$d C_{F}$-integrals: generalizing C_{F}-integrals by means of restricted dissimilarity functions

Jonata Wieczynski, Giancarlo Lucca, Graçaliz P. Dimuro IEEE Member, Eduardo N. Borges IEEE Member, José A. Sanz, Tiago C. Asmus, Javier Fernández IEEE Member, Humberto Bustince Fellow, IEEE

Abstract

The Choquet integral (CI) is an averaging aggregation function that has been used, e.g., in the Fuzzy Reasoning Method (FRM) of Fuzzy Rule-Based Classification Systems (FRBCS's) and in multi-criteria decision making in order to take into account the interactions among data/criteria. Several generalizations of the CI have been proposed in the literature in order to improve the performance of FRBCS's, and also to provide more flexibility in the different models by relaxing both the monotonicity requirement and averaging conditions of aggregation functions. An important generalization are the C_{F}-integrals, which are pre-aggregation functions that may present interesting non-averaging behavior depending on the function F adopted in the construction and, in this case, offering competitive results in classification. Recently, the concept of dChoquet integrals was introduced as a generalization of the CI by Restricted Dissimilarity Functions (RDFs), improving the usability of CIs, as when comparing inputs by the usual difference may not be viable. The objective of this paper is to introduce the concept of $d C_{F}$-integrals, which is a generalization of C_{F} integrals by RDFs. The aim is to analyze whether the usage of $d C_{F}$-integrals in the FRM of FRBCS's represents a good alternative towards the standard C_{F}-integrals that just consider the difference as a dissimilarity measure. For that, we consider six RDFs combined with five fuzzy measures, applied with more than twenty functions F. The analysis of the results are based on statistical tests, demonstrating their efficiency. Additionally, comparing the applicability of $d C_{F}$-integrals versus C_{F}-integrals, the range of the good generalizations of the former is much larger than that of the latter.

Index Terms-CF-integrals, d-Choquet integrals, restricted dissimilarity functions, fuzzy rule based classification systems, pre-aggregation functions

I. Introduction

An aggregation function (AF) [1] is a special type of function that fuses different values into a single one, which

[^0]represents all the considered values. The arithmetic mean, the Product t-norm [2], the Ordered Weight Average [3] and the Choquet integral (CI) [4] are examples of AFs.

Aggregation functions have an important role in Fuzzy Rule-Based Classification Systems (FRBCS's) [5], since they are responsible for aggregating information in several stages of the Fuzzy Reasoning Method (FRM) [6]. While the FRM of Winning Rule (WR) [7] takes into account only the fuzzy rule having the largest compatibility with the example, the usage of the CI in the FRM allows to model the relation among the fired rules by considering a fuzzy measure [8]. In fact, Barrenechea et al. [9] introduced a FRM considering the CI, and obtained an improvement in the performance of the classifier when associated to the power measure.

The CI was generalized in many ways see, e.g., [10]) and some of those generalizations were used in the FRM of FRBCS's, such as the C_{T}-integrals [11] (also applied in MCDM [12]), CC-integrals [13] (also used in motor-imagery-based brain computer interface systems [14] and group MCDM [15]), C_{F}-integrals [16] (also used in image processing [17]) and $C_{F 1 F 2}$-integrals [18], all of them introduced by Lucca et al. Also, a well known generalization of the CI is the fuzzy t conorm integral \mathfrak{S} (called fuzzy t-integral by Murofushi \& Sugeno [19], or generalized t-conorm integral by Narukawa \& Torra [20]) for a t -system $\left(\perp_{1}, \perp_{2}, \perp_{3}, \boxtimes\right)$, where \perp_{1}, \perp_{2} ,\perp_{3} are continuous t -conorms which are the maximum or Archimedean, and \square is an increasing function satisfying special constraints [19, Def. 2.1]. See also the $g C_{F 1 F 2}$-integrals by Dimuro et al. [21] and the C_{F}^{m}-integrals by Horanska \& Šipošová [22].

The main features of those generalizations are that some of them may be neither aggregation functions (since they may not be increasing in the standard sense) nor averaging (i.e., the output of the "aggregation" operator is not bounded by the minimum or the maximum of the inputs). Table I shows an overview of such characteristics, which depend on specific properties of the functions used in the generalization, where T is a t-norm [2], C is a copula [26] and F, F_{1} and F_{2} are more general functions.

Recently, Bustince et al. [27] introduced the concept of d-Choquet integrals by replacing the difference operator in the definition of the CI by restricted dissimilarity functions (RDFs) [28], [29]. This interesting generalization can improve the usability of the standard CI in some contexts, since it can be applied when the comparison of inputs using the usual difference is not possible/viable, as in the case of intervals [30]. Moreover, since there are several ways of defining

TABLE I: Main features of the generalizations of the CI

Integral	Incr. (AF)	D. Incr. (PAF)	OD incr. -	Aver.	Non-aver.
CI	\checkmark	\checkmark	\checkmark	\checkmark	
$C_{T}{ }^{*}$		\checkmark		\checkmark	
CC	\checkmark	\checkmark	\checkmark	\checkmark	
C_{F}		\checkmark		\checkmark	\checkmark
$C_{F_{1} F_{2}{ }^{* *}}$			\checkmark	\checkmark	\checkmark
$g C_{F_{1} F_{2}}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$C_{F}^{m * * *}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\mathfrak{S}^{* * * *}$	\checkmark	\checkmark	\checkmark		
When T is different from the product t-norm;					

* When T is different from the product t -norm;
** when F_{1} and F_{2} are not copulae;
*** under certain constraints [22, Props. 6 and 10];
**** whenever $\left(1-\perp_{1} 0\right) \boxtimes 1=1$;
Incr.: increasing; D. Incr.: directional increasing [24];
OD incr.: ordered directional increasing [25];
AF: aggregation function [1]; PAF: pre-aggregation function [11]; Aver.: averaging [1]; Non-aver.: Non averaging [1].
dissimilarity functions, one can adopt the one that best fits the faced problem, providing more flexibility to the model.

Then, in an attempt to improve both the performance and flexibility of C_{F}-integrals in FRBCS's, the general objective of this paper is to introduce the concept of $d C_{F}$-integrals, which is a generalization of the Choquet-based C_{F}-integrals by replacing the difference operator by RDFs. For that, we have two specific goals: (i) a theoretical study, showing the main features of this new aggregation-like function according to both, the function F and the restricted dissimilarity functions used in its construction and (ii) the application of $d C_{F^{-}}$ integrals in the FRM of a FRBCS, performing an extensive analysis of its behaviour and performance. In this sense, we aim at answering the following research questions:

1. Is it useful to substitute the classical difference by restricted dissimilarity functions in C_{F} integrals when applied to tackle classification problems?
2. Which combinations of functions F, restricted dissimilarity functions and fuzzy measures provide better performance?
3. Do $d C_{F}$-integrals enlarge the flexibility of C_{F}-integrals?

In order to present a complete and robust study, we consider 33 different datasets selected from KEEL dataset repository [31]. We combine 21 different functions F with six different restricted dissimilarity functions. All these combinations are also tested with five different fuzzy measures. The performance of the $d C_{F}$-integrals are measured using the accuracy rate and the results are supported and analyzed considering statistical tests.

The organization of this paper follows this structure. Section II presents the preliminary concepts. In Section III, we introduce the concept of $d C_{F}$-integrals as well as a theoretical study. The new FRM is presented in Section IV. The experimental framework is described in Section V. After that, the obtained results are analysed in Section VI. Finally, the conclusions are drawn in Section VII.

II. Preliminaries

A function $F:[0,1]^{2} \rightarrow[0,1]$ with 0 as left annihilator element (0-LAE), that is, $F(0, y)=0, \forall y \in[0,1]$, is said to be left 0 -absorbent. If $F(x, 1)=x$, for any $x \in[0,1]$, then
we say that it has 1 as right neutral element (1-RNE). Also, when $F(x, y) \leq x, \forall x, y \in[0,1]$, we say that F follows the Left Conjunctive Property (LC) [16].

Since we are working with generalizations of the CI, two definitions are essential. The first one is the definition of aggregation functions [1]: let $A:[0,1]^{n} \rightarrow[0,1]$ be an nary function, if A satisfies:
(A1) Increasingness in each argument: $\forall i \in$ $\{1, \ldots, n\}:$ if $x_{i} \leq y$ then $A\left(x_{1}, \ldots, x_{n}\right) \leq$ $A\left(x_{1}, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_{n}\right)$;
(A2) Boundary conditions: $A(0, \ldots, 0)=0, A(1, \ldots, 1)=1$; then A is an aggregation function (AF).

The second is a more generic definition, where we ask the function to be increasing only in a pre-defined direction, that is, to be directional monotonic [24]. Let H be an n-ary function and $\boldsymbol{r}=\left(r_{1}, \ldots, r_{n}\right)$ an n-dimensional vector, with $\boldsymbol{r} \neq \mathbf{0}=(0, \ldots, 0)$. We say that H is \boldsymbol{r}-increasing if, for all $\boldsymbol{x} \in[0,1]^{n}$ and $c>0$ such that $(\boldsymbol{x}+c \boldsymbol{r}) \in[0,1]^{n}$, it holds that

$$
H\left(x_{1}+c r_{1}, \ldots, x_{n}+c r_{n}\right) \geq H\left(x_{1}, \ldots, x_{n}\right)
$$

If $\boldsymbol{r}=\mathbf{1}=(1, \ldots, 1), H$ is said to be weak increasing [32]. If H is \boldsymbol{r}-increasing, for some $\boldsymbol{r} \neq \mathbf{0}$, and satisfies the boundary conditions (A2), then H is an \boldsymbol{r}-pre-aggregation function (\boldsymbol{r} PAF) [11], [33].

By working with fuzzy integrals we also work with fuzzy measures [4], that is, $m: 2^{N} \rightarrow[0,1]$ such that, for all $X, Y \subseteq$ $N=\{1, \ldots, n\}$, the following properties holds:
(m1) Increasingness: if $X \subseteq Y$, then $m(X) \leq m(Y)$;
(m2) Boundary conditions: $m(\emptyset)=0$ and $m(N)=1$.
The fuzzy measures considered in this study, are the same as those used in [9], whose performances were analyzed in [34]. Their definitions are the following, where $X \subseteq N$:

- Cardinality or uniform measure: $m_{C}(X)=|X| / n$.
- Dirac's measure: For a fixed $i \in N$,

$$
m_{D}(X)= \begin{cases}1 & \text { if } i \in X \\ 0 & \text { if } i \notin X\end{cases}
$$

- Weighted mean (Wmean): Let $\left(w_{1}, \ldots, w_{n}\right) \in[0,1]^{n}$ be a weight vector, such that $\sum_{i=1}^{n} w_{i}=1$. Define: $m(\{1\})=w_{1}, \ldots, m(\{n\})=w_{n}$ and then the Wmean is given by: $m_{W M}(X)=\sum_{i \in X} m(\{i\})$, which is a probability measure on N, being the uniform measure a particular case.
- Ordered Weighted Averaging (OWA): Let m be a symmetric fuzzy measure and derive a weight vector $\left(w_{1}, \ldots, w_{n}\right) \in[0,1]^{n}$ as $w_{i}=m\left(A_{n-i+1}\right)-m\left(A_{n-i}\right)$, for $i \in\{1, \ldots, n\}, A_{i}$ any subset with $\left|A_{i}\right|=i$. Define $m_{O W A}(\{i\})=w_{j}$, with j being the i-th biggest component of X, and: $m_{O W A}(X)=\sum_{i \in X} m_{O W A}(\{i\})$.
- Power Measure (PM): $m_{P}(X)=(|X| / n)^{q}$, with $q>0$.

In this study, for the PM, we stress out that the value of the exponent q is learned by means of a genetic algorithm. In fact, as we have as many fuzzy measures as classes, we learn as many values for the parameter q as classes. This approach follows the idea introduced in [9] and widely used by the different generalizations of the CI (see [11], [13], [16], [18]).

Using a fuzzy measure $m: 2^{N} \rightarrow[0,1]$, the discrete Choquet integral (CI) [4] with respect to m, is the function $\mathfrak{C}_{m}:[0,1]^{n} \rightarrow[0,1]$, defined, for all $\boldsymbol{x} \in[0,1]^{n}$, by

$$
\mathfrak{C}_{m}(\boldsymbol{x})=\sum_{i=1}^{n}\left(x_{(i)}-x_{(i-1)}\right) \cdot m\left(A_{(i)}\right)
$$

where $\left(x_{(1)}, \ldots, x_{(n)}\right)$ is an increasing permutation of \boldsymbol{x}, $x_{(0)}=0$ and $A_{(i)}=\{(i), \ldots,(n)\}$ is the subset of indices of $n-i+1$ largest components of \boldsymbol{x}.

As discussed in the Introduction, several generalizations of the CI may be found in the literature [10]. Recently, Lucca et al. [16] introduced the concept of C_{F}-integral (which is similar to the F-based discrete Choquet-like integral [23]). Let F : $[0,1]^{2} \rightarrow[0,1]$ be a bivariate function. The C_{F}-integral with respect to a fuzzy measure $m: 2^{N} \rightarrow[0,1]$ is the function $\mathfrak{C}_{m}^{F}:[0,1]^{n} \rightarrow[0,1]$ defined, for all $\boldsymbol{x} \in[0,1]^{n}$, by

$$
\mathfrak{C}_{m}^{F}(\boldsymbol{x})=\min \left\{1, \sum_{i=1}^{n} F\left(x_{(i)}-x_{(i-1)}, m\left(A_{(i)}\right)\right)\right\}
$$

where $x_{(i)}$ and $A_{(i)}$ were defined in the previous paragraph for the CI. For examples of functions F, see Table II.

As a key concept in this work, a restricted dissimilarity function [28], [29] is a function $\delta:[0,1]^{2} \rightarrow[0,1]$ that satisfies, for all $x, y, z \in[0,1]$, the following conditions:
(d1) $\delta(x, y)=\delta(y, x)$;
(d2) $\delta(x, y)=1$ if and only if $\{x, y\}=\{0,1\}$;
(d3) $\delta(x, y)=0$ if and only if $x=y$;
(d4) if $x \leq y \leq z$, then $\delta(x, y) \leq \delta(x, z)$ and $\delta(y, z) \leq$ $\delta(x, z)$.
By replacing the difference operator in the definition of the CI by a restricted dissimilarity function, Bustince et al. [27] introduced the d-Choquet integral (d-integral, for short). A discrete d-Choquet integral with respect to a fuzzy measure $m: 2^{N} \rightarrow[0,1]$ and a restricted dissimilarity function $\delta:[0,1]^{2} \rightarrow[0,1]$ is a mapping $C_{m, \delta}:[0,1]^{n} \rightarrow[0, n]$, defined, for all $\boldsymbol{x} \in[0,1]^{n}$, by:

$$
C_{m, \delta}(\boldsymbol{x})=\sum_{i=1}^{n} \delta\left(x_{(i)}, x_{(i-1)}\right) \cdot m\left(A_{(i)}\right)
$$

where $x_{(i)}$ and $A_{(i)}$ were defined previously. For examples of restricted dissimilarity functions, see Table III (functions δ).

III. $d C_{F}$-INTEGRALS

This section introduces the definition of $d C_{F}$-integral, analysing the most important properties.
Definition 1 ($d C_{F}$-integral). Let $F:[0,1]^{2} \rightarrow[0,1]$ be a function satisfying ($0-L A E$), $\delta:[0,1]^{2} \rightarrow[0,1]$ be a restricted dissimilarity function and $m: 2^{N} \rightarrow[0,1]$ be a fuzzy measure. Then, the generalization of the CI by the function F, with respect to δ and m, called $d C_{F}$-integral, is the function $\mathfrak{C}_{F, m, \delta}:[0,1]^{n} \rightarrow[0, n]$, defined, for all $\boldsymbol{x} \in[0,1]^{n}$, by:

$$
\begin{equation*}
\mathfrak{C}_{F, m, \delta}(\boldsymbol{x})=x_{(1)}+\sum_{i=2}^{n} F\left(\delta\left(x_{(i)}, x_{(i-1)}\right), m\left(A_{(i)}\right)\right) \tag{1}
\end{equation*}
$$

where $\left(x_{(1)}, \ldots, x_{(n)}\right)$ is an increasing permutation on the input \boldsymbol{x} and $A_{(i)}=\{(i), \ldots,(n)\}$.

TABLE II: (1, 0)-increasing functions F satisfying (0-LAE).

Definition	Description
$T_{M}(x, y)=\min \{x, y\}$	Minimum t-norm
$T_{P}(x, y)=x y$	Algebraic product
$T_{\mathrm{E}}(x, y)=\max \{0, x+y-1\}$	Łukasiewicz
$T_{D P}(x, y)= \begin{cases}x & \text { if } y=1 \\ y & \text { if } x=1 \\ 0 & \text { otherwise }\end{cases}$	Drastic Product
$T_{N M}(x, y)= \begin{cases}\min \{x, y\} & \text { if } x+y>1 \\ 0 & \text { otherwise }\end{cases}$	Nilpotent Minimum
$T_{H P}(x, y)= \begin{cases}0 & \text { if } x=y=0 \\ \frac{x y}{x+y-x y} & \text { otherwise }\end{cases}$	Hamacher Product
$O_{B}(x, y)=\min \{x \sqrt{y}, y \sqrt{x}\}$	[35], Cuadras-Augé copula [36]
$O_{m M}(x, y)=\min \{x, y\} \max \left\{x^{2}, y^{2}\right\}$	[37], [38], [39]
$\begin{aligned} & O_{\alpha}(x, y)=x y(1+\alpha(1-x)(1-y)) \\ & \text { with } \alpha \in[-1,1] \backslash\{0\} \end{aligned}$	[26], Farlie-Gumbel- Morgenstern copula family
$O_{\text {Div }}(x, y)=\frac{x y+\min \{x, y\}}{2}$	[26], [13]
$G M(x, y)=\sqrt{x y}$	Geometric Mean, [40]
$H M(x, y)= \begin{cases}0 & \text { if } x=0 \text { or } y=0 \\ \frac{2}{x}+\frac{1}{y} & \text { otherwise }\end{cases}$	Harmonic Mean, [40]
$\operatorname{Sin}(x, y)=\sin \left(\frac{\pi}{2}(x y)^{\frac{1}{4}}\right)$	Sine, [40]
$O_{R S}(x, y)=\min \left\{\frac{(x+1) \sqrt{y}}{2}, y \sqrt{x}\right\}$	
$C_{F}(x, y)=x y+x^{2} y(1-x)(1-y)$	[2], [13]
$C_{L}(x, y)=\max \left\{\min \left\{x, \frac{y}{2}\right\}, x+y-1\right\}$	[26], [13]
$F_{G L}(x, y)=\sqrt{\frac{x(y+1)}{2}}$	
$F_{B P C}(x, y)=x y^{2}$	[1]
$\begin{aligned} & F_{B D 1}(x, y)=\min \left\{x, 1-x+\min \left\{x, y^{q}\right\}\right\} \\ & \text { with } 0<q \leq 1 \end{aligned}$	[16], [18]
$F_{N A}(x, y)= \begin{cases}x & \text { if } x \leq y \\ \min \left\{\frac{x}{2}, y\right\} & \text { otherwise }\end{cases}$	[16], [18]
$F_{N A 2}(x, y)= \begin{cases}0 & \text { if } x=0 \\ \frac{x+y}{2} & \text { if } 0<x \leq y \\ \min \left\{\frac{x}{2}, y\right\} & \text { otherwise }\end{cases}$	[16], [18]

Proposition 1. $\mathfrak{C}_{F, m, \delta}$ is well defined.

Proof. It is immediate that, for any $\boldsymbol{x} \in[0,1]^{n}, 0 \leq$ $\mathfrak{C}_{F, m, \delta}(\boldsymbol{x}) \leq n$. Take an input $\boldsymbol{x} \in[0,1]^{n}$, for which there may be different increasing permutations (i.e., \boldsymbol{x} has repeated elements). For the sake of simplicity, but without loss of generality, consider that there exist $r, s \in\{1, \ldots, n\}$ such that $x_{r}=x_{s}=z \in[0,1]$ and, for all $i \in\{1, \ldots, n\}$, with $i \neq r, s$, it holds that $x_{i} \neq x_{r}, x_{s}$. Two possible increasing permutations are:

$$
\begin{align*}
& \left(x_{(1)}, \ldots, x_{(k-1)}=x_{r}, x_{(k)}=x_{s}, \ldots, x_{(n)}\right) \tag{2}\\
& \left(x_{(1)}, \ldots, x_{(k-1)}=x_{s}, x_{(k)}=x_{r}, \ldots, x_{(n)}\right) \tag{3}
\end{align*}
$$

Denote by $m_{(i)}^{(1)}=m^{(1)}\left(A_{(i)}\right)$ and $m_{(i)}^{(2)}=m^{(2)}\left(A_{(i)}\right)$, with $i \in\{1, \ldots, n\}$, the fuzzy measures of the subsets of $A_{(i)}$ of indices corresponding to the $n-i+1$ largest components of \boldsymbol{x} with respect to the permutations (2) and (3), respectively. Then, for all $i \neq k$, it holds that

$$
\begin{align*}
m_{(i)}^{(1)} & =m_{(i)}^{(2)}, \text { and } \tag{4}\\
m_{(k)}^{(1)} & =m(\{s,(k+1), \ldots,(n)\}) \tag{5}
\end{align*}
$$

$$
\begin{equation*}
m_{(k)}^{(2)}=m(\{r,(k+1), \ldots,(n)\}) \tag{6}
\end{equation*}
$$

which means that it may be the case that $m_{(k)}^{(1)} \neq m_{(k)}^{(2)}$. Denote by $\mathfrak{C}_{F, m, \delta}^{(1)}$ and $\mathfrak{C}_{F, m, \delta}^{(2)}$ the $d C_{F}$-integrals with respect to the permutations (2) and (3), respectively, and suppose that

$$
\begin{equation*}
\mathfrak{C}_{F, m, \delta}^{(1)}(\boldsymbol{x}) \neq \mathfrak{C}_{F, m, \delta}^{(2)}(\boldsymbol{x}) \tag{7}
\end{equation*}
$$

From Eqs. (4), (5), (6), whenever $k \neq 1$, one has that:

$$
\begin{aligned}
& \mathfrak{C}_{F, m, \delta}^{(1)}(\boldsymbol{x})-\mathfrak{C}_{F, m, \delta}^{(2)}(\boldsymbol{x}) \\
& =F\left(\delta\left(x_{(k)}, x_{(k-1)}\right), m_{(k)}^{(1)}\right)-F\left(\delta\left(x_{(k)}, x_{(k-1)}\right), m_{(k)}^{(2)}\right) \\
& =F\left(\delta\left(x_{s}, x_{r}\right), m(\{s,(k+1), \ldots,(n)\})\right)- \\
& \quad F\left(\delta\left(x_{r}, x_{s}\right), m(\{r,(k+1), \ldots,(n)\})\right) \\
& = \\
& \quad F(\delta(z, z), m(\{s,(k+1), \ldots,(n)\}))- \\
& \quad F(\delta(z, z), m(\{r,(k+1), \ldots,(n)\})) \\
& = \\
& \quad F(0, m(\{s,(k+1), \ldots,(n)\}))- \\
& \quad F(0, m(\{r,(k+1), \ldots,(n)\})) \text { by }(\mathrm{d} 3) \\
& =0 \text { by }(0 \text {-LAE })
\end{aligned}
$$

which is a contradiction with (7). Analogous result can be shown for $k=1$. The result can be generalized for any subsets of repeated elements in the input \boldsymbol{x}. Then, for any different increasing permutations of the same input \boldsymbol{x} one always get the same result $\mathfrak{C}_{F, m, \delta}(\boldsymbol{x})$.
Remark 1. Observe that the first element of the summation in the definition of $\mathfrak{C}_{F, m, \delta}$ is just $x_{(1)}$ instead of

$$
F\left(\delta\left(x_{(1)}, x_{(0)}\right), m\left(A_{(1)}\right)\right)
$$

This is considered to avoid the initial discrepant behavior of non-averaging functions in the initial phase of the aggregation process, as pointed out in [18]. For example, consider a vector with only one component $\boldsymbol{x}=(0.1), \delta_{1}(x, y)=|x-y|$ and

$$
F_{N A 2}(x, y)= \begin{cases}0 & \text { if } x=0 \\ \frac{x+y}{2} & \text { if } 0<x \leq y \\ \min \left\{\frac{x}{2}, y\right\} & \text { otherwise }\end{cases}
$$

If we included the first element in the summation of the integral the result would be:

$$
\begin{aligned}
\mathfrak{C}_{F, m, \delta_{1}}(0.1) & =F_{N A 2}\left(\delta_{1}\left(x_{(1)}, x_{(0)}\right), m\left(A_{(1)}\right)\right) \\
& =F_{N A 2}(0.1-0,1)=\frac{0.1+1}{2}=0.55
\end{aligned}
$$

Observe here the large discrepancy of the result (a relative error of 450%), since one expects that the aggregated value would be 0.1. Using our definition of $d C_{F}$-integral (Equation (1)), this unexpected behavior is avoided and the result is 0.1.

In the following, consider all fuzzy measures $m: 2^{N} \rightarrow$ $[0,1]$, functions $F:[0,1]^{2} \rightarrow[0,1]$ satisfying ($0-L A E$) and restricted dissimilarity functions $\delta:[0,1]^{2} \rightarrow[0,1]$.

Since the ranges of $d C_{F}$-integrals are in $[0, n]$, there is no sense to talk about their boundary conditions in general, unless one just deals with increasing $d C_{F}$-integrals. Then, in the context of this paper, the boundary conditions of AF and PAF (conditions (A2)), are referred just by 0,1 -conditions.

Proposition 2 (0,1 -conditions). $\mathfrak{C}_{F, m, \delta}$ satisfies the 0,1 conditions.

Proof. (i) Take $\boldsymbol{x}=\mathbf{0}=(0, \ldots, 0)$. Then:

$$
\begin{aligned}
\mathfrak{C}_{F, m, \delta}(\mathbf{0}) & =0+\sum_{i=2}^{n} F\left(\delta(0,0), m\left(A_{(i)}\right)\right) \\
& =\sum_{i=2}^{n} F\left(0, m\left(A_{(i)}\right)\right) \quad \text { by }(\mathrm{d} 3) \\
& =0 \quad(\text { by } 0-\mathrm{LAE})
\end{aligned}
$$

(ii) For $\boldsymbol{x}=\mathbf{1}=(1, \ldots, 1)$, we have:

$$
\begin{aligned}
\mathfrak{C}_{F, m, \delta}(\boldsymbol{x}) & =1+\sum_{i=2}^{n} F\left(\delta(1,1), m\left(A_{(i)}\right)\right) \\
& =1+\sum_{i=2}^{n} F\left(0, m\left(A_{(i)}\right)\right) \quad \text { by }(\mathrm{d} 3) \\
& =1 \quad \text { by }(0-\mathrm{LAE})
\end{aligned}
$$

In what follows, denote the range of a $d C_{F}$-integral $\mathfrak{C}_{F, m, \delta}$ by $\operatorname{Ran}\left(\mathfrak{C}_{F, m, \delta}\right)$.
Remark 2. If the range of a $d C_{F}$-integral is $[0,1]$, then the 0,1-conditions are equivalent to the boundary conditions (A2). Additionally, whenever a dC C_{F}-integral is increasing and satisfies the 0,1 -conditions then its range is $[0,1]$. Now, whenever a d C_{F}-integral is not increasing, then, even if it satisfies the 0,1 -conditions, there may exist $\boldsymbol{y} \in[0,1]^{n}$, $\mathbf{0}<\boldsymbol{y}<\mathbf{1}$ such that $\mathfrak{C}_{F, m, \delta}(\boldsymbol{y})>1$, as it was shown in [27, Example 3.6 (iii)], which is the particular case of a $d C_{F^{-}}$ integral for $F=T_{P}$ (the product t-norm) (in fact, the standard d-Choquet integral).
Proposition 3. $\operatorname{Ran}\left(\mathfrak{C}_{F, m, \delta}\right) \subseteq[0,1]$ if F satisfies $(L C)$ and the following condition holds, for all $\boldsymbol{x} \in[0,1]^{n}$:

$$
\begin{equation*}
\sum_{i=2}^{n} \delta\left(x_{(i)}, x_{(i-1)}\right) \leq 1-x_{(1)} \tag{8}
\end{equation*}
$$

Proof. For any $\boldsymbol{x} \in[0,1]^{n}, \mathfrak{C}_{F, m, \delta}(\boldsymbol{x}) \geq 0$ and

$$
\begin{aligned}
\mathfrak{C}_{F, m, \delta}(\boldsymbol{x}) & =x_{(1)}+\sum_{i=2}^{n} F\left(\delta\left(x_{(i)}, x_{(i-1)}\right), m\left(A_{(i)}\right)\right) \\
& \leq x_{(1)}+\sum_{i=2}^{n} \delta\left(x_{(i)}, x_{(i-1)}\right) \quad \text { by }(\mathrm{LC}) \\
& \leq 1 \text { by }(8)
\end{aligned}
$$

Theorem 1 (Directional monotonicity). If F is (1,0)increasing and, for all $a, b \in[0,1]$, with $a \geq b$, and $h>0$ such that $a+h, b+h \in[0,1]$, it holds that:

$$
\begin{equation*}
\delta(a+h, b+h) \geq \delta(a, b) \tag{9}
\end{equation*}
$$

then $\mathfrak{C}_{F, m, \delta}$ is 1 -increasing
Proof. For any $\boldsymbol{x} \in[0,1]^{n}, \boldsymbol{c}=(c, \ldots, c)$, with $c>0$ and $\boldsymbol{x}+\boldsymbol{c} \in[0,1]^{n}$, consider that Eq. (9) holds whenever $h=$
$c, a=x_{(i)}$ and $b=x_{(i-1)}$, for any $i=2, \ldots, n$, that is, $\delta\left(x_{(i)}+c, x_{(i-1)}+c\right) \geq \delta\left(x_{(i)}, x_{(i-1)}\right)$. Since F is $(1,0)-$ increasing, then we have that $F\left(\delta\left(x_{(i)}, x_{(i-1)}\right), m\left(A_{(i)}\right)\right)-$ $F\left(\delta\left(x_{(i)}+c, x_{(i-1)}+c\right), m\left(A_{(i)}\right)\right)<0$. Thus:

$$
\begin{aligned}
& \sum_{i=2}^{n} F\left(\delta\left(x_{(i)}, x_{(i-1)}\right), m\left(A_{(i)}\right)\right) \\
- & \sum_{i=2}^{n} F\left(\delta\left(x_{(i)}+c, x_{(i-1)}+c\right), m\left(A_{(i)}\right)\right)<0<c .
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
& \left(x_{(1)}+c\right)+\sum_{i=2}^{n} F\left(\delta\left(x_{(i)}+c, x_{(i-1)}+c\right), m\left(A_{(i)}\right)\right) \\
> & x_{(1)}+\sum_{i=2}^{n} F\left(\delta\left(x_{(i)}, x_{(i-1)}\right), m\left(A_{(i)}\right)\right)
\end{aligned}
$$

thus $\mathfrak{C}_{F, m, \delta}(\boldsymbol{x}+\boldsymbol{c})>\mathfrak{C}_{F, m, \delta}(\boldsymbol{x})$, and $\mathfrak{C}_{F, m, \delta}$ is 1-increasing.

It is immediate that:

Theorem 2 (PAF). If F is (1,0)-increasing and ($L C$), and also both Condition (8) of Proposition 3 and Condition (9) of Theorem 1 hold, then $\mathfrak{C}_{F, m, \delta}$ is an 1-PAF.

Theorem 3 (Monotonicity). $\mathfrak{C}_{F, m, \delta}$ is increasing if and only if the following conditions hold:
(i) For all $a, b \in[0,1]$, with $a \leq b, c \in \operatorname{Ran}(m)$ and $h \in$ $[0, b-a]$ it holds that:

$$
\begin{equation*}
F(\delta(a, b), c)-F(\delta(a+h, b), c) \leq h \tag{10}
\end{equation*}
$$

(ii) For all $a_{1}, a_{2}, b_{1}, b_{2} \in[0,1]$, there exist $h_{1}, h_{2} \geq 0$, with $a_{1}+h_{1}, a_{2}+h_{2} \in[0,1]$ such that: If $b_{2} \leq b_{1}$ and $h_{2} \leq h_{1}$ then:

$$
\begin{equation*}
F\left(a_{1}+h_{1}, b_{1}\right)-F\left(a_{2}+h_{2}, b_{2}\right) \geq F\left(a_{1}, b_{1}\right)-F\left(a_{2}, b_{2}\right) \tag{11}
\end{equation*}
$$

Proof. (\Leftarrow) Take $\boldsymbol{x}, \boldsymbol{y} \in[0,1]^{n}$ such that, for some $k \in$ $\{1, \ldots, n\}$ and $\lambda \geq 0$, it holds that $x_{(k)}=y_{(k)}+\lambda$, and, for all $i \neq k, x_{(i)}=y_{(i)}$, such that:

$$
\begin{equation*}
x_{(k-1)}=y_{(k-1)} \leq x_{(k)}=y_{(k)}+\lambda \leq x_{(k+1)}=y_{(k+1)} \tag{12}
\end{equation*}
$$

Then, one has the following possibilities:
(a) $k=1$: In this case, $x_{(1)}=y_{(1)}+\lambda$. Denote $a=y_{(1)}$, $b=y_{(2)}, c=m\left(A_{(2)}\right) \in(0,1]$ and $h=\lambda \in[0, b-a]$. Since (d1) holds, it follows that:

$$
\begin{aligned}
\mathfrak{C}_{F, m, \delta}(\boldsymbol{x})= & \left(y_{(1)}+\lambda\right)+F\left(\delta\left(y_{(2)}, y_{(1)}+\lambda\right), m\left(A_{(2)}\right)\right) \\
& +\sum_{i=3}^{n} F\left(\delta\left(y_{(i)}, y_{(i-1)}\right), m\left(A_{(i)}\right)\right) \\
= & a+h+F(\delta(b, a+h), c) \\
& +\sum_{i=3}^{n} F\left(\delta\left(y_{(i)}, y_{(i-1)}\right), m\left(A_{(i)}\right)\right) \\
\geq & a+h+F(\delta(b, a), c)-h \\
& +\sum_{i=3}^{n} F\left(\delta\left(y_{(i)}, y_{(i-1)}\right), m\left(A_{(i)}\right)\right) \text { by }(10)
\end{aligned}
$$

$$
\begin{aligned}
= & y_{(1)}+F\left(\delta\left(y_{(2)}, y_{(1)}\right), m\left(A_{(2)}\right)\right) \\
& +\sum_{i=3}^{n} F\left(\delta\left(y_{(i)}, y_{(i-1)}\right), m\left(A_{(i)}\right)\right) \\
= & \mathfrak{C}_{F, m, \delta}(\boldsymbol{y})
\end{aligned}
$$

(b) $1<k<n$: Observe that, by (d4), it holds that:

$$
\begin{align*}
\delta\left(y_{(k)}+\lambda, y_{(k-1)}\right) & \geq \delta\left(y_{(k)}, y_{(k-1)}\right) \tag{13}\\
\delta\left(y_{(k+1)}, y_{(k)}\right) & \geq \delta\left(y_{(k+1)}, y_{(k)}+\lambda\right) \tag{14}
\end{align*}
$$

Then, it is possible to denote $\delta\left(y_{(k)}, y_{(k-1)}\right)=a_{1}, \delta\left(y_{(k)}+\right.$ $\left.\lambda, y_{(k-1)}\right)=a_{1}+h_{1}, \delta\left(y_{(k+1)}, y_{(k)}+\lambda\right)=a_{2}$ and $\delta\left(y_{(k+1)}, y_{(k)}\right)=a_{2}+h_{2}$, where $h_{1}=\delta\left(y_{(k)}+\lambda, y_{(k-1)}\right)-$ $\delta\left(y_{(k)}, y_{(k-1)}\right) \geq 0$ and $h_{2}=\delta\left(y_{(k+1)}, y_{(k)}\right)-\delta\left(y_{(k+1)}, y_{(k)}+\right.$ $\lambda) \geq 0$. Also denote $b_{1}=m\left(A_{(k)}\right)$ and $b_{2}=m\left(A_{(k+1)}\right)$ and notice that $b_{2} \leq b_{1}$. Then it follows that:

$$
\begin{aligned}
& \mathfrak{C}_{F, m, \delta}(\boldsymbol{x}) \\
&=y_{(1)}+\sum_{i=2}^{k-1} F\left(\delta\left(y_{(i)}, y_{(i-1)}\right), m\left(A_{(i)}\right)\right) \\
&+F\left(\delta\left(y_{(k)}+\lambda, y_{(k-1)}\right), m\left(A_{(k)}\right)\right) \\
&+F\left(\delta\left(y_{(k+1)}, y_{(k)}+\lambda\right), m\left(A_{(k+1)}\right)\right) \\
&+\sum_{i=k+2}^{n} F\left(\delta\left(y_{(i)}, y_{(i-1)}\right), m\left(A_{(i)}\right)\right) \\
&=y_{(1)}+\sum_{i=2}^{k-1} F\left(\delta\left(y_{(i)}, y_{(i-1)}\right), m\left(A_{(i)}\right)\right) \\
&+F\left(a_{1}+h_{1}, b_{1}\right)+F\left(a_{2}, b_{2}\right) \\
&+\sum_{i=k+2}^{n} F\left(\delta\left(y_{(i)}, y_{(i-1)}\right), m\left(A_{(i)}\right)\right) \\
& \geq y_{(1)}+\sum_{i=2}^{k-1} F\left(\delta\left(y_{(i)}, y_{(i-1)}\right), m\left(A_{(i)}\right)\right) \\
& \quad+ F\left(a_{1}, b_{1}\right)+F\left(a_{2}+h_{2}, b_{2}\right) \\
&+\sum_{i=k+2}^{n} F\left(\delta\left(y_{(i)}, y_{(i-1)}\right), m\left(A_{(i)}\right)\right) \text { by }(13),(14),(11) \\
&=y_{(1)}+\sum_{i=1}^{k-1} F\left(\delta\left(y_{(i)}, y_{(i-1)}\right), m\left(A_{(i)}\right)\right) \\
& \quad+F\left(\delta\left(y_{(k)}, y_{(k-1)}\right), m\left(A_{(k)}\right)\right) \\
& \quad+F\left(\delta\left(y_{(k+1)}, y_{(k)}\right), m\left(A_{(k+1)}\right)\right) \\
& \quad+\sum_{i=k+2}^{n} F\left(\delta\left(y_{(i)}, y_{(i-1)}\right), m\left(A_{(i)}\right)\right)=\mathfrak{C}_{F, m, \delta}(\boldsymbol{y}) \\
&
\end{aligned}
$$

(c) $k=n$: In this case, $x_{(n)}=y_{(n)}+\lambda$. By (d4) and condition (ii) of the theorem when $h_{2}=0$, it follows that:

$$
\begin{aligned}
\mathfrak{C}_{F, m, \delta}(\boldsymbol{x})= & y_{(1)}+\sum_{i=2}^{n-1} F\left(\delta\left(y_{(i)}, y_{(i-1)}\right), m\left(A_{(i)}\right)\right) \\
& +F\left(\delta\left(y_{(n)}+\lambda, y_{(n-1)}\right), m\left(A_{(n)}\right)\right) \\
\geq & y_{(1)}+\sum_{i=2}^{n-1} F\left(\delta\left(y_{(i)}, y_{(i-1)}\right), m\left(A_{(i)}\right)\right) \\
& +F\left(\delta\left(y_{(n)}, y_{(n-1)}\right), m\left(A_{(n)}\right)\right)
\end{aligned}
$$

$$
=\mathfrak{C}_{F, m, \delta}(\boldsymbol{y})
$$

(\Rightarrow) Since $\mathfrak{C}_{F, m, \delta}$ is increasing, then for all $\boldsymbol{x}, \boldsymbol{y} \in[0,1]^{n}$ there is $k \in\{1, \ldots, n\}$ and $\lambda \geq 0$ for which $x_{(k)}=y_{(k)}+\lambda \in$ $[0,1]$, and for any $i \in\{1, \ldots, n\}$ with $i \neq k, x_{(k)}=y_{(k)}$, satisfying Condition (12), it holds that:

$$
\begin{align*}
& \mathfrak{C}_{F, m, \delta}(\boldsymbol{x})-\mathfrak{C}_{F, m, \delta}(\boldsymbol{y}) \geq 0 \\
& \Leftrightarrow x_{(1)}+\sum_{i=2}^{n} F\left(\delta\left(x_{(i)}, x_{(i-1)}\right), m\left(A_{(i)}\right)\right) \\
& \quad-y_{(1)}+\sum_{i=2}^{n} F\left(\delta\left(y_{(i)}, y_{(i-1)}\right), m\left(A_{(i)}\right)\right) \geq 0 . \tag{15}
\end{align*}
$$

Here, the only non-zero elements are the ones that contain the k -th element: this induces to the following possibilities:
(a) $k=1$: In this case we have $x_{(1)}=y_{(1)}+\lambda$ and, by (15):

$$
\begin{align*}
& \left(y_{(1)}+\lambda\right)+F\left(\delta\left(y_{(2)}, y_{(1)}+\lambda\right), m\left(A_{(2)}\right)\right. \\
& \quad-y_{(1)}-F\left(\delta\left(y_{(2)}, y_{(1)}\right), m\left(A_{(2)}\right) \geq 0\right. \\
& \Leftrightarrow F\left(\delta\left(y_{(2)}, y_{(1)}\right), m\left(A_{(2)}\right)-F\left(\delta\left(y_{(2)}, y_{(1)}+\lambda\right), m\left(A_{(2)}\right)\right.\right. \\
& \quad \leq \lambda \tag{16}
\end{align*}
$$

By using the same notation of the item (b) of the (\Leftarrow)-part of the proof, Eq. (16) becomes:

$$
F(\delta(b, a), c)-F(\delta(b, a+h), c) \leq h
$$

since $a=y_{(1)} \leq b=y_{(2)}, c=m\left(A_{(2)}\right) \in(0,1]$ and $h=\lambda \in$ $[0, b-a]$. By (d1), the Condition (ii) holds.
(b) $1<k<n$: By (15), one has that:

$$
\begin{align*}
& F\left(\delta \left(y_{(k)}+\right.\right.\left.\left.\lambda, y_{(k-1)}\right), m\left(A_{(k)}\right)\right) \\
&+F\left(\delta\left(y_{(k+1)}, y_{(k)}+\lambda\right), m\left(A_{(k+1)}\right)\right) \\
& \geq F\left(\delta\left(y_{(k)}, y_{(k-1)}\right), m\left(A_{(k)}\right)\right) \\
&+F\left(\delta\left(y_{(k+1)}, y_{(k)}\right), m\left(A_{(k+1)}\right)\right) \\
& \Leftrightarrow \quad F\left(\delta\left(y_{(k)}+\lambda, y_{(k-1)}\right), m\left(A_{(k)}\right)\right) \\
&-F\left(\delta\left(y_{(k+1)}, y_{(k)}\right), m\left(A_{(k+1)}\right)\right) \\
& \geq F\left(\delta\left(y_{(k)}, y_{(k-1)}\right), m\left(A_{(k)}\right)\right) \\
&-F\left(\delta\left(y_{(k+1)}, y_{(k)}+\lambda\right), m\left(A_{(k+1)}\right)\right) \tag{17}
\end{align*}
$$

Since inequalities (13) and (14) hold, and $b_{2}=m\left(A_{(k+1)}\right) \leq$ $m\left(A_{(k)}\right)=b_{1}$, (17) can be written, using the notation adopted in the item (c) of the (\Leftarrow)-part of the proof, as:

$$
F\left(a_{1}+h_{1}, b_{1}\right)-F\left(a_{2}+h_{2}, b_{2}\right) \geq F\left(a_{1}, b_{1}\right)-F\left(a_{2}, b_{2}\right)
$$

where $h_{1}=\delta\left(y_{(k)}+\lambda, y_{(k-1)}\right)-\delta\left(y_{(k)}, y_{(k-1)}\right) \geq 0$ and $h_{2}=\delta\left(y_{(k+1)}, y_{(k)}\right)-\delta\left(y_{(k+1)}, y_{(k)}+\lambda\right) \geq 0$. Then, the Condition (ii) holds.
(c) $k=n$: In this case $x_{(n)}=y_{(n)}+\lambda$ and, by (15):

$$
\begin{aligned}
& F\left(\delta\left(y_{(n)}+\lambda, y_{(n-1)}\right), m\left(A_{(k)}\right)\right) \\
& \quad-F\left(\delta\left(y_{(n)}, y_{(n-1)}\right), m\left(A_{(k)}\right)\right) \geq 0
\end{aligned}
$$

By (d4) we have that $\delta\left(y_{(n)}+\lambda, y_{(n-1)}\right) \geq \delta\left(y_{(n)}, y_{(n-1)}\right)$. Now considering $\delta\left(y_{(n)}+\lambda, y_{(n-1)}\right)=a_{1}+\lambda_{1}$, $\delta\left(y_{(n)}, y_{(n-1)}\right)=a_{1}$ and $b_{1}=m\left(A_{(k)}\right)$, we then have that $F\left(a_{1}+\lambda_{1}, b_{1}\right)-F\left(a_{1}, b_{1}\right) \geq 0 \Leftrightarrow F\left(a_{1}+\lambda_{1}, b_{1}\right) \geq F\left(a_{1}, b_{1}\right)$, which is the case of having $h_{2}=0$ in Condition (ii).

From Proposition 2 and Theorem 3, it follows that:
Theorem 4 (AF). $\mathfrak{C}_{F, m, \delta}$ is an aggregation function if and only if the conditions of Theorem 3 hold.

We point out that any aggregation-like operator is required to present some kind of "increasingness property" in order to guarantee the preservation of the information quality of the output related to the information quality of the inputs, in the light of Domain Theory [41]. In this sense, the higher are the values of the inputs, in some considered direction, the higher should be the aggregated value to the same direction [10], [21]. Observe, in Table III, that there may exist $d C_{F}$-integrals that are neither increasing nor directional increasing, which is the case, e.g, of $\mathfrak{C}_{F, \delta_{3}, m}$ and $\mathfrak{C}_{F, \delta_{5}, m}$. Nevertheless, they are Ordered Directional (OD) monotone functions [25]. Such functions are monotonic along different directions according to the ordinal size of the coordinates of each input.
Definition 2. [25] Consider a function $O d:[0,1]^{n} \rightarrow[0,1]$ and let $\boldsymbol{r}=\left(r_{1}, \ldots, r_{n}\right)$ be a real n-dimensional vector, $\boldsymbol{r} \neq$ 0. Od is said to be ordered directionally (OD) r-increasing if, for each $\boldsymbol{x} \in[0,1]^{n}$, any permutation $\sigma:\{1, \ldots, n\} \rightarrow$ $\{1, \ldots, n\}$ with $x_{\sigma(1)} \geq \ldots \geq x_{\sigma(n)}$, and $c>0$, with $x_{\sigma(i)}+$ $c r_{i} \in[0,1]$, for $i \in\{1, \ldots, n\}$, such that $1 \geq x_{\sigma(1)}+c r_{1} \geq$ $\ldots \geq x_{\sigma(n)}+c r_{n}$, it holds that $O d\left(\boldsymbol{x}+c \boldsymbol{r}_{\sigma^{-1}}\right) \geq \operatorname{Od}(\boldsymbol{x})$, where $\boldsymbol{r}_{\sigma^{-1}}=\left(r_{\sigma^{-1}(1)}, \ldots, r_{\sigma^{-1}(n)}\right)$. Similarly, one defines an ordered directionally (OD) \boldsymbol{r}-decreasing function.
Theorem 5. For any $k>0$, the $d C_{F}$-integral is an (OD) ($k, 0, \ldots, 0$)-increasing function.
Proof. For all $\boldsymbol{x} \in[0,1]^{n}$ and permutation $\sigma:\{1, \ldots, n\} \rightarrow$ $\{1, \ldots, n\}$, with $x_{\sigma(1)} \geq \ldots \geq x_{\sigma(n)}$, and $c>0$, with $x_{\sigma(i)}+$ $c r_{i} \in[0,1]$, for $i \in\{1, \ldots, n\}$, and $1 \geq x_{\sigma(1)}+c r_{1} \geq \ldots \geq$ $x_{\sigma(n)}+c r_{n}$, for $\boldsymbol{r}_{\sigma^{-1}}=\left(r_{\sigma^{-1}(1)}, \ldots, r_{\sigma^{-1}(n)}\right)$, one has that:
$\mathfrak{C}_{F, m, \delta}\left(\boldsymbol{x}+c \boldsymbol{r}_{\sigma^{-1}}\right)$
$=x_{(1)}+c \cdot r_{\sigma^{-1}(1)}$
$+\sum_{i=2}^{n-1} F\left(\delta\left(x_{(i)}+c r_{\sigma^{-1}(i)}, x_{(i-1)}+c r_{\sigma^{-1}(i-1)}\right), m\left(A_{(i)}\right)\right)$

$$
+F\left(\delta\left(x_{(n)}+c r_{\sigma^{-1}(n)}, x_{(n-1)}+c r_{\sigma^{-1}(n-1)}\right), m\left(A_{(n)}\right)\right)
$$

$$
=x_{(1)}+\sum_{i=2}^{n-1} F\left(\delta\left(x_{(i)}, x_{(i-1)}\right), m\left(A_{(i)}\right)\right)
$$

$$
+F\left(\delta\left(x_{(n)}+c k, x_{(n-1)}\right), m\left(A_{(n)}\right)\right)
$$

$\geq x_{(1)}+\sum_{i=2}^{n-1} F\left(\delta\left(x_{(i)}, x_{(i-1)}\right), m\left(A_{(i)}\right)\right.$
$+F\left(\delta\left(x_{(n)}, x_{(n-1)}\right), m\left(A_{n)}\right) \quad\right.$ by (d4)
$=\mathfrak{C}_{F, m, \delta}(\boldsymbol{x})$.

Lastly, some other important properties are studied:
Proposition 4. $\mathfrak{C}_{F, m, \delta}$ is idempotent.
Proof. Consider $\boldsymbol{x}=(x, \ldots, x) \in[0,1]^{n}$. Then:

$$
\mathfrak{C}_{F, m, \delta}(\boldsymbol{x})=x+\sum_{i=2}^{n} F\left(\delta(x, x), m\left(A_{(i)}\right)\right)
$$

TABLE III: Properties of the $d C_{F}$-integral for various F satisfying (0-LAE) and restricted dissimilarity functions, based on the results presented in this paper. Here, m means that $\mathfrak{C}_{F, m, \delta}(\boldsymbol{x}) \geq \min (\boldsymbol{x})$.

Function	$\delta_{0}(x, y)=\|x-y\|$					$\delta_{1}(x, y)=(x-y)^{2}$					$\delta_{2}(x, y)=\sqrt{\|x-y\|}$				
T_{M}		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	m
T_{P}	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	m
$T_{\text {E }}$		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	m
$T_{D P}$		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	m
$T_{N M}$		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	m
$T_{H P}$		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	m
O_{B}		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	m
$O_{m M}$		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	m
O_{α}		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	m
$O_{\text {Div }}$		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	m
GM		\checkmark		\checkmark	m		\checkmark		\checkmark	m		\checkmark		\checkmark	m
HM		\checkmark		\checkmark	m		\checkmark		\checkmark	m		\checkmark		\checkmark	m
Sin		\checkmark		\checkmark	m		\checkmark		\checkmark	m		\checkmark		\checkmark	m
$O_{R S}$		\checkmark		\checkmark	m		\checkmark		\checkmark	m		\checkmark		\checkmark	m
C_{F}		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	m
C_{L}		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	m
$F_{G L}$		\checkmark		\checkmark	m		\checkmark		\checkmark	m		\checkmark		\checkmark	m
$F_{B P C}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	m
$F_{B D 1}$		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	m
$F_{N A}$		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	m
$F_{\text {NA2 }}$		\checkmark		\checkmark	m		\checkmark		\checkmark	m		\checkmark		\checkmark	m
Function	Agg.	$\overline{\delta_{3}(x,}$	$y)=$ $1-\mathrm{PA}$	$\|\sqrt{x}-\sqrt{y}\|$ OD-(k, -inc	Ave	Agg.	$\underset{\substack{\delta_{4}(x) \\ 1-\text { inc }}}{ }$, y) $=$ 1-PA	\| $x^{2}-y^{2} \mid$ OD-(k, $)$-inc	Ave		$\delta_{5}(x, y$	1-PA $=($	$\sqrt{x}-\sqrt{y})^{2}$ OD- $(\mathrm{k}$, -inc	Ave
T_{M}				\checkmark	m		\checkmark		\checkmark					\checkmark	
T_{P}				\checkmark	m		\checkmark		\checkmark	m				\checkmark	\checkmark
T_{E}				\checkmark	m		\checkmark		\checkmark	m				\checkmark	\checkmark
$T_{D P}$					m		\checkmark			m				\checkmark	\checkmark
$T_{N M}$					m		\checkmark		\checkmark	m				\checkmark	\checkmark
$T_{H P}$				\checkmark	m		\checkmark		\checkmark	m				\checkmark	\checkmark
O_{B}				\checkmark	m		\checkmark		\checkmark	m				\checkmark	\checkmark
$O_{m M}$				\checkmark	m		\checkmark		\checkmark	m				\checkmark	\checkmark
O_{α}				\checkmark	m		\checkmark		\checkmark	m				\checkmark	\checkmark
$O_{\text {Div }}$				\checkmark	m		\checkmark		\checkmark	m				\checkmark	\checkmark
GM				\checkmark	m		\checkmark		\checkmark	m				\checkmark	m
HM				\checkmark	m		\checkmark		\checkmark	m				\checkmark	m
Sin				\checkmark	m		\checkmark		\checkmark	m				\checkmark	m
$O_{R S}$				\checkmark	m		\checkmark		\checkmark	m				\checkmark	m
C_{F}				\checkmark	m		\checkmark		\checkmark	m				\checkmark	\checkmark
C_{L}				\checkmark	m		\checkmark		\checkmark	m				\checkmark	\checkmark
$F_{G L}$				\checkmark	m		\checkmark		\checkmark	m				\checkmark	m
$F_{B P C}$				\checkmark	m		\checkmark		\checkmark	m				\checkmark	\checkmark
$F_{B D 1}$				\checkmark	m		\checkmark		\checkmark	m				\checkmark	\checkmark
$F_{N A}$				\checkmark	m		\checkmark		\checkmark	m				\checkmark	\checkmark
$F_{\text {NA2 }}$				\checkmark	m		\checkmark		\checkmark	m				\checkmark	m

$=x+\sum_{i=2}^{n} F\left(0, m\left(A_{(i)}\right)\right) \quad$ by (d3)
$=x \quad$ by (0-LAE).
Therefore, $\mathfrak{C}_{F, m, \delta}(\boldsymbol{x})$ is idempotent.
Proposition 5. $\mathfrak{C}_{F, m, \delta}(\boldsymbol{x}) \geq \min (\boldsymbol{x})$, for all $\boldsymbol{x} \in[0,1]^{n}$.
Proof. It follows that

$$
\begin{aligned}
& \mathfrak{C}_{F, m, \delta}(\boldsymbol{x})=x_{(1)} \\
& \quad+\sum_{i=2}^{n} F\left(\delta\left(x_{(i)}, x_{(i-1)}\right), m\left(A_{(i)}\right)\right) \geq x_{(1)}=\min (\boldsymbol{x}) .
\end{aligned}
$$

for any $0 \leq a_{1} \leq \ldots \leq a_{n} \leq 1$, then $\mathfrak{C}_{F, m, \delta}(\boldsymbol{x}) \leq \max (\boldsymbol{x})$, for all $\boldsymbol{x} \in[0,1]^{n}$.

Proof. Consider $\boldsymbol{x} \in[0,1]^{n}$. Then:

$$
\begin{aligned}
\mathfrak{C}_{F, m, \delta}(\boldsymbol{x}) & =x_{(1)}+\sum_{i=2}^{n} F\left(\delta\left(x_{(i)}, x_{(i-1)}\right), m\left(A_{(i)}\right)\right) \\
& \leq x_{(1)}+\sum_{i=2}^{n} \delta\left(x_{(i)}, x_{(i-1)}\right) \text { by }(\mathrm{LC}) \\
& \leq x_{(n)}=\max (\boldsymbol{x}) \quad \text { by }(18) .
\end{aligned}
$$

Therefore, $\mathfrak{C}_{F, m, \delta}(\boldsymbol{x}) \leq \max (\boldsymbol{x})$.

Proposition 6. If F satisfies (LC) and δ satisfies the condition

$$
\begin{equation*}
\sum_{i=2}^{n} \delta\left(a_{i}, a_{i-1}\right) \leq a_{n}-a_{1} \tag{18}
\end{equation*}
$$

From Propositions 5 and 6, it is immediate that:
Proposition 7. If F satisfies (LC) and the condition (18) holds then $\mathfrak{C}_{F, m, \delta}$ is averaging.

Table III shows examples of combinations of functions F and δ that satisfy the following properties: aggregation (Agg.), 1-increasiness (1-inc), 1-pre-aggregation (1-PAF), OD-(k,0, ...,0)-increasing (OD-(k,_)-inc) and averaging (Ave.). Notice that the only combinations of functions F and δ satisfying the conditions necessary for the $d C_{F}$-integral to be an aggregation function are the pairs T_{P} and δ_{0}, and $F_{B P C}$ and δ_{0}. Just two studied $d C_{F}$-integrals are not directional increasing, namely, the ones based on the restricted dissimilarity functions δ_{3} and δ_{5}. Nevertheless, not all the reminder $d C_{F}$-integrals are PAFs. Some of them, although 1-increasing, do not have their ranges equal to the unit interval, which clearly depends on the considered function F, as the $d C_{F}$-integrals based on δ_{0} or δ_{1}, and the functions $G M, H M, \sin , O_{R S}, F_{G L}$ or $F_{N A 2}$. Finally, all $d C_{F}$-integrals are OD-(k, $\left.0, \ldots, 0\right)$-increasing.

Remark 3. Notice that all RDFs presented in Table III are derived from δ_{0}. In fact, they were constructed according to [29, Prop. 2]. It follows that, for $i \in\{1, \ldots, 5\}$ and $x_{1}, \ldots, x_{n} \in$ $[0,1]: \mathfrak{C}_{F, m, \delta_{i}}\left(x_{1}, \ldots, x_{n}\right)-x_{(1)}=\mathfrak{C}_{F_{\alpha_{i}}, m, \delta_{0}}\left(x_{1}^{\beta_{i}}, \ldots, x_{n}^{\beta_{i}}\right)-$ $x_{(1)}^{\beta_{i}}$, where $F_{\alpha_{i}}(u, v)=F\left(u^{\alpha_{i}}, v\right)$, for $u, v \in[0,1]$ and $\alpha_{i}, \beta_{i} \geq 0$. Nevertheless, it is possible to define an RDF that is not derived from δ_{0}, such as $\delta:[0,1]^{2} \rightarrow[0,1]$ given, for all $x, y \in[0,1]$ and $c \in(0,1)$, by

$$
\delta(x, y)=\left\{\begin{array}{l}
1, \text { if }\{x, y\}=\{0,1\} \\
0, \text { if } x=y \\
c, \text { otherwise }
\end{array}\right.
$$

The respective $\mathfrak{C}_{F, m, \delta}$ is 1-increasing (but not a 1-PAF) and OD ($k, 0, \ldots, 0$)-increasing. It also holds that $\mathfrak{C}_{F, m, \delta}(\boldsymbol{x}) \geq$ $\min (\boldsymbol{x})$, for all $\boldsymbol{x} \in \mathbb{R}^{n}$, although, it is not averaging.

IV. $d C_{F}$-INTEGRALS IN THE FRM of FRBCS's

In this section, we present the application of the $d C_{F^{-}}$ integral in the FRM of a FRBCS. Considering a classification problem containing t training examples $\mathrm{x}_{p}=$ $\left(x_{p 1}, \ldots, x_{p n}, y_{p}\right)$, with $p=1, \ldots, t$, where each $x_{p i}$ is the value of the $i=1, \ldots, n$ variable, and $y_{p} \in \mathcal{C}=$ $\left\{C_{1}, \ldots, C_{M}\right\}$ is the label of the class of the p-th training example, and M is the number of classes.

Here, we focus on FRBCS's, specifically, the Fuzzy Association Rule-based Classification model for High Dimensional Problems (FARC-HD) [42] fuzzy classifier. The structure of the fuzzy rules generated by this classifier is:

$$
\begin{gathered}
\text { Rule } R_{j}: \text { If } x_{1} \text { is } A_{j 1} \text { and } \ldots \text { and } x_{n} \text { is } A_{j n} \\
\text { then Class is } C_{j} \text { with } R W_{j},
\end{gathered}
$$

where R_{j} is the label of the j-th rule, $A_{j i}$ is a fuzzy set representing a linguistic term modeled by a triangular shaped membership function. C_{j} is the class label and $R W_{j} \in[0,1]$ is the rule weight [43], which in this case is computed as the confidence of the fuzzy rule.

Following the same approach used in the previous generalizations of the CI (see [11], [13], [16] and [18]), we modify the classical FRM of FARC-HD to include the $d C_{F}$-integrals
in its third stage. Thus, the classification soundness degree for all classes of a new example x is computed by:

$$
S_{k}(x)=C_{k}^{\mathfrak{C}_{F, m, \delta}}\left(b_{1}^{k}(x), \ldots, b_{L}^{k}(x)\right)
$$

where k is related with the class, L is the number of rules, $\left(b_{1}^{k}(x), \ldots, b_{L}^{k}(x)\right)$ are the association degrees of x with the class of each rule, given by $b_{j}^{k}(x)=\mu_{A_{j}}(x) \cdot R W_{j}^{k}$, where $\mu_{A_{j}}(x)=A G\left(\mu_{A_{j 1}}\left(x_{1}\right), \ldots, \mu_{A_{j n}}\left(x_{n}\right)\right), j=1, \ldots, L, A G$ is an aggregation function, and μ is the membership degree of the elements of the fuzzy set A_{j}. Finally, $C_{k}^{\mathfrak{C}_{F, m, \delta}}$ is the $d C_{F}$-integral that aggregate the fired rules for each class.

V. Experimental Framework

In this section, we present the experimental framework used in the study. We start providing the features of the considered datasets. Then, we show the configuration of the proposal and, finally, we discuss the statistical tests that are used to validate the quality of the results.

A. Datasets used in the study

This study is conducted taking into consideration 33 different datasets selected from KEEL dataset repository [31]. We highlight that these datasets are the same ones used in previous studies, such as C_{F}-integrals [16] and $C_{F 1 F 2}$-integrals [18]. This allow a comparison with state-of-the-art approaches.

We summarize the datasets in Table IV. For each dataset, we present the corresponding identification (Id), the number of instances (\#Inst), attributes (\#Atts) and classes (\#Class). Additionally, we point out that these datasets do not present monotonic characteristics [44].

We applied a 5 -fold cross-validation procedure, which consists in spliting the datasets into five partitions containing 20% of the examples each one. The model is learned using 4 partitions for training and tested in the remaining partition. The general performance of the model is measured according to each testing partition, based on the accuracy rate (the number of correctly classified examples divided by the total number of examples). At the end, after calculating each partition performance, we use the average result of the five testing partitions to generate the output of the algorithm.

B. Configuration of the proposal

The new FRM presented in this paper, considering the concept of $d C_{F}$-integrals developed in Section III, is applied in the Fuzzy Association Rule-Based Classification method for High-Dimensional problems (FARC-HD) [42] fuzzy classifier. The configurations used by the algorithms are the same one suggested by the authors and is composed by: linguistic labels per variable (5), conjunction operator (Product t-norm), rule weight (Confidence), minimum support (0.05), minimum confidence (0.8), depth of the search tree (3), number of fuzzy rules that cover each example (2), population size (50), gray codification (30 bits per gene), number of evaluations (20.000).

TABLE IV: Summary of the datasets used in the study.

Id.	Dataset	\#Inst.	\#Atts.	\#Class
App	Appendicitis	106	7	2
Bal	Balance	625	4	3
Ban	Banana	5,300	2	2
Bnd	Bands	365	19	2
Bup	Bupa	345	6	2
Cle	Cleveland	297	13	5
Con	Contraceptive	1,473	9	3
Eco	Ecoli	336	7	8
Gla	Glass	214	9	6
Hab	Haberman	306	3	2
Hay	Hayes-Roth	160	4	3
Ion	Ionosphere	351	33	2
Iri	Iris	150	4	3
Led	led7digit	500	7	10
Mag	Magic	1,902	10	2
New	Newthyroid	215	5	3
Pag	Pageblocks	5,472	10	5
Pen	Penbased	10,992	16	10
Pho	Phoneme	5,404	5	2
Pim	Pima	768	8	2
Rin	Ring	740	20	2
Sah	Saheart	462	9	2
Sat	Satimage	6,435	36	7
Seg	Segment	2,310	19	7
Shu	Shuttle	58,000	9	7
Son	Sonar	208	60	2
Spe	Spectfheart	267	44	2
Tit	Titanic	2,201	3	2
Two	Twonorm	740	20	2
Veh	Vehicle	846	18	4
Win	Wine	178	13	3
Wis	Wisconsin	683	11	2
Yea	Yeast	1,484	8	10

C. Statistical test for performance comparisons

In this paper is considered hypothesis validation techniques to present a statistical analysis of the obtained results [45], [46]. Since the validity conditions of parametric tests are not satisfied, is considered the usage of non-parametric tests [47].

To perform group comparisons, the Aligned Friedman rank test [48] is used. This test uses a reverse raking, that is, the lowest rank is considered as the best one. Additionally, the post-hoc Holm's test [49] is computed to indicate when the approach achieving the less ranking (known as control method) rejects the null hypothesis. To do so, we calculate the Adjusted P -Value (APV) to be able to compare directly the control method, with a level of significance α, versus the other ones.

VI. Performance Analysis

In this section, the results achieved when different $d C_{F^{-}}$ integrals are applied to aggregate the information in the FRM are presented. The experimental study is developed with a double aim:

1) To analyze if the introduction of the RDFs in the $d C_{F^{-}}$ integrals allows the system to enhance the results obtained when the classical difference operator is applied, which is considered as baseline of the study. Moreover, we want to check if certain RDFs are more beneficial for the system than others. The results and analyses of this aim are shown in Section V-A.
2) To study if there is a synergy among the best RDFs (found in the first part of the study), the fuzzy measures
and the functions F . This study, which is shown in Section V-B, helps to reduce the number of combinations to be tested, since we can suggest a few ones achieving stable and competitive results.
In order to make a complete and robust study, this analysis considers the combinations of 5 different RDFs with 21 generalizations of the CI using 5 different fuzzy measures. All those combinations are applied in 33 datasets. In other words, 525 experiments per dataset have been conducted.

The obtained results are summarized in Tables V, VI and VII, where the rows present the different functions F used for the generalizations. The columns are related with the combination of fuzzy measures and different RDFs. Observe that the $d C_{F}$-integrals using δ_{0} (the difference operator) are the original C_{F}-integrals, which are considered as our baseline. We should point out that the usage of δ_{0} combined with the product t-norm as the function $F\left(F=T_{P}\right)$ result in the standard Choquet integral (first column and second row of Tables V, VI and VII). Finally, the value of each cell represents the mean of the accuracy obtained in testing in the 33 considered datasets.

Aiming at extracting the maximum information of the results and to ease their comprehension, for each function F, when comparing the different RDFs for a specific fuzzy measure, we highlight with boldface and underline the largest and lowest accuracy mean, respectively. Moreover, the symbol ${ }^{+}$indicates for each function F (row), the combination of RDF and fuzzy measure that achieves the largest accuracy among all fuzzy measures. Finally, for each RDF (column) we stress with an * the function F providing the best result. The detailed testing results for the different combinations can be shown in (https://github.com/Giancarlo-Lucca/dCF-integrals).

A. Studying the usefulness of RDFs

In this subsection the usefulness of the substitution of the classical difference by a RDF is studied. To do it, the results obtained by the RDFS are compared against the classical difference. After that, we will analyze whether an specific RDF is able to provide better results than the remainder ones. Performing an initial analysis of the effectiveness of the RDFs in Tables V-VII some important points are found, such as: - The generalization based on the δ_{1} achieves the lowest results for all used functions F in all considered fuzzy measures.

- The usage of the δ_{4} in general, present inferior results when compared against the difference operator $\left(\delta_{0}\right)$ for all considered functions and fuzzy measures.
- δ_{3} presents similar results to the classical difference.
- Generalizations considering δ_{2} and δ_{5} tend to improve the results obtained by the baseline. In this sense, we highlight that the usage of the δ_{5} seems to provide a superior performance.

This initial analysis indicates that the results obtained by the classical difference operator can be improved if the generalizations by the RDFs are used, where δ_{2} and δ_{5} stand out. To clarify even more these findings, in Table VIII, we show the number of functions F in which the different RDF (columns) achieved the largest result per fuzzy measure (rows). The last row of this table, \#Total, is the number of best results

TABLE V: Accuracy mean obtained in tests - Part 1

	Cardinality					
	δ_{0}	δ_{1}	δ_{2}	δ_{3}	δ_{4}	δ_{5}
T_{M}	79.41	77.69	79.99	79.61	78.57	80.38
T_{P}	79.02	77.84	80.17	78.90	78.02	$80.56{ }^{+*}$
$T_{\text {Ł }}$	77.12	77.09	77.17	76.75	77.24	77.95
$T_{D P}$	77.19	77.19	77.19	$\underline{77.19}$	77.19	77.19
$T_{N M}$	77.21	77.08	77.72	77.19	76.97	78.27
$T_{H P}$	79.41	77.70	80.16	79.71	78.36	80.26
O_{B}	79.05	77.59	80.08	79.26	78.17	79.97
$O_{m M}$	78.23	77.15	79.76	78.31	77.47	79.95
O_{α}	78.80	77.55	$80.40{ }^{+*}$	78.99	77.91	80.27
$O_{d i v}$	78.97	77.44	79.98	79.36	77.87	80.14
$G M$	80.33*	79.13	80.14	80.40	79.70	80.00
$H M$	79.64	$\underline{78.00}$	80.28	79.75	79.42	80.05
Sin	$\underline{80.12}$	80.12*	$\underline{80.12}$	$\underline{80.12}$	80.12	$\underline{80.12}$
$O_{R S}$	80.17	79.02	80.33	80.56 ${ }^{+}$	79.26	80.24
C_{F}	78.52	77.46	79.88	78.98	77.92	$80.24{ }^{+}$
C_{L}	79.41	77.69	80.13	79.18	78.53	79.83
$F_{G L}$	80.15	$\overline{79.26}$	80.26	79.91	80.21	80.43
$F_{B P C}$	77.72	$\underline{77.24}$	79.30	78.13	77.44	79.72
$F_{B D 1}$	79.60	77.89	80.29	79.64	78.67	79.96
$F_{N A}$	79.10	$\overline{77.74}$	$80.38{ }^{+}$	79.24	78.39	79.84
$F_{N A 2}$	80.16	80.11	79.98	80.15	80.34*	79.91
Mean	79.02	78.00	79.70	79.11	78.47	79.78
	Dirac					
	δ_{0}	δ_{1}	δ_{2}	δ_{3}	δ_{4}	δ_{5}
T_{M}	79.41	77.44	78.82	78.41	77.78	79.30
T_{P}	79.02	$\overline{77.44}$	78.82	78.41	77.78	79.30
$T_{\text {Ł }}$	77.12	77.44	78.82	78.41	77.78	79.30
$T_{D P}$	$\overline{77.19}$	77.44	78.82	78.41	77.78	79.30^{+}
$T_{N M}$	$\overline{77.21}$	77.44	78.82	78.41	77.78	79.30
$T_{H P}$	79.41	77.44	78.82	78.41	77.78	79.30
O_{B}	79.05	77.44	78.82	78.41	77.78	79.30
$O_{m M}$	78.23	77.44	78.82	78.41	77.78	79.30
O_{α}	78.80	77.44	78.82	78.41	77.78	79.30
$O_{d i v}$	78.97	77.44	78.82	78.41	77.78	79.30
$G M$	80.33*	78.27	79.67	79.30	78.75	79.69
$H M$	79.64	77.52	79.24	78.59	77.86	79.07
Sin	$\underline{80.12}$	80.12*	$\underline{80.12}$	$\underline{80.12}$	80.12	80.12*
$O_{R S}$	80.17	78.27	79.67	79.30	78.75	79.69
C_{F}	78.52	77.44	78.82	78.41	77.78	79.30
C_{L}	79.41	77.44	78.82	78.41	77.78	79.30
$F_{G L}$	80.15	79.12	80.40 *	80.61*	80.19*	80.02
$F_{B P C}$	77.72	77.44	78.82	78.41	77.78	79.30
$F_{B D 1}$	79.60	$\underline{77.51}$	80.13	79.40	78.60	80.00
$F_{N A}$	79.10	$\overline{77.44}$	78.82	78.41	77.78	79.30
$F_{N A 2}$	80.16	79.96	80.16	80.02	79.89	$\underline{79.83}$
Mean	79.02	77.85	79.18	78.81	78.24	79.46

of each RDF. Also, we provide in the last column, \# δ_{-}Total, the number of functions where any $\operatorname{RDF}\left(\delta_{1}\right.$ to δ_{5}) enhanced the mean obtained by the classical difference for a specific fuzzy measure (consequently the largest number could be 21).

From the results in Table VIII, it is observable that the usage of the RDFs are suitable since the number of times where they improve the results of the classical difference is high (see the last column of the table). It is noticeable in this analysis that, in 81 out of the 105 combinations (each fuzzy measure is generalized by 21 different functions), the achieved mean by any RDF is superior than that of the classical difference. Among the new RDFs, it is noticeable the superiority of the δ_{5} approach, since it provides 43 of these 81 combinations where a RDF is better than the classical difference. A satisfactory number of combinations is also obtained when δ_{2} is considered.

Another interesting observation can be noticed when com-

TABLE VI: Accuracy mean obtained in tests - Part 2

	OWA					
	δ_{0}	δ_{1}	δ_{2}	δ_{3}	δ_{4}	δ_{5}
T_{M}	79.17	$\underline{77.44}$	79.35	78.97	77.98	$\mathbf{7 9 . 4 6}$
T_{P}	78.64	$\underline{76.76}$	$\mathbf{7 9 . 4 9}$	78.42	77.19	79.20
T_{E}	$\mathbf{7 7 . 2 2}$	$\underline{76.85}$	77.17	$\underline{76.79}$	77.05	77.00
$T_{D P}$	$\underline{77.19}$	$\underline{77.19}$	$\underline{77.19}$	$\underline{77.19}$	$\underline{77.19}$	$\underline{77.19}$
$T_{N M}$	$\underline{77.23}$	76.94	$\underline{76.89}$	76.97	77.14	77.02
$T_{H P}$	79.40	$\underline{76.97}$	$\underline{\mathbf{7 9 . 8 2}}$	79.02	77.90	79.53
O_{B}	78.89	$\underline{76.61}$	79.55	79.06	77.37	$\mathbf{7 9 . 5 8}$
$O_{m M}$	77.97	$\underline{77.12}$	78.60	77.63	$\underline{76.76}$	$\mathbf{7 8 . 6 3}$
O_{α}	78.51	$\underline{76.68}$	$\mathbf{7 9 . 3 6}$	78.41	77.09	79.15
$O_{d i v}$	79.27	$\underline{77.05}$	79.26	78.74	77.96	$\mathbf{7 9 . 4 8}$
$G M$	$\mathbf{8 0 . 3 2}$	$\underline{78.46}$	80.04	79.61	78.96	79.84
$H M$	79.53	$\underline{77.12}$	$\mathbf{8 0 . 0 5}$	79.29	78.26	79.72
$S_{i n}$	$\underline{80.12}$	$\underline{80.12^{*}}$	$\underline{80.12}$	$\underline{80.12}$	$\underline{80.12}$	$\underline{80.12^{*}}$
$O_{R S}$	$\mathbf{8 0 . 1 2}$	$\underline{77.69}$	79.72	79.20	78.83	79.66
C_{F}	78.55	$\underline{76.79}$	$\mathbf{7 9 . 3 5}$	78.31	77.26	79.29
C_{L}	79.33	$\underline{76.83}$	$\mathbf{7 9 . 5 3}$	78.77	77.93	79.42
$F_{G L}$	$\mathbf{8 0 . 5 0}$	$\underline{79.42}$	80.40^{*}	80.33^{*}	80.20^{*}	79.99
$F_{B P C}$	78.09	$\underline{77.41}$	$\mathbf{7 8 . 7 4}$	77.65	$\underline{77.13}$	78.57
$F_{B D 1}$	79.52	$\underline{78.04}$	79.88	79.22	78.35	$\mathbf{7 9 . 9 9}$
$F_{N A}$	79.19	$\underline{77.07}$	$\mathbf{7 9 . 8 9}$	79.00	77.97	79.79
$F_{N A 2}$	$\mathbf{8 0 . 2 1}$	$\underline{79.23}$	79.64	79.48	79.31	79.61
Mean	79.00	$\underline{77.51}$	$\mathbf{7 9 . 2 4}$	78.68	78.00	79.15

paring exclusively the standard CI (with δ_{0} and T_{P}) using the different RDFs (see Tables V, VI and VII). Its noticeable that for any fuzzy measure, in all cases we have RDFs that have obtained a superior accuracy mean compared with the CI.

Up to this point, it is clear that the usage of $d C_{F}$-integrals is a good alternative when compared with C_{F}-integrals, which uses the difference operator. However, in order to give a support to the previous findings, a statistical study by applying the Aligned Friedman rank test is performed.

In this test, we compare the performance of the 6 RDFs for each fuzzy measure, analyzing whether a RDF is statistically better than the remainder ones or not. Since this is a large study, in Table IX the results considering exclusively the PM are presented, since this fuzzy measure is the one that achieves the best synergy with the RDFs (see Subsection VI-B). We stress out that the complete statistical analysis, considering all fuzzy measures is also available in the git repository.

In Table IX, for each function F, the RDFs are sorted from the lowest to the highest obtained rank (the lowest one is considered as control method and it is compared with the remaining ones). The APV column indicates if there are statistical differences between the method in the row and the control one. When the obtained APV is inferior than 0.10 it is underlined, indicating that there is a statistical difference in favor to the control method.

To ease the interpretation of the statistical results, a summary is provided in Table X. In this table, the rows are the different RDFs and the columns the fuzzy measures. The value of each cell is the number of times in which the RDF in the row is considered as the control method in the Aligned Friedman rank test (therefore, the best method) for each fuzzy measure. For instance, taking a look at the column of the PM, it is observable that count for δ_{0}, δ_{2} and δ_{5} are 3,8 and 8 , respectively, these are the number of times that each RDF, is

TABLE VII: Accuracy mean obtained in tests - Part 3

	Wmean					
	δ_{0}	δ_{1}	δ_{2}	δ_{3}	δ_{4}	δ_{5}
T_{M}	78.64	77.99	80.17	79.54	78.38	79.90
T_{P}	77.69	77.41	80.12	78.94	77.84	79.97
$T_{\text {Ł }}$	76.86	76.97	77.70	77.51	77.11	77.45
$T_{D P}$	$\underline{77.19}$	77.19	77.19	77.19	77.19	77.19
$T_{N M}$	$\overline{77.12}$	76.88	77.77	$\overline{77.39}$	$\overline{76.92}$	78.16
$T_{H P}$	78.71	77.66	79.77	79.47	78.60	80.26
O_{B}	78.42	$\underline{77.62}$	80.07	79.20	78.17	80.43*
$O_{m M}$	77.14	77.39	79.49	78.12	77.53	79.71
O_{α}	77.86	77.64	79.83	79.24	78.32	80.07
$O_{d i v}$	78.65	77.64	79.70	79.16	78.15	79.89
$G M$	79.90	79.01	80.16	80.55 ${ }^{+*}$	80.22	80.33
$H M$	79.37	78.37	80.16	79.83	78.92	79.78
Sin	$\underline{80.12}$	$\underline{80.12}$	80.12	$\underline{80.12}$	80.12	$\underline{80.12}$
$O_{R S}$	79.49	78.64	$\overline{80.31}$	79.97	79.26	80.15
C_{F}	77.75	77.57	80.03	79.06	77.73	79.78
C_{L}	78.47	77.64	79.84	79.22	78.45	79.99
$F_{G L}$	80.32*	$\overline{79.17}$	80.24	80.13	80.23*	79.89
$F_{B P C}$	$\underline{77.10}$	77.39	79.39	78.12	77.58	79.45
$F_{B D 1}$	79.19	77.63	80.32*	79.80	78.59	79.91
$F_{N A}$	78.66	$\underline{77.83}$	79.93	79.41	78.61	79.94
$F_{N A 2}$	80.03	80.40 *	79.90	79.86	80.05	79.84
Mean	78.51	78.01	79.63	79.13	78.47	79.63
	PM					
	δ_{0}	δ_{1}	δ_{2}	δ_{3}	δ_{4}	δ_{5}
T_{M}	79.30	77.73	80.40	79.42	78.54	$\mathbf{8 0 . 5 7}{ }^{+*}$
T_{P}	79.20	78.06	80.46	79.55	78.49	80.10
$T_{\text {Ł }}$	78.35	$\underline{77.10}$	79.32	78.43	78.07	$79.65{ }^{+}$
$T_{D P}$	77.19	$\overline{77.19}$	77.19	77.19	77.19	77.19
$T_{N M}$	79.02	$\overline{77.21}$	$7 \mathbf{7 9 . 8 3}^{+}$	$\overline{78.31}$	77.81	$\overline{79.76}$
$T_{H P}$	79.74	$\overline{77.76}$	80.26	79.47	78.53	$\mathbf{8 0 . 3 3}^{+}$
O_{B}	79.44	77.74	80.49^{+}	79.61	78.71	79.98
$O_{m M}$	79.19	$\underline{77.84}$	80.06 ${ }^{+}$	78.99	78.64	80.05
O_{α}	79.25	$\frac{77.72}{77.77}$	80.16	79.87	78.64	80.19
$O_{d i v}$	79.26	77.77	$80.34{ }^{+}$	79.53	78.61	80.24
$G M$	80.23	$\overline{79.22}$	80.43	80.17	80.02	80.21
$H M$	80.28	78.32	80.30	79.82	79.06	$80.36{ }^{+}$
Sin	$\underline{80.12}$	$\underline{80.12}$	80.12	$\underline{80.12}$	80.12	$\underline{80.12}$
$O_{R S}$	$\overline{\mathbf{8 0 . 4 6}}$	79.20	$\overline{80.30}$	$\overline{80.10}$	$\overline{80.19}$	$\overline{80.23}$
C_{F}	79.34	$\overline{77.79}$	80.05	79.52	78.47	80.23
C_{L}	79.25	$\overline{77.56}$	80.11	79.74	78.68	80.41 ${ }^{+}$
$F_{G L}$	80.26	$\underline{79.11}$	80.50*	80.15	80.39*	80.34
$F_{B P C}$	79.19	77.87	$80.25{ }^{+}$	79.14	78.21	80.00
$F_{B D 1}$	79.79	$\overline{77.67}$	79.98	79.41	78.61	80.43 ${ }^{+}$
$F_{N A}$	79.64	$\underline{\underline{77.61}}$	80.27	79.43	78.91	79.91
$F_{N A 2}$	80.55^{+*}	$80.36{ }^{*}$	79.90	80.36*	80.38	79.96
Mean	79.48	78.14	80.03	79.44	78.87	80.01

TABLE VIII: Relation of times that each RDF combined with the fuzzy measures obtained a bold face among the analysis

	δ_{0}	δ_{1}	δ_{2}	δ_{3}	δ_{4}	δ_{5}	$\# \delta_{-}$Total
Cardinality	0	0	6	2	1	10	19
Dirac	6	0	2	1	0	11	14
OWA	6	0	8	0	0	5	13
Wmean	1	1	7	1	0	9	18
PM	2	0	9	0	0	8	17
\#Total	15	1	32	4	1	43	81

considered as control method in Table X^{1}. Finally, in the last row, the number of times (\#nDiff) in which the δ_{0} (baseline) is statistically outperformed by any RDF is provided.

If the cardinality and PM are used, since they are the fuzzy measures that achieve the best results (see Sect. VI-B), we see that δ_{0} is statistically improved in almost half of the cases.

[^1]Furthermore, in general, δ_{5} is the best option, followed by δ_{2}.
Another observation can be made by taking an exclusive look to the CI, which is the function base of this study, in the statistical analysis. It is observable from the second column of Table IX, that the δ_{2} can be considered as statistically superior than the CI since it have a lowest rank and the obtained APV when comparing this two cases is small.

In light of the obtained means and the statistical tests, it is noticeable that the use of $d C_{F}$-integrals are an interesting approach in alternative to the C_{F}-integrals. It is also noticeable that there are many approaches in which there are statistical differences with respect to the δ_{0}. Therefore, the suitability of the new approach is empirically proved.

B. Analyzing the synergy among the RDFs, functions F and fuzzy measures

In this subsection the synergy among the use of RDFs, functions F and fuzzy measures is analyzed. Taking a look at Table VIII, it can be observed that the number of functions F where RDFs achieve a competitive performance is large. In order to reduce the number of functions and to focus on the best synergies, in this subsection we only provide a study using δ_{2} and δ_{5} as RDFs and the cardinality and PM as fuzzy measures. This is due to the fact that their application led to a general improvement of the $d C F$-integrals.

To clarify the synergy of the methods, we show in Table XI for the considered fuzzy measures (rows) and RDFs (columns), the top 3 (where \#Top1 is the highest accuracy, \#Top2 is the second one and \#Top3 the third) functions F that achieved the best averaged behaviours among the 33 considered datasets. Observe that this ranking is obtained by analyzing the respective column (fuzzy measure and RDF) in Tables V-VII.

From the results in Table XI some interesting findings emerge. Considering the functions F, we observe that $F_{G L}$, T_{P} and T_{M} appeared two times, while the remaining functions just once, in specific cases. We highlight that the $F_{G L}$ and T_{P} appeared for both, δ_{2} and δ_{5}. We also want to stress that T_{M} appears in both fuzzy measures when combined with δ_{5}, which clearly shows the good synergy between this function and RDF. In fact, observe that the combination of PM with δ_{5} and T_{M} led to the largest accuracy mean in the study.

VII. Conclusion

In this paper, the concept of $d C_{F}$-integrals was introduced. These functions generalize the C_{F}-integrals [16] by restricted dissimilarity functions δ [29], that is, the difference operator used by the C_{F}-integrals is replaced by restricted dissimilarity functions. Also, $d C_{F}$-integrals can be understood as a generalization of the d-Choquet integral [27] by a function F. Important properties that the $d C_{F}$-integrals satisfy, which are based on characteristics of the function F and the restricted dissimilarity functions, were shown.

The $d C_{F}$-integrals were applied as the aggregation-like operator in the FRM of a state-of-the-art FRBC, in a large experiment, with different analyses, considering several points of view. Taking into account the obtained results, it is noticeable that $d C_{F}$-integrals could be considered as a good alternative

TABLE IX: Align Friedman rank tests and APV considering PM as fuzzy measure.

TABLE X: Total of times that each approach is considered as control variable in the Friedman rank test

	Cardinality	Dirac	OWA	Wmean	PM
δ_{0}	-	5	8	1	3
δ_{1}	-	-	-	1	-
δ_{2}	5	2	8	7	8
δ_{3}	2	1	-	1	-
δ_{4}	1	-	-	-	-
δ_{5}	11	11	3	9	8
$\# n D i f f$	8	5	0	16	9

to be used instead of C_{F}-integrals in classification problems, since they improve the performance of the classical difference operator. We highlight the usage of the $\operatorname{RDF} \delta_{5}$ combined with the function T_{M} and the fuzzy measure PM.

In a broader scenario, our developments showed that the

TABLE XI: Summary of the functions that achieved the top 3 best performance per generalization and fuzzy measure.

	\#Top1	$\begin{gathered} \delta_{2} \\ \text { \#Top2 } \end{gathered}$	\#Top3	\#Top1	$\begin{gathered} \delta_{5} \\ \text { \#Top2 } \end{gathered}$	\#Top3
Cardinality	O_{α}	$F_{N A}$	$O_{R S}$	T_{P}	$F_{G L}$	T_{M}
PM	$F_{G L}$	O_{b}	T_{P}	T_{M}	$F_{B D 1}$	C_{L}

$d C_{F}$-integrals can enlarge the flexibility of C_{F}-integrals, since different combinations of RDFs, functions F and fuzzy measures can be used, so being adapted to each kind of problem.

Future works are in two directions. For the theoretical part, we intend to (i) study the relation between the generalizations of the Choquet integral and the fuzzy t-conorm integral, and (ii) defined the $d C_{F}$-integrals in the interval-valued context.

As for the applied part, we want to study: (i) the application in the context of multi-criteria decision making; (ii) to consider methods for learning general fuzzy measures; and (iii) to analyze the behavior of this new approach when considering monotone (or not) datasets.

ACKNOWLEDGMENT

Supported by Navarra de Servicios y Tecnologías, S.A. (NASERTIC), PNPD/CAPES (464880/2019-00), FAPERGS (19/2551-0001279-9, 19/2551-0001660), CNPq (301618/2019-4, 305805/2021-5), the Spanish Ministry of Science and Technology (TIN2016-77356-P) and [PID2019108392GB I00 (MCIN/AEI/10.13039/501100011033)] and UPNA (PJUPNA1926).

Generated by IEEEtran.bst, version: 1.14 (2015/08/26)

References

[1] G. Beliakov, H. Bustince, and T. Calvo, A Practical Guide to Averaging Functions. Berlin, New York: Springer, 2016.
[2] E. P. Klement, R. Mesiar, and E. Pap, Triangular Norms. Dordrecht: Kluwer Academic Publisher, 2000.
[3] R. R. Yager and J. Kacprzyk, Eds., The Ordered Weighted Averaging Operators: Theory and Applications. Norwell: Kluwer, 1997.
[4] G. Choquet, "Theory of capacities," Annales de l'Institut Fourier, vol. 5, pp. 131-295, 1953-1954.
[5] H. Ishibuchi, T. Nakashima, and M. Nii, Classification and Modeling with Linguistic Information Granules, Advanced Approaches to Linguistic Data Mining, ser. Advanced Information Processing. Berlin: Springer, 2005.
[6] O. Cordon, M. J. del Jesus, and F. Herrera, "Analyzing the reasoning mechanisms in fuzzy rule based classification systems," Mathware and Soft Computing, vol. 5, no. 2-3, pp. 321 - 332, 1998.
[7] O. Cordón, M. J. del Jesus, and F. Herrera, "A proposal on reasoning methods in fuzzy rule-based classification systems," International Journal of Approximate Reasoning, vol. 20, no. 1, pp. 21 - 45, 1999.
[8] T. Murofushi, M. Sugeno, and M. Machida, "Non-monotonic fuzzy measures and the Choquet integral," Fuzzy Sets and Systems, vol. 64, no. 1, pp. $73-86,1994$.
[9] E. Barrenechea, H. Bustince, J. Fernandez, D. Paternain, and J. A. Sanz, "Using the Choquet integral in the fuzzy reasoning method of fuzzy rule-based classification systems," Axioms, vol. 2, no. 2, pp. 208-223, 2013.
[10] G. P. Dimuro, J. Fernández, B. Bedregal, R. Mesiar, J. A. Sanz, G. Lucca, and H. Bustince, "The state-of-art of the generalizations of the Choquet integral: From aggregation and pre-aggregation to ordered directionally monotone functions," Information Fusion, vol. 57, pp. 27 - 43, 2020.
[11] G. Lucca, J. Sanz, G. Pereira Dimuro, B. Bedregal, R. Mesiar, A. Kolesárová, and H. Bustince Sola, "Pre-aggregation functions: construction and an application," IEEE Transactions on Fuzzy Systems, vol. 24, no. 2, pp. 260-272, April 2016.
[12] J. C. Wieczynski, G. P. Dimuro, E. N. Borges, H. S. Santos, G. Lucca, R. Lourenzutti, and H. Bustince, "Generalizing the GMC-RTOPSIS method using CT-integral pre-aggregation functions," in 2020 IEEE International Conference on Fuzzy Systems. IEEE, 2020, pp. 1-8.
[13] G. Lucca, J. A. Sanz, G. P. Dimuro, B. Bedregal, M. J. Asiain, M. Elkano, and H. Bustince, "CC-integrals: Choquet-like copula-based aggregation functions and its application in fuzzy rule-based classification systems," Knowledge-Based Systems, vol. 119, pp. $32-43,2017$.
[14] L. Ko, Y. Lu, H. Bustince, Y. Chang, Y. Chang, J. Fernandez, Y. Wang, J. A. Sanz, G. Pereira Dimuro, and C. Lin, "Multimodal fuzzy fusion for enhancing the motor-imagery-based brain computer interface," IEEE Computational Intelligence Magazine, vol. 14, no. 1, pp. 96-106, 2019.
[15] J. Wieczynski, G. Lucca, E. Borges, G. Dimuro, R. Lourenzutti, and H. Bustince, "CC-separation measure applied in business group decision making," in Proc. of the 23rd International Conference on Enterprise Information Systems - Vol 1. SciTePress, 2021, pp. 452-462.
[16] G. Lucca, J. A. Sanz, G. P. Dimuro, B. Bedregal, H. Bustince, and R. Mesiar, "CF-integrals: A new family of pre-aggregation functions with application to fuzzy rule-based classification systems," Information Sciences, vol. 435, pp. $94-110,2018$.
[17] C. Marco-Detchart, G. Lucca, C. Lopez-Molina, L. D. Miguel, G. P. Dimuro, and H. Bustince, "Neuro-inspired edge feature fusion using Choquet integrals," Information Sciences, vol. 581, pp. 740-754, 2021.
[18] G. Lucca, G. P. Dimuro, J. Fernandez, H. Bustince, B. Bedregal, and J. A. Sanz, "Improving the performance of fuzzy rule-based classification systems based on a nonaveraging generalization of CC-integrals named $C_{F_{1} F_{2}}$-integrals," IEEE Transactions on Fuzzy Systems, vol. 27, no. 1, pp. 124-134, Jan 2019.
[19] T. Murofushi and M. Sugeno, "Fuzzy t-conorm integral with respect to fuzzy measures: Generalization of Sugeno integral and Choquet integral," Fuzzy Sets and Systems, vol. 42, no. 1, pp. 57-71, 1991.
[20] Y. Narukawa and V. Torra, "Generalized transformed t-conorm integral and multifold integral," Fuzzy Sets and Systems, vol. 157, no. 10, pp. 1384-1392, 2006.
[21] G. P. Dimuro, G. Lucca, B. Bedregal, R. Mesiar, J. A. Sanz, C.-T. Lin, and H. Bustince, "Generalized $C_{F_{1} F_{2}}$-integrals: From Choquetlike aggregation to ordered directionally monotone functions," Fuzzy Sets and Systems, vol. 378, pp. $44-67,2020$.
[22] L. Horanská and A. Šipošová, "A generalization of the discrete Choquet and Sugeno integrals based on a fusion function," Information Sciences, vol. 451-452, pp. 83-99, 2018.
[23] R. Mesiar, A. Kolesárová, H. Bustince, G.P. Dimuro, B.C. Bedregal, "Fusion functions based discrete Choquet-like integrals," European Journal of Operational Research, vol. 252, no. 2, pp. 601-609, 2016.
[24] H. Bustince, J. Fernandez, A. Kolesárová, and R. Mesiar, "Directional monotonicity of fusion functions," European Journal of Operational Research, vol. 244, no. 1, pp. 300-308, 2015.
[25] H. Bustince, E. Barrenechea, M. Sesma-Sara, J. Lafuente, G. P. Dimuro, R. Mesiar, and A. Kolesárová, "Ordered directionally monotone functions. justification and application," IEEE Transactions on Fuzzy Systems, vol. 26, no. 4, pp. 2237-2250, 2017.
[26] C. Alsina, M. J. Frank, and B. Schweizer, Associative Functions: Triangular Norms and Copulas. World Scientific, 2006.
[27] H. Bustince, R. Mesiar, J. Fernandez, M. Galar, D. Paternain, A. Altalhi, G. Dimuro, B. Bedregal, and Z. Takáč, "d-Choquet integrals: Choquet integrals based on dissimilarities," Fuzzy Sets and Systems, vol. 414, pp. 1-27, 2021.
[28] H. Bustince, E. Barrenechea, and M. Pagola, "Restricted equivalence functions," Fuzzy Sets and Systems, vol. 157, no. 17, pp. 2333 - 2346, 2006.
[29] H. Bustince, E. Barrenechea, and M. Pagola, "Relationship between restricted dissimilarity functions, restricted equivalence functions and normal EN-functions: Image thresholding invariant," Pattern Recognition Letters, vol. 29, no. 4, pp. $525-536,2008$.
[30] Z. Takác, M. Uriz, M. Galar, D. Paternain, and H. Bustince, "Discrete IV d_{G}-Choquet integrals with respect to admissible orders," Fuzzy Sets and Systems, 2021. (In Press, Corrected Proof).
[31] J. Alcalá-Fdez, L. Sánchez, S. García, M. Jesus, S. Ventura, J. Garrell, J. Otero, C. Romero, J. Bacardit, V. Rivas, J. Fernández, and F. Herrera, "Keel: a software tool to assess evolutionary algorithms for data mining problems," Soft Computing, vol. 13, no. 3, pp. 307-318, 2009.
[32] T. Wilkin and G. Beliakov, "Weakly monotone aggregation functions," International Journal of Intelligent Systems, vol. 30, pp. 144-169, 2015.
[33] G. P. Dimuro, B. Bedregal, H. Bustince, J. Fernandez, G. Lucca, and R. Mesiar, "New results on pre-aggregation functions," in Uncertainty Modelling in Knowledge Engineering and Decision Making, Proceedings of the 12th International FLINS Conference, World Scientific Proceedings Series on Computer Engineering and Information Science. Singapura: World Scientific, 2016, vol. 10, pp. 213-219.
[34] G. Lucca, J. A. Sanz, G. P. Dimuro, E. N. Borges, H. Santos, and H. Bustince, "Analyzing the performance of different fuzzy measures with generalizations of the Choquet integral in classification problems," in IEEE International Conference on Fuzzy Systems, 2019, pp. 1-6.
[35] H. Bustince, J. Fernandez, R. Mesiar, J. Montero, and R. Orduna, "Overlap functions," Nonlinear Analysis: Theory, Methods \& Applications, vol. 72, no. 3-4, pp. 1488-1499, 2010.
[36] R. B. Nelsen, An introduction to copulas, ser. Lecture Notes in Statistics. New York: Springer, 1999, vol. 139.
[37] G. P. Dimuro and B. Bedregal, "Archimedean overlap functions: The ordinal sum and the cancellation, idempotency and limiting properties," Fuzzy Sets and Systems, vol. 252, pp. 39 - 54, 2014.
[38] H. Bustince, J. Fernandez, R. Mesiar, and T. Calvo, "Additive generators of overlap functions," in Aggregation Functions in Theory and in Practice, ser. Advances in Intelligent Systems and Computing, Eds. Berlin: Springer, 2013, vol. 228, pp. 167-178.
[39] G. P. Dimuro, B. Bedregal, H. Bustince, M. J. Asiáin, and R. Mesiar, "On additive generators of overlap functions," Fuzzy Sets and Systems, vol. 287, pp. $76-96,2016$.
[40] M. Elkano, M. Galar, J. Sanz, A. Fernández, E. Barrenechea, F. Herrera, and H. Bustince, "Enhancing multi-class classification in FARCHD fuzzy classifier: On the synergy between n-dimensional overlap functions and decomposition strategies," IEEE Transactions on Fuzzy Systems, vol. 23, no. 5, pp. 1562-1580, 2015.
[41] A. Stoltenberg-Hansen, I. Lindström, and E. B. Griffor, Mathematical Theory of Domains, ser. Cambridge Tracts in Theoretical Computer Science. Cambridge: Cambridge University Press, 1994, vol. 22.
[42] J. Alcala-Fdez, R. Alcala, and F. Herrera, "A fuzzy association rulebased classification model for high-dimensional problems with genetic rule selection and lateral tuning," IEEE Transactions on Fuzzy Systems, vol. 19, no. 5, pp. 857-872, 2011.
[43] H. Ishibuchi and T. Nakashima, "Effect of rule weights in fuzzy rulebased classification systems," IEEE Transactions on Fuzzy Systems, vol. 9, no. 4, pp. 506-515, 2001.
[44] J.-R. Cano, P. A. Gutiérrez, B. Krawczyk, M. Woźniak, and S. García, "Monotonic classification: An overview on algorithms, performance measures and data sets," Neurocomputing, vol. 341, pp. 168-182, 2019.
[45] D. Sheskin, Handbook of parametric and nonparametric statistical procedures, 2nd ed. Chapman \&Hall/CRC, 2006.
[46] S. García, A. Fernández, J. Luengo, and F. Herrera, "A study of statistical techniques and performance measures for genetics-based machine learning: Accuracy and interpretability," Soft Computing, vol. 13, no. 10, pp. 959-977, 2009.
[47] J. Demšar, "Statistical comparisons of classifiers over multiple data sets," Journal of Machine Learning Research, vol. 7, pp. 1-30, 2006.
[48] J. L. Hodges and E. L. Lehmann, "Ranks methods for combination of independent experiments in analysis of variance," Annals of Mathematical Statistics, vol. 33, pp. 482-497, 1962.
[49] S. Holm, "A simple sequentially rejective multiple test procedure," Scandinavian Journal of Statistics, vol. 6, pp. 65-70, 1979.

Jonata Wieczynski received the degree in applied mathematics from the Universidade Federal do Rio Grande, Brazil, in 2019, and the M.Sc. degree in computer engineering, in 2021, from the same university. He is currrently a Ph.D. candidate at Universidad Pública de Navarra, in Spain. His research interests include fuzzy logic and aggregation functions, machine intelligence, multi-criteria decision making, and brain-computer interfaces.

Giancarlo Lucca is currently a post doctorate re-
 searcher in the Federal University of Rio Grande (FURG). He received his Ph.D from the Public University of Navarre (UPNa). He is member of the Grupo de Gestão da Informação (GInfo), Computação Flexível (CFlex) and Grupo de Inteligência Artificial y Razonamiento Aproximado (GIARA).

Graçaliz Dimuro (member, IEEE) received M.Sc. (1991) and Ph.D. (1998) degrees from the Inst. Informática of Universidade Federal do Rio Grande do Sul, Brazil. In 2015, she was a POS-DOC of the Brazilian Research Funding Agency CNPq, with GIARA group at Universidad Publica de Navarra (UPNA), Spain, and, in 2017, she had a talent grant with the Institute of Smart Cities of UPNA. Currently, she is a full professor with Universidade Federal do Rio Grande, Brazil, a Researcher of level 1 of CNPq, and a visitant professor with UPNA.

Eduardo Borges (member, IEEE) is a professor at the Center for Computational Sciences at the Federal University of Rio Grande. He received his master's and doctorate in Computing from the Federal University of Rio Grande do Sul, where he was also a postdoctoral researcher. He is project portfolio coordinator for the Unit of the Brazilian Company for Industrial Research and Innovation (EMBRAPII) called iTec/FURG. He is the Graduate Program in Computing chair, working mainly on the following subjects: data science, fuzzy rule-based classification, deduplication, similarity, and information retrieval.

José Antonio Sanz received the M.Sc. and Ph.D. degrees in computer sciences from the Public University of Navarra, Pamplona, Spain, in 2008 and 2011, respectively. He is currently an Associate Lecturer with the Department of Automatics and Computation, Public University of Navarre. He is the author of 37 published original articles in international journals. He received the best paper award in the FLINS 2012 international conference and the Pepe Millá award in 2014.

Tiago da Cruz Asmus received the M.Sc. degree in computational modelling from the Universidade Federal do Rio Grande, Brazil, in 2013. In 2014, he became an Assistant Professor in Departamento de Matemática, Estatística e Física, Universidade Federal do Rio Grande, Brazil. He is currently working toward the Ph.D. degree with the Universidad Pública de Navarra, Spain, under the advising of Prof. José A. Sanz and Prof. Graçaliz P. Dimuro.

Javier Fernández (Member, IEEE) received the M.Sc. degree in mathematics from the University of Zaragoza, Zaragoza, Spain, in 1999, and the Ph.D. degree in mathematics from the University of the Basque Country, Leioa, Spain, in 2003.
He has authored or coauthored approximately 45 original articles. Currently, he is an Associate Lecturer with the Department of Automatics and Computation, Public University of Navarre, Spain. He is involved with teaching artificial intelligence and computational mathematics for students of the computer sciences.

Humberto Bustince (Fellow, IEEE) received the Graduate degree in physics from the University
 of Salamanca, Salamanca, Spain, in 1983, and the Ph.D. degree in mathematics from the Public University of Navarra, Pamplona, Spain, in 1994. He is full professor in the Public University of Navarra and Honorary Professor in the University of Nottingham. He has authored more than 210 works in conferences and international journals, with around 110 of them in journals of the first quartile of JCR. He is an associated editor of the IEEE Transactions on Fuzzy Systems and member of the editorial board of Fuzzy Sets and Systems, Information Fusion, International Journal of Computational Intelligence Systems and Journal of Intelligent \& Fuzzy Systems.

[^0]: J. Wieczynski is with the Departamento de Estadística, Informática y Matemáticas, Universidad Pública de Navarra, Spain, e-mail: jonata.wieczynski@unavarra.es, jwieczynski@furg.br.
 G. Lucca is with Programa de Pós-Graduação em Modelagem Computacional, Universidade Federal de Rio Grande, Brazil, e-mail: giancarlo.lucca@furg.br
 G. P. Dimuro is with Centro de Ciências Computacionais, Universidade Federal do Rio Grande, Brazil, and Departamento de Estadística, Informática y Matemáticas, Universidad Pública de Navarra, Spain, e-mail: gracalizdimuro@furg.br, gracaliz.pereira@unavarra.es.
 E. N. Borges is with the Centro de Ciências Computacionais, Universidade Federal do Rio Grande, Brazil, e-mail: eduardoborges@furg.br.
 T. C. Asmus is with Inst. Mat., Estatística e Física, Universidade Federal do Rio Grande, Brazil, and Dep. de Estadística, Informática y Matemáticas, Universidad Pública de Navarra, Spain, e-mail: tiagoasmus@furg.br.
 H. Bustince, J. Sanz and J. Fernández are with the Depto de Estadística, Informática y Matemáticas and with the Institute of Smart Cities, Universidad Pública de Navarra, Spain, e-mails: \{bustince,joseantonio.sanz,fcojavier.fernandez\} @unavarra.es.

[^1]: ${ }^{1}$ We point out that we do not count the results of both functions $T_{D P}$ and Sin, as all the RDFs are the same, APV $=1.0$

