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Abstract

Binary image comparison has been a study subject
for a long time, often rendering in context-specific
solutions that depend upon the type of visual contents in
the binary images. Distance transformations have been
a recurrent tool in many of such solutions. The literature
contains works on the generation and definition of
distance transformations, but also on how to make
a sensible use of their results. In this work, we
attempt to solve one of the most critical problems
in the application of distance transformations to real
problems: their oversensitivity to certain spurious pixels
which, even if having a minimal visual impact in the
binary images to be compared, may have a severe
impact on their distance transforms. With this aim,
we combine distance transformations with Ordered
Weighted Averaging (OWA) operators, a well-known
information fusion tool from Fuzzy Set Theory.

1. Introduction

Quantitative comparison has been a key topic in
different scientific fields. For example, it is crucial
to mathematical psychology [1, 2], and has proven
critical in very different data science procedures, e.g.
Support Vector Machines (SVMs), optimization and
clustering [3]. In fact, almost all data science procedures
rely on data comparison in some manner.

The comparison of individual elements within a
given universe, often referred to as 1-to-1 comparison,
is deeply studied in the literature. Often, this study has
led to operators that fit within the axiomatic definition
of metric, but similar classes of operators (as quasi-
or pseudo-metrics) have also had a relevant role. In
fact, the fitness of metrics is often revisited, despite
the mathematical and computational convenience of
their axiomatic constraints. For example, from the
perspective of mathematical psychology [4, 5], the
triangle inequality has been often disregarded [1].
Nevertheless, the use of 1-to-1 comparison operators

is both recurrent and well founded in different
mathematical theories [6].

The literature is significantly more scarce when
comparisons are made in configurations other than
1-to-1. Such is the case of 1-to-N or N -to-M
comparisons, that often lead to problem-specific
solutions. Usually, 1-to-N (e.g. point-to-set)
comparison is reduced to the minimum (resp.
maximum) distance (similarity) between the point
and any element in the set. While some exceptions
hold [7, 8], most 1-to-N have mathematical foundations
significantly shallower than those of 1-to-1 comparison
operators. N -to-M comparison operators are, as well,
far less frequently studied than 1-to-1 ones. Exceptions
to this are the Earth Mover’s metric [9] or the Hausdorff
metric [10]. Still, it is very common to produce
context-specific operators for given problems.

Binary image processing is one of the fields in
which N -to-M comparison operators are recurrently
needed. Binary images, while hardly useful to represent
visual information, are critical to represent intermediate
or final results in very different image processing
tasks. Certain image segmentation tasks, as well
as pattern recognition or boundary detection tasks,
typically represent their final results as binary images.
Hence, the comparison with ground truth, with the final
goal of quantitative quality evaluation, is often based on
binary image comparison operators [11]. As long as
binary images can (and often must) be seen as subsets
of positions, the comparison of binary images becomes
a matter of N -to-M comparison in the universe of
positions of the image [12].

A significant part of the effort devoted to the
comparison of binary images has relied on Distance
Transformations (DTs) to overcome the problem
of set comparison with variable cardinality [13].
This is so because matching-based solutions (as the
classification-based approaches in [14]) rely on pixel
matching and counting, which can hardly succeed
when the cardinality of the sets to be compared
is different [14]. Hence, DTs became a recurrent
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tool in the design of binary image comparison
operators. Nevertheless, several studies illustrate
how DTs have endemic problems in over-representing
certain visual artefacts in the images despite their little
relevance. This has sparked interest from researchers
to solve the problem in both theoretical and practical
approaches [15]. In this work, we combine state-of-the
art developments on DTs with Ordered Weighted
Averaging (OWA) operators [16,17], a recurrent tool for
information fusion in the Fuzzy Set Theory [18]. Our
goal is to produce DTs which are able to cope with the
oversensitivity to visually irrelevant binary features in
the images.

The remainder of this work is organized as follows.
Section 2 recovers some concepts of interest for the rest
of the manuscript. Section 3 covers the formulations and
uses of DTs, while Section 4 illustrates our proposal
for DTs using OWA operators. Our proposal is put to
the test in the context of boundary image comparison
in Section 5. Finally, Section 6 includes discussion and
future lines.

2. Preliminaries

This section recalls some basic definitions of the
concepts used hereafter.

Definition 1 Let x = (x1, . . . , xn), with xi ∈ R for all
i ∈ {1, . . . , n}. The power mean of x is given by

Gq(x) =

(
1

n

n∑
i=1

xq
i

)1/q

,

with q ∈ R.

The power mean generalizes well-known operators.
For example, if q = −∞ (resp., q = ∞), the
power means becomes the minimum (resp., maximum)
operator.

Among the different families of aggregation
operators [18], OWA operators have become popular in
recent years.

Definition 2 [16] A function w : Rn → Rn is called an
OWA operator of dimension n if there exists a weighing
vector h = (h1, . . . , hn) ∈ [0, 1]n with

∑
i hi = 1, and

such that

Θh(a1, . . . , an) =

n∑
j=1

hjbj , (1)

with bj the j-th largest of the ai, for any (a1, . . . , an) ∈
[0, 1]n.

(a) h = (1, 0) (a) h = (0.66, 0.33)

(c) h = (0.5, 0.5) (d) h = (0, 1)

Figure 1. Visual representation of OWA operators

on [0, 1]2 with different weighing vectors h.

Although OWA operators were originally designed
as mappings Rn → Rn, they have been recurrently
reformulated as mappings [0, 1]n → [0, 1]n, so as
to fit the definition of aggregation operators. In
fact, OWA operators are general cases for very
significant aggregation operators. For example, the
OWA operator based on weighing vector (1, 0, . . . , 0)
(resp. (0, . . . , 0, 1)) is the minimum (resp. maximum)
operator. Also, the vector ( 1n , . . . ,

1
n ) yields the

arithmetic mean operator. Figure 1 displays some
paradigmatic OWA operators on [0, 1]2.

Definition 3 A function g : U × U → R+ is called a
metric (or distance function) on a universe U if and only
if it satisfies the following properties, for any a, b, c ∈
U :

(i) Identity of indiscernibles: g(a, b) = 0 iff a = b;

(ii) Symmetry: g(a, b) = g(b, a);

(iii) Triangle inequality: g(a, c) ≤ g(a, b) + g(b, c).

Definition 4 A function g : U × U → R+ is called a
pseudo-metric on a universe U if and only if it satisfies
the following properties, for any a, b, c ∈ U :

(i) g(a, a) = 0 for all a ∈ U ;

(ii) Symmetry: g(a, b) = g(b, a);

(iii) Triangle inequality: g(a, c) ≤ g(a, b) + g(b, c).
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Figure 2. Distance transforms of different binary images. The three leftmost images are synthetic examples,

while the two rightmost images are taken from the BSDS500 [19]. The upper row displays the binary images,

with 1-valued pixels represented in black for better visualization. The lower rows display the results by different

distance transformations. The notation for the transformations is that in Section 3.1. Note that each distance

transformation uses its own numerical scale.

3. Distance transformations and binary
image comparison

In the remainder of this work, we represent images
as functions f : Ω → T , with Ω = {1, . . . , R} ×
{1, . . . , C} the set of positions and T the set of tones.
The set of images with tonal palette T is denoted IT .

3.1. Distance transformations

Definition 5 The Distance Transform (DT) of a binary
image I ∈ I{0,1}, for some metric m on Ω, is the image
Tm[I] ∈ IR+ given by

Tm[I](p) = min
p′∈I

m(p, p′) , (2)

for all p ∈ Ω.

In the remainder of this work, generic metrics will
be referred to as m, while the Euclidean metric will be
represented as d.

Distance transformations provide a powerful tool to
ease the comparison of binary images by representing
them into R+-valued images. Regardless of the number
of featured pixels in any two binary images, their
transforms are always in IR+ . Figure 2 contains the
visualization of distance transforms for a set of images.
In Fig. 2, the top row contains the original images, and
the middle row displays the transforms using Td[I], with
d standing for the Euclidean metric. We observe how
DTs allow for a representation based on the distribution
of the 1-valued pixels in the original images. Also,
it is noticeable how DTs are very sensitive to small
responses. The second and third rightmost columns in
Fig. 2 offer a visual example of this. Both columns

feature almost identical images, the only exception
being visually insignificant path of 2 × 2 pixels in the
upper right area. Still, as it can be observed in the middle
row of that same figure, such pixels have a deep impact
on the distance transform of the image, as they become
the closest 1-valued pixels for a large area in the image.

A recurrent solution to oversensitivity in DTs is the
adjustment of the metric m. As DTs can be based on any
metric on Ω, a smart selection of such metric may reduce
the impact of spurious responses in the transform.

Let m be a metric on U . The bounded version of m,
on a universe U , is given by

mt(a, b) = min(t,m(a, b)) , (3)

for any a, b ∈ U , with t ∈ R+, t > 0,. A distance
transformation based on a bounded metric is referred to
as bounded distance transformation . Note that, since
m = m∞, the subindex is ignored for t = ∞.

The lowest row in Fig. 2 contains the results for the
distance transformations of the images in the top row
using Td20 [I]. The impact of the bounded metric is
severe: spurious responses have a significant reduced
impact on the transformation; also, this is associated to
a far less smooth representation of the binary features in
the image.

While the bounded metric has been the primary tool
to prevent oversensitivity to spurious responses [14,20],
it has not been the only one. In [15], Brunet and Sills
proposed to generalize the distance transformation by
replacing the minimum operator by the power mean;
that is, computing the value at each pixel of the distance
transform as the power mean of the distances to all
1-valued pixels in the image, instead of yielding the
minimum of such distances.
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Definition 6 [15] The Generalized Distance Transform
of a binary image I ∈ I{0,1}, for some metric m on Ω,
is the image Pq

m[I] ∈ IR+ so that

Pq
m[I](p) = Gq

p′∈I

(w(m(p, p′)))

=

 1

|I|
∑
p′∈I

w(m(p, p′))q

1/q

,

(4)

for all p ∈ Ω, with q ∈ [−∞,∞] and w a concave,
increasing function such that w(0) = 0.

There is a list of remarks to be pointed out in
this definition. Firstly, since the concave mapping of
a metric m is still a metric, removing the function
w saves a parameter while preserving the flexibility
in the operator. In the remainder of the work, w
will be unused. Secondly, as stated in [21] the
name generalized distance transform was used, prior
to [15], by Felzenszwalb and Huttenlocher [22]. In
this work, we adhere to referring as Power Distance
Transformation (PDT) to the transformation introduced
in [15]. Thirdly, the original proposal by Brunet and
Sills [15] imposes q < 0. The reason is that, if q < 0,
then Pq

m[I](p) = 0 iff p ∈ I . This ensures Pq
m to

be invertible, impacting the properties of subsequent
operators.

The behaviour of PDTs, as compared to that of
DTs, can be seen in Fig. 3. In this figure, the four
lowest rows contain the results of PDTs using different
configurations with q ∈ {−1, 1} and m ∈ {d, d20}. It
is clear how the PDTs yield 0-valued pixels if and only
if q < 0, making them invertible. Also, we observe
that, similarly to what happened for the original DT,
the Euclidean metric d yields larger values and more
intense smoothing. This is specially significant in the
case of P1

d [I], which produces almost unrecognizable
representations of the binary images.

3.2. Image comparison using Baddeley’s Delta
Metric

Binary images can be dually interpreted as mappings
Ω → {0, 1} or as subsets of positions (in Ω).
Elaborating on this dual interpretation, binary image
comparison is often carried out using the Hausdorff
metric [23]. Let Tm be a distance transformation on
binary images based on some metric m. The Hausdorff

distance between two images, A,B ∈ I{0,1} is given by

HM(A,B) = max

(
max
a∈A

Tm[B](a) , max
b∈B

Tm[A](b)

)
.

(5)
The Hausdorff metric, while simple and sound, also

features some problems. Most of such problems stem
from the fact that the value yielded for any two images
depends upon just two pixels. While this is positive for
certain tasks, e.g. those in which noise and spurious
responses are non-existing, it also makes the comparison
unstable for most applications.

The Hausdorff metric has been further tuned for
specific goals. For example, Dubuisson and Jain [24],
proposed a variation of this metric to create asymmetric
similarity measures, in combination with bidirectional
aggregation operators. In total, Dubuisson and Jain
designed 24 comparison operators evolved from the
Hausdorff metric, and tested them in the context of
delineated object recognition. This work was continued
by Takacs and Wechsler [25, 26], who proposed a
different tuning to adapt the results in [24] to the context
of boundary-based face recognition. Also Baudrier et
al. [10] presented a variation of the Hausdorff metric
by combining the ideas in [24] with a local, sliding
window-based, analysis of subregions of the image.

The most relevant proposal evolving the Hausdorff
metric is Baddeley’s Delta Metric (BDM) [13, 27]. In
these works, Baddeley introduced a metric for binary
images that aims at increasing the flexibility of the
Hausdorff metric, while preserving the metric axioms.

Baddeley’s reformulates the Hausdorff metric as

HM(A,B) = max
p∈Ω

|Tm[A](p)− Tm[B](p)| , (6)

which is equivalent to Eq. (5). Baddeley intends
to exploit the comparison of Tm[A] and Tm[B], as
representatives of A and B, and to produce an
interpretation richer than that by max.

Let A,B ∈ I{0,1} be two binary images on Ω, and
let m be some metric on Ω. The distance between them,
in terms of BDM, is given by

∆k(A,B) =

 1

|Ω|
∑
p∈Ω

|w(Tm[A](p))− w(Tm[B](p))|k
 1

k

,

(7)
where w : R+ → R+ is a concave function with w(x) =
0 iff x = 0, Tm is a distance transformation and k ∈ R+.

The role of the function w is, again, potentially
redundant. As explained for the PDT, any function w◦m
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Figure 3. Distance transforms of different binary images. The three leftmost images are synthetic examples,

while the two rightmost images are taken from the BSDS500 [19]. The upper row displays the binary images,

with 1-valued pixels represented in black for better visualization. The lower rows display the results by different

distance transformations. The notation for the transformations is that in Section 3.1. Note that each distance

transformation uses its own numerical scale.

is in fact a metric. Hence, any effect obtained by setting
w, can be equivalently inferred by modifying the metric
m. In this work, we set w(x) = x, giving w no role in
the metric.

Note that, in Eq. (7), DTs can be replaced by PDTs.
BDM will remain a metric as long as q < 0, as proven
in [15]; for q > 0, the BDM becomes a pseudometric.

Baddeley’s Delta Metric has been used for its
original purpose in different contexts and tasks [28, 29],
but has also been evolved to compare items other than
binary images, e.g. grayscale images [30, 31], or
hyperspectral signatures [32].

4. OWA-based distance transformations

One of the foreseeable problems in the PDT, as
presented both in [15] and [21], is the fact that each
value in a transform is dependent upon the distance
to all 1-valued pixels in the original image. While
depending on 1 pixel (as in the original DT) made the
representation prone to oversensitivity, we believe that
considering the distance to all pixels might produce
oversmoothen representations of images, unable to
characterize small details or regions. An intermediate
option (considering the n closest 1-valued pixels) might

be able to solve both problems.
We propose in this work a reformulation of distance

transformations so as to solve the problems in both the
original DT and the PDT. Our proposal is based on three
principles:

• Interpretability- The distance transform of an
image should be an understandable representation
of the information in the original image. In this
sense, the 1-valued regions in the original image
must have a clear impact in the transformation
when relevant; Also, they should have a light or
non-existing impact when spurious or irrelevant.

• Robustness- The transformation must be as robust
as possible to changes in its parameterization, as
well as to changes in the binary image. In this
sense, the addition or removal of a small set of
1-valued pixels in the binary image should not
modify the transform dramatically.

• Intuitive parameterization- The idea of spurious
information in a binary image is often associated
to small, noise-related 1-valued (or 0-valued)
pixels. However, small segments might be
interesting for some tasks. In fact, different tasks
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are likely to induce different definitions of how
short (resp. small) a segment (resp. region) needs
to be in order to be labelled as spurious. Hence,
the reformulation of the distance transformation
should allow a straightforward configuration of
the boundary between a spurious and a relevant
object in the image.

The PDT does not totally fit the aforementioned
principles. While robust, the parameter q in the
PDT fails to achieve the goals of interpretability and
intuitive parameterization. The parameter q modulates
the value of the distance transform at each pixel, from
the minimum (q = −∞) to the maximum distance
to a 1-valued pixel (q = ∞), passing by, e.g., the
arithmetic mean (q = 1). Hence, it is a non-linear
modulator of the orness-andness balance, a well-known
property of information fusion operators [33, 34]. The
parameter q does not, however, relate to the images
themselves, or to the visual characteristics of the objects
in them, and hence the configuration is far from trivial.
When computing the PDT at a pixel, all other pixels
have the same influence in the final result, what seems
counter-intuitive. Also, the instabilities when q ≈ 0
inspire a sense of delicacy in the process of parameter
setting. Nevertheless, the PDT has been proven useful
for both region- and boundary-oriented binary image
comparison [21]. We believe that the same ideas could
be embodied in a different manner in order to ease the
study and application of distance transformations.

We propose to use OWA operators, instead of the
power mean, for the aggregation of the pixel-to-pixel
distances at each pixel. The OWA operators can recover
both the original distance transformation (based on the
minimum operator), as well as both extreme cases in
the PDT (minimum and maximum operators). However,
it also enables a configuration which is more evidently
related to the visual facts in the images. Since OWA
operators apply weights on the ordered arguments, we
can easily state the number of (nearest) pixels which will
be taken into account for each pixel. For example, the
distance transform at each pixel could be the arithmetic
mean to the n nearest 1-valued pixel, or to the n furthest
ones. Also, it could be configured according to some
percentage of the closest 1-valued pixels. Moreover,
the fusion of the distances to such n pixels may not
be based on the arithmetic mean. OWA operators allow
for an easy configuration of the weights each argument
receives.

Definition 7 The Ordered Weighted Distance
Transform of a binary image I ∈ I{0,1}, for some

metric m on Ω, is the image Wh
m[I] ∈ IR+ so that

Wh
m[I](p) = Θh

p′∈Im(p, p′) , (8)

for all p ∈ Ω, with h ∈ [0, 1]|I|.

The Ordered Weighted Distance Transformation
(OWDT) is a general form of the original DT, which
can be recovered using the weighing vector h =
(1, 0, . . . , 0). It also recovers both extreme cases of the
PDT (q ∈ {−∞,∞}), as well as some other special
cases (as q = 1, which is equivalent to the OWDT with
h = ( 1n , . . . ,

1
n )).

The OWDT is not an invertible operation, since it
is not guaranteed that Wh

m[I](p) == 0 if and only if
p ∈ I . In fact, Wh

m[I](p) == 0 only in extreme cases,
e.g. if h = (1, 0, . . . , 0) or if p is the single 1-valued
pixel in I . Hence, when the original DT is replaced by
the OWDT in Baddeley’s Delta Metric, it will remain a
pseudometric (but not a metric).

Our proposal is mildly related to other works in
literature. For example, it can be related to the
k-distances [8], a relatively popular notion imported
from geometry. This comparison measure yields the
distance from a point to a set as the arithmetic mean of
the individual distances to the k nearest elements in that
set. Hence, it can be easily recovered by using weighing
vectors within the definition of OWA operators. Also,
our proposal is is somehow similar, in both general goals
and inspiration, to that by Öfverstedt et al. [35]. In
this paper, the authors study the positive (and negative)
noise in binary images, and audit the impact it has in the
results by the original DT. However, the means and tools
developed in [35] to overcome the problem are different
from the ones proposed in this work.

Figure 4 displays the OWDT of the images in the
upper row of Fig. 2. We consider exclusively triangular
inferior weighing vectors; These vectors, which we
denote tn, assign linearly increasing weights to the n
smallest values to be fusioned. Hence, the j-th smallest
value has a weight

tj = max

(
0,

n− j + 1∑n
j=1 j

)
, (9)

satisfying that
∑

tn = 1 for any n ∈ N.
By using triangular inferior weighing vectors, we

establish the number of pixels to be taken into account
(by setting n). Also, we also maintain the operator
robust against variations of n, since the increase or
decrease of n will render in small variations in the
weight of each argument.
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Figure 4. Ordered weighted distance transforms (OWDTs) of the binary images in Fig. 2. Each row displays the

transforms by a different operators, featuring different metrics m and weighing vectors tn. Note that each

distance transformation uses its own numerical scale.

5. Experiments

This section is focused on illustrating the behaviour of
OWDT, when combined with Baddeley’s Delta Metric,
in the context of boundary detection comparison.
Boundary images are binary images with the delineation
of relevant objects/structures in the images. Boundary
comparison has been recurrently tackled from the
perspective of binary image comparison [11, 20].

Binary image comparison, either using metrics or
any other class of functions, is a recurrent task in image
processing. For example, it plays a role application
in object tracking [36] or object recognition [37]. We
focus this experiment in context of quality evaluation,
specifically restricting to boundary detection and image
segmentation. An automatic method for boundary
detection is evaluated according to the similarity of
its output to that by humans on the same task. The
comparison operator plays, hence, a critical role in the
process [11, 14]. In fact, one of the primary goals by
Baddeley [13] was to produce an operator for quality
evaluation.

The comparison of boundary images is an ongoing
field of research, and connects with similar tasks as
silhouette matching and graph matching [38]. Despite
the diversity of comparison operators for the task, it is
unclear how to rate or quantify their performance. That
is, to evaluate how well a comparison operator performs,
or to select which out of a pool of candidates is the
best performing. Such questions belong to the field of
metaquality: strategies to measure or enforce the quality

of the evaluation methods. Ideally, if humans could
produce solid quantitative evaluations of the similarity
of two images, the comparison operators shall be
evaluated in terms of how correlated its results are to the
quantitative evaluations by humans. However, humans
rarely produce such inputs in a reliable manner. Hence,
alternative strategies need to be drawn to evaluate
comparison operators.

Metaquality often relies on psychological priors
that could be applied to human behaviour in
image comparison or recognition [20, 39]. In our
experiments, we focus on the data distributed within
the BSDS500 [19], a popular dataset for image
segmentation and boundary detection. The BSDS500
dataset contains 500 images, each of them associated
to 5 to 7 hand-made ground truth images. The ground
truth images are produced by different humans, and
hence feature a significant number of discrepancies
among them. Nevertheless, any human could cluster all
boundary images according to the image after which
they were produced. Otherwise said, any human is
able to discriminate when two boundary images are
produced by humans either on the same scene or on
different ones. This is illustrated in Fig. 5, which
contains the ground truth images associated to two
different original images in the BSDS500. In Fig. 5
it is clear how humans make different interpretations
of what is important and unimportant in each scene.
Still, humans would be able to cluster images in the
same class, and discriminate images in different classes.
This fact, apart from being an explicit example of
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(a) Class associated to image 3063

(b) Class associated to image 41006

Figure 5. Hand-made (ground truth) boundary images extracted from the BSDS500. Each row contains images

created from humans from the same original image. It can be observed how, despite the heterogeneity in the

hand-made delineations, all images can be easily recognized as representing the same original scene.

human ability to combine bipolar information (in this
case, coincidences and divergences between images), is
also our accepted prior for the design of a metaquality
strategy. Our meta-quality strategy is based on the idea
that binary image comparison measures should replicate
this human behaviour; that is, comparison measures
should yield larger dissimilarities in the comparison of
inter-class pairs of images than in the comparison of
intra-class ones. This section intends to measure how
the combination of OWDTs and BDM, under different
parameter settings, performs in recovering the human
class-discriminative behaviour.

For some given operator, we analyze the
distributions of the inter- and intra-class comparisons in
the BSDS500 Test Set. In this regard, we use BDM with
both original DTs and different OWDTs. Recall that the
BSDS500 Test Set contains 1063 images distributed in
200 classes, accounting for more than 106 comparisons.

Given the available space, we present a limited
number of parameter settings. Specifically, we consider
the original DT, together with two parameterizations of
the OWDT (Wt50

m and Wt100
m ). Also, we consider two

different distances on Ω, m ∈ {d, d50}, so as to include
both bounded and unbounded metrics.

Figure 6 contains the distribution of the values by
different versions of BDM on inter- and intra-class pairs
of images. Each row is devoted to a single metric on
Ω (either d or d50). Each plot also displays the accuracy
(Acc) in the discrimination of both distributions for each
threshold. The Acc is measured in the range [0.5, 1], and
is scaled on the rightmost axis of each plot. Also, note
that Acc = 1 is reached if and only if the distributions
are non-overlapping.

It is relevant to note that the all-vs-all analysis of the
BSDS500 leads to around 4500 intra-class comparisons,
and over 106 inter-class ones. Hence, the distributions

in Fig. 6 are scaled in percentual terms. The accuracy
(Acc) is also computed w.r.t. normalized distributions
for each class, to avoid problems due to class imbalance.
Otherwise, the influence of the intra-class comparisons
would negligible.

The first noticeable fact in Fig. 6 is that the
substitution of the original DT (leftmost column) by
OWDTs (center and rightmost columns) results in a
light improvement. This indicates that OWDTs are
generally better in representing the boundary images
than DTs; Also, that the improvement that can be
gained in this setting is subtle (circa 0.02-0.03 in
terms of Acc). There are, nonetheless, two relevant
remarks to be made on this perception. Firstly,
we have that the dataset used for the comparison is
composed exclusively by hand-labelled images. Unlike
computer-based algorithms, Humans do not normally
include spurious responses or noise in the images
they label. While being the most relevant dataset for
metaquality evaluation [39], the BSDS500 does not
suffer excessively from the kind of spurious responses
to which original DTs are oversensitive. Secondly,
larger, more ambitious experiments should be designed
to fully understand how the OWA operators used to
fusion information interact with the metrics in Ω. While
it is clear why the original DT benefits from replacing
d50 by d, it remains obscure how the OWDT, specifically
the weighing vector h, should adapt to such choices in
metrics.

As a general conclusion, we can state that OWDTs
produce sensible results, and seem to perform a better
representation of binary images than the original DT.
This holds for the qualitative point in view illustrated in
Fig. 4, as well as from the quantitative point of view in
Fig. 6. Such findings are, however, affected by limited
space and scope of the experimental setup.
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Figure 6. Distributions of distances for inter- and intra-class pairs of ground truth images in the BSDS500 Test

set, using different configurations of BDM. The distributions have been configured with 100 bins.

6. Conclusions

In this work, we present a novel approach to distance
transformations. Specifically, we propose to use OWA
operators to avoid excessive sensitivity to unimportant
1-valued features in binary images. This sensitivity is
a key problem for tasks in binary image comparison,
specially in the context of image recognition/retrieval
and quantitative quality evaluation. We present the
mathematical and practical foundations of our approach,
as well as an experimental setup in which the novel
distance transformations have been put to the test. While
promising, the results are not conclusive, as long as
the large number of parameters make it advisable to
perform comprehensive experiments that also, shall
include different types of binary images.

As future lines of work, it is critical to design
strategies that help researchers and practitioners in
the adaptation of the different distance transformations
to specific problems. One of the key benefits in
the original distance transformation is the simplicity,
with no parameter other than the metric on the set
of image positions. Hence, the increasing interest
in distance transformations will hardly render into
applied developments unless the complexity in their
configurations is reduced.
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