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A B S T R A C T   

Freshwater macrophytes include different groups of plants that are capable of growing in or very close to aquatic 
environments (spermatophytes, pteridophytes and bryophytes). These plants play a fundamental role in their 
ecosystems, regulating biogeochemical cycles, hydrology and sediment dynamic. Currently, many exotic fresh-
water macrophytes are being anthropogenically introduced into new ecosystems, posing a serious problem as a 
consequence of their massive and uncontrolled growth. Despite this, these plants can have different uses, such as 
biomarkers, phytoremediators, producers of metabolites of interest, or biomass formers for the production of 
feed, biofuels, pellets or ceramics. In this sense, the use of freshwater macrophytes in vivo, as fresh tissues, dry 
matter, compost, vermicompost, anaerobic digestate, liquid extracts or biochar has reported important benefits 
in different crops, promoting plant growth, increasing yield, reducing use of chemical fertilizers or reducing the 
diseases incidence. These benefits are the consequence of different mechanisms of action of the use of macro-
phytes as an agricultural resource, such as the contribution of nutrients, the improvement of the microbiota and 
soil structure, the elimination of heavy metals and pollutants, or the presence of antimicrobial compounds in 
their tissues. This review proposes the use of the biomass of these macrophytes, whose uncontrolled growth is an 
environmental problem, as an agricultural resource with important agricultural, environmental and economic 
benefits. A total of 118 published papers were analyzed and discussed.   

1. Introduction 

According to estimates made by the United Nations, the world 
population will have been reached 9.7 billion people by the year 2050, 
which would require an increase of 70% in food productivity (FAO, 
2009). This population would reach 11.2 billion people in the year of 
2100, requiring an increase of up to 200% (Crist et al., 2017). According 
to these projections, providing food to the planet’s population is one of 
the key challenges for today’s world, being the only way to ensure food 
security in the immediate future (Baer-Nawrocka and Sadowski, 2019). 
Therefore, the current rates of population growth make it essential to 
develop new strategies for sustainable food production (Poveda, 2021). 

Conventional high-yield agriculture focuses on the use of agricul-
tural chemicals (fertilizers and pesticides) and water and soil resources 
in a way that is very harmful to the environment (Plumecocq et al., 
2018). In particular, the use of chemical fertilizers and pesticides in the 
world is currently 200 and 3.5 million tons per year, respectively 
(Sharma et al., 2019; Kang et al., 2022). Their massive use causes serious 
problems in the agro-system, such as damage to soil microflora and 

microfauna, or hinder the absorption of important mineral nutrients by 
plants (Sharma et al., 2019; Kang et al., 2022). In addition, they cause 
water pollution, which causes serious environmental and health damage 
(Basheer, 2018a,b). 

Within the Sustainable Development Goals (SDGs), sustainable 
agriculture is considered as a key piece for global development (Janker 
et al., 2018). The concept of sustainable agriculture must be approached 
from three different and interrelated perspectives, such as economics 
stability, social stability and ecological/environmental sustainability 
(Farooq et al., 2019). Therefore, the search for environmental-friendly 
alternatives based on a circular economy is fundamental in the neces-
sary development of sustainable agriculture (Poveda, 2021). One of 
these alternatives involves the use of new fertilizers to replace chemical 
fertilizers, such as nanofertilizers, biodegradable polymer-based fertil-
izers or biochar-based fertilizers (Calabi-Floody et al., 2018). 

Organic fertilizers include all sources of slow-release plant nutrients 
formed from living organisms (Singh et al., 2020; Shaji et al., 2021). The 
most widely used include compost, biochar, manure, guano, or green 
manures, being fertilizers capable of mitigating the risk of 
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eutrophication, contamination of groundwater and over-fertilization 
(Singh et al., 2020; Shaji et al., 2021). The role of organic fertilizers in 
sustainable agricultural systems and in improving plant productivity 
includes increased soil porosity and aeration, increased water infiltra-
tion rate, decreased acidity, increased diversity and quantity of benefi-
cial macro- and micro-organisms, and increased nutrient content (Singh 
et al., 2020). 

The objective of this review is to compile all the existing results so far 
in the use of freshwater macrophytes as green manures with benefits in 
crop growth, tolerance against abiotic stresses and defense against 
pathogens and pests, representing a good alternative in the development 
of sustainable agriculture; moreover, discussing their benefits, mecha-
nisms of action and forms of application. This review represents the first 
document compiling all the existing literature to date on the use of 
freshwater macrophytes as an agricultural resource, providing an 
important discussion on the topic in a comprehensive and orderly 
manner. 

2. Freshwater macrophytes 

Freshwater macrophytes, hydrobionts or aquatic plants include all 
those members of the kingdom Plantae that grow in water medium or 
close to water, with the exception of algae, considered as microphytes in 
these ecosystems (rivers, basins, lakes) (Soloviy and Malovanyy, 2019). 
This group of macrophytes includes free floating, floating but rooted, 
submerged, and amphibian plants, within the spermatophytes, pteri-
dophytes (ferns and fern allies) and bryophytes (mosses, liverworts and 
hornworts), being vascular less than 2% of aquatic plants (Bornette and 
Puijalon, 2009; Soloviy and Malovanyy, 2019). Macrophytes are 
important primary producers in freshwater ecosystems, serving as 
habitats for periphytons, invertebrates (including zooplankton), and 
vertebrates (fish and frogs). This group of plant species plays a key role 
in biogeochemical cycles, such as organic carbon production, extracting 
carbon dioxide from the air and water and fixing it in photoassimilates 
(photosynthesis), or nitrogen and phosphorous mobilization, absorbing 
excess nutrients from the water and preventing major environmental 
problems such as eutrophication. Furthermore, due to their ability to 
modify water flows, macrophytes freshwater are capable of modifying 
hydrology and sediment dynamic, although there may be other factors 
involved. Therefore, they are essential components for freshwater eco-
systems (Bornette and Puijalon, 2009). 

Regarding the freshwater macrophytes world distribution, there is a 
hitherto general-accepted hypothesis that indicates that most aquatic 
macrophytes have broad world distributions, which has been confirmed 
by a recent study on the diversity and endemism patterns of 3457 
macrophyte species (Murphy et al., 2019). In this respect, the Neotropics 
and the Orient have the richest ecozones in terms of macrophyte species, 
while the Sahara/Arabian deserts and some areas of the Arctic have the 
lowest macrophyte diversity (Murphy et al., 2019). Despite this, there 
are differences in the communities of freshwater macrophytes that 
inhabit different ecosystems, as a consequence of the action of envi-
ronmental variables and human impact (Elo et al., 2018). Freshwater 
ecosystems are threatened all over the world due to important factors 
derived from human activity, such as climate change, altered water re-
gimes, catchment land-use changes, eutrophication (run-off from agri-
cultural, industrial or urban areas), and establishment of invasive plants. 
Due to the importance of these aquatic systems in ecosystems and the 
ability of freshwater macrophytes to act as ecological bioindicators, due 
to the presence/absence of certain species in certain ecosystems, it is 
essential to improve our knowledge of the ecology and management of 
native and alien plants to address threats to freshwater in order to 
protect and restore aquatic habitats (Hofstra et al., 2020). 

Biological invasion in freshwater ecosystems by alien macrophytes 
can cause significant damage, due to the development of cascading ef-
fects on functional integrity and structural organization of the 
ecosystem. At present there are several freshwater macrophyte species 

described as dangerous alien plants, among which Eichhornia crassipes, 
Egeria densa, Trapa natans, Hygrophila polysperma, Lagarosiphon major, 
Myriophyllum aquaticum or Salvinia molesta stand out for their distribu-
tion and worldwide importance (Brundu, 2015). In this sense, it is 
important to highlight that many of the recent invasions occur due to 
human activities linked with international trade for ornamental pur-
poses in ponds and aquarium. The main damages of the introduction of 
exotic macrophytes in new ecosystems derive from its rapid growth and 
dispersion, which causes the introduction of allelopathic chemicals that 
release into water, decreased penetration of light, increased turbidity 
and decreased dissolved oxygen, due to the decomposition of the large 
plant biomass formed (Hassan and Nawchoo, 2020). 

3. Possible uses of freshwater macrophytes 

Despite the possible ecological problems derived from the massive 
growth of native and alien freshwater macrophytes, there are numerous 
fully developed uses today, such as biomarkers, phytoremediators, 
producers of metabolites of interest (antimicrobials, herbicides, in-
secticides, drugs), or biomass formers for the production of feed, bio-
fuels, pellets, or ceramics, as has been compiled for alien plants such as 
E. crassipes (Su et al., 2018). The study of macrophyte communities 
present in a freshwater ecosystem can provide data on the ecological 
status of that site (Kuhar et al., 2011; Ciecierska and Kolada, 2014) and 
the quality of its waters (Ceschin et al., 2010; Kolada, 2010), indicating 
important aspects such as eutrophication (Kolada et al., 2014; Han and 
Cui, 2016) or the presence of anthropogenic pollutants (Nunes et al., 
2014; Alkimin et al., 2019). 

The use of macrophytes as freshwater phytoremediation agents has 
been widely compiled by several authors, both through the establish-
ment of populations in these water bodies and through the manufacture 
of absorbent materials from their biomass, mechanisms referred to as 
phytoextraction (Yongabi et al., 2018; Bashir et al., 2020). In this sense, 
many different species of freshwater macrophytes are capable of 
removing heavy metals from the water, such as arsenic (Xue and Yan, 
2011; Zhang et al., 2012), cadmium (Xie et al., 2013; Dogan et al., 
2018), lead (Singh et al., 2010; Dogan et al., 2018), chromium 
(Augustynowicz et al., 2010) or uranium (Markich, 2013; Li et al., 
2019), hydrocarbons (Pondei et al., 2018), pesticides (Alencar et al., 
2020), including herbicides as glyphosate (Pérez et al., 2017; da 
Silva-Santos et al., 2020), industrial and urban wastes as wood pre-
servatives (Demers et al., 2020), cosmetics (Guedes-Alonso et al., 2020), 
or organic matter (Queiroz et al., 2017), veterinary antibiotics (Xian 
et al., 2010), or drugs (Pi et al., 2017; Guedes-Alonso et al., 2020). In this 
respect, many of the macrophytes are considered to be hyper-
accumulators, with phytoextraction rates above 1%, e.g. with heavy 
metals (Yongabi et al., 2018). 

Furthermore, freshwater macrophytes are capable of producing 
secondary metabolites of interest to various biotechnology industries. As 
examples, the production of antibacterial agents against harmful cya-
nobacteria blooms (phenols, flavonoids and tannins) (Tazart et al., 
2019), insecticides against Diptera larvae (flavonoids, tannins and al-
kaloids) (Ugya et al., 2019), anticancer (unidentified) (Hassanien et al., 
2018), antidiarrhoeal, wound healing, antioxidant and 
anti-acetylcholinesterase, antineoplastic, anti-inflammatory, analgesic 
or antipyretic agents (alkaloids, cardiac glycoside, glycosides, tannins 
and flavonoids) (Abu, 2017). 

On the other hand, the great capacity of freshwater macrophytes to 
produce large amounts of biomass can be of great use for different in-
dustries. Due to their protein (11–32%) and lipid (3–17%) content, 
freshwater macrophytes are good feed ingredients in aquaculture, 
providing a good range of amino acids. In a current situation of global 
protein demand, the use of macrophytes as a substitute for fishmeal has 
the potential to revolutionize aquaculture (Naseem et al., 2021). 
Moreover, as a consequence of their carbohydrate content, harvested 
freshwater macrophytes can be used efficiently in the production of 
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biogas by fermentation (more than 7 mL of biogas per g of macrophyte 
biomass) (Fernandes et al., 2019; Röhl et al., 2019). These biogases 
include biohydrogen, produced by a dark fermentation process using the 
microbe Enterobacter cloacae (an C5 and C6 sugars using organism) 
(Karthikeya et al., 2020), and methane, also by dark fermentation and 
using bacteria from the macrophyte biomass (Grasset et al., 2019). Solid 
biofuels have also been produced by hydrothermal carbonization of 
biomass from macrophytes in a high-pressure reactor under subcritical 
temperatures of 240–320 ◦C, an alternative fuel called hydrochar 
(Rather et al., 2017a,b). In addition to all the indicated applications, the 
alien freshwater macrophytes biomass, such as E. crassipes, can be used 
for the manufacture of charcoal briquettes by carbonization at 500 ◦C 
and with a high calorific value (16.6 MJ/kg) (Carnaje et al., 2018), and 
even ceramic materials by pressing and burned at 1000 ◦C (Delaqua 
et al., 2020). 

4. Freshwater macrophytes applications in agriculture 

Freshwater macrophytes can be used as a resource in agriculture in 
various ways and provide different benefits. The infographic in Fig. 1 
summarizes in a schematic way all these uses and benefits, which are 
compiled in detail in Table 1. 

4.1. Nutrients supply 

The macrophytes establishment in agricultural irrigation reservoirs 
and streams is related to a better health of the agroecosystem, since they 
absorb excess nutrients, avoiding eutrophication (Mebane et al., 2014). 
In this sense, it has been reported that the existence of macrophytes in 
agricultural irrigation reservoirs and streams implies an improvement in 
water quality, including content in N and P, and an increase in the 
productivity of crops such as maize (90%) or eggplant (40%) 
(Akponikpè et al., 2011; Owamah et al., 2014). 

As indicated previously, freshwater macrophytes play a fundamental 
role in nutrient cycling in aquatic ecosystems, representing an important 
nutrient reservoir for possible use as organic fertilizer in agriculture, 
especially in N and P (Demars and Edwards, 2007; Human et al., 2015). 
In freshwater ecosystems, the release of nutrients present in the tissues 
of macrophytes occurs naturally due to the decomposition of organic 
matter by different fungi and bacteria (Zhao et al., 2020), which must 
act on agricultural soils to make nutrients available to crops. 

In rice fields, the controlled application of different freshwater 
macrophytes has been carried out in vivo due to their ability to actively 
supply nutrients such as N. Azolla is a genus of aquatic fern capable of 
fixing atmospheric nitrogen through symbiosis with the cyanobacterium 
Anabaena azollae. The application of Azolla in rice fields supposes an 
increase in the growth of rice plants as a consequence of a higher 
contribution of N, and of P and Ca when the macrophytes die (Ahmad 
and Tariq, 2021). Similarly, the suspended aquatic carnivorous plant 
Urticularia inflexa contributes N in rice fields through symbiosis with 
Anabaena (Wagner and Mshigeni, 1986). 

The application of fresh tissues from different freshwater macro-
phytes, such as Hydrilla verticillata (waterthyme) or Phragmites australis 
(common reed), has been shown to be capable of increasing the pro-
ductivity of crops such as maize, due to the contribution of nutrients to 
the soil, including N, P, K, Mg and Ca (Mamolos et al., 2011; Jain and 
Kalamdhad, 2018b; Jha, 2021). If this biomass is applied to the crop in 
dry matter form, as has been done with Eichhornia crassipes (water hy-
acinth), the contribution of N and P causes an increase in stem height 
and diameter, and shoot and root fresh and dry mass of maize plants 
(Dos Anjos et al., 2018). 

The use of compost from freshwater macrophyte biomass is the one 
that has been reported by the most studies so far, due to the contribution 
of organic matter and nutrients (N, P and K), highlighting the E. crassipes 
species (Farias et al., 2013; Singh and Kalamdhad, 2015; Bondoc, 2020), 
H. verticillata (Jain and Kalamdhad, 2018a; Matsuoka et al., 2018), Pistia 
stratiotes (water lettuce) (Farias et al., 2013), or Ceratophyllum demersum 
(hornwort) (Matsuoka et al., 2018). Through the contribution of N, an 
increase in the crop yield of radish has been reported due to the use of 
compost from E. crassipes or Egeria densa (the large-flowered waterweed) 
(Martínez-Nieto et al., 2011), in addition to an increase in plant growth 
and photosynthetic activity in Prunus serrulata, Castanea crenata, Quercus 
acutissima and rapeseed with compost from P. australis or Typha angus-
tifolia (narrowleaf cattail) (Song, 2017; Song and Song, 2019). Other 
composts are an important source of P, reducing the use of chemical P in 
crops such as sugarcane, tomato, bell pepper or eggplant, using biomass 
from Brachiaria mutica (para-grass), Ludwigia peruviana (primrose wil-
low), Panicum repens (torpedograss) or P. stratiotes from rainwater 
collection ponds (Shukla et al., 2020). However, composts from fresh-
water macrophytes are capable of promoting plant growth and crop 
productivity by providing a whole set of nutrients, such as N, P, K, Ca 
and Mg. In this sense, there are studies carried out on crops such as Lens 

Fig. 1. Infographic on the use of freshwater macrophytes as a resource in agriculture, indicating its form of application, the benefits for crops and the mechanisms of 
action involved. 
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Table 1 
Freshwater macrophytes used as resources in agriculture, indicating their form of use, the reported effects on crops and the mechanisms of action involved.  

SPECIES APPLICATION FORM CROP EFFECT MECHANISMS REFERENCE 

Arundo donax Compost: 1:2 v/v Lens culinaris Increased plant growth Nutrients supply Kouki et al. (2016) 
Azolla spp. Vermicompost Eggplant Increased plant growth and yield Nutrients supply Gandhi and Sundari 

(2012) 
In vivo: 7500 kg/Ha Rice Increased plant growth N, P and Ca supply Ahmad and Tariq 

(2021) 
Compost: 30000 kg/Ha Wheat Increased crop yield N, P and Ca supply Ahmad and Tariq 

(2021) Maize 
Rapeseed 

A. caroliniana 
A. filiculoides 
A. pinnata 

In vivo Rice – Heavy metals sorption Ahmad and Tariq 
(2021) 

A. pinnata Vermicompost – – N, P and K supply Najar and Khan 
(2013) 

Brachiaria mutica Compost Sugarcane Reduction in the use of chemical P P supply Shukla et al. (2020) 
Ceratophyllum 

demersum 
Vermicompost – – N, P and K supply Najar and Khan 

(2013) 
Compost – – N supply Matsuoka et al. 

(2018) 
Compost: 23.25 g/soil L 
(plots) 

– – Increased quantity and diversity of 
phosphate solubilizing bacteria in 
soil 

Matsuoka et al. 
(2019) 

Compost: 23.25 g/soil L 
(plots) 

Brassica rapa var. 
perviridis 

Increased plant growth Presence of plant growth 
promoting rhizobacteria 

Matsuoka et al. 
(2020) 

Eichhornia spp. Vermicompost Eggplant Increased plant growth and yield Nutrients supply Gandhi and Sundari 
(2012) 

Liquid fertilizer: 18.000 
kg/Ha 

– – N and P supply Kolhe and Singh 
(2019) 

E. crassipes Compost – – Nutrients supply Chukwuka and 
Omotayo (2008) 

Compost – – N and P supply Mees et al. (2009) 
Compost: 1:1 (v/v) Radish Increased crop yield N supply Martínez-Nieto et al., 

2011 
Compost – – N, P and K supply Farias et al. (2013) 
Vermicompost – – Nutrients supply Kannadasan et al. 

(2013) 
Compost: 5000 
Kg/Ha 

Maize Increased plant growth N and P supply Osoro et al. (2014) 

Compost – – N and P supply Singh and 
Kalamdhad (2015) 

n-Butyl alcohol leaf 
extract 

– Antimicrobial effect against Bacillus 
subtilis, Alternaria alternata and 
Colletotrichum gloeosporioides 

Phenols, alkaloids, flavonoids, 
glycosides, tannins, and terpenoids 

Haggag et al. (2017) 

Wheat Antimicrobial effect against Pyrenophora 
teres 

Dry matter: 75% (v/v) Maize Increased plant growth N and P supply Dos Anjos et al., 
2018 

Compost: 10–30% (v/v) Libidibia ferrea Increased plant growth Heavy metals sorption Gaudencio et al. 
(2018) 

Biochar – – Heavy metals sorption Li et al. (2018) 
Compost: 5000 kg/Ha Maize Increased yield N, P, K, Mg and Ca supply Atere and Olayinka 

(2019) 
Compost: 39 g/soil Kg 
(plots) 

Chinese cabbage Not indicated Not indicated Han et al. (2019) 

Vermicompost – – N, P and K supply Kurian and Joseph 
(2019) 

Biochar: 4% (v/v) Rice (Pokkali) Increased plant growth Nutrients supply Najmudeen et al. 
(2019) 

Compost: 5000 kg/Ha Soybean Not described Increased nodulation and N2 

fixation 
Atere et al. (2020) 

Compost – – N and P supply Bondoc (2020) 
Compost: 33% (w/w) Chinese cabbage Increased plant growth Improved soil structure Rakotoarisoa et al. 

(2020) 
Compost – – – Shyam et al. (2020) 

Egeria densa Compost: 1:1 (v/v) Radish Increased yield N supply Martínez-Nieto et al., 
2011 

Elodea nuttallii Anaerobic digestate – – P supply Stabenau et al. 
(2018) 

Hydrilla verticillata Compost – – Nutrients supply Jain and Kalamdhad 
(2018a) 

Fresh tissues – – N, P, K, Mg and Ca suppy Jain and Kalamdhad 
(2018b) 

Compost – – N supply Matsuoka et al. 
(2018) 

– – 

(continued on next page) 
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culinaris, wheat, maize, rapeseed, rice or sorghum, through the use of 
composts from E. crassipes (Osoro et al., 2014; Atere and Olayinka, 
2019), Azolla (Ahmad and Tariq, 2021), Arundo donax (giant reed) 
(Kouki et al., 2016), Typha latifolia (broadleaf cattail) (Kouki et al., 
2016), or P. stratiotes (Bhadha et al., 2016), among other macrophytes. 

Another way to make nutrients from freshwater macrophyte biomass 

available to crops is through the use of vermicompost. From biomass 
from different origins, earthworms are capable of producing a resource 
of nutrients easily assimilated by plants (Yatoo et al., 2021). Some of the 
studies carried out with freshwater macrophytes have reported increases 
in germination, plant growth, nutrient content and productivity of 
different crops, such as eggplant, cucumber, Abelmoschus esculentus or 

Table 1 (continued ) 

SPECIES APPLICATION FORM CROP EFFECT MECHANISMS REFERENCE 

Compost: 23.25 g/soil L 
(plots) 

Increased quantity and diversity of 
phosphate solubilizing bacteria in 
soil 

Matsuoka et al. 
(2019) 

Compost: 23.25 g/soil L 
(plots) 

Brassica rapa var. 
perviridis 

Increased plant growth Presence of plant growth 
promoting rhizobacteria 

Matsuoka et al. 
(2020) 

Ipomoea carnea Compost – – – Shyam et al. (2020) 
Ludwigia peruviana Compost Tomato Reduction in the use of chemical P P supply Shukla et al. (2020) 

Bell pepper 
Eggplant 

Panicum repens Compost Tomato Reduction in the use of chemical P P supply Shukla et al. (2020) 
Bell pepper 
Eggplant 

Phragmites 
australis 

Fresh tissues – – N and P supply Mamolos et al. 
(2011) 

Compost: 1400 g/m2 Prunus serrulata Increased photosynthetic activity N supply Song, 2017 
Castanea crenata 

Compost Rapeseed Increased plant growth and chlorophyll 
content 

N supply Song and Song 
(2019) Quercus 

acutissima 
Biochar – – Pollutants sorption 

(hydrocarbons) 
Wang et al. (2020) 

Pistia stratiotes Compost – – N, P and K supply Farias et al. (2013) 
Compost Rice Increased plant growth N, P, K and Si supply Bhadha et al. (2016) 

Sorghum 
Compost Tomato Reduction in the use of chemical P P supply Shukla et al. (2020) 

Bell pepper 
Eggplant 

Polygonum 
hydropiperoides 

Compost Tomato Reduction in the use of chemical P P supply Shukla et al. (2020) 
Bell pepper 
Eggplant 

Potamogeton 
maackianus 

Compost – – N supply Matsuoka et al. 
(2018) 

Compost: 23.25 g/soil L 
(plots) 

– – Increased quantity and diversity of 
phosphate solubilizing bacteria in 
soil 

Matsuoka et al. 
(2019) 

Compost: 23.25 g/soil L 
(plots) 

Brassica rapa var. 
perviridis 

Increased plant growth Presence of plant growth 
promoting rhizobacteria 

Matsuoka et al. 
(2020) 

Salix caroliniana Compost Tomato Reduction in the use of chemical P P supply Shukla et al. (2020) 
Bell pepper 
Eggplant 

Salvinia molesta Vermicompost: 2–20% 
(w/w) 

Cucumber Increased germination, plant growth and 
N contents 

N supply Hussain et al. (2018) 
Abelmoschus 
esculentus 
Vigna radiata 

Thalia dealbata Biochar – – Pollutants sorption (drugs) Li et al. (2015) 
Trapa natans Vermicompost – – N, P and K supply Najar and Khan 

(2013) 
Typha spp. Compost Tomato Reduction in the use of chemical P P supply Shukla et al. (2020) 

Bell pepper 
Eggplant 

T. angustifolia Compost: 1400 g/m2 Prunus serrulata Increased photosynthetic activity N supply Song, 2017 
Castanea crenata 

Compost Rapeseed Increased plant growth and chlorophyll 
content 

N supply Song and Song 
(2019) Quercus 

acutissima 
T. domingensis Compost – – N, P and K supply Farias et al. (2013) 
T. latifolia Compost: 1:2 v/v L. culinaris Increased plant growth Nutrients supply Kouki et al. (2016) 
Urticularia inflexa In vivo Rice – N supply Wagner and 

Mshigeni (1986) 
Zostera muelleri Biochar – – – Macreadie et al. 

(2017) 
Not identified Vermicompost – – N, P and K supply Najar and Khan 

(2012) 
Vermicompost: 6 T/Ha Eggplant Increased germination and yield N, P, K, Mg and Ca supply Najar et al. (2015) 
Fresh tissues Maize Increased yield N, P, K and Ca supply Jha (2021) 
Water, ethyl acetate, and 
methanol leaf extracts 

– Antimicrobial effect against Pseudomonas 
aeruginosa and Staphylococcus aureus 

Phenols and flavonoids  
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Vigna radiata, through the use of vermicompost from Azolla, Eichhornia 
(Gandhi and Sundari, 2012), or Salvinia molesta (kariba weed) (Hussain 
et al., 2018), among others. For the production of vermicompost from 
aquatic macrophytes, different species of earthworms are used, 
including Eisenia fetida (Najar et al., 2015), Aporrectodea caliginosa tra-
pezoides, Aporrectodea rosea rosea (Najar and Khan, 2012), Glossoscolex 
paulistus or Eudrilus eugeniae (Kurian and Joseph, 2019). 

Biochar is the result of subjecting biomass to a pyrolysis process, 
causing a thermal decomposition of the organic matter. Therefore, it is a 
resource that, when applied to crops, is capable of providing the soil 
with macronutrients (N, P and K) and micronutrients (Mg, Na, Mn, S, 
etc.) easily assimilated by plants. In addition, biochar improves soil 
structure, increasing its porosity and reducing its aggregation, increases 
water holding capacity, and favors the establishment and growth of soil 
biota, and even acts as a biopesticide of pathogens and agricultural 
pests. (Poveda et al., 2021). A study carried out in a cultivation field of 
Pokkali, the unique saline tolerant rice variety, by applying biochar from 
E. crassipes supposed an increase in root and shoot length, and plant 
height, due to the contribution of nutrients (Najmudeen et al., 2019). 

4.2. Improvement of soil biology and structure 

In addition to the direct contribution of nutrients, organic fertilizers 
can promote plant growth due to the presence of various microorgan-
isms (Poveda et al., 2019). As far as compost from freshwater macro-
phytes is concerned, it has been determined how it is capable of 
increasing the growth of crops. such as Brassica rapa var. perviridis. due 
to the presence of plant growth promoting rhizobacteria (Matsuoka 
et al., 2020). Moreover, the compost from this plant biomass is capable 
of increasing quantity and diversity of phosphate solubilizing bacteria in 
soil (Matsuoka et al., 2019), or nodulation and N2 fixation in legume 
crops, such as soybean (Atere et al., 2020). 

The application of organic fertilizers to the field implies an 
improvement in the soil structure that results in a higher productivity of 
crops (Lekfeldt et al., 2017). Similarly, through the application of 
compost from E. crassipes, an increase in the growth of Chinese cabbage 
plants has been reported due to the improvement of the soil structure 
(Rakotoarisoa et al., 2020). 

4.3. Phytoremediation 

The ability of freshwater macrophytes to act as phytoremediation 
agents has been extensively described in the previous section. In the 
same way that freshwater macrophytes are capable of eliminating heavy 
metals and pollutants present in aquatic ecosystems by sorption, their 
tissues extract them from agricultural soil. In rice fields, the use of 
different Azolla species in vivo meant the elimination of up to 100% of 
heavy metals such as Cr, Cd, Cu, Zn and Hg, being accumulated in 
Azolla-tissues (Ahmad and Tariq, 2021). The application of compost 
from E. crassipes increased the growth of Libidibia ferrea in soils 
contaminated with heavy metals thanks to Fe, Mn, Cu, Zn, Cd, and Pb 
sorption (Gaudencio et al., 2018), as well as it happens with biochar, due 
to the presence of alkyl, carboxyl, phosphate and cyano groups that bind 
metals (Li et al., 2018). Other biochar from macrophytes, such as 
P. australis or Thalia dealbata, are capable of capturing contaminants that 
are very harmful to the agroecosystems, including hydrocarbons, such as 
phenanthrene (Wang et al., 2020), or drugs, such as sulphamethoxazole 
(Li et al., 2015). For both heavy metals and organic pollutants, biochar 
has been described as a stabilizing material. In the case of heavy metals, 
due to exchange with Ca2+, Mg2+, and other cations, the surface 
complexation with different functional groups, or the physical adsorp-
tion and surface precipitation. While for organic pollutants, the biochar 
acts by means of sorption (Zhang et al., 2013). 

4.4. Sources of biological pesticides 

When terrestrial plants are attacked by pathogens or herbivores, they 
activate hormonal pathways that lead to the accumulation of defense 
chemical compounds in a local and systemic way (Poveda, 2020), in the 
same way that happens with freshwater macrophytes (Morrison and 
Hay, 2011). In this sense, freshwater macrophyte leaves have been used 
to obtain antimicrobial extracts against plant pathogens such as Pseu-
domonas aeruginosa and Staphylococcus aureus bacteria, due to the 
presence of phenols and flavonoids (Jha, 2021). The n-butyl alcohol leaf 
extract from E. crassipes reported antimicrobial activity against the fungi 
plant pathogens Alternaria alternata and Colletotrichum gloeosporioides, 
and the bacteria Bacillus subtilis, due to the presence of phenols, alka-
loids, flavonoids, glycosides, tannins and terpenoids. In addition, the 
application of this E. crassipes-extract in wheat plants led to a reduction 
in the field incidence of net blotch disease caused by Pyrenophora teres 
(Haggag et al., 2017). 

5. Conclusions 

The current rates of population growth require the search for alter-
natives towards the development of sustainable agriculture that allows 
supplying food in an environmental-friendly way. One of these alter-
natives could include the use of freshwater macrophytes as an agricul-
tural resource, due to their ability to provide nutrients, improve the 
microbiota and soil structure, remove heavy metals and soil pollutants, 
or accumulate antimicrobial metabolites, due to whose mechanisms a 
promotion of plant growth and crop yield is achieved, and a decrease in 
the use of chemical fertilizers and in the development of diseases. 

The current dispersal of exotic freshwater macrophytes in new eco-
systems represents a serious problem, due to their rapid and massive 
growth. In this sense, their use as agricultural resources could substan-
tially mitigate the costs associated with their elimination. An example of 
these affirmation are the numerous existing studies on the use of the 
invasive plant E. crassipes as an agricultural resource, with numerous 
benefits. 

All the studies analyzed lead us to the conclusion that the freshwater 
macrophytes that are the most promising resources for use in agricul-
ture, at least with the current studies, are: Eichhornia crassipes, Hydrilla 
verticillata, Ceratophyllum demersum, Phragmites australis, Pistia stratiotes, 
the genus Azolla and Potamogeton maackianus. In order to locate where 
these macrophytes are native or introduced species, and, therefore, 
where they are available for agricultural use, each macrophyte has been 
linked to its updated distribution map according to Plants of the World 
Online (http://plantsoftheworldonline.org/). In this sense, despite all 
the benefits outlined for the use of freshwater macrophytes as a resource 
in agriculture, there is an important limiting factor to consider: the 
presence of the macrophyte at the site where it is to be used. Although 
the use of freshwater macrophyte plant biomass in agriculture, when 
they pose an environmental problem due to their uncontrolled prolif-
eration as invasive species, represents an important environmental, 
agricultural and economic benefit, it represents a finite natural resource 
and is not widely and homogeneously distributed around the planet. 

6. Future perspectives 

Many freshwater macrophytes are widely used in the phytor-
emediation of waters contaminated with heavy metals and other con-
taminants. The use of the biomass formed by these macrophytes as input 
for agriculture requires exhaustive studies on the flow of pollutants to 
the soil and crops. 

Environmentally, the use of freshwater macrophytes as an agricul-
tural resource implies the development of a circular economy linked to 
the need to eliminate these plants from various ecosystems. In addition, 
through the contribution of nutrients to crops when they are applied to 
the field and the absorption of leached nutrients when they grow in 
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water bodies, their use in agriculture represents a significant reduction 
in the use of chemical fertilizers. Furthermore, it is important to high-
light the role that the use of freshwater macrophytes can play in 
achieving carbon neutrality worldwide. These plants can contribute to 
climate change mitigation through carbon storage during their growth 
and then be used as a resource in agriculture. 

With respect to rural areas with fewer resources, the possibility of 
using an accessible and cheap raw material as organic fertilizer can help 
in their economic development. The presence of aquatic ecosystems rich 
in freshwater macrophytes close to crop fields could be a continuous 
source of different benefits for their agricultural activity. 

Another important focus of future research on the different effects of 
the use of freshwater macrophytes as an agricultural resource would be 
the analysis of the quality of the products obtained. In addition to 
increased crop productivity, the use of freshwater macrophytes can lead 
to important nutritional and nutraceutical improvements of these plant 
foods. 
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Akponikpè, P.I., Wima, K., Yacouba, H., Mermoud, A., 2011. Reuse of domestic 
wastewater treated in macrophyte ponds to irrigate tomato and eggplant in semi- 
arid West-Africa: benefits and risks. Agric. Water Manag. 98, 834–840. https://doi. 
org/10.1016/j.agwat.2010.12.009. 

Alencar, B.T.B., Ribeiro, V.H.V., Cabral, C.M., dos Santos, N.M.C., Ferreira, E.A., 
Francino, D.M.T., et al., 2020. Use of macrophytes to reduce the contamination of 
water resources by pesticides. Ecol. Indicat. 109, 105785 https://doi.org/10.1016/j. 
ecolind.2019.105785. 

Alkimin, G.D., Daniel, D., Frankenbach, S., Serôdio, J., Soares, A.M.V.M., Barata, C., 
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Environmental characteristics and anthropogenic impact jointly modify aquatic 
macrophyte species diversity. Front. Plant Sci. 9, 1001. https://doi.org/10.3389/ 
fpls.2018.01001. 

Farias, W.M., de Andrade, L.A., Pereira, E.D., Dias, B.O., de Albuquerque, M.B., da Silva 
Fraga, V., 2013. Physical and chemical properties of substrates produced using 
macrophytes aquatics. Semina Ciências Agrárias 34, 3257–3270. https://doi.org/ 
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