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Abstract: Modeling quantum interference in the presence of dissipation is a critical aspect
of quantum technologies. Including dissipation into the model of a linear device enables for
assessing the detrimental impact of photon loss, as well as for studying dissipation-driven
quantum state transformations. However, establishing the input-output relations characterizing
quantum interference at a general lossy N-port network poses important theoretical challenges.
Here, we propose a general procedure based on the singular value decomposition (SVD), which
allows for the efficient calculation of the input-output relations for any arbitrary lossy linear
device. In addition, we show how the SVD provides an intuitive description of the principle of
operation of linear optical devices. We illustrate the applicability of our method by evaluating
the input-output relations of popular reciprocal and nonreciprocal lossy linear devices, including
devices with singular and nilpotent scattering matrices. Our method also enables the analysis
of quantum interference in large lossy networks, as we exemplify with the study of an N-port
epsilon-near-zero (ENZ) hub. We expect that our procedure will motivate future research on
quantum interference in complex devices, as well as the realistic modelling of photon loss in
linear lossy devices.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Quantum interference - the superposition of nonclassical light states leading to the additive
combination of their probability amplitudes - lies at the core of quantum technologies. In
essence, combining nonclassical light states with a linear optical device enables quantum state
transformation and entanglement generation, which are the basis for quantum metrology [1–3],
communication [4–6], simulation [7,8], and computing [9,10] systems. Most research of quantum
interference phenomena in linear optical systems has focused on lossless devices, with state-of-
the-art architectures being composed of complicated networks of beamsplitters, Mach-Zehnder
interferometers and directional couplers [10,11]. However, quantum interference phenomena
in lossy devices might be equally interesting. First, all practical devices are lossy up some
degree, and the detrimental impact of absorption must be critically assessed. This aspect is of
particular relevance for quantum technologies, since their performance is more sensitive to photon
loss than in classical systems. Second, absorption is an optical process of interest on its own
right, with multiple applications in optics including sensing [12,13], thermophotovoltaics [14],
photodetection [15,16], hot-electron chemistry [17] and thermally-assisted optical tweezers [18].
Moreover, phase-dependent absorption, commonly known as coherent perfect absorption (CPA)
[19,20], enables photon-photon interactions even in the absence of nonlinearities, of interest for
lineal optical switching [21,22], modulation [23], logical operations [24], amplification [21,25],
as well as quantum state transformations [26].

However, modeling quantum systems in the presence of dissipation poses important theoretical
challenges. Typically, the quantum mechanical description of the electromagnetic field must be
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complemented by coupling it to a continuum of polaritonic modes, representing the excitations
in the matter system, as well as irreversible dissipation [27–31]. The coupling between the field
and matter systems must be correctly defined in order to ensure that the macroscopic response of
a lossy material is recovered. A simplified procedure can be carried out for linear optical devices
with well-defined input and output ports. In such a case, a reduced set of polaritonic modes can
describe the internal degrees of freedom of the device, as well as the dissipation within it [32–35].
Following these models, the response of a lossy device is described in terms of generalized
input-output relations, directly linked to its classical transmission and reflection coefficients.
Such “black box” approach facilitates a compact and efficient evaluation of quantum interference
phenomena. In fact, these models successfully describe a variety of recent experiments, such as
the anti-coalescence of photons and nonlinear absorption [36,37], single-photon coherent perfect
absorption [38–40] and coherent absorption of N00N states [41,42]. In addition, input-output
theory of lossy beam splitters has inspired interesting theoretical proposals on nonlocal absorption
[43] and quantum coherent absorption of squeezed light [44].

Previous works on quantum interference in lossy linear devices have been mostly restricted
to the analysis of lossy beam splitters. However, it should be expected that investigating more
complex devices will lead to the discovery of new forms of quantum interference. At the same
time, the calculation of input-output relations for arbitrary lossy N-port devices will require
advanced modeling techniques. Here, we present a systematic procedure that allows for the
calculation of the input-output relations for any arbitrary lossy N-port device, thus allowing for a
full characterization of quantum interference phenomena in the presence of loss. Our procedure
is based on using a singular value decomposition (SVD) [45–49] for the matrices that describe
the transformation of optical modes, as well as the dissipation into the device.

The SVD decomposition is a matrix factorization technique that has proved useful in numerous
data processing applications, such as image compression [50,51] and digital watermarking
[52–54]. Additionally, the scope of the SVD decomposition extends to quantum information
theory [55] and quantum entanglement characterization [56,57] by its close relationship with the
Schmidt decomposition. This matrix factorization method has also contributed to the study of
physical systems such as many-body interactions, as it allows obtaining an approximate solution
of the coupled-cluster equation [58,59]. Within the field of photonics, the SVD has been utilized
to generalize temporal coupled-mode theory to interacting modes [60]. Moreover, the SVD
decomposition has been reported as a convenient tool for synthesizing optical networks [61–63].
For instance, it has been used in the decomposition of unitary lossless multiport networks
providing additional self-configuration capabilities [61], or more general networks allowing for
loss and gain, either starting from the knowledge of the complete transformation matrix as in the
Bloch-Messiah reduction [62] or even from a partial network as in [63].

In our work, we utilize the SVD decomposition to analyze the scattering matrix of a linear optical
device, showing that it leads to a compact and intuitive formulation of the input-output relations
in arbitrary lossy devices, thus allowing for the evaluation of quantum state transformations and
quantum interference in complex linear optical systems. Moreover, our procedure can be applied
to any lossy N-port device, e.g., reciprocal and nonreciprocal devices, and devices with singular
scattering matrices. We illustrate the applicability of our method by deriving the input-output
relations for several reciprocal and nonreciprocal devices such as lossy T-junctions, Wilkinson
power dividers/combiners, circulators and isolators. We expect that our results will motivate
future research of quantum interference phenomena in complex N-port devices.

2. Quantum interference in lossy N-port networks

Classical interference phenomena at an N-port device can be described through its scattering
matrix, S ∈ CN×N , which provides an algebraic relation between the input and output waves:
b = S a, where a = [a1, . . . , aN]

T is a vector containing complex numbers describing the input
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waves, while b = [b1, . . . , bN]
T is the vector of the output waves amplitudes. If the device is

lossless, its scattering matrix is unitary, SS† = I. For a lossless device, quantum interference
phenomena is described by the same matrix. In this case, the scattering matrix provides
input-output relations for the photonic destruction operators (see Fig. 1)ˆ︁b = S ˆ︁a (1)

whereˆ︁a = [ˆ︁a1, . . . ,ˆ︁aN]
T and ˆ︁b = [︂ˆ︁b1, . . . ,ˆ︁bN

]︂T
are now vectors of input and output operators

obeying bosonic commutation relations:
[︂
ân, â†m

]︂
=

[︂
b̂n, b̂†m

]︂
= δnm, and [ân, âm] =

[︁
b̂n, b̂m

]︁
= 0.

Fig. 1. Sketch of input-output relations in a general lossy N-port linear device.

The description of quantum interference in a lossy device is a more complicated task. As
anticipated, the input-output relations need to be generalized [32–35]. To this end, we define
input f̂ =

[︁
f̂1, . . . , f̂N

]︁T and output ĝ = [ĝ1, . . . , ĝN]
T bosonic operators describing the internal

degrees of freedom of the device. In this manner, the scattering matrix S is expanded into a more
general matrix, Λ, providing generalized input-output relations for a lossy device:⎡⎢⎢⎢⎢⎣

b̂

ĝ

⎤⎥⎥⎥⎥⎦ = Λ

⎡⎢⎢⎢⎢⎣
â

f̂

⎤⎥⎥⎥⎥⎦ (2)

The Λ matrix fully describes the input-output relations. In doing so, it contains all the
information required to evaluate quantum interference phenomena. In order to determine the
generalized matrix Λ, it is convenient to write it as a block matrix of the following form [35]:

Λ =

⎡⎢⎢⎢⎢⎣
S A

C D

⎤⎥⎥⎥⎥⎦ (3)

where S and A are respectively the scattering and the absorption matrices, while C and D can be
written in terms of S and A, as demonstrated below. Λ must be a unitary matrix (ΛΛ† = I) since
a linear device preserves the number of excitations. Therefore, the matrices S, A, C and D must
satisfy the following relations:

SS† + AA† = I (4)
CC† + DD† = I (5)
SC† + AD† = 0 (6)

The same conditions can be independently derived by imposing the bosonic commutation
relations for the output operators:[︂

b̂n, b̂†m
]︂
=

N∑︂
p=1

SnpS∗mp + AnpA∗
mp = δnm (7)
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[︂
ĝn, ĝ†m

]︂
=

N∑︂
p=1

CnpC∗
mp + DnpD∗

mp = δnm (8)

[︂
b̂n, ĝ†m

]︂
=

N∑︂
p=1

SnpC∗
mp + AnpD∗

mp = 0 (9)

It can be readily checked that the constraints given by Eqs. (7)–(9) are fully equivalent to those
in Eqs. (4)–(6). Therefore, we can understand the requirement of the unitary property of matrix
Λ as being the result of both: (i) the conservation of the number of quantum excitations or (ii)
the conservation of the bosonic nature of the quantum operators.

Since Λ is unitary, we have Λ−1 = Λ† leading to the inverse replacement rules

ˆ︁a†n →

N∑︂
m=1

(︂
Smnˆ︁b†m + Cmnˆ︁g†m)︂ (10)

ˆ︁f †n →

N∑︂
m=1

(︂
Amnˆ︁b†m + Dmnˆ︁g†m)︂ (11)

Using (10)–(11), the state at the output of a linear optical device can be readily determined. In
particular, the input state can be written as general function of creation operators with the input
operators:

|ψin⟩ = F
(︂ˆ︁a†1, . . . ,ˆ︁a†N ;ˆ︁f †1 , . . . ,ˆ︁f †N )︂ |0⟩ (12)

and the output state |ψout⟩ is determined by substituting (10)–(11) into (12).
A typical scenario in studying quantum interference in lossy devices is starting with a device

with a known scattering matrix, S, which can be determined from the classical characterization
of the device and/or numerical simulations. Then, one has to identify the A, C and D matrices
that compose the complete Λ matrix, fully characterizing quantum interference.

In [35] a general solution for calculating the matrix Λ of lossy two-port devices has been
proposed. The method can be extrapolated to N-port devices. However, the solution requires from
matrix inversion at several steps, and it cannot be applied to devices with singular matrices such as
isolators. Recent works have shown that the Λ matrix reduces to a simpler form for devices with
a real and symmetric scattering matrix [44]. In a related work [64], a polar decomposition has
been used to derive the input-output relations of an arbitrary lossy device, although no examples
of its use are provided. Additionally, a generalized method based on the SVD decomposition
is proposed in [63] to describe arbitrary linear optical transformations, accounting for both
absorption and amplification. In this work, we propose an alternative method based on the
singular value decomposition (SVD), which enables the description of any arbitrary linear device.
Our method leads to a very compact formalism, also providing an intuitive picture on how the
device operates. We provide several examples of its applicability by deriving the input-output
relations for a number of devices, including reciprocal and nonreciprocal devices, as well as
extreme devices with singular and nilpotent scattering matrices.

3. Computation of input-output relations with a singular value decomposition
(SVD)

The main contribution of this work is that the Λ matrix for an N-port device can be written in the
following simple and compact form, for all classes of linear devices:

Λ =

⎡⎢⎢⎢⎢⎣
S A

−A S

⎤⎥⎥⎥⎥⎦ (13)
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Specifically, Eq. (13) can be derived by applying a singular value decomposition (SVD) to
the scattering matrix S, and selecting matrices A, C and D that share the same factorization. To
demonstrate that this is the case, we start by writing the S matrix on its SVD form. The singular
value decomposition (SVD) [45–49] is a powerful method that allows for the factorization of
any rectangular matrix. However, since we focus on matrices characterizing N-port devices, our
derivation only needs to apply to square matrices, S ∈ CN×N . The SVD states that any general
complex matrix S can be factorized as follows

S = UΣSV† (14)

All three matrices involved in the factorization are square matrices, U, ΣS, V ∈ CN×N . First,
ΣS = diag {d1, . . . , dN} is a diagonal matrix whose entries are the singular values of S, i.e., real
numbers corresponding to the nonnegative square roots of the eigenvalues of SS†, arranged in
decreasing order. Its values are also equal or smaller than one, since the device is passive, i.e.,
dn ∈ [0 , 1] ∀n. U is a unitary matrix UU† = I whose columns are the eigenvectors of the matrix
SS†, also known as left singular vectors. Similarly, V is a unitary matrix VV† = I whose columns
are the eigenvectors of the matrix S†S, also called right singular vectors [45–49]. Note that the
SVD is not strictly unique. Although the matrix ΣS is uniquely defined by the unique singular
values of the S matrix, the matrices U and V are only unique up to a phase factor [48].

The SVD provides a useful tool to intuitively understand the response of a device. The SVD
form of the scattering matrix can be visualized as a one-to-one mapping from elements of one
basis of CN , given by the columns of V, to elements on a different basis of CN , given by the
columns of U, with a scalar mapping factor that is real and nonnegative, given by the diagonal
entries of ΣS. In this manner, the response to a given vectorial input can be visualized based
on how it projects onto the basis expanded by V and its transformation into the basis projected
by U. This procedure is similar to an eigendecomposition, except that the eigendecomposition
maps eigenvectors onto a scaled version of themselves, with the scale factor being an in general
complex eigenvalue. We will show that the SVD provides a very intuitive perspective on the
mode of operation of linear optical devices. Many optical devices operate as transmission devices,
where the input from one port propagates through the device and appears transmitted into the
ports, while minimizing the reflection at the input port. With the reflection at the input port
being zero, this mode of operation cannot be described via eigenvectors. Therefore, the use of
two different basis, as it is the case in the SVD, is particularly useful to describe the mode of
operation of transmission devices. Moreover, the most important advantage of the SVD is that
it can be applied to any matrix. Therefore, the method introduced here can be applied to any
linear device, for instance, reciprocal and nonreciprocal devices, extreme devices with real and
complex matrices, devices with singular and nilpotent scattering matrices, etc.

Next, we use the SVD form of the scattering matrix S to solve for the conditions given by
Eqs. (4)–(6). First, we identify the absorption matrix A from condition (4), which can be rewritten
as

AA† = I − SS† = I −
(︂
UΣSV†

)︂ (︂
VΣSU†

)︂
= I − UΣ2

SU† = U
(︁
I − Σ2

S
)︁
U†

= UΣA (UΣA)
†

(15)

where we have defined the diagonal matrix ΣA = diag
{︃√︂

1 − d2
1 , . . . ,

√︂
1 − d2

N

}︃
. It is clear from

Eq. (15) that the matrix A can be identified as A = UΣA. However, it must be noted that the
matrix A is not uniquely defined by condition (4), since any unitary transformation A′ = AU†

A
does not change the product AA†. The freedom in choosing the A matrix physically represents
the possibility of changing the basis on which the internal modes of the device are represented.



Research Article Vol. 30, No. 17 / 15 Aug 2022 / Optics Express 31272

A natural choice might seem to choose UA = U, so that A reduces to a Hermitian, positive
semidefinite matrix. However, we suggest the use of UA = V, so that A and S are factorized by
the same unitary matrices:

A = UΣAV† (16)

It is worth reemphasizing that it would be possible to represent the device modes on an
alternative basis by choosing a different unitary matrix UA. However, the associated Λ matrix
would not be reduced to the compact version in Eq. (13), adopting, in general, more complicated
forms.

Finally, we must identify matrices C and D that fulfill the conditions (5) and (6). Again, we
opt for matrices that are factorized by the same unitary matrices: C = UΣCV† and D = UΣDV†.
Introducing these forms into (5) and (6), we can readily derive the conditions for the diagonal
matrices ΣC = −ΣA and ΣD = ΣS, leading to

C = −A (17)

D = S (18)

Combining (16), (17) and (18) we arrive at the compact form for the Λ matrix for a lossy
N-port network anticipated by Eq. (13). It is straightforward to verify the unitary property of
Λ through Eq. (13) and the decomposition of S and A via Eqs. (14) and (16), respectively. We
note again that we may define different C and D matrices without violating the unitarity of the
Λ matrix, but leading to a more complex formulation. Physically, our choice of the UA matrix
results in representing photonics and device modes using the same basis, which in turn leads to a
compact notation, and it provides an intuitive picture in most cases.

Once the Λmatrix has been completed, one can compute arbitrary quantum state transformations
by using the input-output relations through Eqs. (10)–(12). In addition, the SVD allows for
writing a diagonalized version of the input-output relations. In particular, the relation in Eq. (17)
allows us to rewrite Eq. (10) as follows

ˆ︁a†n →

N∑︂
m=1

(︂
Smnˆ︁b†m − Amnˆ︁g†m)︂ (19)

or, equivalently,ˆ︁a† → STˆ︁b† − ATˆ︁g†. Moreover, changing the basis of input and output operators
as followsˆ︁a† = V∗ˆ︁a†v ,ˆ︁b† = U∗ˆ︁b†u, andˆ︁g† = U∗ˆ︁g†u, leads to a diagonalized version of the inverse
input-output relations, i.e., ˆ︁a†vn → dnˆ︁b†un −

√︂
1 − d2

nˆ︁g†un (20)

or, equivalently,ˆ︁a†v → ΣSˆ︁b†u − ΣAˆ︁g†u. We can interpret this inverse replacement rule in a similar
way as we visualized the SVD form of the scattering matrix: as a mapping between elements
of different basis, with an associated nonnegative scalar mapping factor. Therefore, in the new
basis, a photonic input operator maps into a linear combination of i) a photonic output and ii) a
polaritonic internal excitation, both written on the same basis.

We re-emphasize that a major advantage of the described procedure is that it can be applied to
any lossy device since any general complex scattering matrix S, regardless of its type, admits
a singular value decomposition. Moreover, popular mathematical software packages provide
simple commands and routines to carry out the SVD [65,66], so that it can be easily computed
and/or incorporated into design routines. Finally, we note that although the SVD can be applied
to any matrix, it reduces to a simpler form in some specific cases. For example, if the scattering
matrix is real, S ∈ RN×N , then the three matrices involved in the decomposition in Eq. (14)
will have only real elements. Hence, U and V will be orthogonal matrices and the Hermitian
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adjoint operation acting on V will be reduced to a transposition operation, S = UΣSVT . On
the other hand, if the scattering matrix is a complex symmetric matrix S = ST , then there is a
choice for the unitary matrices such that V = U∗. Therefore, S = UΣSUT , a result known as the
Autonne-Takagi factorization [47]. In practice, the scattering matrix of a reciprocal device is
symmetric, so all reciprocal devices can be described through the Autonne-Takagi factorization.

4. Computation of input-output relations with a unitary diagonalization

Although the SVD provides a general technique that can be applied to any linear device, other
approaches might also be considered in particular cases. For example, the characterization of the
response of a system by identifying its eigenvectors is ubiquitous in all branches of science and
technology. Therefore, a factorization based on eigenvectors might provide additional insight
in many circumstances. To address this point, we consider the diagonalization by a unitary
similarity transformation, in which the scattering matrix S is factorized as follows

S = UλΣλU†

λ (21)

where Σλ = diag {λ1, . . . , λN} is a diagonal matrix whose entries are the eigenvalues of S,
while Uλ is a unitary matrix whose columns are eigenvectors of S. Eigenvectors map onto
a scaled version of themselves through the scattering matrix, which can alternatively provide
an intuitive picture of how a device reacts to external excitations. Unfortunately, the unitary
diagonalization applies exclusively to normal matrices, and it therefore has a more limited
scope. By definition, normal matrices are those which commute with their Hermitian adjoint,
i.e.,

[︁
S, S†

]︁
= SS† − S†S = 0. Hermitian, anti-Hermitian, unitary, orthogonal and symmetric

matrices are typical examples of normal matrices, which can be found in a large number of
physical scenarios [67]. If the scattering matrix of a given device is identified to belong to one of
those classes of matrices, then an analysis via diagonalization by unitary transformations can be
performed.

The use of this decomposition leads to some minor changes in the proposed method to calculate
matrix Λ, since the diagonal entries in Σλ are not necessarily real nonnegative values. Aside
from that, one can proceed with the derivation in a very similar manner. First, we assume that
the Aλ = UλΣAλU†

λ, Cλ = UλΣCλU†

λ and Dλ = UλΣDλU†

λ matrices are diagonalizable by the
same unitary matrix. Then, the diagonal matrices solving conditions (4)–(6) are found to be

ΣAλ = diag
{︃√︂

1 − |λ1 |
2, . . . ,

√︂
1 − |λN |

2
}︃
, ΣCλ = −ΣAλ and ΣDλ = Σ

∗
λ. In this manner, the

matrix Λ takes the following form:

Λ =

⎡⎢⎢⎢⎢⎣
S Aλ

−Aλ S†

⎤⎥⎥⎥⎥⎦ (22)

To finalize, it is worth remarking that there is a direct and closed relationship between
the singular value decomposition and the unitary diagonalization. Since the singular values
correspond to the absolute values of the eigenvalues (dn = |λn |), it is straightforward to
obtain an SVD decomposition of a normal matrix from its unitary diagonalization. To this
end, if the nth-eigenvalue is defined as λn = |λn | eiϑn we can write Σλ = ΣϑΣ |λ | , where
Σϑ = diag

{︁
eiϑ1 , . . . , eiϑN

}︁
and Σ |λ | = diag {|λ1 | , . . . , |λN |}. Then, Eq. (21) can be rearranged

as S = (UλΣϑ)Σ |λ |U†

λ which is an SVD of S with U = UλΣϑ , ΣS = Σ |λ | and V = Uλ. For the
same reason, it follows that ΣAλ = ΣA.

5. Examples of input-ouput relations

Once we have outlined a general method to compute the Λ matrix, we demonstrate its applicability
calculating the input-output relations for several examples of popular linear devices, both reciprocal
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and nonreciprocal (see Fig. 2). In these examples, the SVD and unitary similarity diagonalizations
are computed by means of a commercial mathematical package [66].

Fig. 2. Transmission line circuits of (a) a lossy T-junction power divider and (b) a Wilkinson
power divider, both with an equal power splitting ratio. Schematic representations of (c) a
circulator and (d) an asymmetric transmission device.

5.1. Reciprocal devices

5.1.1. Lossy T-junction power divider

As a first example, we study the case of a lossy T-junction power divider, whose schematic
representation is depicted in Fig. 2(a). The functionalities of a lossy T-junction power divider
can be inferred from its scattering matrix:

S = 1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 1 1

1 0 1

1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(23)

It consists of a three-port device with all its ports matched (Sii = 0), that performs power division
and power combining with an equal power splitting ratio (Sij = 1/2, ∀i ≠ j). Furthermore, since
it is a reciprocal device, its S matrix is symmetric (Sij = Sji). Therefore, lossy T-junction power
dividers provide the functionalities of power splitting and power combining, while guaranteeing
that there are no back reflections. Moreover, all ports have exactly the same response, so that the
device can be operated in any direction. However, these desired characteristics are achieved at
the cost of residual absorption and a low transmission efficiency [68].

Next, we obtain the Λ matrix via a singular value decomposition of S, i.e., S = UΣSV†. For
the scattering matrix reported in (23), the involved matrices are given by

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1√
3

1√
2

1√
6

1√
3

0 −

√︂
2
3

1√
3

− 1√
2

1√
6

⎤⎥⎥⎥⎥⎥⎥⎥⎦
ΣS =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0

0 1
2 0

0 0 1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
V =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1√
3

− 1√
2

− 1√
6

1√
3

0
√︂

2
3

1√
3

1√
2

− 1√
6

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(24)
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where it is easy to verify that U and V are real unitary matrices since S has only real elements.
Next, we construct an absorption matrix A that is factorized by the same unitary matrices as in S.
First, we find by definition that ΣA =

√
3

2 diag {0, 1, 1}, leading to

A = UΣAV† =
1

2
√

3

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−2 1 1

1 −2 1

1 1 −2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(25)

Finally, substituting S and A into Eq. (13) leads to a complete form for the Λ matrix. In this
manner, by using the transformation rules given in Eqs. (10)–(11), it is possible to evaluate any
quantum state transformation introduced by a T-junction power divider.

By comparing the column vectors of U and V, we find that they either are equal or differ by a −1
factor. Due to the similarity of the basis expanded by the U and V matrices, the description of the
device provided with the SVD in this case must have very close relationship with an eigenvector
decomposition. Since all real symmetric matrices are normal matrices, we can illustrate how
this is the case by factoring the scattering matrix of the T-junction power divider with a unitary
diagonalization, i.e., S = UλΣλU†

λ. For this particular case, the Σλ and Uλ matrices are given by

Uλ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1√
3

− 1√
2

− 1√
6

1√
3

0
√︂

2
3

1√
3

1√
2

− 1√
6

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Σλ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0

0 − 1
2 0

0 0 − 1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(26)

As predicted, ΣAλ = ΣA =
√

3
2 diag {0, 1, 1} and the absorption matrix associated with the

unitary diagonalization of S can then be defined as

Aλ = UλΣAλU†

λ =
1

2
√

3

⎡⎢⎢⎢⎢⎢⎢⎢⎣
2 −1 −1

−1 2 −1

−1 −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(27)

Analogously to the SVD case, substitution of S and Aλ in Eq. (22) leads to an alternative form
for the Λ matrix, that could also be used to evaluate any quantum state transformation.

Comparison of the decompositions in Eq. (24) and Eq. (26) allows us to review the simple
connection between an SVD decomposition and a unitary diagonalization. Specifically, the
singular values in the diagonal entries of ΣS are the absolute values of the eigenvalues, which
are the diagonal entries of Σλ. It is also evident that U = UλΣϑ , with Σϑ = diag {1,−1,−1} ,
revealing how the SVD decomposition could be readily obtained from the unitary diagonalization.
Finally, it is interesting to note that in this example A = −Aλ, making it clear that the choice in
the factorization of the S matrix only results in a trivial change in the basis describing the internal
modes of the device.

5.1.2. Wilkinson power divider

The next reciprocal device (Sij = Sji) we analyze to compute its Λ matrix is the Wilkinson power
divider [68]. A schematic representation of the device is reported in Fig. 2(b), while its scattering
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matrix is given by

S = i
√

2

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 1 1

1 0 0

1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(28)

It can be drawn from (28) that, just as the lossy T-junction power divider, the Wilkinson power
divider is a three-port reciprocal network with all its ports matched (Sii = 0). The main difference
is that the Wilkinson divider guarantees isolation between its output ports (S23 = S32 = 0), as well
as power splitting and combining capabilities with unit efficiency (S12 = S13 = 1/

√
2). However,

these properties come at the cost of not having the same response when the device is operated in
different directions.

For the scattering matrix in (28), a singular value decomposition, i.e., S = UΣSV†, is given by
the following matrices

U = i
√

2

⎡⎢⎢⎢⎢⎢⎢⎢⎣
√

2 0 0

0 1 −i

0 1 i

⎤⎥⎥⎥⎥⎥⎥⎥⎦
ΣS =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0

0 1 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
V = 1

√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0

√
2 0

1 0 −1

1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(29)

In this case, the SVD decomposition provides a very intuitive description of how the device
operates. Specifically, comparing the first columns of U and V we find that when the device is
symmetrically excited in the second and third ports, all the power is combined into the first port.
On the other hand, looking at the second column of U and V shows the if the device is excited
from port 1, the power is equally divided into ports two and three. Finally, the analysis of the
third column shows that the out-of-phase excitations of ports 2 and 3 leads to perfect absorption
of the input power, i.e., coherent perfect absorption (CPA).

Next, we compute a form of the absorption matrix A that shares a decomposition with the
same unitary matrices as S. The matrix A is then given by

A = UΣAV† =
1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0

0 1 −1

0 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(30)

where ΣA = diag {0, 0, 1}. With this information, the input-output relations can be identified by
constructing the Λ matrix of the device by substitution of S and A into Eq. (13).

It can be readily verified that the S matrix for the Wilkinson power divider is normal. Therefore,
a Wilkinson power divider can also be analyzed with a unitary diagonalization. Specifically, the
scattering matrix is factorized as S = UλΣλU†

λ, with the following matrices

Uλ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
− 1√

2
1√
2

0
1
2

1
2 − 1√

2
1
2

1
2

1√
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Σλ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−i 0 0

0 i 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(31)

As expected, ΣAλ = ΣA = diag {0, 0, 1}, and the absorption matrix in this decomposition is
given by

Aλ = UλΣAλU†

λ =
1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0

0 1 −1

0 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(32)
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In this case, the SVD and the unitary diagonalization provide very different perspectives of the
same device. While the SVD describes the mode of opertation of the Wilkinson power divider
as a transmission device, the unitary diagonalization emphasizes those input combinations that
are simply scaled by the interaction with the device. At the same time, this example allow us
to illustrate that the SVD and unitary diagonalizations are not unique decompositions. In fact,
we recall that we can obtain an alternative SVD decomposition from a unitary diagonalization
by extracting the phases of Σλ = Σ |λ |Σθ . However, doing this excercise with the unitary
diagonalization above does not lead to the same SVD decomposition reported in Eq. (29).

5.2. Nonreciprocal devices

5.2.1. Lossy circulator

Next, we extend our analysis to nonreciprocal components (having nonsymmetric scattering
matrices) to show that the proposed method to compute the Λ matrix can be applied to any linear
device. As a first example, we consider a lossy circulator. The circulator is a nonreciprocal
three-port device with a simple operating principle: the input power from one port flows to the
adjacent one, depending on the direction of rotation determined in its design [68]. Following this
functioning principle, we have modeled a lossy circulator, whose schematic representation is
depicted in Fig. 2(c). The associated scattering matrix can be written as follows

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 0 a

b 0 0

0 c 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(33)

and the transmission coefficients are a = |a| eiϑa , b = |b| eiϑb , c = |c| eiϑc with |a| , |b| , |c| ≤ 1.
To obtain the Λ matrix of the lossy circulator we must start by performing a singular value

decomposition of the scattering matrix in (33), i.e., S = UΣSV†. This can be accomplished
through the matrices

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
eiϑa 0 0

0 eiϑb 0

0 0 eiϑc

⎤⎥⎥⎥⎥⎥⎥⎥⎦
ΣS =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
|a| 0 0

0 |b| 0

0 0 |c|

⎤⎥⎥⎥⎥⎥⎥⎥⎦
V =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 1 0

0 0 1

1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(34)

Again, being mostly a transmission device, the SVD decomposition provides an intuitive
picture of the operating principle. Comparing the columns vectors of the U and V matrices it is
easy to identify that one port is individually connected to the next port. The diagonal elements of
ΣS coincide with the absolute values of the transmission coefficients a, b, and c, while U is also a
diagonal matrix whose diagonals entries are the phases of those transmission coefficients.

To complete the generalized input-output relations, we compute a form of the absorption
matrix A with a similar decomposition as S:

A = UΣAV†

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 0 eiϑa

√︂
1 − |a|2

eiϑb

√︂
1 − |b|2 0 0

0 eiϑc

√︂
1 − |c|2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(35)
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where ΣA = diag
{︃√︂

1 − |a|2,
√︂

1 − |b|2,
√︂

1 − |c|2
}︃
. Finally, we must substitute S and A into

Eq. (13) to obtain the Λ matrix that fully describes the input-output relations, and allows for the
analysis of any quantum state transformation that might take place in a lossy circulator.

In general, a lossy circulator does not have a normal matrix, and it cannot be described through
a unitary diagonalization. Since circulators are ubiquitous in many optical setups, it is a good
example to show how the generality provided by the SVD might be required in many practical
scenarios. However, a unitary diagonalization of a lossy circulator is still possible in the particular
case in which the three nonzero transmission coefficients have the same absolute value, i.e.,
|a| = |b| = |c|. With this restriction the scattering matrix of the circulator becomes normal.
For the sake of simplicity, we consider a circulator with the same transmission properties (both
magnitude and phase) for all its ports, i.e., a = b = c. A unitary diagonalization of the S matrix
of the uniform lossy circulator is given by the matrices

Uλ =
1
√

3

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 e−i 2π

3 ei 2π
3

1 ei 2π
3 e−i 2π

3

1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Σλ = a

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0

0 ei 2π
3 0

0 0 e−i 2π
3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(36)

The unitary diagonalization of the circulator provides an interesting perspective on its mode
of operation. Beyond the port-to-port transmission picture, the action of a circulator can be
visualized as the circular shift of the elements of a vector by one position. Therefore, eigenvectors
must correspond to vectors with the property that a circular shift is equivalent to the multiplication
by a scalar factor. It is found in (36) that the elements of the eigenvectors correspond to points on
a circumference of radius

√
3 in the complex plane, angularly separated by a phase factor ei 2π

3 .
In this manner, the circular shift of the vector corresponds to the multiplication by scalar phase
factors e±i 2π

3 , playing the role of eigenvalues. On the the other hand, the absorption matrix Aλ

takes the simpler form

Aλ = UλΣAλU†

λ =

√︂
1 − |a|2

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(37)

with ΣAλ = Aλ. This simple diagonal form illustrates that light is separatedly dissipated into
different modes, with no coherent effects. Finally, substitution of S and Aλ in Eq. (22) gives us
an alternative form for the Λ matrix of a uniform lossy circulator.

The study of the lossy circulator remarks the need for adopting an SVD decomposition of S to
compute the Λ matrix for practical devices. Furthermore, it emphasizes how it describes the
behavior of transmission devices, and it shows that it can be applied to general nonreciprocal
devices.

5.2.2. Asymmetric transmission devices

Our final example comprises all lossy devices whose functionalities can be described through the
schematic representation depicted in Fig. 2(d) and the scattering matrix

S =
⎡⎢⎢⎢⎢⎣
0 a

b 0

⎤⎥⎥⎥⎥⎦ a ≠ b (38)

Such devices consist of matched two-port devices with asymmetric transmission coefficients
a = |a| eiϑa and b = |b| eiϑb . By definition, these are nonreciprocal devices. In the limiting case
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where a = 1 and b = 0 (or a = 0 and b = 1), the scattering matrix in (38) represents an ideal
isolator: a device perfectly transparent in one direction, while being a perfect absorber from the
reverse direction [68]. On the other hand, if b = −a with a ≠ 1, the resulting scattering matrix
describes a lossy gyrator, i.e., the lossy version of the ideal gyrator which has a 180◦ differential
phase shift [68].

Using the SVD decomposition, the scattering matrix is factorized as S = UΣSV†, with

U =
⎡⎢⎢⎢⎢⎣
eiϑa 0

0 eiϑb

⎤⎥⎥⎥⎥⎦ ΣS =

⎡⎢⎢⎢⎢⎣
|a| 0

0 |b|

⎤⎥⎥⎥⎥⎦ V =
⎡⎢⎢⎢⎢⎣
0 1

1 0

⎤⎥⎥⎥⎥⎦ (39)

Similar to the circulator, the asymmetric transmission device basically operates in two different
transmission modes, and its operating principle is intuitively described by inspecting the column
vectors of the U and V matrices in (39). Next, we find a form of the absorption matrix A,
factorized by the same unitary matrices U and V:

A = UΣAV† =

⎡⎢⎢⎢⎢⎣
0 eiϑa

√︂
1 − |a|2

eiϑb

√︂
1 − |b|2 0

⎤⎥⎥⎥⎥⎦ (40)

where ΣA = diag
{︃√︂

1 − |a|2,
√︂

1 − |b|2
}︃
. Then, substituting S and A into Eq. (13) leads us to

the Λ matrix providing the input-output relations to describe quantum states transformations
produced by two-port asymmetric transmission devices.

The alternative approach to compute the Λ matrix via the unitary diagonalization of S is only
possible if |a| = |b|. Since the |a| = |b| condition implies a symmetric magnitude transition, it
suggests that an SVD will be preferred for most asymmetric transmission devices. However, a
unitary diagonalization of the S matrix is still possible for the particular case of a lossy gyrator,
i.e., S = UλΣλU†

λ, as b = −a. In fact, a unitary diagonalization of the S matrix of a lossy gyrator
is given by

Uλ =
1
√

2

⎡⎢⎢⎢⎢⎣
−i i

1 1

⎤⎥⎥⎥⎥⎦ Σλ = a
⎡⎢⎢⎢⎢⎣
i 0

0 −i

⎤⎥⎥⎥⎥⎦ (41)

while the absorption matrix Aλ can be written as follows:

Aλ = UλΣAλU†

λ =

√︂
1 − |a|2

⎡⎢⎢⎢⎢⎣
1 0

0 1

⎤⎥⎥⎥⎥⎦ (42)

with ΣAλ = Aλ. Finally, we must substitute S and A into Eq. (22) to obtain the associated Λ
matrix.

The analyzed examples highlight, once again, how applying an SVD of the scattering matrix
we can compute the Λ matrix of any lossy device, including nonreciprocal devices with nilpotent
matrices. Another major advantage of the proposed method, as mentioned earlier, is that SVD
routines are available in commonly used mathematical software packages [65,66].

6. Quantum interference within an N-port epsilon-near-zero hub

After identifying the input-output relations, explicitly defining quantum state transformations
taking place in a large device is a cumbersome task. In essence, the complexity scales with the
size of the system (i.e., the number of ports) and the size of the photonic states (i.e., the number of
input photons). In this section, we demonstrate how our method enables the analysis of quantum
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interference phenomena in large lossy networks with an arbitrary number of ports N. Specifically,
we study the nonclassical light excitation of N-port epsilon-near-zero (ENZ, ε ≈ 0) hubs.

As schematically depicted Fig. 3, ENZ hubs consist of an arbitrarily shaped ENZ body
connected to N input/output waveguides. Because the wavelength gets effectively streched in
ENZ media [69], ENZ hubs present highly symmetric scattering properties. In addition, the
permeability of an ENZ section can be controlled via photonic doping [70], which enables further
tuning of its scattering properties. ENZ hubs are characterized for exhibiting supercoupling
effects [71] and a power flow distribution equivalent to ideal fluid flow [72]. In addition, their
highly symmetric scattering properties can be employed to tailor dipole-dipole interactions
[73], leading to multiqubit subradiant, maximally entangled states [74] and coherent perfect
absorbers (CPA) [75]. Two-port [75–77] and multi-port [78] ENZ hubs have been experimentally
demonstrated.

Port 1

Port N

Fig. 3. Schematic representation of an epsilon-near-zero (ENZ) hub.

Here, we discuss the performance of an ENZ hub with N identical waveguide ports, whose
permeability (µ ≠ 0) has been engineered by using photonic doping to provide CPA capabilities,
as discussed in [75]. Specifically, the scattering matrix of an N-port CPA ENZ hub can be
compactly written as:

S = −
1
N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − N 1 · · · 1

1
. . . . . .

...
...

. . . . . . 1

1 · · · 1 1 − N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦N×N

= I − 1
N

1 (43)

where I and 1 are the identity and all-ones N × N matrices, respectively. Inspection of the
scattering matrix in (43) reveals some fundamentals on the functioning of the ENZ hub. It is a
reciprocal device (Sij = Sji) with all the N ports being indistinguishable from one another as they
share the same scattering properties: reflection coefficient Sii = 1− 1

N and transmission coefficient
Sij = − 1

N (∀ i ≠ j). This is a unique aspect of ENZ hubs. Because the wavelength is effectively
expanded within ENZ media, the hub behaves as if it had collapsed into an electromagnetic point.
For this reason, input ports exhibit the same scattering properties independently of where they
are connected.

For this highly symmetric scattering matrix, it is possible to find an SVD decomposition even
for the case of an arbitrary number of ports N. The matrices U, ΣS and V involved in the SVD
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are given by

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1√
2

− 1√
6

− 1√
12

· · · − 1√
N(N−1)

1√
N

0 0 0 0
√︂

N−1
N

1√
N

...
...

... . . . − 1√
N(N−1)

...
... 0

√︂
3
4

...
...

...

0
√︂

2
3 − 1√

12

...
... 1√

N
1√
2

− 1√
6

− 1√
12

· · · − 1√
N(N−1)

1√
N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦N×N

ΣS =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

0
. . . 0

...
... 0 1

...

0 · · · · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦N×N

V = U

(44)
The SVD highlights new characteristics of the operation of the device for a given excitation.

Comparison of U and V columns and the associated singular value in ΣS reveals that we can
access N − 1 transparent modes and 1 CPA mode. Interestingly, it is found that, independently of
the number of ports N, the response of the device always has a single lossy mode, corresponding
to CPA operation. The CPA mode results from the balanced excitation of the N ports, as described
by the last column of both matrices U and V, and the zero singular value in the diagonal of ΣS.
The first N − 1 columns of U and V represent transparent modes, whose singular value in the
diagonal of ΣS equals one. The operating principle of the transparent modes can be physically
understood as follows. Each transparent mode is described by the nth column n = 1, . . . , N − 1
of the U and V matrices, and it consists of the excitation of a preferred port (given by the
antidiagonal element in such column, and with amplitude

√︁
n/(n + 1)), which is compensated

by the symmetric excitation in n additional ports with amplitude −1/
√︁

n(n + 1). Such balanced
combination leads to a zero field within the device, and thus zero absorption.

The absorption matrix that shares the same SVD than S is given by:

A = UΣAV† =
1
N

1 (45)

where ΣA = diag {0, . . . , 0, 1}. Therefore, according to Eq. (19), we can compactly write the
inverse replacement rule that determines quantum state transformations within the ENZ hub:

â† →
(︃
I − 1

N
1
)︃

b̂† − 1
N

1ĝ† (46)

At this point, we can address the quantum interference phenomena in an ENZ hub. Let us start
by analyzing the most simple scenario: a single-photon source connected to the nth input port.
The state of the system transforms as follows

|Ψin⟩ = â†n |0⟩ → |Ψout⟩ =

(︃
b̂†n −

1
√

N
B̂† −

1
√

N
Ĝ†

)︃
|0⟩ (47)

where for the sake of simplicity we have defined the collective operators B̂ = 1√
N

N∑︁
n=1

b̂†n and

Ĝ = 1√
N

N∑︁
n=1

ĝ†n. From (47) we can infer that the photon is reflected with probability (N−1)2
N2 ,

transmitted to other channel with probability 1
N2 , and absorbed with probability 1

N . This
example allows us to address the more complex case where there is a single-photon input state
corresponding to a superposition of the photon being in all input channels. This state is associated
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with the collective operator Â = 1√
N

N∑︁
n=1

â†n and it transforms as follows:

|Ψin⟩ = Â† |0⟩ → |Ψout⟩ =
1
√

N

N∑︂
n=1

(︃
b̂†n −

1
√

N
B̂† −

1
√

N
Ĝ†

)︃
|0⟩

= −Ĝ† |0⟩

(48)

Therefore, a single photon in such an input state will be absorbed with unit probability by the
device, thus confirming the existence of single-photon CPA capabilities.

Next, we consider the case of N identical single-photon sources connected to each of the ports
of the device. This is a notoriously difficult problem, where obtaining information about the
output photon distribution corresponds to boson sampling. As we will show, the use of the SVD
allows us to derive closed-form solutions for some probabilities of interest, even for the case of
an arbitrary number of ports N. In this case, the transformation of the input state can be written
as follows:

|Ψin⟩ =

N∏︂
n=1

â†n |0⟩ → |Ψout⟩ =

N∏︂
n=1

(︃
b̂†n −

1
√

N
B̂† −

1
√

N
Ĝ†

)︃
|0⟩

=

N∏︂
n=1

(︂
F̂†

n + R̂†
)︂
|0⟩ =

N∑︂
n=0

Ĉ (N, n)
(︂
R̂†

)︂N−n
|0⟩

(49)

where we have defined the collective operators F̂†
n = b̂†n − 1√

N
B̂† and R̂† = − 1√

N
Ĝ†. Additionally,

Ĉ (N, 0) = 1 as a definition and, for n ⩾ 1, Ĉ (N, n) is the operator constructed by adding all
possible combinations with n elements from the set of F̂†

n operators. For instance, for n = 1 we
have that Ĉ (N, 1) = F̂†

1 + F̂†

2 + · · · + F̂†

N and for n = N we obtain Ĉ (N, N) = F̂†

1F̂†

2 · · · F̂
†

N . The
interest of this decomposition is that it is given by a series in which the nth element corresponds
to the absorption of N − n photons.

It is clearly appreciated from Eq. (49) that even for a relatively low number of ports N,
determining the distribution of the output photons is a complicated task. However, our method
allows us to extract useful information on the response of the lossy network. To illustrate this
point, we will focus on the probability Pn of n photons being absorbed, which admits a tractable
form in some limiting cases. First, we find that the probability PN of all photons being absorbed
is associated with the operator of the n = 0 term

Ĉ (N, 0)
(︂
R̂†

)︂N
=

(︃
−

1
√

N
Ĝ†

)︃N
=

{︄
(−1)N

√︃
N!
NN

}︄ {︃
1

√
N!

(︂
Ĝ†

)︂N
}︃

(50)

From this expression, we can infer the following closed form expression for the probability
of all photons being absorbed: PN =

N!
NN , valid for a CPA ENZ hub with an arbitrary number

of ports N. This expression reveals that PN monotonically decreases with the number of ports,
from PN = 1/2 for N = 2 to limN→∞ PN = 0. We emphasize that identifying such property of
the network is a highly nontrivial task. It is only facilitated by the SVD decomposition, which
highlights that a single lossy mode exists independently of the number of ports of the device.

Next, the probability that all photons except one are being absorbed is associated with the
operator

Ĉ (N, 1)
(︂
R̂†

)︂N−1
=
(︂
F̂†

1 + F̂†

2 + · · · + F̂†
n

)︂ (︂
R̂†

)︂N−1

=

N∑︂
n=1

(︃
b̂†n −

1
√

N
B̂†

)︃ (︂
R̂†

)︂N−1
= 0

(51)
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In this manner, our analysis identifies the interesting property of CPA ENZ hubs that, for any
number of ports N, the probability that one and only one photon will survive is zero, i.e., P1 = 0.
Again, this is a nontrivial property for a network with an arbitrary number of ports N.

In general, all probabilities can be numerically computed from the output state we derived in
Eq. (46). However, it is a intensive task even for a device with a moderate number of ports. For
example, the probability that no photons are absorbed is associated with the compact operator

Ĉ (N, N)

(︂
R̂†

)︂0
=
(︂
F̂†

1F̂†

2 · · · F̂
†
n

)︂
=

N∏︂
n=1

(︃
b̂†n −

1
√

N
B̂†

)︃
(52)

with no evident closed-form solution. However, we can at least recover the limits P0 =
1
2 for

N = 2 and P0 =
1
2 for N → ∞.

In conclusion, our method allows for the determination of the input-output relations even for a
lossy network with an arbitrary number of ports N, from which different outcome probabilities
can be numerically computed. In addition, the SVD provides physical insight on the mode of
operation of the network, enabling the calculation of certain outcome probabilities, even for
networks with an arbitrary number of ports.

7. Conclusions

A general procedure to compute the input-output relations characterizing quantum interference
in lossy linear devices has been presented. The proposed method is based on a singular value
decomposition (SVD) of the scattering matrix S, and it can be applied to any type of linear device.
In fact, it can be evaluated with popular mathematical software packages, so that evaluating
input-output relations becomes a very simple task. An alternative decomposition based on a
unitary diagonalization of S has also been proposed. This procedure allows for a description in
terms of the eigenvectors of the scattering matrix, but its applicability is restricted to devices
with a normal scattering matrix. Both approaches, the SVD decomposition, and the unitary
diagonalization, provide different but intuitive and even complementary perspectives on the
principle of operation of lossy linear devices. The efficacy of the procedure was demonstrated
by computing, with both approaches where possible, input-output relations of popular lossy
linear devices. Our examples have included both reciprocal and nonreciprocal devices, such
as T-junction and Wilkinson power dividers, circulators and asymmetric transmission devices.
Additionally, by studying quantum state transformations within an epsilon-near-zero (ENZ) hub,
we have illustrated that our method enables the analysis of quantum interference of potentially
large lossy N-port networks, even providing some closed form solutions for particular probabilities.
We believe our results will motivate further research in evaluating the impact of loss in linear
optics quantum technologies, as well as for discovering novel quantum interference phenomena
in advanced devices.
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