 B 0.567 ± 0.03

MF 7.126 ± 1.70 2.014 ± 0.02 0.416 ± 0.00 1.569 ± 0.02 A 0.641 ± 0.09

C 9.225 ± 0.51 2.498 ± 0.01 0.251 ± 0.00 1.980 ± 0.13 AB 0.573 ± 0.03

NS NS NS ** NS

200–400 μm

SSe 15.110 ± 7.58 3.739 ± 1.90 0.101 ± 0.05 1.442 ± 0.89 0.355 ± 0.19

SSa 17.284 ± 4.68 4.004 ± 0.84 0.214 ± 0.07 1.585 ± 0.37 0.515 ± 0.12

MF ND ND ND ND ND

C 20.703 ± 2.65 4.733 ± 0.06 0.126 ± 0.03 2.637 ± 0.32 0.444 ± 0.03

NS NS NS NS NS

Note: Treatments with the same letters are not statistically different.
Abbreviations: C, Control (n = 3); MF, Mineral Fertilizer (n = 3); ND, not determinate; SSe, SS 80 t ha−1 
per year (n = 3); SSa, SS 20 t ha−1 per year (n = 3).
*p < .1; **p < .05; ***p < .001.

T A B L E  4   Morphological pore 
measurements by pore equivalent-
diameter interval
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based on their apparent pore diameter compared to MF-
treated soil (Table 4). However, the reverse was seen on 
total porosity >25 μm (Figure 2), where MF had the high-
est porosity. These contrasting results point towards a 
different origin and functionality of the pores under dif-
ferent fertilization managements (organic vs. mineral), 
which corresponds to the differences observed in terms of 
earthworm abundance (Table  5). The fact that no pores 
were identified in MF within the 200–400 μm size range, 
supports the idea that this treatment favoured the devel-
opment of more elongated pores or fissures >1 cm long, 
not detectable with the approach used.

These observations together allowed to understand 
that changes resulting in an overall higher porosity when 
using MF vs different amounts of SS for fertilization, or 
even no fertilization (treatment C) were also related to the 
development of a different kind of porosity. Mineral fertil-
ization would result in a higher abundance of (horizontal) 
fissures and cracks, whilst with SS application a structure 
including different categories of pores, more related to 
faunal and root activity was found. This suggests that, de-
spite annual tillage taking place in all treatments, a known 
factor of soil structure disturbance, mineral fertilization 

and organic fertilization displayed positive effect on soil 
porosity and pore shape morphology.

4.2  |  Soil physical indicators, 
earthworms and yield

The indicators chosen for this study are commonly related 
to soil porosity and generally used to assess the soil physi-
cal condition and biological activity in agricultural soils. 
Fertilization with organic materials frequently results 
in an increase in SOC stock (Antón et al.,  2021), which 
can positively affect the development of stable aggregates 
(Abiven et al., 2009), and result in more efficient carbon 
and water storage. All these effects can be directly or indi-
rectly related to the quantity and quality of soil pores. As 
a consequence, in other experiments, long-term addition 
of SS was observed to have a positive effect on the soil bio-
logical activity (Yagüe et al., 2016), particularly, on earth-
worm populations (Murchie et al., 2015; Pérès et al., 2011; 
Valdez et al., 2020).

In our experiment, however, some observations indi-
cated that the relationship between SS addition and the 

T A B L E  5   Soil physical and biological indicators (0–15 cm)

Treatments

Soil indicators SSe SSa MF C

AWHC (g g−1) 0.102 ± 0.01 B 0.048 ± 0.00 A 0.105 ± 0.01 B 0.091 ± 0.00 B

*** *** *** ***

Bulk density (g cm−3) 1.46 ± 0.07 1.47 ± 0.03 1.56 ± 0.05 1.52 ± 0.02

NS NS NS NS

WSA (%) 85.8 ± 0.82 84.6 ± 0.77 85.9 ± 1.11 83.8 ± 1.21

NS NS NS NS

MWD (mm) 0.707 ± 0.01 A 0.792 ± 0.01 B 0.773 ± 0.01 B 0.820 ± 0.02 B

** ** ** **

Organic C (gC kg−1) 18.2 ± 0.24 C 15.7 ± 0.14 B 14.5 ± 0.47 A 13.949 ± 0.40 A

** ** ** **

Earthworms' biomass (g m−2) 13.3 ± 4.5 A 32.0 ± 16.5 A 5.97 ± 2.50 A 194.4 ± 82.3 B

** ** ** ***

Earthworms' abundance (ind m−2) 45.8 ± 20.8 A 65.4 ± 25.4 AB 12.5 ± 7.22 A 145.8 ± 34.1 B

** ** ** **

Earthworms' average size (g ind−1) 0.345 ± 0.09 A 0.679 ± 0.23 B 0.199 ± 0.10 A 1.687 ± 0.37 B

** ** ** **

Yield (Triticum aestivum L, kg ha−1) 6470 ± 730 B 8268 ± 320 C 8877 ± 266 C 3505 ± 475 A

*** *** *** ***

Note: Treatments with the same letters are not statistically different.
Abbreviations: AWHC, available water capacity; C = Control (n = 3); MF, Mineral Fertilizer (n = 3); MWD, mean weight diameter; SSe, SS 80 t ha−1 per year 
(n = 3); SSa, SS 20 t ha−1 per year (n = 3); WSA, water stable aggregates.
*p < .1; **p < .05; ***p < .001.
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improvement of physical and biological indicators was not 
straightforward. In relation to physical indicators, signif-
icant differences were found between treatments only for 
gravimetric AWHC and MWD, for which the dose seemed 
to make a difference in the SS-amended treatments 
(Table 5). Regarding AWHC results, SSa had significantly 
lower values than the other treatments. This observation 
can be related to the slightly distinct characteristics of 
200–400 μm pores in SSe, compared to SSa, suggesting a 
different effect of SS addition or MF in the soil micropo-
rosity than in the pores 200–400 μm (Table 4). This would 
imply that the changes induced by different fertilization 
types in the studied soil relate to water infiltration and 
transfer more than water retention.

For MWD, SSe resulted in a less stable structure than 
the other treatments (Table  5). This suggests that the 
higher dose disturbed the stability of aggregates but with-
out effect on the water holding capacity compared to the 
use of MF or no fertilization, while the opposite happened 
with SSa. This lack of correlation between the observed 
results in SOC and aggregate stability can be related to the 
nature of the amendment (Dal Ferro et al., 2013). The ad-
dition of SS, a relatively labile source of OM, which can 
be easily mineralized, could result in the positive effects 
that OM inputs can have on soil structure not being pro-
nounced over time. This was also observed by Annabi 
et al.  (2011) with five fertilization times within a 9 year 
field trial, using different organic amendments In ad-
dition, the possible incorporation of other compounds 
present in SS that may destabilize soil structure, such as 
soluble salts, can result in long-term degradation of the 
soil structural stability. Other studies have found a link 
between the application of SS and higher electrical con-
ductivity values (Cai et al., 2010; Chong* & Purvis, 2004), 
which was observed previously at our study site (Simoes-
Mota et al., 2021).

Earthworm abundance and biomass are biological in-
dicators to assess the response of soil fauna to contami-
nation (Pérès et al., 2011). These results agreed with the 
observations from the micromorphological study, both de-
scriptive (Table 3) and pore sizes and shapes (Table 4). The 
SS treatments had better values in both parameters than 
MF, which is in accordance with other studies (D'Hose 
et al.,  2018; Spiegel et al.,  2018). However, in our study, 
the earthworm population was more abundant in the con-
trol plots (treatment C), than in SSa and SSe, whereas a 
positive correlation between OM addition and earthworm 
population was expected. This finding suggests a neg-
ative effect from SS application, especially in excessive 
doses as earthworms avoided the SSe treatment despite 
the high carbon input. The characteristics of SS, as well 
as the potential accumulation of metals and other pollut-
ants (Urra et al., 2019; Zaragüeta et al., 2021), may explain 

this behaviour (Rastetter & Gerhardt, 2017). Other reports 
on the effect of SS application on earthworm popula-
tions on farmlands are inconsistent (Barrera et al., 2001). 
Nevertheless, the narrow link between the micromorpho-
logical approach and earthworms assessment in this study 
reaffirms the positive effect earthworm activity has on soil 
porosity (Schon et al., 2017; Valdez et al., 2020).

Soil organic C concentrations were similar in MF and C 
plots, despite the former gaining yields twice as higher as 
those in the latter (Table 5). Different aspects, such as the 
quality of crop residues (i.e., C/N ratio [Chen et al., 2018; 
Grzyb et al., 2020; Lu et al., 2011]) or the mineralization of 
these residues induced by MF (Cheng et al., 2020) can at 
least partially explain this observation (Liang et al., 2022). 
Also, the calcareous nature of the soil, which can pro-
mote long-term SOC stabilization, can explain a more 
efficient overall SOC protection in this soil, resulting in 
C treatments maintaining SOC stocks in the long term 
(Rasmussen et al., 2018; Rowley et al., 2018). Identifying 
mechanistic processes is beyond the scope of this work. 
However, it is suggested that higher the earthworm activ-
ity in C plots resulted in a more crumbly structure com-
pared to MF (Table 3), which increased the incorporation 
of crop residues into the soil matrix, which may explain 
the absence of difference in SOC. Finally, wheat yield re-
sults also support the idea that the dose of SS plays a role 
in soil fertility, as the maximum yields were obtained with 
MF and SSa, while SSe displayed an intermediate value 
between those treatments with fertilization and the unfer-
tilized control.

The lower SS dose (SSa) was as efficient as MF (Jaber 
et al., 2005; Obriot et al., 2016), while SSe had a deleterious 
effect on yield (Albornoz, 2016). In relation to the obser-
vations on porosity, yield results also showed a decoupling 
between physical and biological condition and biomass 
productivity, as the two most contrasting treatments in 
terms of porosity and earthworms' activity (MF and SSa) 
resulted in the highest yields. In terms of soil function-
ing, this is as an example of yield not always being the 
best indicator of soil condition, as the nutrient availability 
can compensate a poorer physical condition. To address 
with accuracy the state of soil quality condition, holistic 
approaches are needed to move towards productive and 
sustainable cropping systems (Salomé et al., 2016; Simoes-
Mota et al., 2021).

5   |   CONCLUSIONS

In this study, micromorphology analysis provided 
valuable information not found with other indicators. 
For example, image analysis detected subtle changes 
in soil structure more adequately than bulk density. In 
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addition, it offers the possibility to understand to what 
extent these changes correspond to the morphological 
characteristics of pores, extending the information given 
by AWHC measurements. In general, we found that SS 
fertilization at agronomic doses improved the structure 
and the pore network compared to mineral fertilization. 
Conversely, long-term mineral fertilization, although 
as efficient as organic fertilization in supporting crop 
yields, resulted in greater soil structural degradation 
than fertilization with SS at agronomic doses or even no 
fertilization at all. The use of extreme doses of SS needs 
further examination, as it may have deleterious effects 
in terms of both soil structure and yields. Overall, the 
long-term application of an exogenous source of OM at 
agronomic doses had a better effect on protecting soil 
from physical degradation than mineral fertilization in 
the studied soil. Exploring the actual consequences of 
these observations in terms of soil functioning is needed 
for a complete assessment of SS application in this type 
of soils and agronomic conditions.
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