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Abstract
Classification of Bitcoin entities is an important task to help Law Enforcement Agencies reduce anonymity in the Bitcoin
blockchain network and to detect classes more tied to illegal activities. However, this task is strongly conditioned by a
severe class imbalance in Bitcoin datasets. Existing approaches for addressing the class imbalance problem can be improved
considering generative adversarial networks (GANs) that can boost data diversity. However, GANs are mainly applied in
computer vision and natural language processing tasks, but not in Bitcoin entity behaviour classification where they may be
useful for learning and generating synthetic behaviours. Therefore, in this work, we present a novel approach to address the
class imbalance in Bitcoin entity classification by applying GANs. In particular, three GAN architectures were implemented
and compared in order to find the most suitable architecture for generating Bitcoin entity behaviours. More specifically,
GANs were used to address the Bitcoin imbalance problem by generating synthetic data of the less represented classes
before training the final entity classifier. The results were used to evaluate the capabilities of the different GAN architectures
in terms of training time, performance, repeatability, and computational costs. Finally, the results achieved by the proposed
GAN-based resampling were compared with those obtained using five well-known data-level preprocessing techniques.
Models trained with data resampled with our GAN-based approach achieved the highest accuracy improvements and were
among the best in terms of precision, recall and f1-score. Together with Random Oversampling (ROS), GANs proved to
be strong contenders in addressing Bitcoin class imbalance and consequently in reducing Bitcoin entity anonymity (overall
and per-class classification performance). To the best of our knowledge, this is the first work to explore the advantages
and limitations of GANs in generating specific Bitcoin data and “attacking” Bitcoin anonymity. The proposed methods
ultimately demonstrate that in Bitcoin applications, GANs are indeed able to learn the data distribution and generate new
samples starting from a very limited class representation, which leads to better detection of classes related to illegal activities.

Keywords Bitcoin address classification · Entity anonymity attack · Entity classification · Generative adversarial networks
(GAN) · Class imbalance problem

1 Introduction

Bitcoin represents a pseudo-anonymous peer-to-peer net-
work, which allows its users to communicate through
transactions stored in a public ledger called blockchain
[1]. To date, Bitcoin is the most frequently used cryp-
tocurrency for concealing illicit activities as quantified in
traffic of around $76 billion per year [2]. Users typically
feel shielded by Bitcoin anonymity and at the same time
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conceive it as a convenient payment mechanism [3]. Fur-
thermore, although the volatility of cryptomarkets intro-
duces high risks, entrepreneurs and corporate executives
have high expectations regarding blockchain technology.
Several recommendations for blockchain platforms can be
found in [4]. An escalation of illegal activities and the goal
of improving the network’s resilience to cyber-attacks have
led researchers and Law Enforcement Agencies (LEAs)
to investigate how to reduce anonymity within the Bit-
coin blockchain network [5]. Anonymity can be decreased
through Bitcoin entity classification [6, 7], which aims to
detect and classify entities’ behavioural patterns within the
network. However, this classification problem - typically
addressed via supervised machine learning approaches -
strongly depends on the initial labelled Bitcoin dataset,
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which allows the definition of singular entity behaviour.
These kinds of datasets are often characterized by a non-
homogeneously distributed population, which means that
some entity classes present in the dataset are more popu-
lated than others, causing a severe class imbalance problem.
Especially for supervised machine learning problems, this
phenomenon dramatically affects the quality of the learn-
ing system. Classifiers trained using imbalanced datasets are
usually biased in favour of the majority classes and fail to
detect underrepresented ones [8].

The class imbalance problem becomes even more
relevant in applications where it is hard to detect and collect
new observations as is typically the case for Bitcoin-related
data. The lack of data, usually related to samples potentially
associated with illicit activities, negatively affects the
performance of a classifier for a behavioural prediction
system [9].

Traditional approaches used to address dataset imbalance
problems can be clustered into four groups [8]: cost-
sensitive learning, data-level preprocessing, algorithm-level
approaches, and ensemble learning. Cost-sensitive learning
uses cost values for penalizing misclassifications of some
classes to improve their importance during the training
phase [10]. Data-level approaches are based on adjusting the
initial distribution to construct a balanced training dataset
(resampling). Algorithm-level techniques try to modify
existing algorithms to address the class imbalance problem
directly inside the learning algorithm itself [11]. Ensemble
learning is composed of techniques that train different
classifiers with the original data and then combine their
results for the final classification [8].

Cost-sensitive and data-level approaches, as well as
a combination of both methods, are the most used
techniques when deep learning models are trained [12].
In particular, cost-sensitive modifications of the back-
propagation learning are made in order to improve the
sensitivity of the minority class. This operation promotes
the classification of samples in the minority class over the
majority ones, as shown in several works [12, 13].

Other interesting and more complex approaches for
addressing the imbalance problem are based on the
implementation of generative models for enhancing the size
and quality of the training data [14]. These approaches
have been widely and very successfully used for image
[15] and video [16] generation, since they are able
to learn underlying true data distributions from limited
available samples. In fact, as presented in [17], adversarial
technology, and more specifically generative models,
allow access and unlock hidden information in a dataset.
Moreover, these models are typically used for enhancing
the fairness in the original dataset to avoid bias in the
classification [18].

For this reason, in this paper, we introduce and analyse
a method based on adversarial learning (generative model)
to tackle the Bitcoin class imbalance problem, with the
ultimate goal of improving the performance of the final
classifier. Motivated by their good results in other domains
and their promising capabilities to learn complex data
distributions, we use here Generative Adversarial Networks
(GANs) [19] to create new synthetic samples balancing
the class distributions in the original dataset, and then use
the balanced dataset to train the classifier. In this way,
we can evaluate how the additional synthetic samples help
to improve the classifier and ultimately affect its ability
to decrease Bitcoin entity anonymity. Since our approach
is based on balancing the initial population by adding
new elements (resampling), we compare our GAN-based
methodology with commonly used data-level techniques.
GANs are typically implemented using two neural networks
competing with each other in order to improve the ability
of the whole system to learn and reproduce the input
distribution. These “adversarial” models are mainly used in
the domain of image processing [20] - currently being one of
the most promising machine learning models in tasks related
to image generation [21, 22].

Despite their potential, it is impossible to find a
unique GAN solution that works for every scenario, which
has led to the creation of different GAN architectures,
each one with different goals and different application
domains [23]. Therefore, one aim of this study is to
investigate which type of GAN architecture can be used to
generate synthetic Bitcoin address data behaviour and which
architecture generates the most “valuable” information, i.e.
valid synthetic samples that actually improve the Bitcoin
entity classification. We also investigate how GAN training
time affects classification results and whether results
achieved with the best performing GAN setup are consistent
when repeating the experiment. Finally, 5 state-of-the-art
resampling techniques are used here and compared to our
GAN approach in terms of classification performance and
computational efforts.

To the best of our knowledge, this is the first
work exploring the benefits and limitations of GANs in
generating specific Bitcoin data and investigating in detail
how the generated synthetic information affects Bitcoin
entity classification.

The rest of the paper is organized as follows. In Section 2,
concepts regarding the class imbalance problem and GANs
as well as related work are introduced. In Section 3, the
proposed solutions are presented, while Section 4 details the
used data, the metrics and the experiments carried out in this
study. In Section 5, results are reported and discussed and
finally, Section 6, provides conclusions and guidelines for
future work.
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2 Preliminaries

In this Section, we recall the concepts behind Bitcoin
classification and attacking its anonymity, resampling
techniques to tackle class imbalance, and GANs. In
particular, in Section 2.1, the Bitcoin entity classification for
attacking Bitcoin anonymity is introduced. In Section 2.2,
GAN architectures and their applications and limitations are
described, finally, in Section 2.3, the most frequently used
techniques to address class imbalance problems and how
they are applied to Bitcoin data are reported.

2.1 Attack on Bitcoin anonymity

Bitcoin is the dominant cryptocurrency used in criminal
activities as it allows non-transparent transactions and lacks
effective regulatory mechanisms [24]. Over the years, the
volume of transactions, cyber-attacks on specific Bitcoin
entities [25] and illicit activities related to money laundering
(ransomware, Ponzi schemes etc.) have increased [26],
thereby promoting an increase in the usage of services
that offer to protect user anonymity (like mixers [27]).
Therefore, reducing anonymity within the network and
classifying Bitcoin entities have become challenging and
crucial tasks for Law Enforcement Agencies (LEAs) [5].

An entity is an actor in the Bitcoin network that controls
or can control multiple public keys (i.e. Bitcoin addresses)
and that does not always correspond to a single physical user
(organization, corporation, small group of people). Entity
classification represents an attack on Bitcoin’s anonymity
[28] as it allows the detection of entities that have a high
risk of being involved in illicit transactions [29], as well
as entities that are potentially more vulnerable to cyber-
attacks. In fact, as described in [30], there are classes (like
markets, ransomware, mixing, etc.) composed of entities
more prone to making illicit transactions, while others are
composed of entities that are more prone to be attacked (like
exchanges, pool, etc.) because they manage a large amount
of money [31, 32].

In Bitcoin entity detection, the idea is to exploit the
information available in the blockchain, i.e. blocks and
transactions, in order to define entity behaviours (or classes)
and thereby classify entities [6].

These transactions can be used to extract valuable
information linking input and output Bitcoin addresses, as
well as other characteristics such as amount, fees, times
etc. (Fig. 1). The available information provides a starting
point for analysing the money flow but could be insufficient
for defining the different entities. In this case, heuristics or
external datasets are used. In the first case, addresses are
clustered into entities following assumptions that represent
common behaviours in the network [33], whereas in the

Fig. 1 Example of information that can be extracted from a Bitcoin
transaction (TX1)

second case, entity characterization is based on using
external private or public Bitcoin “ground-truth” datasets
[30, 34], which contain clusters of addresses belonging to
known entities, the name of these entities and their related
classes (Exchange, Gambling, Market, etc.).

Combining Bitcoin transaction data with heuristics or
external datasets allows one to obtain an address-graph in
which each address is connected to a transaction and to other
addresses that belong to the same entity, as shown in Fig. 2.

Fig. 2 Example of address-graph extracted using the Bitcoin
transaction (TX1) data
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The address-graph is the starting point for many Bitcoin
entity classification studies [6, 29, 34, 35].

Entity behaviours are strictly related to the addresses
used to define them, so when the classification is performed
at the level of address information only (using input address
features only), the operation is also called Bitcoin address
classification [36]. Its aim is to define and predict entity
behaviour (or class) associated with one or more addresses.

First classification approaches used statistical analyses
and graph information as, for example, in [37], while
recent works tend to exploit the power of machine
learning techniques [29, 30]. This new trend makes it
appealing to transfer technologies that have already shown
good results in other domains to the Bitcoin blockchain
domain. However, Bitcoin datasets typically do not contain
homogeneous information regarding all Bitcoin entity
classes (such as Exchanges, Mixers, Mining Pools, etc.),
which means that there are more data pertaining to certain
classes whereas others are underrepresented. This class
imbalance problem represents a major obstacle during the
training phase of machine learning models [8], since it
dramatically affects the quality of classification results.

2.2 Generative adversarial networks (GANs)

A GAN is a generative model based on the joint
optimization of two neural networks. Both networks
represent players in a theoretical game designed to discover,
learn, and replicate input distributions. The two neural
networks are called Generator (G) and Discriminator (D),
according to their tasks during the training phase. The
objective of G is to learn the input distribution and generate
synthetic samples similar to the real ones. The objective
of D is to learn the difference between the synthetic and
the real data evaluating the quality of G’s samples. This
competition drives both networks to improve their ability
to learn from each other - creating a dynamic evolution of
their neural parameters. The adversarial training ends when
the optimization process stops, i.e. when the synthetically
generated samples are indistinguishable from the real ones
[19]. The first GAN, introduced in [19], follows the
architecture presented in Fig. 3.

Fig. 3 General Generative Adversarial Network (GAN) architecture

Adversarial learning is characterized by a zero-sum
non-cooperative game, also called minimax problem. The
minimax function used in GAN implementations can be
formulated with the parameterized networks G and D as
introduced in [19] and reported in (1). V (D, G) represents
the value function in the two-player game, D(x) is the
discriminator’s estimation of the probability that x (real
data) is real, Ex∼pdata(x) is the expected value over all real
data associated to the probability distribution of the real data
pdata(x), G(z) is the generator’s output (fake data) with
noise input z, Ez∼pz(z) is the expected value over all random
inputs to the generator associated to a predefined prior
noise distribution pz(z), and D(G(z)) is the discriminator’s
estimation of the probability that a fake sample is real.

min
G

max
D

V (D, G) = Ex∼pdata(x)[log(D(x))]
+ Ez∼pz(z)[log(1 − D(G(z))] (1)

Following (1), one network tries to maximize the effects
of its actions during the training phase, while the second
network tries to minimize its effects. Since the two networks
are related via a common equation, improvements of one
model worsen the other one, thus creating a dynamic
learning system. As introduced by Goodfellow et al. [19],
the goal of the training is to find a point of equilibrium
between the two competing concerns, i.e. training converges
when G and D reach the well-known Nash equilibrium [38].
A Nash equilibrium occurs when one player will not change
its action regardless of what the opponent may do.

In order to find the equilibrium in the cost function,
gradient descent optimization is used. This optimization
updates both G and D simultaneously through stochastic
gradient updates [39]. However, each scenario has its own
suitable optimization function and there is no unique GAN
architecture that works in every situation

GAN Limitations

Despite its learning abilities, the GAN architecture intro-
duced in [19] comes with some problems that limit its usage
compared to other architectures. Common collateral-effects
[40], known as non-convergence, vanishing gradients and
mode collapse, need to be taken into account at the time of
implementation.

• Non-convergence: commonly occurs during the gra-
dient descent optimization, where local minima and
saddle points can stall the training, for example. As
mentioned before, the goal of the training is to find an
equilibrium in a game between two players, the gen-
erator G and the discriminator D. In a scenario where
users “undo” each other’s progress, no convergent solu-
tion may be reached, in which case oscillation in the
models’ parameters generate instability [41].
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• Vanishing gradient: is a known problem affecting deep
learning models that use gradient-based optimization.
This phenomenon can produce slow training - for
example when the solution follows a “pathological”
curvature, which may even lead to non-convergence
[42]. As presented in [43], the vanishing gradient can be
produced when D is too good so that it does not provide
enough information for G to learn the input distribution.

• Mode Collapse: also known as the Helvetica scenario, is
produced when G learns to cheat D by generating only
a limited variety of data regardless of the input. In this
case, G learns just a small part of the input distribution
that does not represent the entire population. In the
worst case, the model “collapses”, always generating
the same sample. As presented in [41], mode collapse
does not seem to be associated with any particular cost
function.

Generally, there is no perfect solution to address all
presented problems at once. However, previous studies tried
to evaluate and mitigate some of these issues by using
different GAN architectures, as proposed in Goodfellow
et al. [41], for example, in which the authors showed
that a modified minimax loss can be used to deal with
vanishing gradients. Arjovsky et al. [44] preferred to use
a Wasserstein distance as a loss function, creating the so-
called Wasserstein GAN (or WGAN). The Wasserstein
distance measures the distance between two probability
distributions, in this case, the distribution of the data
observed in the training dataset and the distribution
belonging to the synthetic dataset. In this implementation,
even when the supports of two distributions are located
in two disjoint lower-dimensional manifolds, a smooth
representation of the distance in-between is provided, which
results in a better stabilization of the learning process using
gradient descents. In fact, the WGAN presented in [44],
showed vanishing gradient and mode collapse effects being
drastically reduced. Yet, depending on the domain, WGANs
can suffer from unstable training, slow convergence after
weight clipping, and vanishing gradients. Local stability for
both the WGAN and the traditional GAN can be guaranteed
using an additional term during the gradient descent updates
[45].

Another interesting architecture is based on unrolled
GANs. In [46], it was shown how this technique solved the
problem related to mode collapse and how it stabilized the
training of GANs. In unrolled GANs, G not only considers
the current discriminator information but also k future
outputs of the discriminator versions in order to discourage
G to exploit local optima. In particular, G will try to take
steps that D will find difficult to respond to. For k steps,
back-propagation occurs only to update a version of D’s
parameters (G’s parameters being fixed) in order to allow

D to optimize its performance, playing always against a
specific G. The optimization is always performed through a
gradient descent operation. Once the k steps are done, G’s
parameters are updated by back-propagating through all k

steps (“unrolled” learning process).
In this paper, as in many other publications [47, 48],

the GAN architecture introduced in [19] is called Vanilla
GAN. Two more GAN architectures (Wasserstein [44] and
unrolled GAN [46]) are presented and implemented in the
following Sections.

GAN for Cybersecurity

The main goal of these adversarial networks is to
approximate the real data distribution and generate synthetic
samples for enhancing/enriching the original dataset [49]
- for example for creating infrared high-resolution images
[50, 51], realistic vehicle images [52], for enhancing
underwater images [53], for image inpainting [54] and
for palmprint recognition [55]. In the speech domain,
GANs are used to compute an enhancement operation
[56], to improve Neural Machine Translation (NMT) results
generating human-like translations [57] and for emotion
recognition by creating synthetic audios from audio-visual
datasets [58].

Only a few recent studies apply GANs in the context
of cybersecurity. In [59] and [60], GANs are used to
generate new cyber-attack samples from existing data. In the
former, the goal is to balance the initial dataset and improve
intrusion detection systems; in [60] the objective is to train
a binary classifier (attack, no-attack) and show the benefits
in terms of accuracy and f1-score generated by the balanced
dataset. Mukhtar et al. [61] propose an approach based
on GANs and Siamese networks for generating synthetic
data of side-channel attacks. In [62], a new GAN-based
framework is introduced to address the class imbalance in an
encrypted traffic dataset and is compared to models trained
with balanced datasets using SMOTE, ROS, and Vanilla
GAN techniques.

GAN architecture and its parameters always need to
be chosen carefully, depending on the given scenario. For
this reason, in this work, a wide variety of optimization
heuristics and GAN architectures have been compared with
the aim to detect the architecture that generates “highly-
valuable” synthetic samples. The “value” of synthetic
samples is evaluated by analysing the improvements they
generate in the classification results.

2.3 The class imbalance problem

In machine learning, the information available for describ-
ing a problem at hand is a key factor and the generation
of a machine learning model is strongly related to the
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number of observations. One or more categories (or classes)
in the initial dataset having more samples than others
may significantly affect the training phase, generating phe-
nomena called the class imbalance problem [63]. In this
situation, supervised machine learning systems tend to be
“overwhelmed” by the majority class, making it hard to
discover robust patterns for under-represented classes.

As we have already mentioned, the common algorithms
used for addressing class imbalance can be grouped into 4
categories. Among them, algorithm-level and cost-sensitive
methods are usually more dependent on the problem and
ad-hoc solutions could be required. In neural networks,
considering costs may be straightforward [12] and may
yield similar results as data-level techniques (e.g. random
oversampling) if weights are assigned for balancing the
importance of the classes. Otherwise, data-level techniques
tend to be more versatile, since they are independent of the
classifier used, acting directly on data. In this sense, they
provide more diversity in the samples, since new synthetic
data may be generated (e.g. SMOTE or ADASYN) favoring
the learning in neural networks.

In this work, we are interested in analysing data-level
techniques, which are among the most used strategies [64].
These approaches are based on resampling and thus allow us
to compare their results with our GAN-based approach. In
particular, data-level techniques are categorized into over-
sampling or under-sampling. In the first case, data are added
to the less populated classes in order to reach the same
(or similar) number of elements as the majority class. In
the second one, data are removed from the majority classes
in order to reduce the number of samples down to the
same (or similar) amount of elements that describe the least
represented class. Both sampling strategies can be combined
creating hybrid methods.

The usage of these strategies mitigates the problem
related to unbalanced data but can produce downside
effects in the supervised machine learning model [8].
For example, in under-sampling, the simplest technique
(Random Under Sampling or RUS) involves removing
random records from the majority class, which can cause
a loss of information. The simplest implementation of
over-sampling (Random Over Sampling or ROS) duplicates
random observations from the minority class, which, in
turn, can cause overfitting. These problems are addressed
by implementations of other - more complex - resampling
techniques such as Tomek Links (TL) [65], Synthetic
Minority Over-sampling Techniques (SMOTE) [66] and
Adaptive Synthetic (ADASYN) [67] approaches.

TL is based on a heuristic approach that uses an
enhancement of the Nearest-Neighbor rule. Even though
it is considered to be an under-sampling strategy (as it
removes Tomek links), its result is not a uniform dataset
with the same number of elements for each class.

SMOTE is an over-sampling technique that creates new
instances between minority class samples that are close to
each other in the feature space [66]. Typically, the algorithm
first computes the k-nearest neighbors for a sample of
the minority class and then creates the synthetic instance
by randomly choosing one point in the line segment that
connects one of the k neighbors with the considered sample.
The process is repeated until a degree of balance is reached.
The number of points generated for each data sample is
uniform, uniquely based on the chosen k.

ADASYN was implemented with the aim of improving
the results obtained via the SMOTE strategy [67]. The
main difference between them is how to decide the number
of synthetic samples generated for a particular point: in
ADASYN distribution is computed for each point, whereas
in SMOTE a uniform distribution is used.

More complex approaches for addressing the imbalance
problem are based on generative learning, which can be
categorized into two groups [14]: traditional generative
models and deep generative models. The first ones are based
on traditional machine learning algorithms that usually
use probability/density functions for approximating the
input distribution, while the second models are based on
deep learning algorithms, which allow them to learn and
generate more complex distributions. For this reason, deep
learning models represent more challenging and interesting
structures. Well-known examples are the deep Boltzmann
machine (DBM), deep belief networks (DBN), variational
autoencoder (VAE) among others. More specifically, DBM
and DBN are energy-based models, which means that
the joint probability is defined using an energy function.
In particular, for both approaches, their components are
trained separately and then joined in a separate phase
[68]. In this sense, the resulting generative model is more
difficult to stack without causing a quality loss. On the
other hand, VAE and GAN models are easier to be trained.
However, although VAEs facilitate the comparison among
different implementations, their performances are strongly
conditioned by the reconstruction error, which can generate
“blurred” samples. On the other hand, GANs allow one to
learn more complex distributions and efficiently generate
more realistic samples, even though they have some
limitations as described in Section 2.2. It is to be noted that
generative models not only increase the representation of
minority classes, but by learning the entire data distribution
they are able to generate more variable data. This broad
generation mitigates effects like underfitting and overfitting,
which are challenging problems for traditional resampling
techniques like RUS and ROS. Furthermore, for other
resampling techniques like SMOTE or ADASYN, synthetic
samples are based on local information (neighbors) only,
without taking into account the overall distribution [69].
For this reason, GAN sample generation can be seen
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as an “intelligent over-sampling” in which complex and
high dimensional behaviours are created by analyzing all
available and not just partial information.

Inspired by the promising results that GANs have
demonstrated in computer vision and natural language
processing tasks [50, 58], in this work, we present an
approach that uses such deep generative models to address
the class imbalance problem related to Bitcoin entity
behaviour classification. More specifically, the ability of
GANs to learn and generate data by analysing the overall
data distribution and not only local information, could have
a strong impact on scenarios in which entities evolve over
time as it is the case in the Bitcoin domain. In these
scenarios, reduced local information may be related to
old and no longer relevant entity behaviour. Furthermore,
learning from the overall distribution allows GANs to
generalize Bitcoin entity behaviours. This generalization
is useful not only for exploring more deeply the feature
space and for increasing classifiers’ abilities, but could be
used by the community and LEAs for investigating novel
entity patterns that have not yet been detected in the Bitcoin
mainnet.

Class imbalance strongly affects the quality of classi-
fication, and it represents a relevant problem associated
with datasets such as the Bitcoin blockchain. In particu-
lar, in [70], the class imbalance problem is not considered,
and several supervised machine learning models are imple-
mented with the aim to identify 16 licit-illicit categories of
users. Authors conclude their work highlighting that due to
limited instances of classes in the training data several legal
and illegal classes were misclassified. Two methods fre-
quently used in fraud detection to tackle dataset imbalance,
cost-sensitive [10] and sampling-based [11] approaches, are
leveraged in [71] to address the Bitcoin class imbalance
problem while implementing a machine learning model
for detecting Bitcoin Ponzi schemes. In [72] and in [73],
authors implement models able to detect if an address
belongs to an Exchange (binary classification), resolving the
class imbalance problem using RUS. In [72], a sampling
technique is used over the transaction-directed hypergraph,
while in [73] a sampling technique is used for remov-
ing some nodes and for guaranteeing the balance between
elements of two considered classes (Exchange and not-
Exchange). In [36], a model for analysing Bitcoin addresses
aiming to detect abnormal activities is built, and the class
imbalance problem is managed by using stratified random
sampling. Harlev et al. [7] applied SMOTE in order to
enrich the original dataset and train a supervised machine
learning model for predicting entity classes. The model
trained with the SMOTE-resampled dataset showed slight
improvements in terms of overall accuracy and f1-score.
These improvements were limited as although SMOTE
generated improvements in f1-score values for the initial

minority classes, at the same time, it decreased the val-
ues of other considered classes. Monamo et al. [74] use
unsupervised machine learning (k-means) for detecting Bit-
coin frauds. They implement z-scores, chord distance, and
Hellinger distance with bagging and boosted classifiers in
order to describe the input dataset and compare the results
with a SMOTE-resampled dataset. The latter implementa-
tion outperformed all the considered methods generating
improvements for minority classes in terms of sensitivity.
Nevertheless, according to the authors, this oversampling
technique decreased the reliability and increased the number
of false positives.

Recently, GANs have been used for forecasting Bitcoin
market prices [75] or for analysing Bitcoin price trends
and the stock market [76]. In [77], we study the
best parameters to be used for training adversarial
algorithms for learning Bitcoin data. However, generation
was limited to one specific class only using a Vanilla-GAN
implementation, and without evaluating them for improving
the classification task. Han et al. [78] used conditional
Wasserstein GAN (WCGAN), Deep Regret Analytic
(DRAGAN), and SMOTE technologies for addressing
Bitcoin imbalance to perform a binary classification,
i.e. distinguish legitimate and illegitimate transactions.
However, they used a limited dataset gathered from a
single marketplace (named Silkroad) closed in November
2014, composed of 16 distinct features. The authors
acknowledged that the limited dataset and the fact that its
distribution is clearly concentrated on certain values could
promote the Mode Collapse effect. Furthermore, despite
testing different GAN architectures, they did not achieve
clear improvements in the (binary) classification task.

Inspired by the results presented in [77, 78], in this
work, we present a detailed analysis of three different
GAN architectures and their adaptation for addressing the
Bitcoin class imbalance problem. Then, we evaluate how
the generated synthetic samples improve the Bitcoin entity
classification (multi-class problem). Finally, the best results
obtained with GAN-resampled datasets, are compared
with other state-of-the-art resampling strategies, in order
to evaluate the benefits and limitations of the proposed
methods.

3 Proposal and contributions

In this work, we present a solution based on GAN
architectures for addressing the Bitcoin class imbalance
problem to improve entity classification and consequently
decrease Bitcoin entity anonymity. The idea is to use the
adversarial technique to model the real data distribution
and then perform data augmentation through synthetic
data generation (over-sampling strategy). As introduced in
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Section 2.3, these generative models allow to obtain a more
variable dataset, which not only avoids traditional downside
effects (under-sampling and over-sampling), but also helps
in the generalization of the entity behaviour.

In particular, our idea is that for each under-represented
(minority) class, i.e. for all the Bitcoin classes excluding the
most represented class, an adversarial model is trained. This
training is performed by considering each class separately.
Then, each GAN is used to generate sufficient synthetic
data so that each class reaches the population size of the
majority class. This operation creates an enriched hybrid
dataset (formed of synthetic and real data) used to train the
Bitcoin classifier, which is finally tested in order to evaluate
how the synthetic samples have affected entity anonymity.

In this study, we implement three different GAN
architectures: the Vanilla GAN, the Wasserstein GAN
(WGAN) and the unrolled GAN. In particular, the
first architecture helps us validate how possible GAN
downside effects affect the training of a simple GAN
when Bitcoin behavioural data are used. The second
architecture (WGAN) is chosen for its ability to improve
the model stability and make the training process easier
[44]. Finally, the third architecture (unrolled) is chosen as
it allows one to improve the GAN dynamics by bringing
the discriminator closer to an optimal response [46]. We
think that these three chosen GAN architectures represent
a good benchmark set for evaluating the benefits and
limitations of such technology when applied to the Bitcoin
domain.

These GAN architectures are studied and implemented in
order to determine the most suitable for the Bitcoin domain,
which can be used for creating an enriched version of the
initial dataset.

Each architecture is evaluated in several checkpoints,
i.e. using different GAN training times in terms of epochs.
This operation allows us to evaluate how the generation of
synthetic samples is related to GAN training epochs, and
when they are affected by GAN downside effects mentioned
above (overfitting). In each checkpoint, the respective data
generated by GAN Generators are used to train a distinct
version of the address classifier.

From this point onward, we indicate an address classifier
that has been generated based on data enriched with
synthetic samples produced by a GAN trained up to the
i − th checkpoint, as GAN-classifieri .

We repeat the implementation of the best performing
GAN architecture 5 times. This approach helps us to
validate the mean and standard deviation of the classifier’s
metrics in order to check its repeatability and robustness
when a GAN-resampled dataset is used. Finally, the
best performing GAN-based classifier is compared with
classifiers using data generated with other state-of-the-art
resampling strategies.

Our main contributions can be summarized as follow:

1. Adapting state-of-the-art GAN technologies in order to
learn Bitcoin behaviours;

2. Evaluating how synthetic Bitcoin samples generated by
GANs improve Bitcoin entity classification;

3. Comparing three different GAN architectures in terms
of generated classification improvements;

4. Studying how training time affects the GAN learning
process, the synthetic data generation and the final
Bitcoin entity classification;

5. Analysing the repeatability of the best GAN approach,
repeating the execution 5 times to evaluate metrics’
means and standard deviations;

6. Comparing the GAN-based approach with 5 traditional
data-level techniques in terms of obtained Bitcoin
classification performance and computational costs.

4 Experimental framework

In this Section, we will first provide an overview of the
data used in this study (Section 4.1), then, in Section 4.2,
preprocessing steps are presented and in Section 4.3 GAN
configurations are explained. In Section 4.4, the metrics
used for evaluating the models are listed and in Section 4.5,
the idea behind each experiment is described.

4.1 Dataset

For this study, we used information obtained from the
Bitcoin mainnet and the WalletExplorer1. The whole
Bitcoin blockchain was downloaded by using the Bitcoin
Core2, and in particular all blocks and transactions from the
beginning until block number 570,000 were downloaded,
corresponding to blocks mined until April 3rd 2019,
09:20:08 AM.

At the same time, we downloaded a labelled address-
entity dataset available on the website WalletExplorer. This
platform contains information about transactions, addresses
and real-world entity names detected over the years. Their
databases are continuously updated and thus have been used
as “ground truth” for many Bitcoin-related studies, as in [29,
79]. In this study, we considered six entity classes:

• Exchange: entities that allow their customers to trade
among cryptocurrencies or to change cryptos for fiat
currencies (or vice-versa);

• Gambling: entities that offer gambling services based
on Bitcoin currency (casino, betting, roulette, etc.);

1https://www.walletexplorer.com/
2https://bitcoin.org/en/download

https://www.walletexplorer.com/
https://bitcoin.org/en/download


Attacking Bitcoin anonymity: generative adversarial networks for improving...

• Mining Pool: entities composed of a group of miners
that work together sharing their resources in order to
reduce the volatility of their returns;

• Mixer: entities that offer a service to obscure the
traceability of their clients’ transactions;

• Marketplace: entities allowing to buy any kind of
goods or services using cryptocurrencies. Some of them
potentially related to illicit activities;

• Service: entities that allow users to lend Bitcoins and
passively earn interests, or allow them to request a loan.

As shown in Table 1, 327 different entities and
more than 16,000,000 addresses were downloaded from
WalletExplorer. Exchanges represent the most populated
class - its samples represent more than 44% of the entire
entity dataset and about 62% of the address dataset. On
the other hand, Mining Pool is the least populated class in
terms of addresses with a ratio of 0.53% and the Market
class is the minority in terms of entities (about 6%). This
overview highlights the class imbalance problem associated
with Bitcoin datasets.

Bitcoin blockchain and WalletExplorer data were com-
bined in order to obtain a labelled address dataset, funda-
mental for a supervised machine learning task. This new
dataset was used as a starting point for extracting the fea-
tures used to define address behaviours and subsequently
to create the address dataframe, as shown in Fig. 4. The
address dataframe was created following concepts presented
in [29], and extracting 7 features related to known Bitcoin
addresses: the number of transactions in which a certain
address is detected as receiver/sender, the amount of Bit-
coin (BTC) received/sent from/to this address, the balance,
uniqueness (if this address is used in one transaction only)
and siblings.

As shown in Fig. 4, the address dataframe was spilt into
training and testing datasets with a proportion of 50/50
keeping class distributions unchanged (stratified).

4.2 Data preprocessing

Analysing the training dataset and the dependence among
its available features, it was possible to perform a reduction

Fig. 4 Address dataset creation

of the dataset dimensionality. The total amount of BTC
received, the total amount of BTC sent and the balance are
non-independent variables, so we decided to train the GAN
such that it only learns two of them, whereas the third one
was calculated. Thereby, the GAN learned the distribution
of the amount of BTC received and the balance. The amount
of BTC sent was computed a posteriori. In the same way, the
uniqueness and the total received transactions are related,
since one address is unique (1) when it is used exactly
once for receiving money, otherwise, it is not unique (0).
Following this rule, the total of received transactions was
used to train the GAN, and the uniqueness values were
computed a posteriori. In this manner, the 7 initial features
were reduced to 5.

The training dataset was split separating the samples
of each class, obtaining 6 different datasets. Each class
dataset was then used for training a distinct GAN, except
for the (highly populated) Exchange dataset (Fig. 5). Before
training, each class dataset was normalized to reduce GAN
learning complexity by limiting the feature distributions
in a fixed range between 0 and 1. Let Fm be the set of
features that characterize each class dataset, ∀f ∈ Fm, i.e.
for each specific feature, the normalization was performed
following (2), where x are elements in f , Xmax = max(f ),
Xmin = min(f ), and x̃ represents the normalized value.
Once the GANs were trained and synthetic samples could
be generated, they were de-normalized using the (3) and,
after computing the non-independent features, they were
added to the initial (real) data, creating an Hybrid dataset,
as shown in Fig. 6. The de-normalization was performed

Table 1 Overview of the used
WalletExplorer (WE) data (the
overall values are in bold)

Class # Entity WE % Entity WE # Address WE % Address WE

Exchange 144 44.04 9,947,450 61.56

Gambling 76 23.24 3,050,899 18.88

Marketplace 20 6.12 2,349,111 14.54

Mining Pool 27 8.26 85,887 0.53

Mixer 37 11.31 475,781 2.94

Service 23 7.03 250,788 1.55

Total 327 100 16,159,916 100
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Fig. 5 Dimensional reduction, class separation and normalization for
GAN training

in order to work directly with Bitcoin data in their real
space.

x̃ = x − Xmin

Xmax − Xmin

(2)

x = [(Xmax − Xmin) × x̃] + Xmin (3)

4.3 GAN implementation

Despite using three different GAN architectures in this
paper, the Generator (G) and the Discriminator (D)
networks were the same. In [44], when working with
images, the authors suggest using a 4-layer Neural Network
for both G and D, where each layer is defined by
512 neurons. In our case, since the size of the Bitcoin
feature space is lower than the ones used for the images,
three hidden layers for both G and D were implemented,
following the specifications described in [77]. In particular,
G’s neural network was composed of three hidden layers
with 512, 256 and 128 neurons (Fig. 7), all using the
Rectified Linear Unit (ReLu) as activation function [77].
The output was fixed to 5, i.e. the same number of non-
independent features in the real samples. A technique called
Root Mean Square Propagation (RMSProp [80]) was used
in all implementations to optimize the relative cost function
with a learning rate set to 5e − 5, as indicated in [44].

Fig. 6 Creation of the hybrid (augmented) dataset

Fig. 7 Generator architecture

The value of the batch size, representing the number of
elements used at once for updating the weights of the neural
networks, was kept fixed to 1,000 samples. Furthermore,
for the unrolled GAN, the k value of the steps forward
was chosen to be equal to 5, as used in several tests in the
introduced paper [46].

D’s neural network was also composed of three hidden
layers with 256, 512 and 256 neurons (Fig. 8), all again
using the Rectified Linear Unit (ReLu) as activation
function [77]. As shown in Fig. 8, the input size of the
Discriminator was 5, i.e. equal to the number of non-
independent real features as well as to the number of
synthetically generated features.

For each architecture, 6 GAN training time checkpoints
were fixed a priori. These values represent the training
length of the adversarial networks, indicated in epochs. In
particular, checkpoints were fixed in: 1,000, 10,000, 25,000,
50,000, 75,000 and 100,000 epochs.

4.4 Evaluationmetrics

This Section describes the classification metrics used to
evaluate and compare the different machine learning models
in our experiments. Assuming N to be the total number of
classes and for each class i assuming tpi as true positive
value, fpi as false positive value, tni as true negative value,
f ni as false negative value, the following metrics were
defined.

Fig. 8 Discriminator architecture
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• Accuracy or Score is defined as the number of correct
predictions divided by the total number of predictions
and is given as percentage (4).

∑N
i=1

tpi+tni

tpi+f ni+fpi+tni

N
(4)

• Precision (prec.) is the number of positive predictions
divided by the total number of the positive class values
predicted. It represents a measure of a classifier’s
exactness given as a value between 0 and 1, with 1
relating to high precision (5).

∑N
i=1 tpi

∑N
i=1(tpi + fpi)

(5)

• Recall or Sensitivity represents a measure of a
classifier’s completeness quantifying the number of
positive class predictions made over all positive
examples in the dataset ((6)). It is given as a value
between 0 and 1

∑N
i=1 tpi

∑N
i=1(tpi + f ni)

(6)

• f1-score is the harmonic mean of Precision and Recall.
It takes values between 0 and 1, with 1 relating to
perfect Precision and Recall and can be calculated using
(7)

F1score = 2 × Precision × Recall

P recision + Recall
(7)

• Matthews Correlation Coefficient (MCC) is a met-
ric yielding easy comparison with respect to a ran-
dom baseline, particularly appropriate for unbalanced
classes. It takes values between −1 and +1. A coeffi-
cient of +1 represents a perfect prediction, 0 an average
random prediction and −1 an inverse prediction. As
shown in [81], let K be the number of classes and C be
a confusion matrix with dimensions K × K , the MCC

can be calculated as shown in (10)

MCCp1 =

√

√

√

√

√

∑

k

(

∑

l

Ckl

)

⎛

⎝

∑

f,g|f �=g

Cgf

⎞

⎠ (8)

MCCp2 =

√

√

√

√

√

∑

k

(

∑

l

Clk

)

⎛

⎝

∑

f,g|f �=g

Cfg

⎞

⎠ (9)

MCC =
∑

k

∑

l

∑

m CkkClm − CklCmk

MCCp1 × MCCp2
(10)

• Area Under the Receiver Operating Characteristic
Curve (AUC) measures the two-dimensional area
underneath the ROC curve, which is a plot of the true
positive rate against the false positive rate. It indicates
the classifier’s ability to avoid false classification and
it takes values between 0 and 1, with 1 relating
to perfect predictions. AUC can be calculated for a
binary classification as described in (11). This equation
can be extended for multi-class problems with some
adjustments.

AUC = 1

2

(

tp

tp + f n
+ tn

tn + fp

)

(11)

Furthermore, the term avg. is used in the following to
indicate average results of an indicated metric and the term
std. is used to indicate the computed standard deviation.

4.5 Overview of the planned experiments

In this study, four experiments were carried out in order
to explore the GAN approach for addressing the Bitcoin
class imbalance problem. The obtained results were then
compared with current state-of-the-art techniques in order
to validate and check the limitations of the introduced
methods.

The first experiment introduces the baseline classifier
by directly using the training dataset obtained from the
address dataframe (Fig. 9). The creation of this baseline
model not only was used for detecting limitations in
the Bitcoin entity classification but was also used later
for evaluating improvements achieved by other presented
experiments involving resampled data. The baseline model
was implemented using a Random Forest model. Following
our previous study on Bitcoin classification [29], the number
of estimators was set to 10, and the Gini function was used
to measure the quality of the split without fixing a maximum
depth of the tree. The testing dataset was used to compute a
first evaluation of how the baseline classifier (trained with
real data) predicts entity classes related to a certain address.

In the second experiment, our solution based on
adversarial learning through GANs was implemented in
order to generate synthetic Bitcoin address behaviours.
The experiment started by training GANs based on the
training dataset. In particular, as described in Section 4.2,
a single GAN was implemented for each class that
was underrepresented in the training dataset (Gambling,
Market, Mining Pool, Mixer, and Service). Following this
specification, the GAN trained using on the largest dataset
was the GAN for generating synthetic Gambling data with
1,527,247 real samples, while the GAN using the smallest
dataset was the Mining Pool GAN based on 43,265 real
samples only (Table 2).
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Fig. 9 Schema of the first and second experiment

At the end of the training process, the Generators G of
each class GAN were used to create new synthetic samples
that were then de-normalized and joined with the real
training dataset (after computing the 2 dependent features),
creating the hybrid dataset (Section 4.2). Finally, this hybrid
information was used to train an address classifier (Fig. 9),
which was based on Random Forest models with the
same setup as in the first experiment. Once this classifier
was ready, it was tested using the testing dataset. This
experiment was carried out by stopping the GANs’ training
processes in 6 different checkpoints (epochs), as explained
in Section 4.3. In each one of them, the Gs were used to
enrich the real dataset creating different versions of the
hybrid dataset, thus creating a specific version i of the
GAN-classifiers (address classifiers).

The steps presented in Algorithm 1 were repeated
using the three types of GAN architectures, Vanilla GAN,
Wasserstein GAN (WGAN), and unrolled GAN. The latter
two techniques were used in order to evaluate and mitigate

possible collateral effects that typically affect adversarial
networks.

In the third experiment, the most promising solutions
detected in the second experiment were analysed in detail.
In particular, only architectures and checkpoints that had
shown the highest classification values were used. For
this configuration, the GAN training and the classifier
training were repeated 5 more times, in order to check
the repeatability of our results and avoid outlier solutions.
In the fourth and last experiment, the classification results
obtained in the third experiment were compared with
classification results obtained via several known resampling
techniques (Section 2.3). In this experiment, two under-
sampling techniques, RUS and TL, and three over-sampling
techniques, ROS, SMOTE, and ADASYN, were used.
These resampling techniques were directly applied to the
training dataset in order to use this enhanced dataset to
train the Bitcoin entity classifier. The subsequent model was
again a Random Forest classifier with the setup from the
previous experiments and was tested using the same testing
dataset.

The fourth experiment allowed us to determine the
suitability of current techniques for addressing class
imbalance problems in the Bitcoin domain and allowed us
to find insights about how these techniques affect Bitcoin
entity behaviour classification. Furthermore, comparing
resampling techniques with our GAN approach highlighted
the strengths and weaknesses of applying GANs to Bitcoin
data.

5 Experimental study

In this Section, the four experiments with their obtained
results are presented. In particular, in Section 5.1, the
baseline model is built, in Section 5.2, the three GAN
architectures are implemented and compared. Then, in
Section 5.3, the best GAN solutions are used to check
the repeatability of the results, whereas in Section 5.4, the
GAN approach is compared with 5 resampling techniques.
Finally, in Section 5.5, results are discussed.

5.1 Baselinemodel

Table 2 provides an overview of the results obtained by
testing the baseline model. In particular, the number of real
samples used for training the baseline model is reported as
well as the values for precision, recall and f1-score per class,
an overall average of these three metrics and the overall
accuracy obtained using the entire testing dataset.

The baseline model showed an overall good accuracy
value of 94.67%, however, it presented problems in detect-
ing samples belonging to minority classes, which suggests
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Table 2 Baseline classifier
accuracy and f1-score obtained
with the testing dataset (the
average values are in bold)

Class # train samples prec. recall f1 score

Exchange 4,972,019 0.95 0.98 0.96

Gambling 1,527,247 0.93 0.89 0.91

Marketplace 1,174,468 0.99 0.97 0.98

Mining Pool 43,265 0.89 0.75 0.82

Mixer 237,725 0.86 0.80 0.83

Service 125,531 0.84 0.67 0.75

avg. 0.91 0.84 0,87

score % 94.67

that the class imbalance problem is affecting the classi-
fication of minority classes. While majority classes were
detected with high f1-score values over 0.90 (Exchange,
Gambling and Marketplace), less represented classes (Min-
ing Pool, Mixer, and Service) yielded respectively lower
values of 0.82, 0.83 and 0.75.

The f1-score values were conditioned by lower recall
values, indicating problems in detecting underrepresented
classes. For example, among all the Service samples in the
testing dataset, only 67% (i.e. recall 0.67) and only 75% and
80% of the Mining Pool and Mixer elements were correctly
classified.

The obtained results underline again the importance
of having a balanced dataset in multi-class classification
problems using supervised machine learning. Results were
affected by under-represented classes in the original Bitcoin
dataset.

5.2 Comparison among GAN architectures

GANs were used for generating synthetic data to enrich the
training dataset and create a hybrid dataset. The number
of synthetic samples generated by each GANs is correlated
with the class population of the initial training dataset
(Table 2). The idea is to balance the initial class distributions
by adding a sufficient amount of synthetic samples for each
minority class. In particular, as shown in Fig. 10, the most
populated class - Exchange - has 5,000,000 real samples,
hence we chose to generate 3,000,000 synthetic samples
for the Gambling class, 3,500,000 synthetic samples for
the Market class, and 4,500,000 synthetic samples for
Pool, Mixer, and Service class, respectively for each
checkpoint. In this manner, the new hybrid dataset contained
a new per-class distribution varied in a range between
4,527,247 (Gambling class) and 4,972,019 (Exchange
class).

Once the hybrid dataset belonging to a specific check-
point (epoch) was generated, it was denormalized and the
dependent features were computed. This new dataset was
used to train the GAN-classifier following the same pro-
cess used for creating the baseline model. This GAN-

classifier was then tested with the testing dataset, in order to
evaluate its global accuracy and precision, recall, and f1-
score for each class. This comparison over the same testing
dataset allowed us to evaluate how much the new synthetic
information generated by the GANs affected the entity
classification and consequently how much the GANs have
learned from the real distribution.

Results regarding the Vanilla GAN architecture are
reported in Table 3; in particular the values for f1-score,
precision and recall obtained from each GAN-classifier and
for each class are indicated. These metrics improved with
respect to the ones obtained with the baseline model, as
well as the overall accuracy and the average f1-score. The
two best solutions, GAN-classifier1 and GAN-classifier3,
achieved by training the GANs with 1,000 and 25,000
epochs, in terms of overall recall reaching both values
of 0.90 and in terms of f1-score as well, which was,
respectively 0.05 and 0.06 points higher than the baseline
values. Improvements were also visible analysing the
metrics of each class individually. Even the majority class
(Exchange), which was not affected by the resampling
strategy, increased its f1-score by 0.02 for the two best
solutions. From the results shown in Table 3, one can
observe that classifiers implemented with the hybrid dataset

Fig. 10 Synthetic and real sample distribution in the newly created
hybrid dataset
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generated by the Vanilla GANs which were trained with a
low number of epochs (1,000 and 25,000) performed much
better than the other ones.

The same study as presented for the Vanilla GAN was
carried out by using a WGAN architecture. The obtained
results are reported in Table 4. They showed a different
trend, as the classifiers with the best global f1-score were
obtained by creating the hybrid dataset using GANs that
were trained longer, i.e. the ones trained in 50,000, 75,000
and 100,000 epochs. These three best options achieved an
average f1-score of 0.90. However, the WGAN approach
presented problems in detecting Mining Pool samples.
In fact, although improvements in terms of recall were
generated, precision values dropped, causing a decrease of
f1-scores related to that class (about 0.2 - 0.3 below the
baseline result).

In Table 5, computed evaluation metrics for the unrolled
GAN architecture are reported. In this case, results tended
to follow the trend of the Vanilla GANs, where best
solutions were obtained with GANs that were trained less
(in terms of epochs), yet without reaching high scores.
The best solutions were obtained by using GAN-classifier1

and GAN-classifier3 (unrolled GAN trained for 1,000 and
25,000 epochs), showing the highest values in terms of
precision, recall and f1-score.

As can be seen from Table 6, all GAN solutions show
higher values in terms of AUC (0.98-0.99) regardless of
the chosen architecture and checkpoint. On the other hand,
both accuracy and MCC follow the trend of the averaged f1-
score shown in Tables 3, 4, and 5. The Vanilla GAN shows
the best accuracy and MCC for models trained respectively
with 1,000 and 25,000 epochs, similar to the unrolled GAN,
whereas the WGAN shows the highest accuracy and MCC
values in 50,000, 75,000 and 100,000 epochs.

Comparing the average recall and f1-scores achieved
with all GAN-classifiers implemented with the three
proposed GAN architectures, we found that the best
solutions with the highest improvements in Bitcoin entity
classification were obtained using the Vanilla GAN
architecture. In fact, the Vanilla GAN yielded important
improvements in terms of minority class detection, as shown
by high values of recall and f1-scores.

In Fig. 11, the overall accuracy of the GAN-classifiers
implemented using the three GAN architectures are
compared. The accuracy of the GAN-classifiers trained
with data generated from the Vanilla GAN model was
usually higher than the accuracy values obtained with the
classifiers trained based on data generated by the other
two GAN architectures. However, moving to longer epochs,
the downward trend in terms of accuracy that we observed
may be a symptom of mode collapse: potentially, the
GAN stopped learning the real distribution and started
generating similar samples only, which did not contribute
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Table 6 Overall accuracy, MCC and AUC of each GAN-classifier at different epochs separated per architecture

Vanilla GAN WGAN unrolled GAN

# epochs score % MCC AUC score % MCC AUC score % MCC AUC

1,000 96.85 0.94 0.99 95.74 0.92 0.98 95.86 0.93 0.99

10,000 95.93 0.93 0.99 95.66 0.92 0.99 95.69 0.92 0.99

25,000 96.60 0.94 0.99 95.23 0.91 0.98 95.99 0.93 0.99

50,000 96.26 0.93 0.99 96.12 0.93 0.99 95.74 0.92 0.99

75,000 95.93 0.93 0.99 95.98 0.93 0.99 95.23 0.92 0.99

100,000 95.23 0.91 0.98 96.03 0.93 0.99 95.53 0.92 0.99

to any new knowledge (“low-valuable” samples). The two
most promising configurations obtained with the Vanilla
GAN, GAN-classifier1 and GAN-classifier3, were analysed
in-depth in the third experiment.

5.3 Randomness of GANs

For the next experiment, GAN-classifier1 and GAN-
classifier3 (trained for 1,000 and 25,000 epochs, respec-
tively) were run five more times and tested. In particular, 5
new hybrid datasets were generated using 5 new generators.
These new hybrid datasets were then used to train as many
address classifiers (GAN-classifiers), each one tested again
using the testing dataset.

In Table 7, the values of global accuracy, precision,
recall and f1-scores as well as the averages of the metrics
over the 5 repetitions and their standard deviations are
shown for each new implementation. The best results were
again obtained with the model based on the data generated
from GANs trained for 1,000 epochs (GAN-classifier1);
its metrics showed good repeatability with 96.12% as the
lowest value of accuracy and 96.96% as the greatest, with a
global standard deviation of 0.282%. Slightly more unstable
were the values obtained with models using data generated

Fig. 11 Comparison of overall accuracy values obtained with the
GAN-classifiers at different epochs

from GANs trained for 25,000 epochs (GAN-classifier3). In
this case, accuracy went down to 95.30% and up to 96.60%,
with a global standard deviation of 0.472%.

Figure 12 shows a comparison of f1-scores averaged over
the 5 repetitions for each entity class. Both GAN-classifier1

and GAN-classifier3, presented very limited variability
related to Exchange, Gambling and Market classification.
Furthermore, GAN-classifier1 presented high repeatability
(limited variance) for the other three classes, while GAN-
classifier3 showed higher variability related to the Pool,
Mixer and Service classes.

5.4 GANs for resampling vs. classical resampling
methods

In the fourth and last experiment, the best solutions
from prior experiments were compared to several common
resampling techniques introduced in Section 2.3.

Table 8 indicates the per-class sample population after
applying each additional resampling technique. Techniques
such as RUS remove samples in order to reach the sample
size present in the minority class, and techniques like ROS,
SMOTE and ADASYN tend to create new samples in order
to match the majority class. Interestingly, the Tomek links
strategy did not change dramatically class distribution, even
though it removes unwanted overlap between classes.

In Table 9, the values of overall accuracy, precision,
recall, f1-score, MCC and AUC are reported, which were
obtained by using the same testing dataset over the baseline
model and over Bitcoin entity classifiers, in which the class
imbalance problem was addressed by applying common
resampling strategies and the novel GAN-based strategy
introduced in this paper. The results shown in Table 9
can be compared with the baseline results and can be
interpreted by dividing them into three categories: strategies
that negatively affect classification results, strategies that
do not seem to affect results and strategies that generate
improvements.

The RUS technique falls into the first category as,
in fact, this under-sampling algorithm removed important
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Table 7 Overall accuracy,
precision, recall and f1-scores
obtained with GAN-classifier1
and GAN-classifier3 in 5
implementations

1,000 (GAN-classifier1) 25,000 (GAN-classifier3)

Repetition # score % prec. recall f1 score score % prec. recall f1 score

1 96.12 0.93 0.88 0.90 96.34 0.94 0.89 0.91

2 96.96 0.94 0.90 0.92 96.55 0.95 0.90 0.92

3 96.71 0.93 0.90 0.91 95.30 0.92 0.86 0.89

4 96.78 0.95 0.91 0.93 96.17 0.94 0.89 0.91

5 96.62 0.93 0.90 0.92 96.60 0.95 0.90 0.93

avg. 96.64 0.94 0.90 0.92 96.19 0.94 0.89 0.91

std. 0.282 0.007 0.010 0.075 0.472 0.012 0.014 0.013

In each one, the classifiers were trained with different hybrid datasets (newly generated using the best
Vanilla GAN configuration). Average and standard values are in bold

information and generated a quality loss in the classification
- reflected in a worsening of all the considered metrics.
Accuracy decreased by more than 10% and the f1-score was
0.03 points below the baseline metric.

Tomek links and ADASYN were included in the sec-
ond category. In particular, the under-sampling technique
did not change strongly the initial dataset, and thus its eval-
uation metrics matched the baseline values. Although the
ADASYN strategy generated improvements, we consider
them to be insignificant here as the accuracy was just 0.12%
and the f1-score was only 0.01 points above the baseline
values.

ROS, SMOTE and GANs strategies belonged to the
third category, as these techniques generated visible
improvements in the results compared to values obtained
by using the imbalanced Bitcoin dataset. In terms of overall
accuracy, the best solution was obtained by addressing the
imbalance problem using the GAN approach introduced in
this paper, and in particular using GAN-classifier1 i.e. a
configuration of Vanilla GANs trained for 1,000 epochs.
Our strategy showed an accuracy value of 96.64%; 0.07%

Fig. 12 Comparison of GAN-classifier1 and GAN-classifier3 f1-
scores averaged over the 5 repetitions and standard deviations for each
entity class

above the second-best accuracy value achieved by the
ROS strategy, and 1.97% above the baseline model. ROS
and GAN strategies shared the same values of MCC and
AUC (0.94 and 0.99, respectively). However, in terms of
precision, recall and f1-score the ROS technique generated
slightly better results, reaching an f1-score of 0.94 versus
0.92 obtained with the GAN strategy.

Furthermore, Table 9 shows that GAN-classifier3 gen-
erated better results than the majority of the presented
resampling techniques as well, in fact only GAN-classifier1

and ROS performed better.
In Fig. 13, improvements and breakdowns in terms of

precision are shown, and it is evident that the model trained
with data enriched by our GAN strategy, together with
ROS, were the best solutions. It is to be noted that the
GAN strategy showed a decrease of precision regarding the
Pool class (0.04 below baseline), while the model trained
based on ROS data did not present such problems (0.04
above baseline). Yet, for the Gambling class, it was the
GAN strategy that generated improvements (0.03 above
the baseline), while the model trained with ROS data
did not achieve this precision. Both techniques did not
generate precision improvement for the Market class, but
they generated similar improvements with respect to other
classes. For example, in the Service class, a value of 0.1
points above the baseline model was obtained.

Figure 14 shows the breakdown of scores achieved per
class in terms of recall. The best results were obtained using
the SMOTE strategy. This strategy generated improvements
in almost all classes. For the Service class, for example,
the recall was 0.28 points above the baseline score; only
in the Exchange class a lower score was registered (-0.03).
The RUS trend was aligned with the theory of under-
sampling techniques - removing random samples from the
majority classes in order to balance the dataset, recall scores
increased for underrepresented classes, while they were
dramatically decreased for Exchange, Gambling and Market
classes. Our GAN strategy improved recall values in all
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Table 8 Populations in
resampled datasets using 5
different resampling strategies

RUS TL ROS SMOTE ADASYN

Class Train size Train size Train size Train size Train size

Exchange 43,265 4,967,951 4,972,019 4,972,019 4,972,019

Gambling 43,265 1,524,202 4,972,019 4,972,019 4,975,061

Market 43,265 1,173,795 4,972,019 4,972,019 4,971,980

Pool 43,265 43,265 4,972,019 4,972,019 4,971,821

Mixer 43,265 236,155 4,972,019 4,972,019 4,972,000

Service 43,265 125,019 4,972,019 4,972,019 4,971,911

classes, except for the Market class. Nevertheless, these
improvements were limited to a range between 0.01 and
0.14 points above baseline and were larger in ROS and
SMOTE strategies.

In terms of f1-score (harmonic mean of precision
and recall), the ROS implementation generated the high-
est improvements especially regarding underrepresented
classes, with 0.09, 0.06 and 0.17 points above base-
line values for Mining Pool, Mixer and Service classes,
respectively (Fig. 15). Our GAN strategy followed the
trend of the ROS strategy for Exchange, Gambling, Mar-
ket and Mixer classes, however, for Pool and Service
classes, f1-scores were only 0.02 and 0.13 points above
baseline.

To investigate practical aspects regarding the implemen-
tation of different resampling techniques, Fig. 16 shows the
computational cost of implementing the different techniques
in terms of execution time. For state-of-the-art techniques,
which do not require a training process, the time in seconds
(s) they needed to create a more balanced training dataset
via resampling is indicated. For GAN resampling, the time
for training each GAN is now given in terms of seconds (s)
for allowing a comparison. Computational costs were com-
puted by performing resampling of the same input dataset
on a server with 64GB of RAM and 16 vCPUs of 2.20 GHz.

As shown in Fig. 16, RUS and ROS techniques were
the fastest strategies; they performed resampling in 8
and 17s, respectively. Meanwhile, the SMOTE algorithm
needed 817s. The TL and ADASYN techniques were more

costly, requiring hours for resampling the initial dataset
(respectively 6,291 and 14,058s). The GAN strategies
reached 1,000 epochs in a range of 409s to 521s; 25,000
epochs were reached in a range of 10,232s to 13,060s. This
computational test confirmed the linear dependence of GAN
training time - during the training process the execution time
required to reach 25,000 epochs was about 25 times the one
required to reach 1,000 epochs.

5.5 Discussion

In this study, an approach for using adversarial learning
(GANs) to tackle class imbalance in Bitcoin data was
introduced with the ultimate goal of decreasing Bitcoin
entity anonymity. Our approach showed promising results
that we can summarize as follows:

• All GAN architectures generated improvements in
Bitcoin entity classification;

• The classifier trained with the Vanilla GAN-generated
synthetic data yielded better results than classifiers
trained with WGANs and unrolled GANs;

• Vanilla GAN implementations performed better using
shorter training epochs;

• Vanilla GAN implementations using short training
epochs achieved high repeatability;

• Vanilla GAN classifiers generated overall higher
accuracy, precision, recall and f1-score than the
baseline model (based on imbalanced data);

Table 9 Classification metrics
obtained by models trained
with datasets resampled with
different strategies. The best
value of each metric is
highlighted

Score % prec. recall f1 score MCC AUC

Baseline 94.67 0.91 0.84 0.87 0.90 0.98

RUS 83.10 0.88 0.83 0.84 0.74 0.97

TL 94.67 0.91 0.84 0.87 0.90 0.98

ROS 96.57 0.95 0.93 0.94 0.94 0.99

SMOTE 95.70 0.85 0.96 0.90 0.93 0.99

ADASYN 94.79 0.90 0.87 0.88 0.91 0.99

GAN-classifier1 96.64 0.94 0.90 0.92 0.94 0.99

GAN-classifier3 96.20 0.94 0.89 0.91 0.93 0.99
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Fig. 13 Improvements compared to baseline and breakdown in terms
of precision

• The best GAN-based classifiers were in the top 3
techniques for classification improvements in terms
of all considered metrics (overall accuracy, precision,
recall, f1-score, MCC and AUC) compared to other
resampling techniques (together with ROS);

• Except for the two random resampling techniques RUS
and ROS, the GAN technique was the most efficient
strategy in terms of single task computational costs.

Limitations and strengths

The model trained with data generated by the Vanilla GAN
architecture reached higher values of accuracy than models
trained with data generated from WGANs and unrolled
GANs. However, as shown in Tables 3, 4 and 5, none of
the classifiers generated sufficient improvements for the
Pool and Service classes (f1-scores below 0.90), regardless
of the considered GAN architectures and the number of
epochs. This effect motivates two hypotheses regarding

Fig. 14 Improvements compared to baseline and breakdown in terms
of recall

Fig. 15 Improvements compared to baseline and breakdown in terms
of f1-score

possible limitations of the dataset and limitations of the
GAN approach. On the one hand, the issue could be related
to the distribution of those affected classes in the training
dataset. In this case, after splitting into training and testing
datasets, the training set may not have enough sample
variety for describing all possible behaviours, which causes
a loss of quality during the GAN training. On the other
hand, it could happen that - although presenting a sparse
distribution - affected classes are characterized by several
high-density regions in the feature space. This phenomenon
may affect GAN training such that only behaviours in these
high-density regions are learnt.

The best values were obtained using a Vanilla GAN
architecture by training this network with a lower number of
epochs (1,000). In fact, too long training of this architecture
(using a high number of epochs) caused a decrease of
classification accuracy, probably due to known downside
effects of GANs as discussed in Section 2.2 (the mode
collapse effect - overfitting).

Fig. 16 Execution times of different resampling strategies for the same
input dataset. For GAN strategies, the training time is indicated
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This behaviour is highlighted in Fig. 11, which shows
the downward trend of obtained accuracy with increased
training time related to the Vanilla GAN. The same Figure
highlights how the WGAN was affected in a contrary way.
Results showed that more training time (more epochs) was
required for training the WGANs and for obtaining more
valuable synthetic samples. However, within the range of
epochs considered in the experiments, the accuracy of the
model trained with the WGAN architecture was lower than
the accuracy achieved by the classifier trained with the
Vanilla GAN.

The two best GAN configurations we found, the Vanilla
GAN trained with 1,000 and 25,000 epochs (GAN-
classifier1 and GAN-classifier3), were tested another 5
times changing the composition of the training dataset used
for training each class GAN, and they showed that the most
stable (least varying) classifier with highest accuracy value
was obtained by training GANs in a short period (1,000
epochs).

Comparison to other resampling techniques

The fourth experiment demonstrated once more that the
class imbalance problem is an important problem in the
Bitcoin entity classification task and that it strongly affects
the quality of the classifiers. All used over-sampling
techniques (ROS, SMOTE and ADASYN) generated
improvements in terms of recall, f1-score, MCC and AUC,
while under-sampling techniques (RUS and TL) performed
poorly (Table 9).

Comparing the GAN-based strategy with 5 frequently
used resampling techniques, our approach represented the
best solution in terms of accuracy with 96.64%; 1.97% more
than the baseline accuracy. The GAN-classifier1 together
with ROS reached also the highest overall MCC score of
0.94. However, in terms of overall precision, recall and
f1-score the ROS strategy outperformed the GAN strategy
slightly.

These results, together with the results obtained in the
third experiment (repeatability of the results) definitively
invalidate our first hypothesis related to the limitation
of the training dataset distribution. In fact, they show
that simple replication of the training samples (ROS
algorithms) generates good improvements in the Pool and
Service classes as well (Fig. 15). However, the small
improvements generated with the GAN resampled datasets
confirm our second hypothesis, that GANs learn partial
information of Pool and Service classes only, likely due
to the sparse distribution of their behaviours and the
presence of high-density regions in the feature space.
This assumption is confirmed by analysing Table 9 where
GAN-classifiers show high values of precision (i.e. low

false positives) and low values of recall (i.e. high false
negatives).

Finally, since GANs technologies help to generate
samples of specific entities with high variability, they are
less prone to overfitting than the ROS technique. Further,
following the results obtained, this sampling variability
does not strongly affect the classification performance as
it is the case of the other techniques generating higher
variability like SMOTE and ADASYN. This demonstrates
that not only in image applications [82], but also in Bitcoin
applications, GANs are able to learn the data distribution
and generate new samples starting from a very limited class
representation (very high imbalance ratio)

Comparison of execution times

In terms of execution cost, the two simple resampling
techniques (RUS and ROS) beat all the others in terms
of computation speed (less than 20s) by a lot. However,
comparing the remaining resampling techniques, the GAN
strategy presents a high cumulative training time. Neverthe-
less, using a parallel training process, the GAN technique
trained in 1,000 epochs became the next best solution after
RUS and ROS, as shown by its fast-training time (aver-
age ∼ 460s for each implementation). The training process
could be parallelized by training the 5 GANs at the same
time using different threads. In fact, a single GAN task
was 1.77 times faster than the whole SMOTE process, and
respectively 13.7 and 30.5 faster than the TL and ADASYN
algorithms.

Comparison with previous work

In Table 10, our GAN-based classification results are
compared with previous studies that directly apply Artificial
Neural Network (ANN), Random Forest (RF) [83], Gradient
Boosting Classifiers (GBC), GBC combined with SMOTE
[7], Logistic Regression (LR) and two implementations
of Light Gradient Boosting Machine (LGBM) [6, 36] in
terms of overall and per class f1-score. Our approach is
the best in terms of overall f1-score when using ROS
(0.94) and shares second place with the Light Gradient
Boosting Machine (LGBM) when using the GAN-based
method. In particular, our GAN-based approach represents
the best solution for detecting Exchange (0.98) and Market
(0.94) entities by a difference of several points compared to
previously published models. Further, it is in second place
for detecting Gambling (0.95) and Service (0.89) classes
(slightly outperformed by our ROS implementation for the
latter), while it has problems detecting Pool entities. More
specifically, the four classes in which our GAN approach
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Table 10 Comparison of
per-class and overall f1-score
achieved by comparable
state-of-the-art works. The best
value, for each class, is
highlighted

f1-score

[83] [7] [6] [36] Proposed method

Class RF ANN GBC GBC
(SMOTE)

LR LGBM LGBM ROS GAN
classifier1

Exchange 0.78 0.56 0.86 0.84 0.91 0.92 0.89 0.98 0.98

Gambling 0.77 0.48 0.78 0.78 0.82 0.97 0.83 0.94 0.95

Market - - 0 0 - - 0.78 0.98 0.99

Pool 0.86 0.65 0.90 0.86 0.67 0.67 0.83 0.91 0.82

Mixer 0.82 0.45 0.33 0.97 - - 0.98 0.89 0.88

Service/Other* - - 0.22* 0.08* 0.87 0.88 - 0.92 0.89

Overall - - 0.75 0.76 0.87 0.92 0.87 0.94 0.92

performs better are also the ones that are interesting from an
investigation point of view since those four, together with
Mixers, represent the entities more prone to be involved in
illicit transactions such as money laundering (Section 2.1).
It is to be noted that our ROS and GAN-based approaches
together outperform all other models for the majority of
classes except LGBM for the Gambling and Mixer classes.
Further, our implementations generate overall precision,
recall and f1-score scores that are aligned with the results
presented in [70] (between 0.90 and 0.94), however, we
achieve better overall accuracy (∼ 5%), and better recall
values per class, especially for Exchange, Mining, Mixer
and Gambling classes.

Finally, comparing our GAN-based approach with work
presented in [78], our metrics exceed their results (with
respect to WCGAN, DRAGAN and SMOTE) in terms of
AUC (∼ 0.07) and recall (∼ 0.59), even though precision
decreases slightly (∼ 0.05).

6 Conclusions

Bitcoin entity classification is an important task in
cryptocurrency network analysis for decreasing entity
anonymity, for detecting classes related to abnormal
or illicit activities and for increasing the network’s
resilience to cyber-attacks (detecting the more vulnerable
classes). Typically, this task is performed by applying
supervised machine learning algorithms whose results are
strongly conditioned by ground truth Bitcoin datasets.
Yet, these labelled input datasets usually do not contain
a homogeneous population of the various Bitcoin entity
classes, yielding a class imbalance problem, which results
in poor classification performance.

Current blockchain studies are transferring a variety
of technologies that have already shown good results in
other domains to the Bitcoin blockchain domain. Following
this trend, in this work, we introduced the application of

Generative Adversarial Networks (GANs) to address the
Bitcoin imbalance problem with the aim to evaluate how this
synthetic information can improve the entity classification
task. GANs have mainly been used in the image or
video processing domain and specifically for addressing
imbalance problems. In this work, we investigated different
types of GAN architectures and how we can apply them
to the Bitcoin domain in order to address the imbalance
problem and improve the final multi-class classification.
Experiments were performed to check the repeatability of
GAN-based resampling and to compare our approach to
other common resampling techniques.

Our GAN-based classification approach generally
obtained promising results, achieving the best results in
terms of accuracy and was among the best in terms of
precision, recall and f1-score compared to other resam-
pling techniques. Furthermore, the presented methods
outperformed previously published models with regard to
Exchange, Market, Pool and Service entity classification.

Along the way, we detailed and highlighted here GAN-
specific characteristics such as the influence of training
epochs, which need to be taken into consideration when
applying GANs to Bitcoin-related data. Finally, we detailed
the limitations of this approach when the training dataset
is composed of dense areas in the features space. In these
cases, such distributions seem to force GANs to learn
certain behaviours and forget others.

This study represents a first step towards the usage of
GAN technologies with Bitcoin behavioural data. Motivated
by our promising results, future work could be directed
towards testing other optimization functions (like Adagrad
[84] or Adadelta [85]), evaluating changes in G and D
networks. In this way, it will be possible to evaluate if with
the help of a more robust optimizer the GANs will learn to
generate more valuable samples (in terms of classification
improvements). Further, it will be interesting to implement
multi-GAN solutions for each class, i.e. training more
than one GAN for each class in order to increase the
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knowledge about the training dataset and evaluate their
effects in generating information. Based on the promising
results presented in this paper, future studies could focus
on analysing alternative data augmentation techniques such
as Mixup [86] for Bitcoin entity classification. Finally, it
could be interesting to apply and validate the introduced
approach to address class imbalance problems using other
machine learning models different from Random Forest,
for example by including Neural Networks or tensor-
based classifiers [87]. Overall, our study has shown that
by applying carefully selected resampling techniques the
Bitcoin class imbalance problem can indeed be tackled,
leading to very good classification results across a broad
range of critical (and often under-represented) Bitcoin entity
classes, which may ultimately impact positively on Bitcoin
de-anonymization and the detection of illicit activities
within the network.
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