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Abstract

Spatio-temporal disease mapping studies the distribution of mortality or incidence risks
in space and its evolution in time, and it usually relies on fitting hierarchical Poisson mixed
models. These models are complex for practitioners as they generally require adding constraints
to correctly identify and interpret the different model terms. However, including constraints may
not be straightforward in some recent software packages. This paper focuses on NIMBLE, a
library of algorithms that contains among others a configurable system for Markov chain Monte
Carlo (MCMC) algorithms. In particular, we show how to fit different spatio-temporal disease
mapping models with NIMBLE making emphasis on how to include sum-to-zero constraints to
solve identifiability issues when including spatio-temporal interactions. Breast cancer mortality
data in Spain during the period 1990-2010 is used for illustration purposes. A simulation study is
also conducted to compare NIMBLE with R-INLA in terms of parameter estimates and relative
risk estimation. The results are very similar but differences are observed in terms of computing
time.

Keywords: Disease mapping, identifiability, INLA, NIMBLE, spatio-temporal interactions, sum-to-
zero constraints

1 Introduction
Spatio-temporal disease mapping models are essential in public health and epidemiology to describe
the temporal evolution of geographical patterns of mortality or incidence risks. These models
provide crucial information to make hypothesis about health inequalites and potential risk factors
which in turn contribute to a better comprehension of the etiology of the disease under study.

Common risk measures, such as the standardized mortality ratio (SMR), may be highly variable in
small areas or if the disease under study is rare. Consequently, models to smooth the risks and reduce
variance become essential. A large extent of the research in disease mapping is based on Bayesian
hierarchical spatio-temporal models that borrow strength from space and time to smooth the risks
and reduce their variability. In particular, generalized linear mixed models (GLMMs) assuming a
Poisson likelihood and a logarithmic link function have been widely adopted for smoothing purposes
and inference. Research on spatio-temporal disease mapping models is now extensive, and alternative
proposals for the different components (spatial, temporal and spatio-temporal interactions) of the
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model are available. The spatial term has been generally approached using conditional autoregressive
priors. In particular, the intrinsic conditional autoregressive (ICAR) prior (Besag, 1974) has been
widely used, though other possibilities based on P-splines have been proposed (see for example
Goicoa et al., 2012). For the temporal component, parametric (Bernardinelli et al., 1995; Assunção
et al., 2001) as well as non parametric (Knorr-Held, 2000; Ugarte et al., 2014) or spline based
(Ugarte et al., 2012) models have been proposed. Additionally, space-time interaction terms have
been generally incorporated in the models to capture specificities of the small areas. Without being
exhaustive, some examples include interactions terms based on Markov random fields (Knorr-Held,
2000) or on P-splines (Ugarte et al., 2010). In this paper we focus on spatio-temporal models
including an intercept that in general can be interpreted as an overall risk level, and spatial, temporal,
and space-time interaction random effects. More precisely we assume ICAR spatial random effects,
temporal random effects modeled with a first order random walk (RW1), and space-time interaction
terms defined as Markov random fields (Knorr-Held, 2000). It is known that these models present
some identifiability issues that have been studied in the literature (see for example Gelfand and Sahu,
1999). These identifiability problems arise because the ICAR and the RW1 priors are improper and
they have implicitly defined an intercept. Additionally, the interaction term overlaps with the main
spatial and temporal random effects resulting in additional identifiability issues. Goicoa et al. (2018)
provide a comprehensive study about this topic describing why the identifiability problems arise
and how to deal with them through a reparameterization or the inclusion of sum-to-zero constraints
in the estimation process.

Nowadays, there exist different free software packages to fit spatio-temporal models in disease
mapping within a fully Bayesian approach. Here we focus on NIMBLE (de Valpine et al., 2017) and
R-INLA (Lindgren and Rue, 2015) to compare both tools in terms of parameters and relative risk
estimation. NIMBLE is a recent package that permits to fit hierarchical models using a configurable
system of Markov chain Monte Carlo (MCMC) algorithms. The main characteristic of NIMBLE
compared to other software packages that run MCMC algorithms is that it extends the BUGS
language for writing new distributions and functions and therefore allowing for more flexible model
specifications. NIMBLE is built in R but compiles the models and algorithms using C++ to speed
up computations. Moreover, it provides its own language for writing new algorithms. R-INLA is an
R-package for approximate Bayesian inference based on integrated nested Laplace approximations
(INLA) (Rue et al., 2009) and numerical integration that has become popular during the last years
due to its flexibility, computational time savings compare to MCMC algorithms, and because it
avoids MCMC convergence problems.

The main goal of this work is to show how to fit well-known and easily interpretable spatio-temporal
disease mapping models with NIMBLE. In particular, we pay special attention on how to include
sum-to-zero constraints on the interaction term. Usually sum to zero constraints are introduced
by centering the random effects in each iteration of the MCMC sampling scheme. However, this is
generally very computationally intensive. Here we take advantage of one construction in NIMBLE
to fit intrinsic conditional autoregressive models that constraints the random effects to sum to zero.
This requires to express the interaction term as independent standard normal random variables and
to include the spatial and temporal dependence through pre and post multiplication by appropriate
matrices (see Martínez-Beneito, 2013). Additionally, we pursue to compare the performance of
NIMBLE and R-INLA by means of an extensive simulation study. Both packages will be used to
analyse breast cancer mortality in Spanish provinces during the period 1990-2010.

The rest of the paper is organized as follows. Section 2 introduces the class of spatio-temporal
models that we will fit in this paper. Section 3 explains how to include sum-to-zero constraints in
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NIMBLE appropriately. In Section 4, some characteristics of NIMBLE are briefly described. Section
5 is devoted to the analysis of the Spanish breast cancer data. In Section 6, a simulation study is
conducted to compare R-INLA and NIMBLE. The paper closes with a discussion.

2 Spatio-temporal models in disease mapping
In this section we review the easily interpretable class of non-parametric spatio-temporal models
including different types of space-time interactions proposed by Knorr-Held (2000).

Let us consider a large domain (e.g. a country) divided into S small areas (i.e. provinces) labelled
as i = 1, 2, ..., S. For each small area i data are available at different time points t, t = 1, 2, ..., T .
Let us also denote by Yit the number of deaths (or incident cases) in the ith small area at time
t. Then, conditional on the relative risk rit, Yit is assumed to be Poisson distributed with mean
µit = eitrit, where eit represents the number of expected cases for area i at time t. That is

Yit|rit ∼ Pois(µit = eitrit), logµit = log eit + log rit.

Here, the log risk, log rit, is modeled as

log rit = α0 + ξi + γt + δit, (1)

where α0 can be interpreted as an overall risk, ξ = (ξ1, ξ2, ..., ξS)′ is the vector of spatial random
effects and represents the underlying spatial pattern, γ = (γ1, γ2, ..., γT )′ is the vector of temporal
random effects describing the global temporal trend common to all small areas, and finally δ =
(δ11, ..., δS1, ..., δ1T , ..., δST )′ is the vector of spatio-temporal random effects to capture the specificities
of the small areas in each time point. In this paper, we consider two prior distributions for the
spatial random effects. The first one is an ICAR prior (Besag, 1974), that is, the vector of spatial
effects ξ follows the improper distribution with Gaussian kernel, p(ξ) ∝ exp

(
− 1

2σ2
ξ
ξ

′Qξξ

)
, where

Qξ is the neighbourhood matrix defined as Qξ(ij) = −1 if areas i and j are neighbours and 0
otherwise, and Qξ(ii) is equal to the number of neighbours of the ith region. Here, two regions are
neighbours if they share a common border. The second prior distribution for the spatial random
effects is the convolution prior proposed by Besag et al. (1991) (denoted by BYM hereafter in the
paper). The BYM model includes two spatial random effects ξ = u + v. The vector of random effect
u captures spatially structured variability through an ICAR prior whereas the vector of random
effects v deals with spatially unstructured heterogeneity using an exchangeable distribution. That
is p(u) ∝ exp

(
− 1

2σ2
u
u′Qξu

)
, and p(v) ∝ exp

(
− 1

2σ2
v
v′Iξv

)
, where Iξ is an S × S identity matrix.

For the vector of temporal random effects γ = (γ1, γ2, ..., γT )′ , a first order random walk (RW1)
prior is assumed. Then, p(γ) ∝ exp

(
− 1

2σ2
γ
γ

′Qγγ
)
, where Qγ is the RW1 structure matrix (see

Rue and Held, 2005, page 95). Note that Qγ is a “neighbourhood” matrix in time, where each
time point (except the first and the last one) has two neighbours, the preceding and the subsequent
one. Finally, for the vector of the interaction random effects δ = (δ11, ..., δS1, ..., δ1T , ..., δST )′ , the
following prior distribution with Gaussian kernel is assumed, p(δ) ∝ exp

(
− 1

2σ2
δ
δ

′Rδδ

)
. Here, four

different types of interaction effects are considered (Knorr-Held, 2000) depending on the structure
matrix Rδ. Namely, Type I interaction in which all the elements are independent (Rδ = Iδ, where
Iδ is an ST ×ST identity matrix); in Type II interaction the terms are structured in time but not in
space and Rδ = Qγ ⊗ Iξ; Type III interaction deals with interaction terms structured in space but
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not in time, then Rδ = Iγ ⊗Qξ, where Iγ is a T × T identity matrix. Lastly, in Type IV interaction
the elements are structured in space and time and Rδ = Qγ ⊗Qξ.

The spatio-temporal model (1) presents some identifiability problems. First, the spatial ICAR and
the temporal RW1 priors are improper and they have implicitly defined an intercept, consequently
the model has three intercepts, the one explicitly included in the model, and those arising from
the spatial and temporal priors. Second, the interaction term overlaps with the main spatial and
temporal effects. This overlap depends on the type of interaction. Goicoa et al. (2018) provide a
thorough insight on these identifiability issues depending on the interaction type and they indicate
appropriate set of constraints on the random effects to identify the model. The readers are referred
to this paper for full details. Here, Table 1 summarises the constraints needed to identify the
different terms of the model for each type of interaction.

Table 1: Set of constraints on the random effects for the different type of interaction terms.

Interaction type Spatial term Temporal term Interaction term

Type I
S∑
i=1

ξi = 0
T∑
t=1

γt = 0
T∑
t=1

S∑
i=1

δit = 0

Type II
S∑
i=1

ξi = 0
T∑
t=1

γt = 0
T∑
t=1

δit = 0, i = 1, . . . , S

Type III
S∑
i=1

ξi = 0
T∑
t=1

γt = 0
S∑
i=1

δit = 0, t = 1, . . . , T

Type IV
S∑
i=1

ξi = 0
T∑
t=1

γt = 0
T∑
t=1

δit = 0, i = 1, . . . , S

S∑
i=1

δit = 0, t = 1, . . . , T

3 Fitting spatio-temporal models with NIMBLE
In this section we explain how to include sum-to-zero constraints to fit model (1) depending on
the interaction type. More precisely, we comment on how to deal with the ICAR spatial prior and
the RW1 temporal prior in NIMBLE. We pay special attention on the constraints needed for the
interaction terms and provide an effective way of including the appropriate set of constraints taking
advantage of existing functions in NIMBLE. Including constraints in R-INLA is relatively easy
and the literature provides examples (see Goicoa et al., 2018, and the references therein). The full
code and data to reproduce results will be avalaible at https://github.com/spatialstatisticsupna/
Comparing-R-INLA-and-NIMBLE. R-code to fit spatio-temporal models with a Type IV interaction
is provided in the Appendix.

3.1 Spatial ICAR and temporal RW1 priors

The spatial ICAR prior is implemented in NIMBLE through the function dcar_normal. This
function allows the user to impose easily the sum-to-zero constraint

∑S
i=1 ξi = 0 specifying the

argument zero_mean = 1, and providing a straightforward approach to identify the spatial term.
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This function relies on the full conditionals ξi|ξ−i ∼ N

 1
ni

∑
i∼j

ξj ,
σ2
ξ

ni

, where ξ−i represents all
elements of ξ excluding ξi, ni is the number of neighbours of the ith region and i ∼ j indicates
the set of neighbours of the ith region. This function is analogous to the car.normal function in
GeoBUGS, an add-on to WinBUGS (Lunn et al., 2000). For more details about the dcar_normal
function the reader is referred to the NIMBLE user manual (de Valpine et al., 2021).

The temporal RW1 prior can be included in NIMBLE in two alternative ways. The first one
(denoted Nimble 1 hereafter in the paper) consists of using the dcar_normal function given that
the RW1 model is an ICAR model in time. Similar to the spatial case, the sum-to-zero constraint∑T
t=1 γt = 0 is specified with the argument zero_mean = 1. The second possibility (denoted Nimble

2) implements the RW1 through the conditionals γt|γt−1 ∼ N
(
γt−1, σ

2
γ

)
, t = 2, . . . , T (Lawson,

2020). Note that this procedure does not need the sum-to-zero constraint
∑T
t=1 γt = 0 as we fix

the first element of the temporal random effect equal to zero. This latter constraint identifies
the temporal effect, however it cannot be interpreted as the global temporal trend. In fact, the
temporal trend obtained with Nimble 2 is a shifted version of the one obtained with the Nimble 1
procedure and with R-INLA. To interpret the temporal component obtained with Nimble 2 as a
global temporal trend, we should consider the sum α0 + γt or calculate posterior patterns (Adin
et al., 2017).

3.2 Spatio-temporal interactions in NIMBLE

Placing sum-to-zero constraints on the interaction term is not an easy task in NIMBLE. In general,
algorithms may fail if they are not specially designed to work with constraints. One way to set
the sum-to-zero constraints is to appropriately center (in space, in time or both) the random
effects in each iteration of the MCMC scheme. However, this can be extremely inefficient. In this
subsection we reorganize the vector of interaction random effects in matrix form so that we can
use the dcar_normal function by rows or by columns and introduce the constraints through this
function in type II and type III interactions. Moreover, we show the rationale to include constraints
in the type IV interaction using the dcar_normal and multiplying by appropriate matrices.

Let us assume that the spatio-temporal interaction random effect δ = (δ11, ..., δS1, ..., δ1T , ..., δST )′

has the separable covariance structure (up to a scale parameter σ2
δ ) Σγ ⊗Σξ, where Σγ and Σξ are

the temporal and spatial covariance matrices respectively. Let us rearrange the interaction vector
into the S × T matrix

δ∗ =


δ11 δ12 . . . δ1T
δ21 δ22 . . . δ2T
...

...
...

δS1 δS2 . . . δST

 ,
where each row represents a specific temporal trend for each area and each column represents
a specific spatial pattern for each time point. Using ideas from the multivariate proposal of
Martínez-Beneito (2013), the matrix of the interaction effects can be expressed as

δ∗ = Σ̃ξεΣ̃
′
γ , (2)

where the tilde indicates the lower triangular matrix of the Cholesky decomposition of any symmetric
and positive definite matrix, and ε is a S × T matrix of independent standard normal random
variables. Pre-multiplication by Σ̃ξ blends the different rows of ε and induces spatial dependence.
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Analogously, information from different columns of ε is combined through post-multiplication by
Σ̃γ . Hence, the rows of δ∗ are structured in time and the columns are structured in space. Using
the following result (see for example Harville, 2008, p. 345)

vec(ABC) = (C ′ ⊗A)vec(B),

where the vec() operator puts the columns of a matrix one under the other, it follows that

δ = vec(δ∗) = (Σ̃γ ⊗ Σ̃ξ)vec(ε),

and then

cov(δ) = cov(vec(δ∗)) = (Σ̃γ ⊗ Σ̃ξ)cov(vec(ε))(Σ̃γ ⊗ Σ̃ξ)′ = σ2
δ (Σγ ⊗Σξ),

taking into account that cov(vec(ε)) = σ2
δIδ. It is worth noting that in our case Σξ = Q−ξ and

Σγ = Q−γ , where the symbol − represents the Moore-Penrose generalized inverse of a matrix, are
not positive definite matrices, but nonnegative definite. In fact, the ranks of these matrices are
rξ = S − 1 (assuming a connected spatial graph) and rγ = T − 1 respectively. However, there still
exist unique lower triangular matrices Σ̃ξ and Σ̃γ with one null row such that Σξ = Σ̃ξΣ̃

′
ξ and

Σγ = Σ̃γΣ̃
′
γ (see Harville, 2008, Theorem 14.5.16, p. 234). Using this approach, we next explain

how to include sum-to-zero constraints on the interaction terms depending on the type of interaction.

3.2.1 Type I interaction

In Type I interaction, Equation (2) reduces to δ∗ = IξεIγ , and there is neither spatial nor temporal
structure. Here, the covariance matrix of the interaction term is σ2

δIδ, which is of full rank, and
in this case there is a mild identifiability issue or a “confounding issue” with the intercept. That
is the reason why one sum-to-zero constraint is needed. The way to include this constraint is to
center the interaction random effect in each iteration of the MCMC scheme by subtracting the mean

1
ST

T∑
t=1

S∑
i=1

δit to each element δit. However, this form of including this constraint is fairly inefficient.

3.2.2 Type II interaction

In Type II interaction, Equation (2) takes the form δ∗ = IεΣ̃′γ = εΣ̃′γ . Consequently the terms
are structured in time but not in space, that is cov(δ) = cov(vec(δ∗)) = σ2

δ (Σγ ⊗ Iξ). In brief,
the rows δ∗i. = (δi1, δi2, ..., δiT )′ , i = 1, . . . , S of the matrix δ∗ follow a RW1 distribution. An easy
way to implement the Type II interaction in NIMBLE is assigning a RW1 distribution with the
same precision parameter to each row of the matrix δ∗ using the dcar_normal function. Including

the argument zero_mean = 1, the set of constraints
T∑
t=1

δit = 0, i = 1, 2, ..., S are automatically

incorporated.

3.2.3 Type III interaction

Type III interaction is analogous to Type II, but now Equation (2) becomes δ∗ = Σ̃ξεI′γ = Σ̃ξε.
Hence the terms are structured in space but not in time, that is cov(δ) = cov(vec(δ∗)) = σ2

δ (Iγ⊗Σξ).
In this case each column δ∗.t = (δ1t, δ2t, ..., δSt)

′ , t = 1, 2, ..., T of the matrix δ∗ follows an ICAR
distribution. To implement this interaction type in NIMBLE we assign an ICAR prior to each
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column of δ∗ using the dcar_normal function. Similarly to the Type II interaction, including the

argument zero_mean = 1 automatically incorporates the set of constraints
S∑
i=1

δit = 0, t = 1, . . . , T .

3.2.4 Type IV interaction

Type IV interaction is the most challenging interaction type to implement in NIMBLE. In Type
IV, Equation (2) takes the form δ∗ = Σ̃ξεΣ̃

′
γ and the elements are structured in space and in time,

that is cov(δ) = cov(vec(δ∗)) = σ2
δ (Σγ ⊗ Σξ). In this interaction type each row of δ∗ follows a

RW1 distribution and each column has an ICAR distribution. To implement this interaction in
NIMBLE one would be tempted to use the dcar_normal function by rows and columns, but this is
not possible. The function can be used by rows or by columns, not both. Consequently, there are
two possibilities to implement this interaction type in NIMBLE:

Option 1: The key point here is to express Equation (2) as δ∗ = Σ̃ξεΣ̃
′
γ = φΣ̃′γ where φ is a S × T

matrix whose columns are Gaussian Markov random fields in space with an ICAR distribution. Then,
we assign a spatial ICAR prior to each column using the dcar_normal function. The argument

zero_mean = 1 automatically incorporates the set of constraints
S∑
i=1

δit = 0, t = 1, . . . , T . However,

doing this the temporal dependence is not included in the interaction term and hence we have to
postmultiply the set of ICAR columns by the matrix Σ̃′γ . This matrix introduces the temporal

dependence and the constraints
T∑
t=1

δit = 0, i = 1, 2, ..., S are automatically incorporated due to the

rank deficiency of the matrix.

Option 2: Here, Equation (2) is expressed as δ∗ = Σ̃ξεΣ̃
′
γ = Σ̃ξψ, where ψ is a S×T matrix whose

rows are Gaussian Markov random fields in time with a RW1 distribution. We assign a RW1 prior
to each row using the dcar_normal function with the argument zero_mean = 1 to incorporate the

constraints
T∑
t=1

δit = 0, i = 1, . . . , S. Similar to Option 1, the spatial dependence is not incorporated

in the interaction term with this procedure, consequently we premultiply the set of RW1 rows by
the matrix Σ̃ξ to incorporate the spatial correlation. As the spatial matrix is rank deficient, the

constraints
S∑
i=1

δit = 0, t = 1, 2, ..., T are automatically incorporated.

Though both procedures are equivalent, Option 1 is preferred. The reason is that usually the number
of areas S is larger than the number of time periods T . Then Option 2 is more time consuming
because we assign a RW1 distribution to S rows and we premultiply by a S × S lower triangular
matrix. Instead, in Option 1, we assign an ICAR distribution to T columns and we postmultiply by
a T × T upper triangular matrix. In our particular example with S = 50 and T = 21, Option 2 is
about 25 times slower than Option 1.

4 MCMC methods in NIMBLE
NIMBLE is a library of algorithms that contains MCMC, Monte Carlo expectation maximization
(MCEM), and Sequential Monte Carlo algorithms among others (the last one is implemented in
another package called nimbleSMC (de Valpine et al., 2021)). For MCMC algorithms, NIMBLE
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assigns a default sampler to each parameter (or block of parameters) in the model and allows to
replace some or all of them by other samplers already implemented or by a specific sampler written
by the user.

To fit the spatio-temporal models introduced in this paper with NIMBLE, MCMC algorithms with
default samplers are used because the posterior samples of the parameters mix well and do not
show convergence problems. In particular, a Gibbs sampler (Geman and Geman, 1984; Gelfand
and Smith, 1990; Casella and George, 1992) is assigned to the random effects with an ICAR prior
distribution. The main advantage of Gibbs sampling is that instead of sampling from a complex
joint posterior distribution it reduces the simulation process to a sequence of algorithms for sampling
from a one or low dimensional distribution. Regarding the hyperparameters, NIMBLE assigns by
default Metropolis-Hastings adaptive random-walk sampler (Roberts and Sahu, 1997). This sampler
is also used for other random effects with a prior other than the ICAR, such as the temporal random
effects defined as in Nimble 2 and type I space-time interaction. If the Metropolis-Hastings adaptive
random-walk sampler shows convergence problems, an alternative might be to use a slice sampler
(Neal, 2003). In general, mixing with slice sampling might be better, but the computational cost is
high compared to Metropolis-Hastings adaptive random-walk samplers.

To go deeper with the samplers implemented in NIMBLE and to write customized samplers, the
reader is referred to the user manual (de Valpine et al., 2021).

5 Spanish breast cancer mortality data
In this section we illustrate the fit of the spatio-temporal model (1) with the four interaction types
with NIMBLE and compare the results with the R-INLA fit. We analyse female breast cancer
mortality data (ICD-10 code 50) in Spain during the period 1990-2010.

The procedures in Section 3 are used to consider the ICAR and BYM priors for the spatial component,
the RW1 prior for the temporal random effects, and the different type of interactions. Three MCMC
chains have been run for each model with 30000 iterations each discarding the first 5000 as a burn-in
period. One out of every 75 iterations is saved leading to a total of 999 iterations. Convergence of
MCMC samples is assessed through the generalized method of Gelman-Rubin (Brooks and Gelman,
1998) and the effective sample size (see for example Gelman et al., 2013, Chapter 17) which are
implemented in R package coda (Plummer et al., 2006). This package contains a wide range of
methods to assess convergence of MCMC samples. In addition, graphical checks of chains and their
autocorrelations were performed to assess convergence. To check that the simulated sample size is
sufficient to achieve a specific level of accuracy we have compared the Monte Carlo standard error
(MCSE) with the estimated posterior standard deviation of the parameters. Usually chains are run
until MCSE is less than 5% of the posterior standard deviation, see for example the WinBUGS
manual (Lunn et al., 2000; Spiegelhalter et al., 2003). In R-INLA all models have been fitted using
the full Laplace approximation.

Prior distributions of the hyperparameters may have an impact on the final results. Here, as
recommended in Gelman (2006), vague uniform priors on the standard deviations, σξ, σγ , σδ are
considered in NIMBLE and R-INLA. This set of hyperprior distributions is denoted as H1. In
order to detect some sensitivity to the hyperpriors, the models have been fitted using two additional
sets of hyperpriors. More precisely, a Gamma(1,0.00005) on all the precision parameters τξ =
1/σ2

ξ , τγ = 1/σ2
γ , τδ = 1/σ2

δ (the default prior in R-INLA for the ICAR, BYM and RW1) denoted
by H2. Finally, we also consider a Gamma(1, 0.01) prior on the spatial precision parameter τξ
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and a Gamma(1,0.00005) prior on the temporal and interaction precision parameters τγ and τδ,
denoted as H3. A total of 48 models have been fitted in NIMBLE depending on the spatial random
effect (ICAR or BYM), the way of implementing the RW1 (Nimble 1 or Nimble 2), the four types of
interaction, and the three set of hyperpriors. In R-INLA, 24 models are fitted as we only consider
one way to implement the RW1 through the “rw1” model available in the package. To select the
best candidate, we look at two model selection criteria, the Deviance Information Criterion, DIC
(Spiegelhalter et al., 2002), and the Watanabe-Akaike Information Criterion, WAIC (Watanabe,
2010). The DIC is not directly available in NIMBLE, so it has been manually implemented (see the
code available in the Appendix).

Table 2 displays the values of the DIC and the WAIC together with the mean deviance (D(θ)) and
the effective number of parameters (pD) for the spatio-temporal models with the ICAR and BYM
spatial priors, the two forms of including the RW1 in NIMBLE, Nimble 1 and Nimble 2, the four
types of interaction, and the set of hyperpriors H1 (results for hyperpriors H2 and H3 are shown in
Tables A.1 and A.2 respectively in the Supplementary Materials). In general, DIC and WAIC values
that differ by less than five point towards the same model (see for example Vranks et al., 2021).
According to these criteria, the ICAR and BYM spatial priors lead to very similar results, and the
Type IV interaction is preferred over the others. Therefore, in what follows, we will display results
for the Type IV interaction. Finally, according to these criteria, there are very minor differences
between the alternative ways to include the RW1 in NIMBLE.

Although here DIC and WAIC calculated with R-INLA and NIMBLE show very small differences
and clearly point towards the model with a Type IV interaction, Vranckx et al. (2021) warn about
disparities among model selection criteria values provided by different software packages. Differences
may be due to software-specific posterior samples or software-specific calculations of the model
selection statistics.

Table 2: Mean deviance (D(θ)), effective number of parameters (pD), DIC and WAIC for spatio-temporal
models with an ICAR and a BYM spatial prior.

ICAR spatial prior BYM spatial prior
D(θ) pD DIC WAIC D(θ) pD DIC WAIC

Type I
R-INLA 7593.1060 224.5179 7817.6239 7822.0751 7592.6220 225.4980 7818.1199 7821.6368
Nimble 1 7598.0052 221.5838 7819.5891 7826.3674 7597.4211 221.8959 7819.3170 7826.4275
Nimble 2 7598.5300 221.4272 7819.9570 7825.3750 7594.9590 224.4277 7819.3870 7825.2970

Type II
R-INLA 7546.7413 165.8487 7712.5900 7714.2766 7545.5545 166.8645 7712.4190 7713.6589
Nimble 1 7548.9699 166.0982 7715.0681 7717.5550 7547.2755 166.1233 7713.3987 7715.9592
Nimble 2 7550.8400 164.6176 7715.4580 7718.4830 7546.9790 165.9412 7712.9200 7715.0020

Type III
R-INLA 7600.7795 190.0447 7790.8242 7799.4310 7599.6856 189.6805 7789.3661 7798.8774
Nimble 1 7603.1994 189.3856 7792.5850 7802.3154 7603.8188 189.4632 7793.2820 7803.9177
Nimble 2 7603.8980 189.1573 7793.0550 7803.9930 7600.5790 189.8335 7790.4130 7799.8380

Type IV
R-INLA 7555.5723 148.8464 7704.4186 7706.3231 7554.4509 149.8304 7704.2813 7705.7522
Nimble 1 7558.2180 148.0318 7706.2498 7709.1370 7556.3648 148.5247 7704.8895 7708.0454
Nimble 2 7557.6240 149.8634 7707.4880 7711.3580 7557.2950 149.1446 7706.4400 7709.4450

To inspect the effect of the hyperprior distributions on the parameter estimates, Table 3 displays
the posterior means and standard deviations of the intercept and the hyperparameters for a model
with the ICAR spatial prior, the Type IV interaction and the three sets of hyperprior distributions.
Little sensitivity in the parameter estimates is observed with regard to the prior distributions of
the hyperparameters. The most remarkable element is the different posterior mean and standard
deviation of the intercept when Nimble 2 is considered to implement the RW1 prior for the temporal
effect. This is expected as the constraints used to identify the temporal effects are different to those
used in Nimble 1 and R-INLA. In particular, the standard deviation of the Nimble 2 intercept is
about three times higher than those obtained with R-INLA and Nimble 1. The results with the
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BYM spatial prior are in line with those obtain with the ICAR spatial prior (see Table A.3 in the
Supplementary Materials). Again, the most remarkable difference is found in the posterior mean of
the intercept obtained with Nimble 2, though the posterior standard deviations of the intercept
have been increased with the three methods. Some differences between Nimble 1 and Nimble 2 and
R-INLA are observed in the estimation of the standard deviation of the spatially structured and
unstructured spatial random effects. This is expected as in the BYM model only the sum σ2

u + σ2
v is

identifiable. According to MacNab (2014), “no amount of data enables identification of σ2
u and σ2

v

simultaneously”.

Table 3: Posterior means and standard deviations of the intercept and the hyperparameters of the models
with the ICAR spatial prior, Type IV interaction and the three sets of hyperprior distributions.

H1 H2 H3
Mean SD Mean SD Mean SD

α0

R-INLA -0.0349 0.0042 -0.0345 0.0040 -0.0346 0.0042
Nimble 1 -0.0351 0.0041 -0.0346 0.0039 -0.0345 0.0039
Nimble 2 0.0586 0.0137 0.0565 0.0129 0.0573 0.0125

σξ

R-INLA 0.2011 0.0233 0.1933 0.0219 0.1946 0.0220
Nimble 1 0.2012 0.0263 0.1931 0.0221 0.1949 0.0225
Nimble 2 0.2001 0.0247 0.1927 0.0218 0.1950 0.0223

σγ

R-INLA 0.0246 0.0052 0.0219 0.0043 0.0219 0.0043
Nimble 1 0.0246 0.0056 0.0221 0.0047 0.0222 0.0047
Nimble 2 0.0233 0.0051 0.0223 0.0044 0.0219 0.0044

σδ

R-INLA 0.0389 0.0046 0.0374 0.0045 0.0373 0.0045
Nimble 1 0.0387 0.0045 0.0374 0.0045 0.0374 0.0044
Nimble 2 0.0392 0.0047 0.0376 0.0047 0.0372 0.0044
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Figure 1: Spatial patterns and temporal trends (posterior means of exp(ξi) and exp(γt)) estimated with
R-INLA, Nimble 1 and Nimble 2 for ICAR model with H1 hyperpriors.

Given that there are no important differences between the models with the ICAR and BYM spatial
priors, we will focus on the former. Figure 1 displays the spatial (top) and temporal (bottom)
patterns obtained with R-INLA, Nimble 1, and Nimble 2. The spatial patterns in the three cases
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are identical. Regarding the global temporal trend, R-INLA and Nimble 1 provide identical results,
unlike Nimble 2 that provides a shifted temporal trend. This is expected as different constraints are
used. While in R-INLA and Nimble 1 the temporal effects are centered, in Nimble 2 they are not.
Consequently, the Nimble 2 temporal trend cannot be interpreted as the global temporal trend of
the whole region. The different constraints have also an effect on the posterior standard deviation,
and the credible intervals for the temporal effects are much wider with Nimble 2. In general,
linear dependence of the random effects with the intercept leads to wider credible intervals, hence
constraints centering the effects are preferred (Wood et al., 2013). To obtain the global temporal
trend with Nimble 2, posterior patterns should be computed (Adin et al., 2017). Additionally,
we could directly compare the temporal trends obtained with the three methods representing
exp(α0 + γt) (see Figure A.1 in the Supplementary Materials). In spite of these differences in the
temporal trend, the estimated relative risks are equal. Figure 2 displays dispersion plots of the
relative risk estimates (posterior means) obtained with R-INLA vs. Nimble 1 (left) and Nimble
2 vs Nimble 1 (right) revealing identical estimates. Finally, Figure A.2 in the Supplementary
Materials shows maps of the Type IV space-time interaction random effects (posterior mean of
exp(δit)) for years 1990, 1994, 1998, 2002, 2006 and 2010 obtained with R-INLA, Nimble 1 and
Nimble 2. Temporal trends of the Type IV space-time interactions estimated with Nimble 1 and
their corresponding credibility bands for some neighbouring provinces in the north and some other
neighbouring provinces in the south of Spain are displayed in Figure A.3 in the Supplementary
Materials. This figure reveals that neighbouring regions have similar trends (that is what a Type IV
interaction means).
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Figure 2: Dispersion plots of relative risk estimates (posterior means) obtained with R-INLA vs Nimble 1
and Nimble 2 vs Nimble 1 in the spatio-temporal model with the ICAR spatial prior, the Type IV interaction
and the set of hyperpriors H1.

To close this section, it is worth remarking that R-INLA is faster than NIMBLE. More precisely,
the computing time to fit the model with the ICAR spatial prior with INLA is 90.39 seconds (full
Laplace) whereas in NIMBLE the computing time is 722.34 seconds with Nimble 1 and Nimble 2.
The R-INLA and NIMBLE fits were run on a TTL personal computer with a 3.00 GHz Intel(R)
Core(TM) i5-9500 CPU processor and 20GB RAM using R (version 4.0.3). INLA (version 21.02.23,
dated 2021-02-22) and NIMBLE (version 0.11.1, dated 2021-05-23) were used.

6 Simulation study
In this section a simulation study is conducted for a thorough comparison between NIMBLE an
R-INLA using the geographical set up of the Spanish breast cancer data. The simulation study is

11



focused on the spatio-temporal model with the ICAR spatial prior and the Type IV interaction.

A total of 500 data sets have been simulated according to the following scheme. For each data set
l = 1, 2, ..., 500 the logarithm of relative risks is simulated as

log rlit = α̂0 + ξli + γlt + δlit

where α̂0 = −0.0350.

The random effects are generated from the following distributions with Gaussian kernels

p(ξ) ∝ exp
(
− 1

2σ̂2
ξ

ξ
′Qξξ

)

p(γ) ∝ exp
(
− 1

2σ̂2
γ

γ
′Qγγ

)

p(δ) ∝ exp
(
− 1

2σ̂2
δ

δ
′(Qγ ⊗Qξ)δ

)

where σ̂2
ξ = 0.20112, σ̂2

γ = 0.02462, and σ̂2
δ = 0.03892 are the square of the posterior means of σξ, σγ

and σδ. Finally, the counts are simulated using a Poisson distribution Y l
it ∼ Poisson(eitrlit), where

eit are the number of expected cases in the Spanish breast cancer data. To examine the effect of
the population size, the simulation study has been repeated multiplying the expected cases by the
scale factors (SF) 0.5 and 2. For each simulated data set, the spatio-temporal model with the ICAR
spatial prior and a Type IV interaction has been fitted with R-INLA, Nimble 1 and Nimble 2, and
with the set of hyperpriors H1 and H2 defined in Section 5.

To assess how R-INLA, Nimble 1 and Nimble 2 recover the true value of the parameters used
in the simulation, Table 4 shows the average over the 500 simulated data sets of the posterior
means of the parameters for the three scenarios (SF=0.5, SF=1, and SF=2). In general, the three
procedures recover the true value of the parameters regardless the scale factor on the expected cases.
Interestingly, Nimble 2 also recovers the true value of the intercept on average (though the relative
bias is about 7 times higher than with R-INLA and Nimble 1). This seems contradictory with the
estimated value in the real analysis of the Spanish breast cancer data, where the posterior mean of
the intercept is very different from those obtained with R-INLA and Nimble 1. The reason is that
the variability in the Nimble 2 estimates is very large. Figure A.4 in the Supplementary Materials
provides boxplots of the posterior means of the intercept obtained with the different methods in the
500 simulated data sets. Clearly, the variability in the Nimble 2 estimates is much larger.

Table 5 displays both simulated standard errors (sim) and estimated standard errors (est) multiplied
by 100 to better interpret the results. The simulated standard error is defined as√√√√ 1

500

500∑
l=1

(θ̂l − ¯̂
θ)2

where θ̂l is the posterior mean of the parameter of interest in the l-th simulated dataset and ¯̂
θ is the

average of the posterior means of the parameter computed over the 500 datasets. The simulated
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Table 4: Mean values of estimated parameters with R-INLA, Nimble 1 and Nimble 2 for 500 simulated
datasets. The number of expected cases are multiplied by scale factors (SF) 0.5, 1, and 2.

R-INLA Nimble 1 Nimble 2
True value SF=0.5 SF=1 SF=2 SF=0.5 SF=1 SF=2 SF=0.5 SF=1 SF=2

α0
H1 -0.0350 -0.0351 -0.0348 -0.0352 -0.0351 -0.0348 -0.0352 -0.0309 -0.0337 -0.0320
H2 -0.0348 -0.0347 -0.0352 -0.0348 -0.0347 -0.0351 -0.0312 -0.0335 -0.0317

σξ
H1 0.2011 0.2035 0.2049 0.2071 0.2022 0.2036 0.2057 0.2028 0.2044 0.2064
H2 0.1953 0.1974 0.2001 0.1949 0.1975 0.2002 0.1950 0.1975 0.2003

σγ
H1 0.0250 0.0274 0.0264 0.0263 0.0270 0.0260 0.0258 0.0272 0.0261 0.0259
H2 0.0222 0.0226 0.0233 0.0224 0.0228 0.0235 0.0224 0.0228 0.0235

σδ
H1 0.0390 0.0392 0.0395 0.0391 0.0393 0.0395 0.0390 0.0393 0.0395 0.0390
H2 0.0362 0.0379 0.0381 0.0364 0.0381 0.0383 0.0365 0.0381 0.0383

standard error is the sample standard deviation of the estimates and can be interpreted as the true
variability of the estimators. The estimated standard error is defined as

1
500

500∑
l=1

sd(θl).

where sd(θl) is the posterior standard deviation of the parameter of interest. A large value of the
simulated standard error indicates a great variability within the estimates of the parameter of
interest. Estimated standard errors smaller (larger) than the simulated standard errors indicate
underestimation (overestimation) of the standard errors. The results in Table 5 reveals a large
simulated standard error for the intercept with Nimble 2 (as shown in Figure A.4 in the Supplementary
Materials). This is probably the reason that the average of the posterior means over the 500 data sets
is close to the true value but in the real analysis we obtain a different estimate in comparison with
R-INLA and Nimble 1. As expected, the standard errors both simulated and estimated, decrease
when the number of expected cases increases (see SF=0.5, SF=1, and SF=2).

Table 6 displays the empirical coverages of the credible intervals for the different parameters at
nominal values 90%, 95% and 99%. In general, coverage rates are close to the nominal values with
the three methods and regardless the scale factor when using hyperpriors H1 (which seems to be a
better choice than H2). The exception is the coverage rates of the intercept obtained with Nimble 2,
which is far from the nominal value. This is probably due to the high variability of the posterior
means and the underestimation of the standard error (true simulated error and estimated error in
Table 5). Additionally, with Nimble 2 the coverage rate for the intercept decreases when the SF
increases. Though it seems contradictory, the reason for this is that the true simulated standard
error decrease about a 3% from SF=0.5 to SF=1, and from SF=1 to SF=2, but the estimated
standard error decreases about a 25% from SF=0.5 to SF=1, and from SF=1 to SF=2. Note also
that in Nimble 2, the intercept cannot longer be interpreted as the overall level of risk, which is the
meaning in the simulated values.

Mean values of the length of credibility intervals of relative risks and temporal effects (exp(γt)) are
computed based on 500 simulated data sets (not shown here to save space). In general, credibility
intervals of exp(γt) are much wider for Nimble 2 than for R-INLA or Nimble 1. This agrees with the
results in the Spanish breast cancer data (see Figure 1). However, this does not affect the estimates
and width of the credibility intervals for the relative risks.

To measure the accuracy and precision of the relative risk estimates obtained with R-INLA, Nimble
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Table 5: Simulated standard errors (sim) and estimated standard errors (est) for the different parameters
obtained with R-INLA, Nimble 1 and Nimble 2. The number of expected cases are multiplied by scale factor
(SF) 0.5, 1, and 2. Values are multiplied by 100.

R-INLA
SF=0.5 SF=1 SF=2

sim est sim est sim est

α0
H1 0.5344 0.5459 0.3966 0.3945 0.2871 0.2990
H2 0.5393 0.5451 0.3975 0.3950 0.2894 0.3124

σξ
H1 2.3892 2.4313 2.2654 2.2901 2.1394 2.2189
H2 2.3213 2.2843 2.2065 2.1511 2.0782 2.0840

σγ
H1 0.6787 0.7537 0.5810 0.6246 0.5064 0.5461
H2 0.6520 0.6097 0.5579 0.5237 0.4782 0.4660

σδ
H1 0.6254 0.6156 0.4566 0.4644 0.3495 0.3594
H2 0.6811 0.6042 0.4686 0.4559 0.3538 0.3541

Nimble 1

α0
H1 0.5352 0.5464 0.3979 0.3910 0.2852 0.2797
H2 0.5354 0.5445 0.3977 0.3926 0.2847 0.2798

σξ
H1 2.3763 2.4792 2.2533 2.3437 2.1309 2.2763
H2 2.3438 2.3121 2.2054 2.1806 2.0842 2.1218

σγ
H1 0.6652 0.7554 0.5742 0.6266 0.4976 0.5488
H2 0.6523 0.6229 0.5558 0.5371 0.4748 0.4801

σδ
H1 0.6262 0.6249 0.4541 0.4677 0.3477 0.3610
H2 0.6827 0.6123 0.4683 0.4614 0.3557 0.3587

Nimble 2

α0
H1 6.4257 1.8595 6.2946 1.4019 6.1344 1.0361
H2 6.4199 1.9165 6.2212 1.3653 6.0976 1.0198

σξ
H1 2.3904 2.4760 2.2654 2.3444 2.1238 2.2656
H2 2.3404 2.3098 2.2033 2.1833 2.0718 2.1208

σγ
H1 0.6676 0.7690 0.5736 0.6375 0.5019 0.5537
H2 0.6964 0.6428 0.5551 0.5358 0.4819 0.4793

σδ
H1 0.6257 0.6258 0.4540 0.4682 0.3486 0.3610
H2 0.6875 0.6140 0.4683 0.4601 0.3561 0.3571
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Table 6: Empirical coverage probabilities of the parameters obtained with R-INLA, Nimble 1 and Nimble 2.
The number of expected cases are multiplied by scale factors (SF) 0.5, 1, and 2.

SF=0.5
R-INLA Nimble 1 Nimble 2

90% 95% 99% 90% 95% 99% 90% 95% 99%

α0
H1 91.2 95.8 99.2 91.0 95.4 98.4 35.6 41.6 53.6
H2 89.4 95.0 99.2 90.6 95.0 98.8 35.4 41.2 52.4

σξ
H1 90.6 95.8 99.2 90.2 96.0 99.2 90.4 95.6 99.0
H2 88.4 93.2 98.2 87.6 92.6 98.6 87.6 93.0 98.6

σγ
H1 90.0 95.4 98.8 90.6 95.2 99.2 91.0 95.4 98.4
H2 81.6 90.0 97.8 83.2 90.6 98.0 82.0 90.0 97.6

σδ
H1 91.0 95.8 98.2 90.8 95.6 98.8 91.2 95.2 98.6
H2 82.4 91.4 98.8 82.4 90.2 98.2 84.0 91.6 96.8

SF=1

α0
H1 88.2 93.8 99.6 88.2 93.0 98.6 27.0 31.2 40.2
H2 88.6 94.2 99.6 88.6 93.6 99.2 27.2 31.2 41.4

σξ
H1 88.6 93.6 98.6 89.4 94.8 98.8 88.4 93.2 99.2
H2 87.0 93.2 98.0 87.2 93.2 98.4 88.2 92.6 98.8

σγ
H1 91.8 95.6 99.4 91.6 95.6 99.0 92.6 96.0 98.8
H2 83.2 91.2 97.8 84.6 91.6 96.8 83.8 91.2 97.0

σδ
H1 89.2 93.6 98.4 89.2 94.4 98.4 90.2 94.2 98.4
H2 87.0 92.6 98.0 87.8 93.0 97.6 87.4 92.0 97.4

SF=2

α0
H1 89.6 95.6 99.8 87.8 94.2 98.6 20.6 24.6 33.2
H2 91.2 97.0 99.4 88.0 94.6 98.8 20.2 25.0 32.8

σξ
H1 90.2 95.0 98.8 90.0 96.2 99.4 91.8 95.2 99.0
H2 89.8 95.2 98.6 89.6 94.6 99.0 89.8 95.0 98.6

σγ
H1 90.2 94.4 99.4 91.6 94.6 99.2 90.6 94.6 98.8
H2 86.2 92.0 97.2 87.6 92.8 97.2 87.6 93.2 97.0

σδ
H1 91.4 95.8 99.2 91.0 96.2 99.2 91.2 96.2 99.2
H2 90.0 95.2 98.4 90.6 95.2 98.4 90.2 95.0 98.6
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1, and Nimble 2, the mean absolute relative bias (MARB) and the mean relative root mean squared
error (MRRMSE) are calculated using the following expressions

MARB = 1
ST

S∑
i=1

T∑
t=1

1
500

∣∣∣∣∣
500∑
l=1

r̂lit − rlit
rlit

∣∣∣∣∣ ,
MRRMSE = 1

ST

S∑
i=1

T∑
t=1

√√√√ 1
500

500∑
l=1

(
r̂lit − rlit
rlit

)2

.

Results of MARB and MRRMSE are shown in Table 7. Overall, all methods provide unbiased
relative risk estimates, being the MARB less than 1% in all cases. The MRRMSE is pretty similar for
the three methods and it is in general bellow 6%. As expected, both the MARB and the MRRMSE
decrease when the number of expected cases increases. When the number of expected cases decrease
(SF=0.5), the set of hyperprior distributions H1 provides slightly lower MARB and MRRMSE.

Table 7: Average value of mean absolute relative bias (MARB) and mean relative root mean prediction
error (MRRMSE) of the relative risks estimated by R-INLA, Nimble 1 and Nimble 2 based on 500 simulated
data sets.

R-INLA Nimble 1 Nimble 2
SF=0.5 SF=1 SF=2 SF=0.5 SF=1 SF=2 SF=0.5 SF=1 SF=2

MARB H1 0.0021 0.0018 0.0013 0.0028 0.0022 0.0015 0.0028 0.0022 0.0015
H2 0.0035 0.0018 0.0013 0.0030 0.0023 0.0015 0.0030 0.0023 0.0015

MRRMSE H1 0.0502 0.0408 0.0342 0.0503 0.0409 0.0342 0.0503 0.0409 0.0342
H2 0.0650 0.0409 0.0342 0.0504 0.0410 0.0342 0.0505 0.0410 0.0352

7 Discussion
The availability of high quality registers recording areal count data in time has promoted both
the research on methodology and the development of new software to implement the theoretical
procedures. In this work we focus on one of the more recently available software packages, NIMBLE,
and we compare it with the well tested and widely used R-INLA. The latter provides approximate
Bayesian inference using integrated nested Laplace approximation and numerical integration speeding
up computations with regard to MCMC algorithms. Additionally, R-INLA handles constraints
relatively easy and intuitively. A potential limitation is that it is designed for latent Gaussian
Markov random fields, though many applications in practice can be described with this class of
models. NIMBLE relies on MCMC algorithms to fit the models. Its strengths are that it extends the
BUGS language and allows users to write their own models and customize the MCMC algorithms.
However, regarding the spatio-temporal models considered in this paper, it is not straightforward to
fit the different types of spatio-temporal interactions, with the exception of Type I (Lawson, 2020),
as including the right constraints to overcome identifiability issues is not easy.

In this paper, we propose a simple way to impose sum-to-zero constraints in NIMBLE to identify
spatio-temporal models including the ICAR and BYM spatial random effects, temporal random
effects with a RW1 prior distribution, and the four types of interaction defined by Knorr-Held
(2000). We take advantage of the functions already implemented in NIMBLE without modifying
any existing algorithm. In particular, we have studied two alternative procedures to implement the
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RW1 prior: one based on the full conditionals (Nimble 1) and the other one based on conditioning
on the preceding time point (Nimble 2). Regarding the interaction, our approach rearranges the
interaction terms in matrix form and introduces the spatial and temporal dependence by pre and
post multiplying by appropriate matrices. Using this procedure, sum-to-zero constraints in models
incorporating Type II, III, and IV interactions can be easily included. In the Type I interaction, the
interaction term does not present an identifiability issue (as the covariance matrix is of full rank)
but a confounding issue with the intercept. In this case, the sum-to-zero constraint is achieved by
centering the interaction random effects in each iteration of the MCMC scheme. However this is
computationally very demanding and the user may ignore this constraint. We have run the Type I
interaction without constraints and the results are practically identical.

The procedures have been used to analyse female breast cancer data in Spanish provinces during
the period 1990-2010 and we would like to remark interesting findings. First, the Nimble 2 option
to implement the RW1 prior does not center the temporal trend, hence it cannot be interpreted as
the global trend of the whole region, and the posterior mean of the intercept is also different to
the estimates provided by Nimble 1 and R-INLA. Additionally, the credible bands are wider than
those obtained with Nimble 1 and R-INLA. In general, linear dependence of the random effects with
the intercept leads to wider credible intervals, hence constraints centering the effects are preferred
(Wood et al., 2013). That is the reason why Nimble 2 leads to a poorer inference on the temporal
trend. Second, the standard deviation parameter of the unstructured spatial term in the BYM
spatial prior shows some sensitivity to the hyperprior distribution. This is expected as the data
only identifies the sum of the variance parameters (structured+unstructured).

We have run a simulation study to compare the performance of NIMBLE and R-INLA. In general,
Nimble 1, Nimble 2, and R-INLA recover the true values of the parameters used to generate the
data. However, Nimble 2 option shows a large variability within the estimates (posterior means) of
the intercept in each simulation run. This is also translated into a low coverage rate of the credible
interval for this parameter. Overall, we have observed that Nimble 1 and R-INLA attain coverage
rates for the parameters close to the nominal values regardless the scale factor multiplying the
number of expected cases used in the simulation. Some sensitivity was observed with respect to the
hyperprior distributions. Coverage rates improved when using vague uniform priors on the standard
deviations as it was recommended by Gelman (2006). Finally, the procedures estimate the relative
risk pretty well as the mean absolute relative bias is very low (less than 1%) in all cases and the
mean relative mean squared error is below 6%. Both the bias and the error reduce when the number
of expected cases increases.

To sum up, NIMBLE is a package that provides flexibility to include new models and customize
algorithms, but these tasks requires an advanced use. In this paper we provide a simple way
to fit complex spatio-temporal models for count data including sum-to-zero constraints to solve
identifiability issues. Our procedure exploits some useful matrix results and the main advantage is
that no extra programming is needed as we take advantage of implemented functions. The results
obtained with NIMBLE and R-INLA are identical in terms of relative risk estimates and nearly
identical in terms of parameter estimates. Finally, approximate Bayesian inference with R-INLA
saves computing time in comparison to exact inference based on MCMC in NIMBLE.
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8 Appendix
In this section we provide NIMBLE code to fit spatio-temporal models with Type IV spatio-
temporal interactions. In particular we consider an ICAR prior for the spatial effect, a RW1
for the temporal effect and the set of hyperpriors H1. NIMBLE code to fit models with Type
I, II and III interactions as well as R-INLA code to fit all the models is available at https:
//github.com/spatialstatisticsupna/Comparing-R-INLA-and-NIMBLE.

8.1 Load and prepare the data
# Load NIMBLE package
library(nimble)

# Set working directory
setwd("")

# Load the data
load("BreastCancer_data.Rdata")

N <- length(unique(Data$Area))
t <- length(unique(Data$Year))

# Spatial random effects: specify adjacency and weights vectors
num <- diag(Rs)
adj <- c()

for (i in 1:dim(Rs)[1]){
neighbours <- unname(which(Rs[i, ]==-1))
adj <- c(adj, neighbours)

}
weights <- rep(1, length(adj))

# Temporal random effects: specify adjacency and weights vectors
weights.rw1 <- c()
adj.rw1 <- c()
num.rw1 <- c()

for(i in 1:1) {
weights.rw1[i] <- 1; adj.rw1[i] <- i+1; num.rw1[i] <- 1

}
for(i in 2:(t-1)) {

weights.rw1[2+(i-2)*2] <- 1; adj.rw1[2+(i-2)*2] <- i-1
weights.rw1[3+(i-2)*2] <- 1; adj.rw1[3+(i-2)*2] <- i+1;
num.rw1[i] <- 2

}
for(i in t:t) {

weights.rw1[(i-2)*2 + 2] <- 1; adj.rw1[(i-2)*2 + 2] <- i-1;
num.rw1[i] <- 1

}

# Counts and expected cases in matrix form
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expected <- matrix(Data$Expected, nrow = 50)
y <- matrix(Data$Counts, nrow = 50)

8.2 Nimble 1
############################
## ICAR - RW1 - Type IV ##
############################
icar.type4.h1 <- nimbleCode({

# Priors
alpha0 ~ dflat()
sd.u ~ dunif(0, 100)
tau.u <- 1/sd.u^2
var.u <- sd.u^2
sd.temp ~ dunif(0, 100)
tau.temp <- 1/sd.temp^2
var.temp <- sd.temp^2
sd.t4 ~ dunif(0, 100)
tau.t4 <- 1/sd.t4^2
var.t4 <- sd.t4^2

# Spatial random effects
spat.u[1:N] ~ dcar_normal(adj[1:L], weights[1:L], num[1:N], 1,

zero_mean = 1)

# Temporal random effects
temp[1:t] ~ dcar_normal(adj.rw1[1:L.rw1], weights.rw1[1:L.rw1],

num.rw1[1:t], 1, zero_mean = 1)

# Spatio-temporal random effects (type IV)
for (k in 1:t){

u.t4[1:N, k] ~ dcar_normal(adj[1:L], weights[1:L], num[1:N], 1,
zero_mean = 1)

}
for (i in 1:N){

stType4[i, 1:t] <- u.t4[i, 1:t] %*% Achol[1:t, 1:t]
}

for(i in 1:N) {
for (k in 1:t){

y[i,k] ~ dpois(mu[i,k])
log(mu[i,k]) <- log(E[i,k]) + alpha0 + sd.u*spat.u[i] + sd.temp*temp[k]

+ sd.t4*stType4[i,k]
RR[i,k] <- exp(alpha0 + sd.u*spat.u[i] + sd.temp*temp[k] + sd.t4*stType4[i,k])

# Spatio-temporal trends
Est[i,k] <- exp(sd.t4*stType4[i,k])

# Compute the deviance
Dev[i,k] <- -2*(-mu[i,k] + y[i,k]*log(mu[i,k])-lfactorial(y[i,k]))

}
# Spatial pattern
Espat[i] <- exp(sd.u*spat.u[i])

}

# Temporal trend
for(k in 1:t){

Etemp[k] <- exp(sd.temp*temp[k])
Ealpha0.temp[k] <- exp(alpha0 + sd.temp*temp[k])

}

# Compute the deviance
sumDev <- sum(Dev[1:N, 1:t])

})

##################################
## n.chains, n.iter, n.burnin ##
##################################
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num.chains <- 3
num.iter <- 30000
num.burnin <- 5000
num.thin <- 75

#####################
## Run the model ##
#####################

# Temporal structure matrix for a RW1 prior
Dm <- diff(diag(t),differences=1)
Rt <- t(Dm)%*%Dm

cov.Rt <- MASS::ginv(Rt) # Generalized Inverse of Rt
chol.cov.Rt <- chol(cov.Rt)

# Define a list containing the counts
data <- list(y = y)

# Define constants
constants <- list(N = N, t = t, E = expected, L = length(adj), L.rw1 = length(adj.rw1),

adj = adj, num = num, weights = weights,
adj.rw1 = adj.rw1, num.rw1 = num.rw1, weights.rw1 = weights.rw1,
Achol = chol.cov.Rt, nt= N*t)

# Define initial values
inits <- list(alpha0 = rnorm(1,0,0.1), sd.u = runif(1,0,1),

sd.temp = runif(1,0,1), sd.t4 = runif(1,0,1),
spat.u = rnorm(N), temp = rnorm(t),
stType4 = matrix(rnorm(N*t), nrow=N, ncol=t))

# Run the model
model <- nimbleModel(icar.type4.h1, constants = constants, data = data, inits = inits)
cmodel <- compileNimble(model)

conf <- configureMCMC(model, monitors = c('alpha0', 'sd.u', 'sd.temp', 'sd.t4',
'tau.u', 'tau.temp', 'tau.t4',
'var.u', 'var.temp', 'var.t4',
'spat.u', 'temp', 'stType4',
'Etemp', 'Espat', 'Est', 'Ealpha0.temp',
'RR', 'Dev', 'sumDev', 'mu'))

MCMC <- buildMCMC(conf, enableWAIC = TRUE)
cMCMC <- compileNimble(MCMC, project=cmodel, resetFunctions = TRUE)

# Obtain the samples
typeIV.nimble1 <- runMCMC(cMCMC, niter = num.iter, nburnin = num.burnin,

nchains = num.chains, thin = num.thin,
samplesAsCodaMCMC = TRUE, summary=TRUE, WAIC = TRUE)

8.3 Nimble 2
############################
## ICAR - RW1 - Type IV ##
############################
icar.type4.h1 <- nimbleCode({

# Priors
alpha0 ~ dflat()
sd.u ~ dunif(0, 100)
tau.u <- 1/sd.u^2
var.u <- sd.u^2
sd.temp ~ dunif(0, 100)
tau.temp <- 1/sd.temp^2
var.temp <- sd.temp^2
sd.t4 ~ dunif(0, 100)
tau.t4 <- 1/sd.t4^2
var.t4 <- sd.t4^2
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# Spatial random effects
spat.u[1:N] ~ dcar_normal(adj[1:L], weights[1:L], num[1:N], 1, zero_mean = 1)

# Temporal random effects
temp[1] <- temp.zero
for (k in 2:t){

temp[k] ~ dnorm(temp[k-1], 1)
}

# Spatio-temporal random effects (type IV)
for (k in 1:t){

u.t4[1:N, k] ~ dcar_normal(adj[1:L], weights[1:L], num[1:N], 1, zero_mean = 1)
}
for (i in 1:N){

stType4[i, 1:t] <- u.t4[i, 1:t] %*% Achol[1:t, 1:t]
}

for(i in 1:N) {
for (k in 1:t){

y[i,k] ~ dpois(mu[i,k])
log(mu[i,k]) <- log(E[i,k]) + alpha0 + sd.u*spat.u[i] + sd.temp*temp[k]

+ sd.t4*stType4[i,k]
RR[i,k] <- exp(alpha0 + sd.u*spat.u[i] + sd.temp*temp[k] + sd.t4*stType4[i,k])

# Spatio-temporal trend
Est[i,k] <- exp(sd.t4*stType4[i,k])

# Compute the deviance
Dev[i,k] <- -2*(-mu[i,k] + y[i,k]*log(mu[i,k])-lfactorial(y[i,k]))

}
# Spatial pattern
Espat[i] <- exp(sd.u*spat.u[i])

}

# Temporal trend
for(k in 1:t){

Etemp[k] <- exp(sd.temp*temp[k])
Ealpha0.temp[k] <- exp(alpha0 + sd.temp*temp[k])

}

# Compute the deviance
sumDev <- sum(Dev[1:N, 1:t])

})

##################################
## n.chains, n.iter, n.burnin ##
##################################
num.chains <- 3
num.iter <- 30000
num.burnin <- 5000
num.thin <- 75

#####################
## Run the model ##
#####################

# Temporal structure matrix for a RW1 prior
Dm <- diff(diag(t),differences=1)
Rt <- t(Dm)%*%Dm

cov.Rt <- MASS::ginv(Rt) # Generalized Inverse of Rt
chol.cov.Rt <- chol(cov.Rt)

# Define a list containing the counts
data <- list(y = y)
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# Define constants
constants <- list(N = N, t = t, E = expected, L = length(adj),

adj = adj, num = num, weights = weights,
Achol = chol.cov.Rt, nt= N*t, temp.zero = 0)

# Define initial values
inits <- list(alpha0 = rnorm(1,0,0.1), sd.u = runif(1,0,1),

sd.temp = runif(1,0,1), sd.t4 = runif(1,0,1),
spat.u = rnorm(50), temp = c(0, rnorm(20)),
stType4 = matrix(rnorm(N*t), nrow=N, ncol=t))

# Run the model
model <- nimbleModel(icar.type4.h1, constants = constants, data = data, inits = inits)
cmodel <- compileNimble(model)

conf <- configureMCMC(model, monitors = c('alpha0', 'sd.u', 'sd.temp', 'sd.t4',
'tau.u', 'tau.temp', 'tau.t4',
'var.u', 'var.temp', 'var.t4',
'spat.u', 'temp', 'stType4',
'Etemp', 'Espat', 'Est', 'Ealpha0.temp',
'RR', 'Dev', 'sumDev', 'mu'))

MCMC <- buildMCMC(conf, enableWAIC = TRUE)
cMCMC <- compileNimble(MCMC, project=cmodel, resetFunctions = TRUE)

# Obtain the samples
typeIV.nimble2 <- runMCMC(cMCMC, niter = num.iter, nburnin = num.burnin,

nchains = num.chains, thin = num.thin,
samplesAsCodaMCMC = TRUE, summary=TRUE, WAIC = TRUE)

8.4 Compute the DIC
DIC.nimble <- function(summary){

dev <- summary[grep('sumDev', rownames(summary), value=TRUE), ]
mu <- summary[grep('mu', rownames(summary), value=TRUE), ]

dev2 <- 0
for (i in 1:(N*t)){

dev2 <- dev2 -2*(-mu[i, 1] + Data$Counts[i]*log(mu[i, 1])
- lfactorial(Data$Counts[i]))

}
pD <- dev[1] - dev2
data.frame(mean.dev=dev[1], # Mean deviance

pD=dev[1] - dev2, # Effective number of parameters
DIC=dev[1]+pD)

}

DIC.nimble(typeIV.nimble1$summary$all.chains)
DIC.nimble(typeIV.nimble2$summary$all.chains)
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Supplementary material for
“Space-time interactions in Bayesian disease mapping

with recent tools: making things easier for
practitioners"

by Arantxa Urdangarin, Tomás Goicoa, María Dolores Ugarte

A Introduction
This supplementary material contains tables and figures to complement the paper entitled “Space-
time interactions in Bayesian disease mapping with recent tools: making things easier for practition-
ers”.

Table A.1: Mean deviance (D(θ)), effective number of parameters (pD), DIC and WAIC for spatio-temporal
models with an ICAR and a BYM spatial prior and the set of hyperpriors H2.

ICAR spatial prior BYM spatial prior
D(θ) pD DIC WAIC D(θ) pD DIC WAIC

Type I

R-INLA 7603.4820 214.0369 7817.5190 7825.0270 7602.2280 215.9365 7818.1650 7824.2920
Nimble 1 7605.1050 215.6115 7820.7170 7829.7650 7606.4940 213.1343 7819.6280 7828.1740
Nimble 2 7608.1640 210.4046 7818.5690 7828.5620 7604.4650 212.3013 7816.7660 7825.1430

Type II

R-INLA 7551.0570 160.9670 7712.0240 7714.4540 7550.0980 161.2665 7711.3650 7713.7950
Nimble 1 7554.1190 161.9542 7716.0730 7720.6500 7551.7440 162.6510 7714.3950 7718.0410
Nimble 2 7550.8400 164.6176 7715.4580 7718.4830 7552.3060 160.7408 7713.0470 7716.0380

Type III

R-INLA 7608.3230 182.4803 7790.8040 7801.3280 7607.3880 183.5559 7790.9440 7800.6290
Nimble 1 7611.9600 181.5406 7793.5010 7805.8850 7611.7120 181.3514 7793.0640 7804.1160
Nimble 2 7603.8980 189.1573 7793.0550 7803.9930 7610.9670 183.7092 7794.6760 7807.4970

Type IV

R-INLA 7560.3550 143.6618 7704.0170 7706.7050 7559.2620 144.4739 7703.7360 7705.9290
Nimble 1 7562.8260 144.1419 7706.9680 7710.7630 7561.3760 143.7267 7705.1020 7708.7370
Nimble 2 7557.6240 149.8634 7707.4880 7711.3580 7560.6600 144.3094 7704.9690 7708.2910
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Table A.2: Mean deviance (D(θ)), effective number of parameters (pD), DIC and WAIC for spatio-temporal
models with an ICAR and a BYM spatial prior and the set of hyperpriors H3.

ICAR spatial prior BYM spatial prior
D(θ) pD DIC WAIC D(θ) pD DIC WAIC

Type I

R-INLA 7603.3559 214.1094 7817.4653 7824.9643 7601.8410 214.7837 7816.6250 7824.0930
Nimble 1 7607.7301 212.1685 7819.8986 7830.2154 7608.8370 210.6310 7819.4680 7828.5590
Nimble 2 7607.0330 211.5730 7818.6060 7828.5590 7607.1920 212.4161 7819.6090 7828.5040

Type II

R-INLA 7550.9084 161.0542 7711.9626 7714.3817 7549.1380 161.9340 7711.0720 7713.4560
Nimble 1 7553.3957 161.9452 7715.3409 7718.4217 7552.8830 160.5058 7713.3890 7717.0800
Nimble 2 7551.7970 158.2855 7710.0830 7712.9970 7552.0320 161.0963 7713.1280 7716.1560

Type III

R-INLA 7608.2090 182.5368 7790.7458 7801.2679 7606.4920 183.4056 7789.8970 7800.4370
Nimble 1 7611.9792 184.0053 7795.9845 7808.3194 7609.0680 181.9525 7791.0200 7803.1340
Nimble 2 7608.6500 182.5053 7791.1560 7803.6660 7608.9170 181.8855 7790.8030 7803.4300

Type IV

R-INLA 7560.2337 143.7245 7703.9582 7706.6419 7558.4520 144.6587 7703.1110 7705.8110
Nimble 1 7563.5695 144.5272 7708.0967 7712.1708 7561.6870 144.0091 7705.6960 7709.2910
Nimble 2 7563.5600 143.3191 7706.8790 7710.8980 7562.0640 144.67530 7706.7400 7711.0160

Table A.3: Posterior means and standard deviations of the intercept and the hyperparameters for the model
with the BYM spatial prior, Type IV interaction and the three sets of hyperprior distributions.

H1 H2 H3
Mean SD Mean SD Mean SD

α0 R-INLA -0.0353 0.0106 -0.0349 0.0096 -0.0353 0.0116
Nimble 1 -0.0344 0.0102 -0.0350 0.0082 -0.0354 0.0136
Nimble 2 0.0566 0.0152 0.0567 0.0135 0.0553 0.0167

σu R-INLA 0.1454 0.0360 0.1436 0.0276 0.1206 0.0289
Nimble 1 0.1483 0.0404 0.1577 0.0530 0.1236 0.0415
Nimble 2 0.1543 0.0378 0.1840 0.0310 0.1226 0.0305

σv R-INLA 0.0686 0.0173 0.0573 0.0135 0.0779 0.0150
Nimble 1 0.0591 0.0255 0.0359 0.0335 0.0792 0.0240
Nimble 2 0.0559 0.0250 0.0202 0.0234 0.0762 0.0143

σγ R-INLA 0.0246 0.0052 0.0217 0.0040 0.0219 0.0044
Nimble 1 0.0240 0.0052 0.0221 0.0047 0.0222 0.0045
Nimble 2 0.0252 0.0063 0.0219 0.0042 0.0220 0.0045

σδ R-INLA 0.0389 0.0046 0.0373 0.0045 0.0374 0.0045
Nimble 1 0.0389 0.0046 0.0373 0.0043 0.0370 0.0045
Nimble 2 0.0388 0.0047 0.0379 0.0043 0.0372 0.0045
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Figure A.1: Posterior means of exp(α0 + γt) estimated with R-INLA, Nimble 1 and Nimble 3 for ICAR
model with H1 hyperpriors.
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Figure A.2: Spatio-temporal patterns (posterior means of exp(δit)) estimated with R-INLA (top), Nimble 1
(middle), and Nimble 2 (bottom) for ICAR model with H1 hyperpriors.
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Figure A.3: Type IV space-time interaction random effects (posterior means of exp(δit)) estimated with
Nimble 1 and their credibility bands. Top row corresponds to neighbouring provinces in the north and bottom
row displays neighbouring provinces in the south.
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Figure A.4: Boxplots of the posterior means of the intercept in the 500 simulations.
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