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Abstract: A new versatile and cost-effective interrogation system by pulsing direct modulated 
(DM) DFB laser diodes is proposed. 1 pm wavelength resolution and 600 m sensor spacing is 
demonstrated by sequentially pulsing a DM DFB. 
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1. Introduction
Optical fiber sensors (OFS) multiplexing capability offers a competitive differentiation with regard to other
sensing technologies. Characteristics such as the large number of sensors that can be multiplexed in a single
network (even distributed measurements can be achieved) and the remote sensing capability are among the main
distinguishing features. Nowadays, optical fiber technology is mainly centered on niche applications; that is,
focusing on specific solutions that cannot be done using conventional technologies [1]. After a few decades of
research, OFS are still far behind the development degree of other technologies such as electric sensors;
especially in terms of cost per sensor.

In order to reduce the gap between technologies and widen the type of applications in which OFS are 
competitive, research and technological development is continuously done. Together with the scientific 
advances in OFS, the cost of optical equipment has decreased due to the expansion of fiber optics solutions for 
communications. Taking into consideration the mature state of the technology together with the drop in the 
costs, we believe that there are increasing opportunities in developing cost-effective (or even low-cost) OFS 
solutions. Therefore, effort is being focused on the development of new interrogation systems that are 
competitive enough to be used in applications formerly out of reach for OFS. 

Different research groups around the world explored the wavelength-tuning feature of laser diodes when 
their current, temperature, pressure or magnetic field are modulated [2]–[5]. These techniques enable the 
possibility of developing interrogation systems that can be engineered to be used with multiple optical fiber 
sensing technologies [6], in dense multiplexing sensor networks [7], [8],  distributed sensing [9], [10] or long-
distance remote sensing [11]. 

In this contribution, we present the development of a simple interrogation system based on the continuous 
wavelength sweep due to the direct modulation of the current of a laser diode in combination with a temperature 
change. In this case, to increase the multiplexing capability we introduce the TDM feature by using an external 
modulator that sequentially chopped the chirped light after its generation. The system is validated by monitoring 
both fiber Bragg gratings (FBG) and interferometric sensors. This approach presents high multiplexing 
capability while retaining the simplicity, robust performance and the ability of being adapted to design a cost-
effective solution.  

2. Principle of operation

As mentioned before, to create a wavelength sweep and to introduce the ability of separating multiple sensors in 
the time domain, the continuous direct modulation of a LD is sequentially chopped using pulses. In order to 
avoid reflections overlapping, as in any time-domain reflectometry approach, the period of repetition between 
pulses must be greater than the time-of-flight of each pulse in the network. On the other hand, distance between 
sensors must be larger than the pulse width to avoid overlapping between sensors. Thus, as illustrated in fig. 1, 
by imposing a pulse repetition period: P = Tr+tp; the spectrum can be reconstructed by sequentially 
concatenating the reflected pulses. The spectral resolution achieved is directly proportional to the pulse width, 
which also limits the spatial resolution, as in every optical time-domain reflectometry (OTDR) approach. 
Consequently, the shorter the pulse-width is, the higher the spectral resolution is. Inversely, shorten the pulse 
comprises an increment of the scanning time following this expression: S = Tr·(Tr+tp)/tp

In this case, although each portion of time has continuous wavelength information, intensity contained in 
each reflected pulse is integrated to increment the system signal-to-noise ratio (SNR). Besides, it also relieves 
wavelength broadening due to, mainly, non-linear effects generated by the narrow and intense light propagating 
through the fiber. 
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Fig. 1. Schematic depiction of the principle of operation of the WDM/TDM interrogation system. 

 
The frequency ramp is applied to the laser diode by means of the direct current modulation using a sawtooth 

signal. However, Distributed feedback (DFB) laser diodes are also temperature-sensitive. Because the 
wavelength change due to temperature variations is higher in a safe diode operation range, extended wavelength 
operation can be performed by adjusting the thermoelectric cooler (TEC) controller. Therefore, high resolution 
spectral measurements can be done using direct current modulation and then, the process is repeated for 
different TEC temperatures to reconstruct a wider spectrum. To accurately do this, the laser performance must 
be characterized. In the case of this experiment, a 1 MHz DFB LD @1559 nm (Emcore Corp.) laser was used. It 
presents a wavelength shift range of 4.2 nm between 15 ºC @ 40 mA and 35 ºC @ 260 mA. A complete 
characterization diagram is shown in fig. 2. 
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Fig. 2. Temperature and current characterization of the laser performance. Data in legend is in ºC 

 

2. Experimental setup 

The basic operation of the device was experimentally demonstrated by designing a proof-of-concept setup 
shown in Fig. 3. The setup is based on a tree structure formed of three fiber optic couplers placed 6 km away 
from the monitoring station with a 5 km gap between them. From each coupler, FBG sensors (FBG1 to FBG4), 
a broadband mirror and an in-fiber Fabry-Perot temperature sensor (S1) (high Q-100 GHz FSR).were placed. 
The separation between couplers and sensors will lead to a separation in the time/wavelength resulting diagram 
(Fig 5). This simple network configuration aims to show the capability of the system to interrogate different 
types of fiber optic sensors. In this manner, three FBGs with almost equal central wavelength, other different, a 
broadband reflector and a resonator with multiple peaks along the spectrum were placed inside the network. 
Thus, the objective of the proof of concept setup is fulfilled by validating the performance of the interrogator in 
a network including sensors of different nature and locations. 

 

95:5 90:10

PD

80:20 S1

λ1 λ1

λ2
Mirror

6 km 5 km 5 km 5 km

1 km 1 km

PC

EOM

AD2

DFB

Monitoring station Sensor network

λ1FBG1 FBG2

FBG3

FBG4

 
Fig. 3. Schematic setup of the proof of concept WDM/TDM sensor network interrogated by the proposed system. PC: Personal Computer, 
PD: Photodiode, AD2: Analog Discovery 2, DFB: Distributed Feedback laser source, EOM: Electro Optical Modulator. 



The monitoring station is composed by the 1 MHz @1559 nm DFB LD mounted in a commercial laser and TEC 
controller (Thorlabs CLD1050). The optical source output is connected to an intensity electro-optical modulator 
(EOM). Hence, the circulator routes the outgoing light to the sensor network and the reflected light to a 125 
MHz photodetector. A custom software controls a low-cost FPGA-based multi-function instrument: Analog 
Discovery 2 (AD2). This element drives all the opto-electronic devices: it generates the ramp and the sequence 
of pulses signals to modulate the DFB and the EOM respectively and provides DC outputs to control the bias 
point of the modulator. The response of the sensors is also retrieved by one of its oscilloscope channels. On the 
other hand, the custom software controls the TEC of the laser aimed to increase the wavelength range of the 
system.  
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Fig. 4.  Oscilloscope sample trace of the sensors interrogated 
with the proposed system. Note that FBG3 has no reflection at 
this wavelength. 

Fig. 5.  3D depiction of the wavelength and spatial distribution of the 
different OFSs. 

 
Fig. 4 depicts a sample trace of the proposed setup.  It represents the reflected power induced by a single pulse 
versus time/distance; thus, it contains the power reflected for a single wavelength. Note that FBG3 is not present 
in the trace, because the central wavelength of the FBG does not match with the wavelength of that pulse. .A 
sequence of traces are obtained for every scanned wavelength so the system can provide a high-resolution 
reconstruction of the spectrum of the sensors along the length of the network (Fig. 5). As aforementioned, 
system resolution is proportional to the pulse-width. In this case, the ramp repetition period is Tr= 1 ms and the 
pulse width 2 µs or a ramp wavelength excursion of 0.6 nm, giving a wavelength resolution of 1.2 pm and a 
scanning rate of 501 ms. 

3. Results 

To demonstrate the correct system operation, we have characterized FBG4 by applying axial strain and a 
temperature sweep was performed to the in-fiber Fabry-Perot sensor (S1). Results were obtained by executing a 
software routine that first performed a full wavelength range reading by tuning the full TEC temperature range. 
Once all the sensors were located, the sensors of interest were interrogated independently at the highest 
frequency rate. Both showed the expected linear response following their sensing specifications. 
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Fig. 6.  Wavelength shift behavior when straining FBG4 and 
interrogated with the system. 

Fig. 7.  Wavelength shift with temperature of S1 (FP sensor) when 
interrogated with the system. 



4. Conclusions 

In conclusion, this work presents a new cost-effective WDM/TDM interrogation system by sequentially pulsing 
a directly-modulated LD. A proof-of-concept sensor network was experimentally developed and tested. The 
network includes different sensing technologies capable of measuring different parameters. The interrogation 
system presents high resolution in wavelength, showing resolutions around 1 pm, using cost-effective 
components.  
Furthermore, by controlling the LD TEC, interrogation wavelength range can be extended. Then, the combined 
WDM and TDM performance significantly extends the multiplexing capabilities of the proposed system. A 
natural evolution of the system would adapt this approach to a distributed solution, as other authors already 
presented [9,10]. However, the aim of this work is to explore the feasibility of creating a flexible and cost-
effective OFS interrogator able to monitor any type of sensor. In fact, further work is being done in reducing the 
amount and required specifications of the involved equipment; for instance, by employing direct pulse-
modulation in the LD. 
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