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Abstract—Automatic image detection is one of the most im-
portant areas in computing due to its potential application in
numerous real-world scenarios. One important tool to deal with
that is called overlap indices. They were introduced as a procedure
to provide the maximum lack of knowledge when comparing
two fuzzy objects. They have been successfully applied in the
following fields: image processing, fuzzy rule-based systems,
decision making and computational brain interfaces.

This notion of overlap indices is also necessary for applications
in which type-2 fuzzy sets are required. In this paper we introduce
the notion of type-(2, k) overlap index (k ∈ {0, 1, 2}) in the setting
of type-2 fuzzy sets. We describe both the reasons that have led to
this notion and the relationships that naturally arise among the
algebraic underlying structures. Finally, we illustrate how type-
(2, k) overlap indices can be employed in the setting of fuzzy
rule-based systems when the involved objects are type-2 fuzzy
sets.

Index Terms—Type-2 fuzzy set, Overlap index, Overlap func-
tion

I. INTRODUCTION

Fusion functions [1], in particular aggregation functions
[2], [3], [4], are useful tools for applications handling data
in the fuzzy context. One special kind of such functions
that have been attracted the attention in the literature are the
overlap functions, introduced by Bustince et al. [5]. Roughly
speaking, they can be seen as non necessarily associative
bivariate functions (defined over the unit square), which are
nondecreasing, continuous, and satisfy appropriate boundary
conditions.
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In general, overlap functions are measurements of situations
in which the lack of knowledge (when someone is comparing
two fuzzy objects) is maximum. For instance, when two mem-
bership functions follow a distribution similar to the normal
distribution, then an overlap function is useful to measure the
degree of overlapping between them. This measurement can
be read as the expert’s doubt about the belonging of each point
with respect to each membership function.

The nice properties that the class of overlap functions
presents, such as the closeness with respect to the convex sum
and the aggregation by internal generalized composition [6],
[7], allow its higher applicability, in comparison with other
classes of conjunctive aggregation functions (e.g., t-norms [8]).
Besides that, overlap functions were shown to satisfy several
interesting properties, some of them necessary for different
applications, as properly studied by, for example, Bustince et
al. [9], Bedregal et al. [10], Dimuro et al. [11], [12], [13], Qiao
et al. [14], [15], [16], [17], [18], Wang and Hu [19], Zhou and
Yan [20] and Zhu et al. [21].

Then, since their introduction, overlap functions have been
successfully applied in many fields like: image processing
[22], [23], decision making [24], [25], computational brain
interfaces [26], forest fire detection [27], wavelet-fuzzy power
quality diagnosis system [28], fuzzy community detection
[29], social networks [30] and classification [31], [32], [33],
[34], [35], [36].

One of the most interesting contexts in which overlap
functions have been used is that of interpolative fuzzy systems
[37], which can be interpreted as particular cases of fuzzy
rule-based systems. In this class of systems there is a finite
set of rules expressed in terms of fuzzy sets. Using them, it
is possible to deduce a consequence (the conclusion) from
an initial premise (the fact), which are also expressed as
fuzzy sets. Usually, this process requires the application of a
consistency index, firstly, between the rules and the fact and,
later, between the resulting value and the consequent.

The consistency index, introduced by Zadeh in [38] as a
reasonable extension of the Boolean overlap index when the
universe of discourse is finite, was improved by several authors
(e.g., Dubois et al. [39] and Pal and Pal [40]) to be successfully
applied in the setting of interpolative fuzzy systems. In order to
overcome some contradiction that naturally appeared by using
previous definitions, these studies highlighted the necessity of
introducing the notion of overlap index (see [37]) as a function
that associates a real number on the interval [0, 1] to each
pair of fuzzy sets on the (finite) referential set and satisfying
certain conditions (see also [7], [24], [41], [42]). Such kind
of indices allowed the development of inference algorithms
for interpolative systems according to some of the properties
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proposed by Fukami et al. in [43] and, almost simultaneously,
by Baldwin and Pilsworth in [44].

The algebraic constructions we have commented until now
involve real numbers or, at most, fuzzy sets (usually, fuzzy
numbers of the real line). This last kind of mathematical
objects associates a real number belonging to [0, 1] to each
point of the universe of discourse. However, to determine a
unique and precise real number that perfectly represents the
ambiguity of the considered point could be interpreted as
a very strong constraint [45]. In some contexts, taking into
account the intrinsic imprecise nature of the elements of the
referential set, it is better to associate them fuzzy sets (usually,
fuzzy numbers whose supports are included on [0, 1]) rather
than real numbers (for instance, the opinion of an expert about
some characteristic of a concrete wine). It naturally appears the
notion of type-2 fuzzy set, which has been successfully applied
in several contexts, like the works by Mendel and co-authors
(e.g., on forecasting time-series [46] and pattern recognition
[47]), by Garibaldi and co-authors (e.g., on decision making
[48]), by Hagras and co-authors (e.g., on ambient intelligence
[49]), and by Wagner and co-authors (e.g., on multiobjective
optimization [50]).

The objectives of this paper are the following ones:
1. To introduce the notion of type-(2, k)-overlap index (with
k ∈ {0, 1, 2}) as an extension of previous consistency indices
to the setting of type-2 fuzzy sets.
2. To study the relation between these new type-(2, k)-overlap
indices and the overlap indices that were already defined for
type-1 fuzzy sets and for real numbers.

The structure of this paper is as follows. In Section II,
we present some preliminary definitions and results that are
necessary for the paper. Section III is devoted to the new
concept of type-(2, k) overlap index. In Section IV we discuss
an illustrative example on the possible application of the type-
(2, k) overlap indices to interpolative fuzzy rule systems with
type-2 fuzzy sets. We finish with some conclusions, future
research lines and some relevant references.

II. PRELIMINARIES

In this section we describe the basic algebraic background
that we will use.

A. Aggregation functions and overlap functions

Let R denote the set of all real numbers and let [0, 1] be the
real, closed and bounded interval whose bounds are 0 and 1.
Henceforth, X and Y denote non-empty sets and f : X → Y
represents a function whose domain is X and whose codomain
is Y .

A function T : [0, 1]× [0, 1]→ [0, 1]:
• is associative if T (t, T (s, r)) = T (T (t, s), r) for all
t, s, r ∈ [0, 1];

• is commutative if T (t, s) = T (s, t) for all t, s ∈ [0, 1];
• is increasing whenever T (t1, s1) ≤ T (t2, s2) for all
t1, t2, s1, s2 ∈ [0, 1] such that t1 ≤ t2 and s1 ≤ s2;

• is continuous if it is continuous with respect to the usual
(Euclidean) topology;

• is averaging if min{t, s} ≤ T (t, s) ≤ max{t, s} for all
t, s ∈ [0, 1];

• is 0-dependent if T−1({0}) = {(0, 0)}, that is, T (t, s) =
0⇔ t = s = 0;

• is normal (or 1-dependent) if T−1({1}) = {(1, 1)}, that
is, T (t, s) = 1⇔ t = s = 1.

Given n ∈ N, a function T : [0, 1]
n → [0, 1] is:

• increasing if T (t1, t2, . . . , tn) ≤ T (s1, s2, . . . , sn) for all
(t1, t2, . . . , tn), (s1, s2, . . . , sn) ∈ [0, 1]

n such that tj ≤
sj for all j ∈ {1, 2, . . . , n};

• symmetric if T (tσ(1), tσ(2), . . . , tσ(n)) =
T (t1, t2, . . . , tn) for all (t1, t2, . . . , tn) ∈ [0, 1]

n

and all permutations σ : {1, 2, . . . , n} → {1, 2, . . . , n};
• conjunctive if T ≤ min, that is, T (t1, t2, . . . , tn) ≤

min{t1, t2, . . . , tn} for all (t1, t2, . . . , tn) ∈ [0, 1]
n;

• disjunctive if T ≥ max, that is, T (t1, t2, . . . , tn) ≥
max{t1, t2, . . . , tn} for all (t1, t2, . . . , tn) ∈ [0, 1]

n;
• averaging if min{t1, t2, . . . , tn} ≤ T (t1, t2, . . . , tn) ≤

max{t1, t2, . . . , tn} for all (t1, t2, . . . , tn) ∈ [0, 1]
n;

Notice that henceforth we will use the term increasing for
non-decreasing functions. Also notice that commutativity and
symmetry are the same for functions involving two arguments.

Definition 1: [2] An aggregation function is an increasing
mapping T : [0, 1]

n → [0, 1] such that T (0, 0, . . . , 0) = 0 and
T (1, 1, . . . , 1) = 1.

Definition 2: [8] A triangular norm (or t-norm is an associa-
tive, commutative and increasing function T : [0, 1]× [0, 1]→
[0, 1] with neutral element 1 (that is, T (1, s) = s for all
s ∈ [0, 1]).

Examples of t-norms are the following ones:

Tmin(t, s) = min{t, s}, Tprod(t, s) = t · s,
TL(t, s) = max(t+ s− 1, 0).

Remark 3: Each t-norm is an aggregation function. In fact,
it can be symmetrically extended to any number of arguments.

Any t-norm T satisfies 0 ≤ T (0, s) ≤ T (0, 1) = 0, so 0 is
a zero element for T , that is, T (0, s) = 0 for all s ∈ [0, 1].
The t-norms Tmin and Tprod are especially useful in practical
examples. They satisfy the following properties:

• T (t, s) = 0 ⇔ t · s = 0 ⇔ min{t, s} = 0

⇔ [ t = 0 or s = 0 ] ;

• T (t, s) = 1 ⇔ t · s = 1 ⇔ t = s = 1.

The first property is not satisfied by all t-norms (for instance,
the t-norm TL satisfies TL(t, s) = 0 for each t, s ∈ [0, 1] such
that t+ s < 1). The second one is. Such functions have to be
continuous.Their properties inspired the following notion.

Definition 4: [5] An overlap function is a mapping G :
[0, 1]× [0, 1]→ [0, 1] such that:

(G1) G is commutative;
(G2) G is increasing;
(G3) G(t, s) = 0 if and only if t · s = 0 (that is, t = 0 or

s = 0);
(G4) G is normal (or 1-dependent);
(G5) G is continuous.
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B. Fuzzy sets of type 0, 1 or 2

Given a non-empty set X , a fuzzy set (or type-1 fuzzy set)
is a function A : X → [0, 1]. Sometimes, it is written as the
set {(x, µA(x)) : x ∈ X}, where µA : X → [0, 1] is called its
membership function (in fact, µA(x) = A(x) for all x ∈ X).
The family of all fuzzy sets on X is denoted here by both
FS(X) and FS1(X).

In 1971, Zadeh [51] settled that the problem of estimating
the membership degrees of the elements in a fuzzy set is
related to abstraction, a problem that plays a central role in
pattern recognition. Therefore, the determination of the mem-
bership degree of each element to the set is the biggest problem
for applying fuzzy sets theory. Taking these considerations into
account, the concept of type-2 fuzzy set was given as follows:
a type-2 fuzzy set is a fuzzy set for which the membership
degrees are expressed as fuzzy sets in [0, 1]. Mathematically,
we have the following definition.

Definition 5: A type-2 fuzzy set is a mapping A : X →
FS([0, 1]). We denote by FS2(X) the family of all type-2
fuzzy sets on X .

In practice, if A is a type-2 fuzzy set and x ∈ X , then
A(x) : [0, 1] → [0, 1] is a fuzzy set on [0, 1] (it is usually
called an slice of A, see [52]). Hence, it is a function whose
domain and codomain is the interval [0, 1]. This means that,
algebraically, FS2(X) coincides to FS1(X × [0, 1]) by the
identification:

A(x)(t) = A(x, t) for all x ∈ X and all t ∈ [0, 1] .

This point of view was adopted in [53, Definition 6.1] and it
shows that FS(X) and FS2(X) ≡ FS(X × [0, 1]) are very
different in nature: for instance, the universe X can be a finite
set (in this case, we denote X = U = {u1, u2, . . . , un}), but
X×[0, 1] is always an infinite set (in fact, it is not enumerable).

¿From our point of view and for the sake of clarity, it is
very important the notation we will employ, so we explicitly
declare it right now. Let X be a non-empty set.

• Elements in X will be denoted by x, y ∈ X .
• If X is finite, we will denote it by U , and elements in U

are denoted by u, ui ∈ U .
• Scalars in [0, 1] are denoted by t, s, r ∈ [0, 1].
• Type-1 fuzzy sets in FS(X) will be denoted by
A,B,Ai ∈ FS(X).

• Type-2 fuzzy sets in FS2(X) are denoted using calli-
graphic letters by A,B,Ai ∈ FS2(X).

Definition 6: A real number r ∈ [0, 1] will be called here
type-0 fuzzy set. For k ∈ {0, 1, 2}, a type-k fuzzy set on X is
any element in FSk(X), where:

FS0(X) = [0, 1] is the set of all type-0 fuzzy sets,
FS1(X) = FS(X) is the set of all type-1 fuzzy sets, and
FS2(X) is the set of all type-2 fuzzy sets.

Given A ∈ FS2(X), the type-2 fuzzy set Ac ∈ FS2(X),
defined by Ac(x)(t) = 1 − A(x)(t) for all x ∈ X and all
t ∈ [0, 1], is said to be the complementary set of A.

Given a bounded function f : Y → R, we denote

sup f = sup ({ f (y) : y ∈ Y }) ∈ R and
inf f = inf ({ f (y) : y ∈ Y }) ∈ R.

In particular, for all A ∈ FS(X),

supA = sup ({A (x) : x ∈ X }) and
inf A = inf ({A (x) : x ∈ X }) ,

and for all A ∈ FS2(X),

supA = sup ({A (x) (t) : x ∈ X, t ∈ [0, 1] }) and
inf A = inf ({A (x) (t) : x ∈ X, t ∈ [0, 1] }) .

We have to distinguish between supA ∈ [0, 1] and s̃upA ∈
FS(X), where

(s̃upA) (x) = sup (A(x)) for all x ∈ X.

Given a mapping T : [0, 1]
n → [0, 1] and A1,A2, . . . ,An ∈

FS2(X), we denote by T (A1,A2, . . . ,An) the type-2 fuzzy
set on X defined, for all x ∈ X and all t ∈ [0, 1], by:

T (A1,A2, . . . ,An) (x)(t)

= T (A1(x)(t),A2(x)(t), . . . ,An(x)(t)) .

Given t ∈ [0, 1], we respectively denote by F t and F t the
constant type-1 and -2 fuzzy sets:

F t ∈ FS1(X), F t(x) = t for all x ∈ X;

F t ∈ FS2(X), F t(x)(s) = t for all x ∈ X and s ∈ [0, 1] .

Given A ∈ FS1(X), we denote:

FA ∈ FS2(X), FA(x)(t) = A(x) for all x ∈ X and t ∈ [0, 1] .

There are embeddings and a commutative diagram:

j01 : FS0(X) −→ FS1(X), j01(t) = F t

j02 : FS0(X) −→ FS2(X), j02(t) = F t

j12 : FS1(X) −→ FS2(X), j12(A) = FA

FS0(X) = [0, 1]

j01

��

j02

**
≡ FS2(X) j12 ◦ j01 = j02

FS1(X) = FS(X)
j12

44

The usual partial order ≤ in FS0(X) = [0, 1] can be
extended to FS1(X) and to FS2(X) by:
• A ≤ B if A(x) ≤ B(x) for all x ∈ X;
• A ≤ B if A(x) ≤ B(x) for all x ∈ X , that is, A(x)(t) ≤
B(x)(t) for all x ∈ X and all t ∈ [0, 1].

It is only a total order (t ≤ s or s ≤ t, for all t, s ∈ FS0(X))
on FS0(X).

The injections j01 : (FS0(X),≤) → (FS1(X),≤), j02 :
(FS0(X),≤) → (FS2(X),≤) and j12 : (FS1(X),≤) →
(FS2(X),≤) are order preserving.
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Each fuzzy set on [0, 1] can be seen as a type-2 fuzzy set
on any set X with constant slices in the following way.

jX : FS([0, 1])→ FS2(X),

jX(A)(x) = A for all A ∈ FS([0, 1]) and all x ∈ X. (1)

Notice that jX is injective and order-preserving, and by
composing X

A−→ FS([0, 1])
jX−→ FS2(X), it satisfies, for

all A ∈ FS2(X), all x ∈ X and all t ∈ [0, 1],

[(jX ◦ A) (x)] (t) = A (x) (t)

because [(jX ◦ A) (x)] (t) = [jX (A (x))] (t) = A (x) (t).
The set FSk(X) has absolute minimum and maximum

elements w.r.t. ≤, which will be denoted by:

m0 = 0 and M0 = 1, if k = 0,

m1 = F 0 and M1 = F 1, if k = 1,

m2 = F0 and M2 = F1, if k = 2.

Notice that mk ≤ x ≤ Mk for all x ∈ FSk(X). Therefore,
(FSk(X),≤) is a bounded partially ordered set.

Since (FS2(X),≤) is a bounded lattice with absolute mini-
mum m2 = F0 and absolute maximum M2 = F1, then an ag-
gregation function on (FS2(X),≤) is an increasing mapping
T : FS2(X)p → FS2(X) such that T (m2,m2, . . . ,m2) = m2

and T (M2,M2, . . . ,M2) = M2.
Proposition 7: Each aggregation function T : [0, 1]

p →
[0, 1] induces an aggregation function TT : FS2(X)p →
FS2(X) defined by

TT (A1,A2, . . . ,Ap) (x) (t)

= T (A1 (x) (t) ,A2 (x) (t) , . . . ,Ap (x) (t))

for all A1,A2, . . . ,Ap ∈ FS2(U), all x ∈ X and all t ∈ [0, 1].
Proof. Clearly, TT is increasing, TT (F0,F0, . . . ,F0) = F0

and TT (F1,F1, . . . ,F1) = F1.
Definition 8: We say that:
• two type-0 fuzzy sets t, s ∈ [0, 1] are completely disjoint

if t · s = 0;
• two type-1 fuzzy sets A,B ∈ FS(X) are completely

disjoint if A(x) ·B(x) = 0 for all x ∈ X;
• two type-2 fuzzy sets A,B ∈ FS2(X) are completely

disjoint if A(x)(t) · B(x)(t) = 0 for all x ∈ X and all
t ∈ [0, 1].

Notice that:
• A,B ∈ FS1(X) are completely disjoint if and only if
A(x) and B(x) are completely disjoint for all x ∈ X;

• A,B ∈ FS2(X) are completely disjoint if and only if
A(x) and B(x) are completely disjoint for all x ∈ X ,
which is equivalent to say that A(x)(t) and B(x)(t) are
completely disjoint for all x ∈ X and all t ∈ [0, 1].

III. TYPE-(2, k) OVERLAP INDICES

A. Discussion about the notion of type-(2, k) overlap index

Triangular norms were introduced in order to extend the
triangle inequality to Menger statistical metric spaces (see
[54]) and, later, to probabilistic metric spaces (see [55]). Their
properties were intensively studied in order to adapt them to

any practical settings. Each context needs distinct properties
of the involved bivariate functions T : [0, 1]× [0, 1]→ [0, 1].

Taking into account more flexibility in applications to se-
veral contexts, overlap functions were introduced by Bustince
et al in [5]. The main advantage of this kind of functions is
the large list of interesting properties that can be deduced from
the five axioms (G1)-(G5) and the family of distinct examples
that can be considered (see the discussion we have done in the
Introduction). Many of such properties are also verified by
quasi overlap functions, which are functions satisfying (G1)-
(G4) (see [56]). Nevertheless, two comments must be done.
On the one hand, the continuity property was introduced taking
into account the possible application of overlap functions in
the image processing setting, although some applications in
other contexts do not require it (see the discussion by Asmus et
al. [35], [36], [57]). On the other hand, the normality condition
given by (G4) may be very restrictive in some cases, as
properly discussed by De Miguel et al. [58]. Having in mind
that condition (G4) can be decomposed into the following two
properties:

(G4,1) G(1, 1) = 1,
(G4,2) if G (t, s) = 1, then t = s = 1,

Garcı́a-Jiménez et al. [37] decided to introduce the no-
tion of overlap index in the setting of a finite set U =
{u1, u2, . . . , un} as a function O : FS(U) × FS(U) → [0, 1]
satisfying the following properties (for practical reasons, we
reorder their axioms).

(O1) O is symmetric, i.e. O(A,B) = O(B,A);
(O2) O is increasing;
(O3) O (A,B) = 0 if and only if A and B are completely

disjoint.
Under (O1), the increasing monotonicity is equivalent to

O (A1, B) ≤ O (A2, B) for all A1, A2, B ∈ FS(U) whenever
A1 ≤ A2. Clearly, properties (O1)-(O3) generalize properties
(G1)-(G3) associated to an overlap function (recall Definition
4). Condition (G4) was weakened by condition (G4,1) by
means of the following concept:

An overlap index O : FS(U) × FS(U) → [0, 1] is normal
if it satisfies:

(O′4) if A,B ∈ FS(U) are such that there exists uj0 ∈ U
verifying A(uj0) = B(uj0) = 1, then O(A,B) = 1.

We highlight two facts. On the one hand, as the converse is
not necessarily true, we have no additional information about
A and B when O(A,B) = 1. We only know that, if O is
normal, then O(A,F 1) = 1 for all A ∈ FS(U) such that
A(uj0) = 1 for some uj0 ∈ U (in particular, O(F 1, F 1) = 1).

¿From our point of view, in order to establish a minimal
collection of consistent axioms, we only consider the minimal
quantity of properties that we will need to develop practical
examples, so we are going to introduce more general functions
than overlap functions by avoiding some axioms.

Definition 9: We say that a mapping G : [0, 1] × [0, 1] →
[0, 1] is:
• a lower overlap function if it satisfies (G1), (G2) and

(G3);
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A.F. ROLDÁN LÓPEZ DE HIERRO et al.: TYPE-(2, K) OVERLAP INDICES 5

• a normal lower overlap function if it satisfies (G1), (G2),
(G3) and (G4,1).

Example 10: Given λ1, λ2, λ3 ∈ (0, 1] three real numbers
such that 0 < λ1 ≤ λ2 ≤ λ3 ≤ 1, let G : [0, 1]×[0, 1]→ [0, 1]
be the function defined by:

G(t, s) =


0, if t = 0 or s = 0,
λ1, if t, s ∈ (0, 1) ,
λ2, if 0 < s < t = 1 or 0 < t < s = 1,
λ3, if t = s = 1.

Then G is a lower overlap function. Furthermore, it is normal
if and only if λ3 = 1. In fact, it satisfies the condition (G4,2)
if and only if λ2 < λ3 = 1. Notice that G is never continuous
because 0 < λ1, so it is not an overlap function.

Example 11: Given λ ∈ (0, 1], let G : [0, 1]× [0, 1]→ [0, 1]
be the function defined, for each t, s ∈ [0, 1], by:

G(t, s) = λ t s.

Then G is a continuous lower overlap function. Notice that it
is normal if and only if λ = 1. In such a case, it also satisfies
the property (G4,2), that is, it is an overlap function.

Example 12: Given λ ∈ (0, 1/2] and a, b ∈ (0,+∞), let
G : [0, 1] × [0, 1] → [0, 1] be the function defined, for each
t, s ∈ [0, 1], by:

G(t, s) = λ ta sa(tb + sb).

Then G is a lower overlap function. In fact, it is continuous.
Furthermore, it is normal if and only if λ = 1/2. In such a
case, it is an overlap function.

Example 13: Given two real numbers λ1, λ2 ∈ (0, 1] such
that 0 < λ1 ≤ λ2 ≤ 1, let G : [0, 1] × [0, 1] → [0, 1] be the
function defined, for each t, s ∈ [0, 1], by:

G(t, s) =

{
λ1 t

3s3, if t+ s ≤ 1,

λ2 t
2s2, if t+ s > 1.

Then G is a lower overlap function. Furthermore, it is normal
if and only if λ2 = 1. Notice that G is not continuous along
the points of the open segment { (t, 1 − t), t ∈ (0, 1) }, so it
is not an overlap function.

Example 14: Let G : [0, 1]× [0, 1]→ [0, 1] be the function
defined, for each t, s ∈ [0, 1], by:

G(t, s) =


2− t+ 2s−

√
4(1− t) + (t− 2s)2

2
, if t ≥ s,

2− s+ 2t−
√

4(1− s) + (s− 2t)2

2
, if t < s.

Then G is a continuous, normal lower overlap function (see
Figure 1). However, it does not satisfy the condition (G4,2)
because

G(t, s) = 1 ⇔ ( t = 1 and s ∈ [0.5, 1] ) or
( s = 1 and t ∈ [0.5, 1] ) .

Notice that G(t, t) = t for all t ∈ [0, 1].
Taking into account the previous comments and examples,

we consider that the most natural definition for indices is the
following one. Notice that we employ the minimum mk and
the maximum Mk of the bounded lattice (FSk(X),≤).

In[4]:= Plot3DGx, y, x, 0, 1, y, 0, 1

Out[4]=

G1, 0.7
1.

índice que no es overlap function.nb  5

Figure 1: Graphic representation of the function of Example
14.

Definition 15: Given k ∈ {0, 1, 2}, a type-(2, k) overlap
index is a mapping:

θ : FS2(X)× FS2(X)→ FSk(X)

such that:
θ1) θ is symmetric, that is, θ (A,B) = θ (B,A) for all

A,B ∈ FS2(X).
θ2) θ is increasing, that is, if A ≤ B then θ (A, C) ≤

θ (B, C) for all C ∈ FS2(X).
θ3) θ (A,B) = mk if and only if A and B are completely

disjoint.
A type-(2, k) overlap index θ is normal if it also satisfies:
θ4) If A,B ∈ FS2(X) are such that for all x ∈ X there

is tx ∈ [0, 1] satisfying A(x)(tx) = B(x)(tx) = 1,
then θ (A,B) = Mk.

Remark 16: As we have commented, axiom (θ4) is a
reasonable generalization of condition (O′4) to the setting of
type-2 fuzzy sets. However, other possibilities can also be
taken into account in order to extend condition (G4,1). We
highlight the following two alternative conditions.
θ′4) IfA,B ∈ FS2(X) are such that there are x0 ∈ X and

t0 ∈ [0, 1] verifying A(x0)(t0) = B(x0)(t0) = 1,
then θ (A,B) = Mk.

θ′′4 ) θ
(
F1,F1

)
= θ (M2,M2) = Mk.

These definitions lead to distinct notions than we are going
to handle, but the reader can also consider one of them
depending on his/her own interests.

For the sake of simplicity,
• type-(2, 0) overlap indices will be denoted by i :

FS2(X)× FS2(X)→ [0, 1];
• type-(2, 1) overlap indices will be denoted by I :

FS2(X)× FS2(X)→ FS(X);
• type-(2, 2) overlap indices will be denoted by I :

FS2(X)× FS2(X)→ FS2(X);
• type-(1, 0) overlap indices will be denoted by o :

FS(X)× FS(X)→ [0, 1];
• type-(1, 1) overlap indices will be denoted by O :

FS(X)× FS(X)→ FS(X);
• type-(0, 0) overlap indices will be denoted by f : [0, 1]×

[0, 1]→ [0, 1].
The notions of type-(1, 0), type-(1, 1) and type-(0, 0) over-

lap indices, that are not encompassed by Definition 15, can
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be similarly posed on the corresponding families of fuzzy sets
(for instance, a type-(0, 0) overlap index is a lower overlap
function).

Example 17: Let θ : FS2(X) × FS2(X) → FS(X) be the
mapping defined, for all A,B ∈ FS2(X), by:

θ(A,B)(x) = sup
t∈[0,1]

{
A(x)(t) · B(x)(t)

}
for all x ∈ X . Then θ is a normal type-(2, 1) overlap index.

Example 18: Let θ : FS2(X) × FS2(X) → FS(X) be the
mapping defined, for all A,B ∈ FS2(X), by:

θ(A,B)(x) = sup
t∈[0,1]

tan (A(x)(t) · B(x)(t))

tan 1

for all x ∈ X . Then θ is a normal type-(2, 1) overlap index.
Example 19: Let θ : FS2(X) × FS2(X) → FS(X) be the

mapping defined, for all A,B ∈ FS2(X), by:

θ(A,B)(x) = sup
t∈[0,1]

1

3 sin 1

[
sin (A(x)(t) · B(x)(t))

·
(
1 +A(x)(t)2 + B(x)(t)2

) ]
for all x ∈ X . Then θ is a normal type-(2, 1) overlap index.

Remark 20: A mapping T : [0, 1] × [0, 1] → [0, 1] is a
type-(0, 0) overlap index if and only if it is a lower overlap
function. Under this point of view, lower overlap functions
are the seeds of overlap indices theory as it was introduced
in [5]. In fact, lower overlap functions are very useful tools
in order to construct many examples of high order indices. In
this sense, high order indices have also been called overlap
indices as the authors used in [37].

B. Type-(2, 0) indices

In the following result we introduce an extensive family of
type-(2, 0) overlap indices.

Lemma 21: Given a lower overlap function G : [0, 1] ×
[0, 1]→ [0, 1], let be the function iG : FS2(X)×FS2(X)→
[0, 1], s.t.

iG (A,B)

= sup ({G (A(x)(t),B(x)(t)) : x ∈ X, t ∈ [0, 1] }) . (2)

Then iG is a type-(2, 0) overlap index satisfying the following
properties.

1) If G is normal, then iG is also normal.
2) If G ≤ max, then iG (A,B) ≤ max {supA, supB} for

all A,B ∈ FS2(X). In this case, iG (A,A) ≤ supA.
3) If G(t1, t2) = s, then iG (F t1 ,F t2) = s. In particular,

the following diagram commutes:

[0, 1]× [0, 1]

j02×j02

��

G

**
≡ [0, 1]

FS2(X)× FS2(X)
iG

44

Proof. As G is symmetric, then iG is also. Furthermore,

iG (A,B) = 0

⇔ [G (A(x)(t),B(x)(t)) = 0 for all x ∈ X and t ∈ [0, 1] ]

⇔ [A(x)(t) · B(x)(t) = 0 for all x ∈ X and t ∈ [0, 1] ]

⇔ A and B are completely disjoint.

If A,B ∈ FS2(X) are such that A ≤ B, then
A(x)(t) ≤ B(x)(t) for all x ∈ X and all t ∈ [0, 1], so
G (A(x)(t), C(x)(t)) ≤ G (B(x)(t), C(x)(t)) for all x ∈ X
and all t ∈ [0, 1], which leads to iG (A, C) ≤ iG (B, C).

(1) Suppose that G is normal and let A,B ∈ FS2(X)
be such that for all x ∈ X there is tx ∈ [0, 1] satisfying
A(x)(tx) = B(x)(tx) = 1. Then G (A(x)(tx),B(x)(tx)) = 1,
so iG (A,B) = 1.

(2) Suppose that G ≤ max. Then, for all x ∈ X and all
t ∈ [0, 1],

G (A(x)(t),B(x)(t)) ≤ max {A(x)(t),B(x)(t)} .

Hence

iG (A,B)

≤ sup ({max {A(x)(t),B(x)(t)} : x ∈ X, t ∈ [0, 1] })
≤ max { supA, supB } .

(3) If G(t1, t2) = s, then

iG
(
F t1 ,F t2

)
= sup

({
G
(
F t1(x)(t),F t2(x)(t)

)
: x ∈ X, t ∈ [0, 1]

})
= sup ({G (t1, t2) : x ∈ X, t ∈ [0, 1] }) = G(t1, t2) = s.

Corollary 22: If G is an overlap function then iG, defined
as in (2), is a normal type-(2, 0) overlap index.

Corollary 23: If T is a t-norm satisfying (G3) then iT ,
defined as in (2), is a normal type-(2, 0) overlap index.

Furthermore, if T is averaging, then iT (A,A) = supA for
each A ∈ FS2(X). And if T = Tmin, then iTmin

(A,B) =
supA for each A,B ∈ FS2(X) such that A ≤ B.

The following particularization is especially interesting in
applications.

Definition 24: The Zadeh (2, 0) overlap index is imin, that
is, for all A,B ∈ FS2(X),

imin (A,B)

= sup ({min (A(x)(t),B(x)(t)) : x ∈ X, t ∈ [0, 1] }) .

Corollary 25: The Zadeh (2, 0) overlap index is a normal
(2, 0) overlap index that satisfies the following properties for
all A,B ∈ FS2(X):

1) if A ≤ B, then imin (A,B) = supA.
2) If imin (A,B) = 1 then there are two sequences {xn} ⊆

X and {tn} ⊂ [0, 1] such that {A(xn)(tn)} → 1 and
{B(xn)(tn)} → 1. In such a case, supA = supB = 1.

Proof. The second item follows from the fact that imin (A,B)
is a supremum, so if imin (A,B) = 1, then there are
two sequences {xn} ⊆ X and {tn} ⊂ [0, 1] such that
{min (A(xn)(tn),B(xn)(tn)) } → 1, which implies that
{A(xn)(tn)} → 1 and {B(xn)(tn)} → 1.
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Lemma 21 illustrates a natural way to define type-(2, 0)
overlap indices associated to lower overlap functions. Also,
there exists a reciprocal process which is described in the
following result.

Proposition 26: Given a type-(2, 0) overlap index i :
FS2(X)×FS2(X)→ [0, 1], let Gi : [0, 1]× [0, 1]→ [0, 1] be
the function defined, for all t, s ∈ [0, 1], by

Gi(t, s) = i
(
F t,Fs

)
.

Then Gi is a lower overlap function satisfying the following
properties.

1) The function Gi can be expressed as i ◦ (j02 × j02), so
the following diagram commutes.

[0, 1]× [0, 1]

j02×j02

��

Gi

**
≡ [0, 1] Gi = i ◦ (j02 × j02)

FS2(X)× FS2(X)
i

44

2) If i is normal, then Gi is normal.
3) If G is a lower overlap function, then GiG = G.

Proof. Clearly Gi is symmetric. If t1, t2 ∈ [0, 1] are such
that t1 ≤ t2, then F t1(x)(s) = t1 ≤ t2 = F t2(x)(s) for
all x ∈ X and all s ∈ [0, 1]. Then F t1 ≤ F t2 . Therefore
Gi(t1, s) = i (F t1 ,Fs) ≤ i (F t2 ,Fs) = Gi(t2, s). Then Gi
is increasing. Finally, let t, s ∈ [0, 1]. Then:

Gi(t, s) = 0

⇔ i
(
F t,Fs

)
= 0

⇔ F t and Fs are completely disjoint
⇔ F t(x)(r) · Fs(x)(r) = 0 for all x ∈ X and r ∈ [0, 1]

⇔ t · s = 0.

Hence Gi is a lower overlap function.
(2) Suppose that i is normal. Since F1(x)(t) = 1 for all

x ∈ X and all t ∈ [0, 1], then

Gi(1, 1) = i
(
F1,F1

)
= i (M2,M2) = M0 = 1.

(3) If G is a lower overlap function, item 3 of Lemma
21 guarantees that, for all t, s ∈ [0, 1], GiG (t, s) =
iG (F t,Fs) = G (t, s). Therefore GiG = G.

Notice that, in general, if i is a type-(2, 0) overlap index,
then iGi

6= i because iGi
loses information with respect to i,

that is, i is richer than iGi
(in the sense that the image of i is

usually greater than the image of iGi ).
Remark 27: In general, there is no relationship between a

type-(2, 0) overlap index i and iGi because

iGi
(A,B)

= sup({ i(FA(x)(t),FB(x)(t) ) : x ∈ X, t ∈ [0, 1] })

for all A,B ∈ FS2(X). The only remarkable fact in this sense,
that can be deduced from item 3 of Proposition 26, is that if
i′ = iG is a type-(2, 0) overlap index associated to a lower
overlap function G, then iGi′ = i′.

The following result completely characterizes type-(2, 0)
overlap indices.

Theorem 28: A mapping i : FS2(X)×FS2(X)→ [0, 1] is a
type-(2, 0) overlap index if and only if there are two mappings
i+, i− : FS2(X)× FS2(X)→ [0, 1], related by:

i (A,B) =
i+ (A,B)

i+ (A,B) + i− (A,B)
for all A,B ∈ FS2(X),

(3)
satisfying the following properties:

(a) i+ and i− are symmetric;
(b) i+ is increasing and i− is decreasing;
(c1) i+ (A,B) = 0 ⇔ i− (A,B) = 1 ⇔ A and B are

completely disjoint;
Furthermore, i is normal if and only if i− satisfies the

following condition (that could be called anti-normality):
(c2) If A,B ∈ FS2(X) are such that for all x ∈ X there

is tx ∈ [0, 1] satisfying A(x)(tx) = B(x)(tx) = 1,
then i− (A,B) = 0.

Proof. [⇒] Suppose that i is a type-(2, 0) overlap index and
let define i+ (A,B) = i (A,B) and i− (A,B) = 1 − i (A,B)
for all A,B ∈ FS2(X). Then (3), (a), (b) and (c1) clearly
hold.

[⇐] Suppose that (3) holds for some i+ and i− satisfying
(a), (b) and (c1). Notice that necessarily

i+ (A,B) + i− (A,B) > 0 for all A,B ∈ FS2(X).

Clearly i is symmetric. Also

i (A,B) = 0 ⇔ i+ (A,B) = 0

⇔ A and B are completely disjoint.

Finally, let A,B ∈ FS2(X) be such that A ≤ B. As i+ is
increasing and i− is decreasing, then

0 ≤ i+ (A, C) ≤ i+ (B, C) and 0 ≤ i− (B, C) ≤ i− (A, C) .

By multiplying,

i+ (A, C) · i− (B, C) ≤ i+ (B, C) · i− (A, C) .

Therefore,

i+ (A, C) ·
[
i+ (B, C) + i− (B, C)

]
= i+ (A, C) · i+ (B, C) + i+ (A, C) · i− (B, C)
≤ i+ (B, C) · i− (A, C) + i+ (A, C) · i+ (B, C)
= i+ (B, C) ·

[
i− (A, C) + i+ (A, C)

]
,

so we deduce that

i (A, C) =
i+ (A, C)

i− (A, C) + i+ (A, C)

≤ i+ (B, C)
i+ (B, C) + i− (B, C)

= i (B, C) .

Hence i is a type-(2, 0) overlap index.
Now we study the normality. Suppose that i is normal and

let A,B ∈ FS2(X) be such that for all x ∈ X there is tx ∈
[0, 1] satisfying A(x)(tx) = B(x)(tx) = 1. Since i is normal,

1 = i (A,B) =
i+ (A,B)

i+ (A,B) + i− (A,B)
,
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then i− (A,B) = 0.
Conversely, suppose that i− satisfies (c2). Let A,B ∈

FS2(X) be such that for all x ∈ X there is tx ∈ [0, 1]
satisfying A(x)(tx) = B(x)(tx) = 1. Hence i− (A,B) = 0,
which implies that i (A,B) = 1, so i is normal.

Proposition 29: Under the hypotheses of Theorem 28, if i
is a type-(2, 0) overlap index, the following properties hold.

1) Given t ∈ [0, 1], i (A,B) = t if and only if (1 −
t)i+ (A,B) = t i− (A,B). In particular, if t < 1,

i+ (A,B) =
t

1− t
i− (A,B) .

2) i+ (A,B) · i− (A,B) = (1− i (A,B)) i+ (A,B).
Proof. (1) Recall that i+ (A,B)+i− (A,B) > 0 for all A,B ∈
FS2(X). Therefore:

i+ (A,B)

i+ (A,B) + i− (A,B)
= i (A,B) = t

⇔ i+ (A,B) = t
(
i+ (A,B) + i− (A,B)

)
⇔ (1− t)i+ (A,B) = t i− (A,B) .

Example 30: Suppose that i+, i− : FS2(X) × FS2(X) →
[0, 1] are given, for all A,B ∈ FS2(X), by:

i+(A,B) = sup({ 3
√
A(x)(t) · B(x)(t) : x ∈ X, t ∈ [0, 1]}),

i−(A,B) = inf({max (1−A(x)(t), 1− B(x)(t)) : x ∈ X,
t ∈ [0, 1] }).

Then i+ and i− satisfy all conditions of Theorem 28, so the
mapping i : FS2(X)× FS2(X)→ [0, 1], defined as in (3), is
a normal type-(2, 0) overlap index.

C. Type-(2, 1) overlap indices

In [38], Zadeh introduced the consistency index between
two fuzzy sets A and B over the same referential finite set
U = {u1, u2, . . . , un} as the natural extension of the Boolean
overlap index:

OZ(A,B)

= max ({min{A(uj), B(uj)} : j ∈ {1, 2, . . . , n} }) .

This definition can be extended to an arbitrary set X as
follows:

OZ(A,B) = sup ({min{A(x), B(x)} : x ∈ X })

for all A,B ∈ FS(X). The reader can check that OZ :
FS(X)×FS(X)→ [0, 1] is a normal type-(1, 0) overlap index
associated to the overlap function G = min. Zadeh’s index,
especially in the finite case, inspired many of the properties
of overlap indices illustrated in [37]. In this section, inspired
by the previous indices, we introduce some properties of type-
(2, 1) overlap indices. First of all, we show some families of
this kind of indices.

Lemma 31: Given a type-(1, 0) overlap index o :
FS([0, 1]) × FS([0, 1]) → [0, 1] on [0, 1], the function Io :
FS2(X)× FS2(X)→ FS(X) such that:

Io (A,B) (x) = o (A(x),B(x))

for all A,B ∈ FS2(X) and all x ∈ X , is a type-(2, 1) overlap
index satisfying the following properties.

1) o is normal if and only if Io is normal.
2) If jX : FS([0, 1]) → FS2(X) represents the injection

defined in (1), then the following diagram commutes,
that is, j01 ◦ o = Io ◦ (jX × jX):

FS([0, 1])× FS([0, 1])

jX×jX

��

o // [0, 1]

j01

��

≡

FS2(X)× FS2(X)
Io

// FS(X)

Proof. Clearly Io is well defined because A(x),B(x) ∈
FS([0, 1]) for all x ∈ X . Furthermore, Io is symmetric. Let
A1,A2,B ∈ FS2(X) be such that A1 ≤ A2. Therefore
A1(x) ≤ A2(x) for all x ∈ X . Since o is a type-(1, 0)
overlap index, then Io (A1,B) (x) = o (A1(x),B(x)) ≤
o (A2(x),B(x)) = Io (A2,B) (x) for all x ∈ X . Hence
Io (A1,B) ≤ Io (A2,B), so Io is increasing. Finally,

Io (A,B) = F 0

⇔ o (A(x),B(x)) = 0 for all x ∈ X
⇔ A(x) and B(x) are completely disjoint for all x ∈ X
⇔ A and B are completely disjoint.

(1) Suppose that o is normal and let A,B ∈ FS2(X)
be such that for all x ∈ X there is tx ∈ [0, 1] satisfying
A(x)(tx) = B(x)(tx) = 1. Given any x0 ∈ X , let A =
A(x0), B = B(x0) ∈ FS([0, 1]). As there is tx0

∈ [0, 1]
such that A(tx0) = B(tx0) = 1 and o is normal, then
Io (A,B) (x0) = o (A(x0),B(x0)) = o (A,B) = 1. Therefore
Io (A,B) = F 1 on X , so Io is normal.

Conversely, assume that Io is a normal type-(2, 1) overlap
index and let A,B ∈ FS([0, 1]) be such that A(t0) = B(t0) =
1 for some scalar t0 ∈ [0, 1]. Let define A,B ∈ FS2(X)
as A(x) = A and B(x) = B for each x ∈ X . Then
A and B are two type-2 fuzzy sets on X such that, for
each x ∈ X , there is t0 ∈ [0, 1] verifying A(x)(t0) =
A(t0) = 1 = B(t0) = B(x)(t0). Since Io is normal, then
Io(A,B) = F 1 ∈ FS(X). Hence, given an arbitrary x0 ∈ X ,
o(A,B) = o(A(x0),B(x0)) = Io(A,B)(x0) = F 1(x) = 1.
This proves that o is also normal.

(2) Let A,B ∈ FS([0, 1]) and let x ∈ X . Then:

[j01 (o (A,B))] (x) = F o(A,B) (x) = o (A,B)

and

[Io ((jX × jX) (A,B))] (x) = [Io (jX(A), jX(B))] (x)

= o (jX(A)(x), jX(B)(x)) = o (A,B) .

Therefore, j01 ◦ o = Io ◦ (jX × jX).
Definition 32: The Zadeh (2, 1) (consistency) index is the

mapping IZ : FS2(X) × FS2(X) → FS(X) defined, for all
A,B ∈ FS2(X) and all x ∈ X , by:

IZ (A,B) (x) = sup ({min{A(x)(t),B(x)(t)} : t ∈ [0, 1] }) .
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Corollary 33: The Zadeh (2, 1) index on X is a normal
type-(2, 1) overlap index satisfying the following properties.

1) If A ≤ B then IZ (A,B) = supA ∈ FS(X) (that is,
IZ (A,B) (x) = sup(A(x)) for all x ∈ X).

2) IZ (A,A) = s̃upA ∈ FS(X).
3) IZ

(
F0,A

)
= F 0 ∈ FS(X).

4) IZ
(
A,F1

)
= s̃upA ∈ FS(X).

5) IZ (F t,Fs) = s̃upFmin{t,s} ∈ FS(X) for all t, s ∈
[0, 1].

Proof. It follows from Lemma 31 taking into account that IZ
can be expressed as I

o
[0,1]
Z

, where o
[0,1]
Z is the Zadeh (1, 0)

index on [0, 1], which is normal and is given, for all A,B ∈
FS([0, 1]), by:

o
[0,1]
Z (A,B) = sup ({min{A(t), B(t)} : t ∈ [0, 1] }) .

(1) Let A,B ∈ FS2(X) be such that A ≤ B. Therefore, for
all x ∈ X ,

IZ (A,B) (x) = sup ({min{A(x)(t),B(x)(t)} : t ∈ [0, 1] })
= sup ({A(x)(t) : t ∈ [0, 1] })
= sup(A(x)) = (s̃upA) (x).

Zadeh (2, 1) index is an example of type-(2, 1) overlap in-
dices generated by lower overlap functions as in the following
result.

Lemma 34: Given a lower overlap function G : [0, 1] ×
[0, 1] → [0, 1], let define IG : FS2(X) × FS2(X) → FS(X)
as:

IG (A,B) (x) = sup ({G (A(x)(t),B(x)(t)) : t ∈ [0, 1] })

for all A,B ∈ FS2(X) and all x ∈ X . Then IG is a type-(2, 1)
overlap index satisfying the following properties.

1) If G is normal, then IG is also normal.
2) The following diagram commutes, that is, j01 ◦ G =

IG ◦ (j02 × j02):

[0, 1]× [0, 1]

j02×j02

��

G // [0, 1]

j01

��

≡

FS2(X)× FS2(X)
IG

// FS(X)

Proof. IG is clearly symmetric and increasing. Furthermore,

IG (A,B) = F 0

⇔ sup ({G (A(x)(t),B(x)(t)) : t ∈ [0, 1] }) = 0

for all x ∈ X
⇔ G (A(x)(t),B(x)(t)) = 0 for all x ∈ X and t ∈ [0, 1]

⇔ A(x)(t) · B(x)(t) = 0 for all x ∈ X and t ∈ [0, 1]

⇔ A and B are completely disjoint.

Therefore, IG is a type-(2, 1) overlap index.
(1) Suppose that G is normal and let A,B ∈

FS2(X) be such that for all x ∈ X there is tx ∈

[0, 1] satisfying A(x)(tx) = B(x)(tx) = 1. Therefore,
G (A(x)(tx),B(x)(tx)) = G(1, 1) = 1, so, for all x ∈ X ,

IG (A,B) (x) = sup ({G (A(x)(t),B(x)(t)) : t ∈ [0, 1] }) = 1.

This means that IG (A,B) = F 1 on X and IG is normal.
(2) Let t, s ∈ [0, 1] and let x ∈ X . Then

[j01 (G(t, s))] (x) = FG(t,s) (x) = G(t, s) and

[IG ((j02 × j02) (t, s))] (x) =
[
IG
(
F t,Fs

)]
(x)

= sup
({
G
(
F t(x)(r),Fs(x)(r)

)
: r ∈ [0, 1]

})
= sup ({G (t, s) : r ∈ [0, 1] }) = G (t, s) .

Therefore, j01 ◦G = IG ◦ (j02 × j02).
Example 35: The overlap function G, defined by G(t, s) =

min(t, s) for all t, s ∈ [0, 1], provides the type-(1, 0) overlap
index oG : FS(X)× FS(X)→ [0, 1] given by

oG(A,B) = sup ({min(A(x), B(x)) : x ∈ X })

for all A,B ∈ FS(X), which, at the same time, induces the
type-(2, 1) overlap index IG : FS2(X) × FS2(X) → FS(X)
given by

IG(A,B)(x) = sup ({min(A(x)(t),B(x)(t)) : t ∈ [0, 1] })

for all A,B ∈ FS2(X) and all x ∈ X .
Example 36: Similarly, the overlap function G, given by

G(t, s) = t · s, for all t, s ∈ [0, 1], generates the following
superior structures:

oG : FS(X)× FS(X)→ [0, 1] ,

oG(A,B) = sup ({A(x) ·B(x) : x ∈ X }) ;

IG : FS2(X)× FS2(X)→ FS(X),

IG(A,B)(x) = sup ({A(x)(t) · B(x)(t) : t ∈ [0, 1] }) ,

for all A,B ∈ FS(X), all A,B ∈ FS2(X) and all x ∈ X .

D. Type-(2, 2) overlap indices

This subsection is devoted to study type-(2, 2) overlap
indices. We present a family of such mappings.

Lemma 37: Given a lower overlap function G : [0, 1] ×
[0, 1]→ [0, 1], let define IG : FS2(X)× FS2(X)→ FS2(X)
as:

IG (A,B) (x) (t) = G (A(x)(t),B(x)(t))

for allA,B ∈ FS2(X), all x ∈ X and all t ∈ [0, 1]. Then IG is
a type-(2, 2) overlap index satisfying the following properties.

1) The following diagram commutes, that is, j02 ◦ G =
IG ◦ (j02 × j02):

[0, 1]× [0, 1]

j02×j02

��

G // [0, 1]

j02

��

≡

FS2(X)× FS2(X)
IG

// FS2(X)

2) IG (F t,Fs) = FG(t,s) for all t, s ∈ [0, 1].
3) If G is normal then IG

(
F1,F1

)
= F1.

Proof. The proof is straightforward by using the same argu-
ments of the proofs of Lemmas 31 and 34.
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Notice that IG is not necessarily normal even if G is normal.
To prove it, let A,B ∈ FS2(X) be such that for all x ∈ X
there is tx ∈ [0, 1] satisfying A(x)(tx) = B(x)(tx) = 1.
Therefore, G (A(x)(tx),B(x)(tx)) = G(1, 1) = 1, but

IG (A,B) (x)(t) = G (A(x)(t),B(x)(t))

is not necessarily 1 for an arbitrary t ∈ [0, 1] even if G
is normal. We can only assert that, if G is normal, then
IG
(
F1,F1

)
= F1.

Example 38: Let define I : FS2(X)×FS2(X)→ FS2(X),
for each A,B ∈ FS2(X), each x ∈ X and each t ∈ [0, 1], by

I(A,B)(x)(t) =
1

2

[
2−max(A(x)(t),B(x)(t))

+ 2 min(A(x)(t),B(x)(t))−
(

4(1−max(A(x)(t),B(x)(t)))

+(max(A(x)(t),B(x)(t))− 2 min(A(x)(t),B(x)(t)))2
) 1

2

]
.

Then I is a normal type-(2, 2) overlap index because I = IG
is associated to the normal lower overlap function G defined,
for all t, s ∈ [0, 1], as

G(t, s) =
1

2

[
2−max(t, s) + 2 min(t, s)

−
√

4(1−max(t, s)) + (max(t, s)− 2 min(t, s))2
]

(recall that G is not an overlap function as it was shown in
Example 14).

IV. INFERENCE ALGORITHMS FOR INTERPOLATIVE TYPE-2
FUZZY SYSTEMS USING OVERLAP INDICES

Overlap indices can be of great help in applications. In this
Section we illustrate the applicability of overlap indices to a
concrete framework of the fuzzy logic. We set this example
in the context of the application of the modus ponens when
the input data (rules and facts) are type-2 fuzzy sets rather
than real scalars or type-1 fuzzy sets. The modus ponens
is a celebrated technique in fuzzy logic in order to get a
consequence from a set of rules and a concrete antecedent.
In the following lines we introduce two distinct algorithms
in order to face the problem of determining a consequent
type-2 fuzzy set when the finite set of rules and the fact are
performanced by type-2 fuzzy sets. To carry out this task, it
will be of importance the usage of a type-(1, 0) overlap index
(Algorithm 1) or a type-(2, 0) overlap index (Algorithm 2).

In recent years, several fuzzy interpolative reasoning meth-
ods have been proposed based on type-1 and (interval) type-2
fuzzy sets. For examples of the former see the works by Chang
et al. [59], Chen and Adam [60], Chen and Chen [61], and
the references therein. Now, for examples for the latter, see
the papers by Chen and Barman [62], Chen and Shen [63],
Chen et al. [64], and the references discussed by them. For
other techniques, such as rough-fuzzy sets [65], see, e.g., [66].
Nevertheless, it was Garcia-Jimenez et al. [37] who proposed
to use overlap indices in interpolative fuzzy systems.

The following development can be done for two arbitrary
sets X and Y . However, due to the fact that the finite case is
especially interesting in applications, we will only consider the

finite sets U = {u1, u2, . . . , un} and V = {v1, v2, . . . , vm},
adapting the notation to this case.

Given A ∈ FS2(U) and t ∈ [0, 1], we denote by A(·)(t) ∈
FS(U) the fuzzy set on U defined by [A(·)(t)] (x) = A(x)(t)
for all x ∈ U .

Given A1,A2, . . . ,Ap,A′ ∈ FS2(U) and
B1,B2, . . . ,Bp,B′ ∈ FS2(V ), let consider the following
type-2 fuzzy rule-based system:

Rule R1 : If (u, t) is A1, then (v, s) is B1
Rule R2 : If (u, t) is A2, then (v, s) is B2
. . . . . . . . . . . . . . . . . .
Rule Rp : If (u, t) is Ap, then (v, s) is Bp
Fact: (u, t) is A′

Conclusion: (v, s) is B′

(4)

For short, we denote by “Rj : Aj � Bj” the type-2 fuzzy rule:
“if (u, t) is Aj , then (v, s) is Bj” (where j ∈ {1, 2, . . . , p}).
The main objective of this system is to compute the type-2
fuzzy output B′ that can be deduced under the assumption of
the fact and the rules. We describe two distinct procedures in
order to carry out this task.

A. A first algorithm

We propose the following algorithm in order to compute the
type-2 fuzzy set B′ depending on the rules (Rj : Aj � Bj)
and the fact (A′). This algorithm involves three main algebraic
tools:

1) a lower overlap function G : [0, 1]× [0, 1]→ [0, 1];
2) an aggregation function M : [0, 1]

p → [0, 1]; and
3) a type-(1, 0) overlap index O : FS(U) × FS(U) →

[0, 1] on the set U .

Algorithm 1

Input: A set of p rules {Rj : Aj � Bj}pj=1, a fact A′

and t ∈ [0, 1]
Output: B′(·)(t).
1: Select an aggregation function M , a lower overlap

function G and a type-(1, 0) overlap index O on U
2: for j ∈ {1, 2, . . . , p} and t ∈ [0, 1] do
3: Compute O (A′(·)(t),Aj(·)(t))
4: end for
5: Construct B′(·)(t) given, for all v ∈ V , by

B′ (v) (t) =
p

M
j=1

G (Bj (v) (t), O (A′(·)(t),Aj(·)(t))) .

Let us show that B′ is well-defined, that is, it is a
type-2 fuzzy set on V . Let v ∈ V and t ∈ [0, 1] be
given. Taking into account that A′(·)(t) ∈ FS(U) and
Aj(·)(t) ∈ FS(U) for all j ∈ {1, 2, . . . , p}, we can
consider the real number O (A′(·)(t),Aj(·)(t)) ∈ [0, 1].
Hence, as Bj (v) (t) ∈ [0, 1], we can compute the lower
overlap G (Bj (v) (t), O (A′(·)(t),Aj(·)(t))) ∈ [0, 1] for all
j ∈ {1, 2, . . . , p}, and, aggregating such numbers, we obtain
B′ (v) (t) ∈ [0, 1].

Algorithm 1 naturally appears in the setting of type-2 fuzzy
sets in order to be coherent to Algorithm 1 described in [37].
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As a consequence, it also satisfies many of the main properties
of such procedure, that we describe in the following results.

Theorem 39: Let consider the type-2 fuzzy rule-based
system detailed in (4), where A1,A2, . . . ,Ap,A′ ∈ FS2(U)
and B1,B2, . . . ,Bp ∈ FS2(V ) are given. Then the following
properties are fulfilled under Algorithm 1.

1) If A′′ ∈ FS2(U) are such that A′ ≤ A′′, then B′ ≤ B′′.
2) If A′ is completely disjoint to each Aj , j ∈
{1, 2, . . . , p}, then B′ = F0 on V .

3) If M ≥ max, G(t, 1) = t for all t ∈ [0, 1] and
O (A′(·)(t),Aj(·)(t)) = 1 for all t ∈ [0, 1] and all
j ∈ {1, 2, . . . , p}, then B′ ≥ max(B1,B2, . . . ,Bp).

4) If M = max, G(t, 1) = t for all t ∈ [0, 1] and
O (A′(·)(t),Aj(·)(t)) = 1 for all t ∈ [0, 1] and all
j ∈ {1, 2, . . . , p}, then B′ = max(B1,B2, . . . ,Bp).

5) If M ≥ max, G ≥ min and Bj (v) (t) ≤
O (A′(·)(t),Aj(·)(t)) for all t ∈ [0, 1] and all j ∈
{1, 2, . . . , p}, then B′ ≥ max(B1,B2, . . . ,Bp).

Proof. (1) Suppose that A′ ≤ A′′, that is, A′(u)(t) ≤
A′′(u)(t) for all u ∈ U and all t ∈ [0, 1]. Then
A′(·)(t) ≤ A′′(·)(t) for all t ∈ [0, 1]. As O is a type-(1, 0)
overlap index, it is increasing, so O (A′(·)(t),Aj(·)(t)) ≤
O (A′′(·)(t),Aj(·)(t)). Also, as the lower overlap function G
and the aggregation function are increasing, then, for all v ∈ V
and all t ∈ [0, 1],

B′ (v) (t) =
p

M
j=1

G (Bj (v) (t), O (A′(·)(t),Aj(·)(t)))

≤
p

M
j=1

G (Bj (v) (t), O (A′′(·)(t),Aj(·)(t)))

= B′′ (v) (t).

(2) Suppose that A′ and Aj are completely disjoint for all
j ∈ {1, 2, . . . , p}. Then A′(u)(t) · Aj(u)(t) = 0 for all u ∈
U and all t ∈ [0, 1]. In particular, the fuzzy sets A′(·)(t)
and Aj(·)(t) are completely disjoint for all j ∈ {1, 2, . . . , p}
and all t ∈ [0, 1]. As O is a type-(1, 0) overlap index, then
O (A′(·)(t),Aj(·)(t)) = 0 for all j ∈ {1, 2, . . . , p} and all
t ∈ [0, 1]. Therefore, as G is a lower overlap function,

G (Bj (v) (t), O (A′(·)(t),Aj(·)(t))) = G (Bj (v) (t), 0) = 0

for all j ∈ {1, 2, . . . , p}, all t ∈ [0, 1] and all v ∈ V . Therefore,

B′ (v) (t) =
p

M
j=1

G (Bj (v) (t), O (A′(·)(t),Aj(·)(t)))

= M (0, 0, . . . , 0) = 0

for all v ∈ V and all t ∈ [0, 1], which means that B′ = F0.
(3) In this case, for all v ∈ V and all t ∈ [0, 1],

B′ (v) (t) =
p

M
j=1

G (Bj (v) (t), O (A′(·)(t),Aj(·)(t)))

=
p

M
j=1

G (Bj (v) (t), 1) =
p

M
j=1
Bj (v) (t)

= M (B1 (v) (t),B2 (v) (t), . . . ,Bp (v) (t))

≥ max {B1 (v) (t),B2 (v) (t), . . . ,Bp (v) (t)}
= (max {B1,B2, . . . ,Bp}) (v) (t). (5)

(4) If M = max, then inequality in (5) is, in fact, an
equality.

(5) It follows from the fact that, for all v ∈ V and all
t ∈ [0, 1],

B′ (v) (t) =
p

M
j=1

G (Bj (v) (t), O (A′(·)(t),Aj(·)(t)))

≥
p

M
j=1

min (Bj (v) (t), O (A′(·)(t),Aj(·)(t)))

=
p

M
j=1
Bj (v) (t)

≥ max {B1 (v) (t),B2 (v) (t), . . . ,Bp (v) (t)}
= (max {B1,B2, . . . ,Bp}) (v) (t).

A first consequence of the previous theorem occurs when
we only consider a unique rule and the fact is equal to the
antecedent in the rule.

Corollary 40: If G = min and O (A(·)(t),A(·)(t)) = 1
for all t ∈ [0, 1], then the conclusion of the particular type-2
modus ponens:

Rule: If (u, t) is A, then (v, s) is B
Fact: (u, t) is A

under Algorithm 1 is B′ = B.
Proof. It follows from item 4 of Theorem 39 by using G =
min, p = 1 and A1 = A′.

Applying items 3 and 4 of Theorem 39 to the case in which
all type-2 fuzzy sets B1,B2, . . . ,Bp are equal (that is, B1 =
B2 = . . . = Bp = B ∈ FS2(U)), we deduce the following
result.

Corollary 41: Under the type-2 fuzzy rule-based system
(4), if M ≥ max, G(t, 1) = t for all t ∈ [0, 1],
O (A′(·)(t),Aj(·)(t)) = 1 for all t ∈ [0, 1] and all j ∈
{1, 2, . . . , p} and B1 = B2 = . . . = Bp = B, then the
conclusion B′ under Algorithm 1 satisfies B′ ≥ B.

Furthermore, if we additionally assume that M = max, then
B′ = B.

In the following result, we involve the absolute minimum
F0
U ∈ FS2(U) and F0

V ∈ FS2(V ), and the absolute maximum
F1
U ∈ FS2(U), F1

V ∈ FS2(V ) and F 1
U ∈ FS(U).

Corollary 42: Given A1,A2, . . . ,Ap ∈ FS2(U) and
B1,B2, . . . ,Bp ∈ FS2(V ), let

Φ : FS2(U)→ FS2(V )

be the mapping that associates to each A′ ∈ FS2(U) the
conclusion B′ of the type-2 fuzzy rule-based system (4) under
Algorithm 1. Then Φ satisfies the following properties.

1) Φ is increasing.
2) Φ

(
F0
U

)
= F0

V .
3) If M ≥ max, G(t, 1) = t for all t ∈ [0, 1],

max(B1,B2, . . . ,Bp) = F1
V and O

(
F 1
U ,Aj(·)(t)

)
= 1

for all t ∈ [0, 1] and all j ∈ {1, 2, . . . , p}, then
Φ
(
F1
U

)
= F1

V .
Proof. These properties directly follow from items 1, 2 and 3
of Theorem 39.

Corollary 42 recall us that given A1, A2, . . . , Ap ∈ FS(U)
and B1, B2, . . . , Bp ∈ FS(V ), there exists a mapping

φ : FS(U)→ FS(V )
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that associates to each A′ ∈ FS(U) the conclusion B′ ∈
FS(V ) of the fuzzy rule-based system:

Rule R1 : If u is A1, then v is B1

Rule R2 : If u is A2, then v is B2

. . . . . . . . . . . . . . . . . .
Rule Rp : If u is Ap, then v is Bp
Fact: u is A′

Conclusion: v is B′

(6)

under any algorithm we can imagine.

B. A second algorithm

One of the main characteristic of the previous algorithm
is that the number O (A′(·)(t),Aj(·)(t)) directly depends
on t ∈ [0, 1]. This fact can be interpreted as an advantage
(because it directly takes into account the effective values of
A′ and each Aj) or as a drawback (because, as we will see
by an example, it maybe requires a considerable computing
effort). In the second case, it is possible to reduce the needs
of computation by using a number that does not depend
on t. A reasonable way to carry out this change on the
point of view is by replacing the type-(1, 0) overlap index
O : FS(U) × FS(U) → [0, 1] on the set U by a type-(2, 0)
overlap index i : FS2(U)× FS2(U)→ [0, 1] on the same set.
In this case, we consider the following second approach, that
depends on:

1) a lower overlap function G : [0, 1]× [0, 1]→ [0, 1];
2) an aggregation function M : [0, 1]

p → [0, 1]; and
3) a type-(2, 0) overlap index i : FS2(U)× FS2(U)→

[0, 1] on the set U .

Algorithm 2

Input: A set of p rules {Rj : Aj � Bj}pj=1, a fact A′

and t ∈ [0, 1].
Output: B′(·)(t).
1: Select an aggregation function M , a lower overlap

function G and a type-(2, 0) overlap index i on U
2: for j ∈ {1, 2, . . . , p} do
3: Compute i (A′,Aj)
4: end for
5: Construct B′(·)(t) given, for all v ∈ V , by

B′ (v) (t) =
p

M
j=1

G (Bj (v) (t), i (A′,Aj)) .

This second algorithm also satisfies similar properties than
described in Theorem 39.

Theorem 43: Let consider the type-2 fuzzy rule-based
system detailed in (4), where A1,A2, . . . ,Ap,A′ ∈ FS2(U)
and B1,B2, . . . ,Bp ∈ FS2(V ) are given. Then the following
properties are fulfilled under Algorithm 2.

1) If A′,A′′ ∈ FS2(U) are such that A′ ≤ A′′, then B′ ≤
B′′.

2) If A′ is completely disjoint to each Aj , j ∈
{1, 2, . . . , p}, then B′ = F0 on V .

3) If M ≥ max, G(t, 1) = t for all t ∈ [0, 1] and
i (A′,Aj) = 1 for all j ∈ {1, 2, . . . , p}, then B′ ≥
max(B1,B2, . . . ,Bp).

4) If M = max, G(t, 1) = t for all t ∈ [0, 1] and
i (A′,Aj) = 1 for all j ∈ {1, 2, . . . , p}, then B′ =
max(B1,B2, . . . ,Bp).

5) If M ≥ max, G ≥ min and Bj (v) (t) ≤ i (A′,Aj)
for all j ∈ {1, 2, . . . , p}, v ∈ V and all t ∈ [0, 1], then
B′ ≥ max(B1,B2, . . . ,Bp).

Proof. For the sake of completeness, we include the proof of
the first item (the rest are similar).

(1) Suppose that A′ ≤ A′′. Since i is increasing, then
i (A′,Aj) ≤ i (A′′,Aj) for all j ∈ {1, 2, . . . , p}. Furthermore,
the increasing character of G and M leads to B′ ≤ B′′.

Corollary 44: If G ≥ min and B (v) (t) ≤ i (A,A) for all
v ∈ V and all t ∈ [0, 1], then the conclusion of the particular
type-2 modus ponens:

Rule: If (u, t) is A, then (v, s) is B
Fact: (u, t) is A

under Algorithm 2 satisfies B′ ≥ B. And if G = min, then
B′ = B.

Proof. In this particular case, as A′ = A1 = A and B1 = B,
then

B′ (v) (t) = G (B1 (v) (t), i (A′,Aj))
= G (B (v) (t), i (A,A)) ≥ min (B (v) (t), i (A,A))

= B (v) (t)

for all v ∈ V and all t ∈ [0, 1], so B′ ≥ B. And if G = min,
then the equality holds.

C. Example and discussion

In this section, given a, b, c ∈ [0, 1] such that a ≤ b ≤ c,
we use the notation (a, b, c) to refer to the triangular fuzzy
number on FS([0, 1]) whose membership function is, for each
t ∈ [0, 1],

(a, b, c)[t] =



t− a
b− a

, if a < t < b,

1, if t = b,

c− t
c− b

if b < t < c,

0, otherwise.

Let U = {u1, u2, u3} and V = {v1, v2} be two finite sets. Let
consider the following two type-2 fuzzy rules {Rj : Aj →
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Bj}2j=1 (p = 2), where:

A1 ≡


A1(u1) = (0.3, 0.5, 0.7),

A1(u2) = (0.2, 0.6, 0.8),

A1(u3) = (0.5, 0.75, 1);

B1 ≡

{
B1(v1) = (0.4, 0.5, 0.7),

B1(v2) = (0.8, 0.9, 1);

A2 ≡


A2(u1) = (0.2, 0.3, 0.5),

A2(u2) = (0.3, 0.4, 0.8),

A2(u3) = (0.7, 0.8, 0.9);

B2 ≡

{
B2(v1) = (0.5, 0.7, 0.8),

B2(v2) = (0.3, 0.5, 0.8),

and the fact

A′ ≡


A′(u1) = (0.4, 0.6, 0.8),

A′(u2) = (0.2, 0.5, 0.7),

A′(u3) = (0.8, 0.9, 1).

For simplicity on computations, in this example we use the
lower overlap function G(t, s) = t · s for all t, s ∈ [0, 1], the
aggregation function M(t, s) = (t + s)/2 for all t, s ∈ [0, 1]
(using p = 2 arguments), the type-(1, 0) overlap index O :
FS(U)× FS(U)→ [0, 1] given, for all A,B ∈ FS(U), by

O(A,B) = sup
u∈U

min{A(u), B(u)}

(for Algorithm 1) and the type-(2, 0) overlap index i :
FS2(U)× FS2(U)→ [0, 1] given, for A,B ∈ FS2(U), by:

i(A,B) = sup
(

min{A(u)(t),B(u)(t)} : u ∈ U, t ∈ [0, 1]
)

(for Algorithm 2). After carrying out all computations, the
type-2 fuzzy set B′1 obtained by Algorithm 1 is:

B′1(v1)(t) =


1− 7.5t+ 12.5t2, if 0.4 < t ≤ 0.5,
−0.25 + 1.25t, if 0.5 < t ≤ 8/15,
1.75− 2.5t, if 8/15 < t ≤ 0.7,
0, otherwise;

B′1(v2)(t) =



(3− 25t+ 50t2)/8, if 0.3 < t ≤ 0.5,
(−4 + 25t− 25t2)/6, if 0.5 < t ≤ 8/15,
(28− 75t+ 50t2)/6, if 8/15 < t ≤ 0.7,
32− 80t+ 50t2, if 0.8 < t ≤ 6/7,
−16 + 36t− 20t2, if 6/7 < t ≤ 0.9,
20(1− t)2, if 0.9 < t ≤ 1,
0, otherwise;

and the type-2 fuzzy set B′2 obtained by using Algorithm 2 is:

B′2(v1)(t) =


5(5t− 2)/6, if 0.4 < t ≤ 0.5,
5(2t+ 13)/168, if 0.5 < t ≤ 0.7,
6(4− 5t)/7, if 0.7 < t ≤ 0.8,
0, otherwise;

B′2(v2)(t) =


0, if 0 ≤ t ≤ 0.3,
3(10t− 3)/14, if 0.3 < t ≤ 0.5,
2(4− 5t)/7, if 0.5 < t ≤ 0.8,
5(5t− 4)/6, if 0.8 < t ≤ 0.9,
25(1− t)/6, if 0.9 < t ≤ 1.

Figure 2 represents the fuzzy sets B′1(v1) and B′2(v2) by
using either Algorithm 1 (in red) or Algorithm 2 (in blue).

0 1

1

(a) B′(v1)

0 1

1

(b) B′(v2)

Figure 2: Comparison of the type-2 fuzzy outputs B′ by
employing Algorithm 1 (red) and 2 (blue).

We can observe that, by using the lower overlap function
G(t, s) = t · s, Algorithm 1 is more complicated because it
leads to a moment in which the membership functions are
multiplied. Therefore, linear functions (associated to triangular
fuzzy numbers) are transformed into (convex or concave)
parabolic functions, which are more difficult to handle.

As all functions we have employed are continuous, then the
obtained type-2 fuzzy sets are also continuous.

In the example below it was shown that the fuzzy sets B′(v1)
and B′(v2) with Algorithm 1 are less than or equal to their
corresponding functions by employing Algorithm 2.

To finish this Section, we highlight that there are other
settings in which type-(2, k) overlap indices can be of great
help, especially in applications. For instance, there are many
contexts where type-1 or type-2 fuzzy sets are operated
through aggregation functions. For this, it is usually necessary
to descend to the real hyperplane and there, by considering real
numbers, to apply the aggregation function. In other words,
two type-2 fuzzy sets A,B ∈ FS2(X) are operated by apply-
ing an aggregation function M to the real numbers A(x)(t)
and B(x)(t), where x ∈ X and t ∈ [0, 1]. Nevertheless,
overlap indices open new ways in which the type-2 fuzzy sets
A and B can be directly operated by obtaining a type-2 fuzzy
set I(A,B) ∈ FS2(X), a type-1 fuzzy set I(A,B) ∈ FS1(X),
or even a scalar i(A,B) ∈ FS0(X). Such families of mappings
enrich the possibilities of the research. This is the case of
similarity measures among type-1 or type-2 fuzzy sets, that
can be seen as algebraic structures that associate a real number
to each pair of type-1 or type-2 fuzzy sets trying to evaluate
how similar or different the fuzzy sets are (see [67], [68], [69]).
Such fuzzy measures usually satisfy an overlap property (see
[67], [69]). It seems reasonable in prospect works to study the
possible use of type-(2, k) overlap indices on these applied
scenarios.

V. CONCLUSIONS AND FURTHER RESEARCH

Classifying objects is a complex task, especially when
overlapping is observed and fuzzy information is involved.
In such case, it is necessary to consider appropriate (adapted)
criteria to the context in which we are working. ¿From the
computational point of view, overlap indices and overlap
functions are two of the main tools that we can use to address
this problem (when the involved objects are fuzzy sets). One
of their main advantages is that such families of functions can
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be used in different contexts such as image classification and
fuzzy rule-based systems. However, in the literature there is no
such approach to support the overlapping problem whenever
the uncertainty of the involved objects is handled as type-2
fuzzy sets.

In this manuscript we have introduced the notion of type-
(2, k) overlap index (where k ∈ {0, 1, 2}) as a coherent
extension of previous indices that had been successfully ap-
plied in situations in which two overlapped fuzzy objects are
compared. The proposed definition has a clear connection with
previous interpretations, so many interrelationships naturally
appear from distinct levels of fuzziness. We have also illus-
trated through two distinct algorithms how to apply type-(2, k)
overlap indices to obtain a conclusion as the result of a type-2
fuzzy rule-based system. In addition to this, we have discussed
about the arguments that led us to the proposed definition.

However, taking into account the natural interest on the
applicability of overlap indices and overlap functions in com-
putational developments related to real life problems, further
research must be carried out in order both to deep in the
main properties of the given notion and to propose some other
approaches that could also be coherent with human behavior
and human decision making (see Remark 16 for alternative
definitions that deserve investigation).
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