© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resple or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

# $dC_F$ -integrals: generalizing $C_F$ -integrals by means of restricted dissimilarity functions

Jonata Wieczynski, Giancarlo Lucca, Graçaliz P. Dimuro *IEEE Member*, Eduardo N. Borges *IEEE Member*, José A. Sanz, Tiago C. Asmus, Javier Fernández *IEEE Member*, Humberto Bustince *Fellow*, *IEEE* 

Abstract—The Choquet integral (CI) is an averaging aggregation function that has been used, e.g., in the Fuzzy Reasoning Method (FRM) of Fuzzy Rule-Based Classification Systems (FRBCS's) and in multi-criteria decision making in order to take into account the interactions among data/criteria. Several generalizations of the CI have been proposed in the literature in order to improve the performance of FRBCS's, and also to provide more flexibility in the different models by relaxing both the monotonicity requirement and averaging conditions of aggregation functions. An important generalization are the  $C_F$ -integrals, which are pre-aggregation functions that may present interesting non-averaging behavior depending on the function F adopted in the construction and, in this case, offering competitive results in classification. Recently, the concept of d-Choquet integrals was introduced as a generalization of the CI by Restricted Dissimilarity Functions (RDFs), improving the usability of CIs, as when comparing inputs by the usual difference may not be viable. The objective of this paper is to introduce the concept of  $dC_F$ -integrals, which is a generalization of  $C_F$ integrals by RDFs. The aim is to analyze whether the usage of  $dC_F$ -integrals in the FRM of FRBCS's represents a good alternative towards the standard  $C_F$ -integrals that just consider the difference as a dissimilarity measure. For that, we consider six RDFs combined with five fuzzy measures, applied with more than twenty functions F. The analysis of the results are based on statistical tests, demonstrating their efficiency. Additionally, comparing the applicability of  $dC_F$ -integrals versus  $C_F$ -integrals, the range of the good generalizations of the former is much larger than that of the latter.

*Index Terms*—CF-integrals, d-Choquet integrals, restricted dissimilarity functions, fuzzy rule based classification systems, pre-aggregation functions

#### I. INTRODUCTION

An aggregation function (AF) [1] is a special type of function that fuses different values into a single one, which

J. Wieczynski is with the Departamento de Estadística, Informática y Matemáticas, Universidad Pública de Navarra, Spain, e-mail: jonata.wieczynski@unavarra.es, jwieczynski@furg.br.

G. Lucca is with Programa de Pós-Graduação em Modelagem Computacional, Universidade Federal de Rio Grande, Brazil, e-mail: giancarlo.lucca@furg.br

G. P. Dimuro is with Centro de Ciências Computacionais, Universidade Federal do Rio Grande, Brazil, and Departamento de Estadística, Informática y Matemáticas, Universidad Pública de Navarra, Spain, e-mail: gracalizdimuro@furg.br, gracaliz.pereira@unavarra.es.

E. N. Borges is with the Centro de Ciências Computacionais, Universidade Federal do Rio Grande, Brazil, e-mail: eduardoborges@furg.br.

T. C. Asmus is with Inst. Mat., Estatística e Física, Universidade Federal do Rio Grande, Brazil, and Dep. de Estadística, Informática y Matemáticas, Universidad Pública de Navarra, Spain, e-mail: tiagoasmus@furg.br.

H. Bustince, J. Sanz and J. Fernández are with the Depto de Estadística, Informática y Matemáticas and with the Institute of Smart Cities, Universidad Pública de Navarra, Spain, e-mails: {bustince,joseantonio.sanz,fcojavier.fernandez}@unavarra.es. represents all the considered values. The arithmetic mean, the Product t-norm [2], the Ordered Weight Average [3] and the Choquet integral (CI) [4] are examples of AFs.

Aggregation functions have an important role in Fuzzy Rule-Based Classification Systems (FRBCS's) [5], since they are responsible for aggregating information in several stages of the Fuzzy Reasoning Method (FRM) [6]. While the FRM of Winning Rule (WR) [7] takes into account only the fuzzy rule having the largest compatibility with the example, the usage of the CI in the FRM allows to model the relation among the fired rules by considering a fuzzy measure [8]. In fact, Barrenechea et al. [9] introduced a FRM considering the CI, and obtained an improvement in the performance of the classifier when associated to the power measure.

The CI was generalized in many ways see, e.g., [10]) and some of those generalizations were used in the FRM of FR-BCS's, such as the  $C_T$ -integrals [11] (also applied in MCDM [12]), CC-integrals [13] (also used in motor-imagery-based brain computer interface systems [14] and group MCDM [15]),  $C_F$ -integrals [16] (also used in image processing [17]) and  $C_{F1F2}$ -integrals [18], all of them introduced by Lucca et al. Also, a well known generalization of the CI is the fuzzy tconorm integral  $\mathfrak{S}$  (called fuzzy t-integral by Murofushi & Sugeno [19], or generalized t-conorm integral by Narukawa & Torra [20]) for a t-system  $(\perp_1, \perp_2, \perp_3, \boxdot)$ , where  $\perp_1, \perp_2$  $, \perp_3$  are continuous t-conorms which are the maximum or Archimedean, and  $\Box$  is an increasing function satisfying special constraints [19, Def. 2.1]. See also the  $gC_{F1F2}$ -integrals by Dimuro et al. [21] and the  $C_F^m$ -integrals by Horanska & Šipošová [22].

The main features of those generalizations are that some of them may be neither aggregation functions (since they may not be increasing in the standard sense) nor averaging (i.e., the output of the "aggregation" operator is not bounded by the minimum or the maximum of the inputs). Table I shows an overview of such characteristics, which depend on specific properties of the functions used in the generalization, where T is a t-norm [2], C is a copula [26] and F,  $F_1$  and  $F_2$  are more general functions.

Recently, Bustince et al. [27] introduced the concept of d-Choquet integrals by replacing the difference operator in the definition of the CI by restricted dissimilarity functions (RDFs) [28], [29]. This interesting generalization can improve the usability of the standard CI in some contexts, since it can be applied when the comparison of inputs using the usual difference is not possible/viable, as in the case of intervals [30]. Moreover, since there are several ways of defining

TABLE I: Main features of the generalizations of the CI

| Integral                                                  | Incr.<br>(AF) | D. Incr.<br>(PAF) | OD incr.     | Aver.        | Non-aver.    |
|-----------------------------------------------------------|---------------|-------------------|--------------|--------------|--------------|
| CI                                                        | $\checkmark$  | $\checkmark$      | $\checkmark$ | $\checkmark$ |              |
| $C_T^*$                                                   |               | $\checkmark$      |              | $\checkmark$ |              |
| CC                                                        | $\checkmark$  | $\checkmark$      | $\checkmark$ | $\checkmark$ |              |
| $C_F$                                                     |               | $\checkmark$      |              | $\checkmark$ | $\checkmark$ |
| $C_{F_1F_2}^{**}$                                         |               |                   | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| $gC_{F_1F_2}$                                             | $\checkmark$  | $\checkmark$      | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| $C_F^{m 	ilde{*} * 	ilde{*}}$<br>$\mathfrak{S}^{* * * *}$ | $\checkmark$  | $\checkmark$      | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| S****                                                     | $\checkmark$  | $\checkmark$      | $\checkmark$ |              |              |

\* When T is different from the product t-norm;

\*\* when  $F_1$  and  $F_2$  are not copulae;

\*\*\* under certain constraints [22, Props. 6 and 10];

\*\*\*\* whenever  $(1 - _{\perp_1} 0) \boxdot 1 = 1;$ 

Incr.: increasing; D. Incr.: directional increasing [24];

OD incr.: ordered directional increasing [25]; AF: aggregation function [1]; PAF: pre-aggregation function [11];

Aver.: averaging [1]; Non-aver.: Non averaging [1].

dissimilarity functions, one can adopt the one that best fits the faced problem, providing more flexibility to the model.

Then, in an attempt to improve both the performance and flexibility of  $C_F$ -integrals in FRBCS's, the general objective of this paper is to introduce the concept of  $dC_F$ -integrals, which is a generalization of the Choquet-based  $C_F$ -integrals by replacing the difference operator by RDFs. For that, we have two specific goals: (i) a theoretical study, showing the main features of this new aggregation-like function according to both, the function F and the restricted dissimilarity functions used in its construction and (ii) the application of  $dC_F$ integrals in the FRM of a FRBCS, performing an extensive analysis of its behaviour and performance. In this sense, we aim at answering the following research questions:

1. Is it useful to substitute the classical difference by restricted dissimilarity functions in  $C_F$  integrals when applied to tackle classification problems?

2. Which combinations of functions F, restricted dissimilarity functions and fuzzy measures provide better performance?

3. Do  $dC_F$ -integrals enlarge the flexibility of  $C_F$ -integrals? In order to present a complete and robust study, we

consider 33 different datasets selected from KEEL dataset repository [31]. We combine 21 different functions F with six different restricted dissimilarity functions. All these combinations are also tested with five different fuzzy measures. The performance of the  $dC_F$ -integrals are measured using the accuracy rate and the results are supported and analyzed considering statistical tests.

The organization of this paper follows this structure. Section II presents the preliminary concepts. In Section III, we introduce the concept of  $dC_F$ -integrals as well as a theoretical study. The new FRM is presented in Section IV. The experimental framework is described in Section V. After that, the obtained results are analysed in Section VI. Finally, the conclusions are drawn in Section VII.

### **II. PRELIMINARIES**

A function  $F: [0,1]^2 \rightarrow [0,1]$  with 0 as left annihilator element (0-LAE), that is, F(0, y) = 0,  $\forall y \in [0, 1]$ , is said to be left 0-absorbent. If F(x, 1) = x, for any  $x \in [0, 1]$ , then

we say that it has 1 as right neutral element (1-RNE). Also, when  $F(x,y) < x, \forall x, y \in [0,1]$ , we say that F follows the Left Conjunctive Property (LC) [16].

Since we are working with generalizations of the CI, two definitions are essential. The first one is the definition of aggregation functions [1]: let  $A : [0,1]^n \to [0,1]$  be an nary function, if A satisfies:

- (A1) Increasingness in each argument:  $\in$  $\{1, \ldots, n\}$ : if  $x_i$  $\leq y$  then  $A(x_1,\ldots,x_n)$  $\leq$  $A(x_1, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_n);$
- (A2) Boundary conditions: A(0, ..., 0) = 0, A(1, ..., 1) = 1;then A is an aggregation function (AF).

The second is a more generic definition, where we ask the function to be increasing only in a pre-defined direction, that is, to be *directional monotonic* [24]. Let H be an n-ary function and  $\mathbf{r} = (r_1, \ldots, r_n)$  an n-dimensional vector, with  $r \neq 0 = (0, ..., 0)$ . We say that H is *r*-increasing if, for all  $\boldsymbol{x} \in [0,1]^n$  and c > 0 such that  $(\boldsymbol{x} + c\boldsymbol{r}) \in [0,1]^n$ , it holds that

$$H(x_1 + cr_1, \dots, x_n + cr_n) \ge H(x_1, \dots, x_n).$$

If  $r = 1 = (1, \dots, 1)$ , H is said to be weak increasing [32]. If *H* is *r*-increasing, for some  $r \neq 0$ , and satisfies the boundary conditions (A2), then H is an *r*-pre-aggregation function (r-PAF) [11], [33].

By working with fuzzy integrals we also work with fuzzy measures [4], that is,  $m: 2^N \to [0,1]$  such that, for all  $X, Y \subseteq$  $N = \{1, \ldots, n\}$ , the following properties holds:

(m1) Increasingness: if  $X \subseteq Y$ , then  $m(X) \le m(Y)$ ;

(m2) Boundary conditions:  $m(\emptyset) = 0$  and m(N) = 1.

The fuzzy measures considered in this study, are the same as those used in [9], whose performances were analyzed in [34]. Their definitions are the following, where  $X \subseteq N$ :

- Cardinality or uniform measure:  $m_C(X) = |X|/n$ .
- Dirac's measure: For a fixed  $i \in N$ ,

$$m_D(X) = \begin{cases} 1 & \text{if } i \in X \\ 0 & \text{if } i \notin X. \end{cases}$$

- Weighted mean (Wmean): Let  $(w_1, \ldots, w_n) \in [0, 1]^n$ be a weight vector, such that  $\sum_{i=1}^n w_i = 1$ . Define:  $m(\{1\}) = w_1, \dots, m(\{n\}) = w_n$  and then the Wmean is given by:  $m_{WM}(X) = \sum_{i \in X} m(\{i\})$ , which is a probability measure on N, being the uniform measure a particular case.
- Ordered Weighted Averaging (OWA): Let m be a symmetric fuzzy measure and derive a weight vector  $(w_1,\ldots,w_n) \in [0,1]^n$  as  $w_i = m(A_{n-i+1}) - m(A_{n-i}),$ for  $i \in \{1, ..., n\}$ ,  $A_i$  any subset with  $|A_i| = i$ . Define  $m_{OWA}(\{i\}) = w_i$ , with j being the i-th biggest component of X, and:  $m_{OWA}(X) = \sum_{i \in X} m_{OWA}(\{i\}).$ • Power Measure (PM):  $m_P(X) = (|X|/n)^q$ , with q > 0.

In this study, for the PM, we stress out that the value of the exponent q is learned by means of a genetic algorithm. In fact, as we have as many fuzzy measures as classes, we learn as many values for the parameter q as classes. This approach follows the idea introduced in [9] and widely used by the different generalizations of the CI (see [11], [13], [16], [18]). Using a fuzzy measure  $m : 2^N \to [0, 1]$ , the discrete *Choquet integral* (CI) [4] with respect to m, is the function  $\mathfrak{C}_m : [0, 1]^n \to [0, 1]$ , defined, for all  $\boldsymbol{x} \in [0, 1]^n$ , by

$$\mathfrak{E}_m(\boldsymbol{x}) = \sum_{i=1}^n \left( x_{(i)} - x_{(i-1)} \right) \cdot m \left( A_{(i)} \right),$$

where  $(x_{(1)}, \ldots, x_{(n)})$  is an increasing permutation of x,  $x_{(0)} = 0$  and  $A_{(i)} = \{(i), \ldots, (n)\}$  is the subset of indices of n - i + 1 largest components of x.

As discussed in the Introduction, several generalizations of the CI may be found in the literature [10]. Recently, Lucca et al. [16] introduced the concept of  $C_F$ -integral (which is similar to the F-based discrete Choquet-like integral [23]). Let F:  $[0,1]^2 \rightarrow [0,1]$  be a bivariate function. The  $C_F$ -integral with respect to a fuzzy measure  $m : 2^N \rightarrow [0,1]$  is the function  $\mathfrak{C}_m^F : [0,1]^n \rightarrow [0,1]$  defined, for all  $\boldsymbol{x} \in [0,1]^n$ , by

$$\mathfrak{C}_{m}^{F}(\boldsymbol{x}) = \min\left\{1, \sum_{i=1}^{n} F\left(x_{(i)} - x_{(i-1)}, m\left(A_{(i)}\right)\right)\right\},\$$

where  $x_{(i)}$  and  $A_{(i)}$  were defined in the previous paragraph for the CI. For examples of functions F, see Table II.

As a key concept in this work, a *restricted dissimilarity* function [28], [29] is a function  $\delta : [0,1]^2 \rightarrow [0,1]$  that satisfies, for all  $x, y, z \in [0,1]$ , the following conditions:

- (d1)  $\delta(x,y) = \delta(y,x);$
- (d2)  $\delta(x, y) = 1$  if and only if  $\{x, y\} = \{0, 1\};$
- (d3)  $\delta(x, y) = 0$  if and only if x = y;
- (d4) if  $x \leq y \leq z$ , then  $\delta(x,y) \leq \delta(x,z)$  and  $\delta(y,z) \leq \delta(x,z)$ .

By replacing the difference operator in the definition of the CI by a restricted dissimilarity function, Bustince et al. [27] introduced the d-Choquet integral (d-integral, for short). A discrete *d-Choquet integral* with respect to a fuzzy measure  $m : 2^N \rightarrow [0,1]$  and a restricted dissimilarity function  $\delta : [0,1]^2 \rightarrow [0,1]$  is a mapping  $C_{m,\delta} : [0,1]^n \rightarrow [0,n]$ , defined, for all  $\boldsymbol{x} \in [0,1]^n$ , by:

$$C_{m,\delta}(\boldsymbol{x}) = \sum_{i=1}^{n} \delta\left(x_{(i)}, x_{(i-1)}\right) \cdot m\left(A_{(i)}\right)$$

where  $x_{(i)}$  and  $A_{(i)}$  were defined previously. For examples of restricted dissimilarity functions, see Table III (functions  $\delta$ ).

## III. $dC_F$ -integrals

This section introduces the definition of  $dC_F$ -integral, analysing the most important properties.

**Definition 1**  $(dC_F\text{-integral})$ . Let  $F : [0,1]^2 \to [0,1]$  be a function satisfying (0-LAE),  $\delta : [0,1]^2 \to [0,1]$  be a restricted dissimilarity function and  $m : 2^N \to [0,1]$  be a fuzzy measure. Then, the generalization of the CI by the function F, with respect to  $\delta$  and m, called  $dC_F\text{-integral}$ , is the function  $\mathfrak{C}_{F,m,\delta} : [0,1]^n \to [0,n]$ , defined, for all  $\mathbf{x} \in [0,1]^n$ , by:

$$\mathfrak{C}_{F,m,\delta}(\boldsymbol{x}) = x_{(1)} + \sum_{i=2}^{n} F\left(\delta(x_{(i)}, x_{(i-1)}), \ m(A_{(i)})\right) \quad (1)$$

where  $(x_{(1)}, \ldots, x_{(n)})$  is an increasing permutation on the input  $\mathbf{x}$  and  $A_{(i)} = \{(i), \ldots, (n)\}.$ 

TABLE II: (1,0)-increasing functions F satisfying (0-LAE).

| Definition                                                                                                                                                                                                                                                                                                                                                                     | Description                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| $T_M(x,y) = \min\{x,y\}$                                                                                                                                                                                                                                                                                                                                                       | Minimum t-norm                                       |
| $T_P(x,y) = xy$                                                                                                                                                                                                                                                                                                                                                                | Algebraic product                                    |
| $T_{\rm L}(x,y) = \max\{0, x+y-1\}$                                                                                                                                                                                                                                                                                                                                            | Łukasiewicz                                          |
| $T_{L}(x, y) = \max\{0, x + y - 1\}$ $T_{DP}(x, y) = \begin{cases} x & \text{if } y = 1 \\ y & \text{if } x = 1 \\ 0 & \text{otherwise.} \end{cases}$ $T_{NM}(x, y) = \begin{cases} \min\{x, y\} & \text{if } x + y > 1 \\ 0 & \text{otherwise.} \end{cases}$ $T_{HP}(x, y) = \begin{cases} 0 & \text{if } x = y = 0 \\ \frac{xy}{x + y - xy} & \text{otherwise.} \end{cases}$ | Drastic Product                                      |
| $T_{NM}(x,y) = \begin{cases} \min\{x,y\} & \text{if } x+y>1\\ 0 & \text{otherwise.} \end{cases}$                                                                                                                                                                                                                                                                               | Nilpotent Minimum                                    |
| $T_{HP}(x,y) = \begin{cases} 0 & \text{if } x = y = 0\\ \frac{xy}{x+y-xy} & \text{otherwise.} \end{cases}$                                                                                                                                                                                                                                                                     | Hamacher Product                                     |
| $O_B(x,y) = \min\{x\sqrt{y}, y\sqrt{x}\}$                                                                                                                                                                                                                                                                                                                                      | [35], Cuadras-Augé<br>copula [36]                    |
| $O_{mM}(x,y) = \min\{x,y\} \max\{x^2,y^2\}$                                                                                                                                                                                                                                                                                                                                    | [37], [38], [39]                                     |
| $\begin{array}{l} O_{\alpha}(x,y)=xy(1+\alpha(1-x)(1-y)),\\ \text{with }\alpha\in [-1,1]\setminus\{0\} \end{array}$                                                                                                                                                                                                                                                            | [26], Farlie-Gumbel-<br>Morgenstern<br>copula family |
| $O_{Div}(x,y) = \frac{xy + \min\{x,y\}}{2}$                                                                                                                                                                                                                                                                                                                                    | [26], [13]                                           |
| $GM(x,y) = \sqrt{xy}$                                                                                                                                                                                                                                                                                                                                                          | Geometric Mean, [40]                                 |
| $HM(x,y) = \begin{cases} 0 & \text{if } x = 0 \text{ or } y = 0\\ \frac{2}{\frac{1}{x} + \frac{1}{y}} & \text{otherwise.} \end{cases}$                                                                                                                                                                                                                                         | Harmonic Mean, [40]                                  |
| $Sin(x,y) = \sin\left(\frac{\pi}{2}(xy)^{\frac{1}{4}}\right)$                                                                                                                                                                                                                                                                                                                  | Sine, [40]                                           |
| $O_{RS}(x,y) = \min\left\{\frac{(x+1)\sqrt{y}}{2}, y\sqrt{x}\right\}$                                                                                                                                                                                                                                                                                                          |                                                      |
| $C_F(x,y) = xy + x^2y(1-x)(1-y)$                                                                                                                                                                                                                                                                                                                                               | [2], [13]                                            |
| $C_L(x,y) = \max\{\min\{x, \frac{y}{2}\}, x+y-1\}$                                                                                                                                                                                                                                                                                                                             | [26], [13]                                           |
| $F_{GL}(x,y) = \sqrt{\frac{x(y+1)}{2}}$                                                                                                                                                                                                                                                                                                                                        |                                                      |
| $F_{BPC}(x,y) = xy^2$                                                                                                                                                                                                                                                                                                                                                          | [1]                                                  |
| $F_{BD1}(x, y) = \min\{x, 1 - x + \min\{x, y^q\}\},\$ with $0 < q \le 1$                                                                                                                                                                                                                                                                                                       | [16], [18]                                           |
| $F_{NA}(x,y) = \begin{cases} x & \text{if } x \le y \\ \min\{\frac{x}{2}, y\} & \text{otherwise.} \end{cases}$                                                                                                                                                                                                                                                                 | [16], [18]                                           |
| $F_{NA}(x,y) = \begin{cases} x & \text{if } x \le y \\ \min\{\frac{x}{2}, y\} & \text{otherwise.} \end{cases}$ $F_{NA2}(x,y) = \begin{cases} 0 & \text{if } x = 0 \\ \frac{x+y}{2} & \text{if } 0 < x \le y \\ \min\{\frac{x}{2}, y\} & \text{otherwise.} \end{cases}$                                                                                                         | [16], [18]                                           |

# **Proposition 1.** $\mathfrak{C}_{F,m,\delta}$ is well defined.

*Proof.* It is immediate that, for any  $\boldsymbol{x} \in [0,1]^n$ ,  $0 \leq \mathfrak{C}_{F,m,\delta}(\boldsymbol{x}) \leq n$ . Take an input  $\boldsymbol{x} \in [0,1]^n$ , for which there may be different increasing permutations (i.e.,  $\boldsymbol{x}$  has repeated elements). For the sake of simplicity, but without loss of generality, consider that there exist  $r, s \in \{1, \ldots, n\}$  such that  $x_r = x_s = z \in [0,1]$  and, for all  $i \in \{1, \ldots, n\}$ , with  $i \neq r, s$ , it holds that  $x_i \neq x_r, x_s$ . Two possible increasing permutations are:

$$(x_{(1)}, \dots, x_{(k-1)} = x_r, x_{(k)} = x_s, \dots, x_{(n)})$$
(2)

$$(x_{(1)}, \dots, x_{(k-1)} = x_s, x_{(k)} = x_r, \dots, x_{(n)})$$
 (3)

Denote by  $m_{(i)}^{(1)} = m^{(1)}(A_{(i)})$  and  $m_{(i)}^{(2)} = m^{(2)}(A_{(i)})$ , with  $i \in \{1, ..., n\}$ , the fuzzy measures of the subsets of  $A_{(i)}$  of indices corresponding to the n - i + 1 largest components of x with respect to the permutations (2) and (3), respectively. Then, for all  $i \neq k$ , it holds that

$$m_{(i)}^{(1)} = m_{(i)}^{(2)}, \text{ and}$$
 (4)

$$m_{(k)}^{(1)} = m(\{s, (k+1), \dots, (n)\})$$
 (5)

$$m_{(k)}^{(2)} = m(\{r, (k+1), \dots, (n)\}),$$
 (6)

which means that it may be the case that  $m_{(k)}^{(1)} \neq m_{(k)}^{(2)}$ . Denote by  $\mathfrak{C}_{F,m,\delta}^{(1)}$  and  $\mathfrak{C}_{F,m,\delta}^{(2)}$  the  $dC_F$ -integrals with respect to the permutations (2) and (3), respectively, and suppose that

$$\mathfrak{C}_{F,m,\delta}^{(1)}(\boldsymbol{x}) \neq \mathfrak{C}_{F,m,\delta}^{(2)}(\boldsymbol{x}).$$
(7)

From Eqs. (4), (5), (6), whenever  $k \neq 1$ , one has that:

$$\begin{split} \mathfrak{C}_{F,m,\delta}^{(1)}(x) &- \mathfrak{C}_{F,m,\delta}^{(2)}(x) \\ &= F\left(\delta(x_{(k)}, x_{(k-1)}), \ m_{(k)}^{(1)}\right) - F\left(\delta(x_{(k)}, x_{(k-1)}), \ m_{(k)}^{(2)}\right) \\ &= F\left(\delta(x_s, x_r), \ m(\{s, (k+1), \dots, (n)\})\right) - \\ F\left(\delta(x_r, x_s), \ m(\{r, (k+1), \dots, (n)\})\right) \\ &= F\left(\delta(z, z), \ m(\{s, (k+1), \dots, (n)\})\right) - \\ F\left(\delta(z, z), \ m(\{r, (k+1), \dots, (n)\})\right) \\ &= F\left(0, \ m(\{s, (k+1), \dots, (n)\})\right) - \\ F\left(0, \ m(\{r, (k+1), \dots, (n)\})\right) \\ &= 0 \text{ by } (0\text{-LAE}) \end{split}$$

which is a contradiction with (7). Analogous result can be shown for k = 1. The result can be generalized for any subsets of repeated elements in the input x. Then, for any different increasing permutations of the same input x one always get the same result  $\mathfrak{C}_{F,m,\delta}(x)$ .

**Remark 1.** Observe that the first element of the summation in the definition of  $\mathfrak{C}_{F,m,\delta}$  is just  $x_{(1)}$  instead of

$$F\left(\delta(x_{(1)}, x_{(0)}), \ m(A_{(1)})\right).$$

This is considered to avoid the initial discrepant behavior of non-averaging functions in the initial phase of the aggregation process, as pointed out in [18]. For example, consider a vector with only one component  $\mathbf{x} = (0.1)$ ,  $\delta_1(x, y) = |x - y|$  and

$$F_{NA2}(x,y) = \begin{cases} 0 & \text{if } x = 0\\ \frac{x+y}{2} & \text{if } 0 < x \le y\\ \min\{\frac{x}{2}, y\} & \text{otherwise.} \end{cases}$$

If we included the first element in the summation of the integral the result would be:

$$\mathfrak{C}_{F,m,\delta_1}(0.1) = F_{NA2}\left(\delta_1(x_{(1)}, x_{(0)}), \ m(A_{(1)})\right) \\ = F_{NA2}(0.1 - 0, 1) = \frac{0.1 + 1}{2} = 0.55.$$

Observe here the large discrepancy of the result (a relative error of 450%), since one expects that the aggregated value would be 0.1. Using our definition of  $dC_F$ -integral (Equation (1)), this unexpected behavior is avoided and the result is 0.1.

In the following, consider all fuzzy measures  $m : 2^N \rightarrow [0,1]$ , functions  $F : [0,1]^2 \rightarrow [0,1]$  satisfying (0-LAE) and restricted dissimilarity functions  $\delta : [0,1]^2 \rightarrow [0,1]$ .

Since the ranges of  $dC_F$ -integrals are in [0, n], there is no sense to talk about their boundary conditions in general, unless one just deals with increasing  $dC_F$ -integrals. Then, in the context of this paper, the boundary conditions of AF and PAF (conditions (A2)), are referred just by 0, 1-conditions.

**Proposition 2** (0, 1-conditions).  $\mathfrak{C}_{F,m,\delta}$  satisfies the 0, 1-conditions.

*Proof.* (i) Take x = 0 = (0, ..., 0). Then:

$$\begin{aligned} \mathfrak{E}_{F,m,\delta}(\mathbf{0}) &= 0 + \sum_{i=2}^{n} F\left(\delta(0,0), \ m(A_{(i)})\right) \\ &= \sum_{i=2}^{n} F\left(0, \ m(A_{(i)})\right) \qquad \text{by (d3)} \\ &= 0 \qquad (\text{by 0-LAE}) \end{aligned}$$

(ii) For x = 1 = (1, ..., 1), we have:

$$\begin{split} \mathfrak{C}_{F,m,\delta}(\pmb{x}) &= 1 + \sum_{i=2}^{n} F\left(\delta(1,1), \ m(A_{(i)})\right) \\ &= 1 + \sum_{i=2}^{n} F\left(0, \ m(A_{(i)})\right) \qquad \text{by (d3)} \\ &= 1 \qquad \text{by (0-LAE)} \end{split}$$

In what follows, denote the range of a  $dC_F$ -integral  $\mathfrak{C}_{F,m,\delta}$  by  $\operatorname{Ran}(\mathfrak{C}_{F,m,\delta})$ .

**Remark 2.** If the range of a  $dC_F$ -integral is [0, 1], then the 0, 1-conditions are equivalent to the boundary conditions (A2). Additionally, whenever a  $dC_F$ -integral is increasing and satisfies the 0, 1-conditions then its range is [0, 1]. Now, whenever a  $dC_F$ -integral is not increasing, then, even if it satisfies the 0, 1-conditions, there may exist  $\mathbf{y} \in [0, 1]^n$ ,  $\mathbf{0} < \mathbf{y} < \mathbf{1}$  such that  $\mathfrak{C}_{F,m,\delta}(\mathbf{y}) > 1$ , as it was shown in [27, Example 3.6 (iii)], which is the particular case of a  $dC_F$ integral for  $F = T_P$  (the product t-norm) (in fact, the standard d-Choquet integral).

**Proposition 3.**  $Ran(\mathfrak{C}_{F,m,\delta}) \subseteq [0,1]$  if F satisfies (LC) and the following condition holds, for all  $\boldsymbol{x} \in [0,1]^n$ :

$$\sum_{i=2}^{n} \delta(x_{(i)}, \ x_{(i-1)}) \le 1 - x_{(1)}.$$
(8)

*Proof.* For any  $\boldsymbol{x} \in [0,1]^n$ ,  $\mathfrak{C}_{F,m,\delta}(\boldsymbol{x}) \geq 0$  and

$$\begin{split} \mathfrak{C}_{F,m,\delta}(\boldsymbol{x}) &= x_{(1)} + \sum_{i=2}^{n} F\left(\delta(x_{(i)}, \ x_{(i-1)}), \ m(A_{(i)})\right) \\ &\leq x_{(1)} + \sum_{i=2}^{n} \delta(x_{(i)}, \ x_{(i-1)}) \quad \text{by (LC)} \\ &\leq 1 \quad \text{by (8).} \end{split}$$

**Theorem 1** (Directional monotonicity). If F is (1,0)increasing and, for all  $a, b \in [0,1]$ , with  $a \ge b$ , and h > 0such that  $a + h, b + h \in [0,1]$ , it holds that:

$$\delta(a+h,b+h) \ge \delta(a,b),\tag{9}$$

then  $\mathfrak{C}_{F,m,\delta}$  is 1-increasing

*Proof.* For any  $x \in [0,1]^n$ ,  $c = (c, \ldots, c)$ , with c > 0 and  $x + c \in [0,1]^n$ , consider that Eq. (9) holds whenever h =

c,  $a = x_{(i)}$  and  $b = x_{(i-1)}$ , for any i = 2, ..., n, that is,  $\delta(x_{(i)} + c, x_{(i-1)} + c) \ge \delta(x_{(i)}, x_{(i-1)})$ . Since F is (1,0)increasing, then we have that  $F(\delta(x_{(i)}, x_{(i-1)}), m(A_{(i)})) - F(\delta(x_{(i)} + c, x_{(i-1)} + c), m(A_{(i)})) < 0$ . Thus:

$$\sum_{i=2}^{n} F\left(\delta(x_{(i)}, x_{(i-1)}), m(A_{(i)})\right) \\ -\sum_{i=2}^{n} F\left(\delta(x_{(i)} + c, x_{(i-1)} + c), m(A_{(i)})\right) < 0 < c.$$

Therefore:

$$(x_{(1)} + c) + \sum_{i=2}^{n} F\left(\delta(x_{(i)} + c, x_{(i-1)} + c), m(A_{(i)})\right)$$
  
> $x_{(1)} + \sum_{i=2}^{n} F\left(\delta(x_{(i)}, x_{(i-1)}), m(A_{(i)})\right),$ 

thus  $\mathfrak{C}_{F,m,\delta}(\boldsymbol{x}+\boldsymbol{c}) > \mathfrak{C}_{F,m,\delta}(\boldsymbol{x})$ , and  $\mathfrak{C}_{F,m,\delta}$  is 1-increasing.

# It is immediate that:

**Theorem 2** (PAF). If F is (1,0)-increasing and (LC), and also both Condition (8) of Proposition 3 and Condition (9) of Theorem 1 hold, then  $\mathfrak{C}_{F,m,\delta}$  is an 1-PAF.

**Theorem 3** (Monotonicity).  $\mathfrak{C}_{F,m,\delta}$  is increasing if and only if the following conditions hold:

(i) For all  $a, b \in [0, 1]$ , with  $a \leq b, c \in Ran(m)$  and  $h \in [0, b - a]$  it holds that:

$$F(\delta(a,b),c) - F(\delta(a+h,b),c) \le h;$$
(10)

(ii) For all  $a_1, a_2, b_1, b_2 \in [0, 1]$ , there exist  $h_1, h_2 \ge 0$ , with  $a_1 + h_1, a_2 + h_2 \in [0, 1]$  such that: If  $b_2 \le b_1$  and  $h_2 \le h_1$  then:

$$F(a_1 + h_1, b_1) - F(a_2 + h_2, b_2) \ge F(a_1, b_1) - F(a_2, b_2).$$
(11)

*Proof.* ( $\Leftarrow$ ) Take  $x, y \in [0,1]^n$  such that, for some  $k \in \{1,\ldots,n\}$  and  $\lambda \ge 0$ , it holds that  $x_{(k)} = y_{(k)} + \lambda$ , and, for all  $i \ne k$ ,  $x_{(i)} = y_{(i)}$ , such that:

$$x_{(k-1)} = y_{(k-1)} \le x_{(k)} = y_{(k)} + \lambda \le x_{(k+1)} = y_{(k+1)}.$$
 (12)

Then, one has the following possibilities:

(a) k = 1: In this case,  $x_{(1)} = y_{(1)} + \lambda$ . Denote  $a = y_{(1)}$ ,  $b = y_{(2)}$ ,  $c = m(A_{(2)}) \in (0, 1]$  and  $h = \lambda \in [0, b - a]$ . Since (d1) holds, it follows that:

$$\begin{split} \mathfrak{C}_{F,m,\delta}(\boldsymbol{x}) &= (y_{(1)} + \lambda) + F(\delta(y_{(2)}, y_{(1)} + \lambda), m(A_{(2)})) \\ &+ \sum_{i=3}^{n} F\left(\delta(y_{(i)}, y_{(i-1)}), \ m(A_{(i)})\right) \\ &= a + h + F(\delta(b, a + h), c) \\ &+ \sum_{i=3}^{n} F\left(\delta(y_{(i)}, y_{(i-1)}), \ m(A_{(i)})\right) \\ &\geq a + h + F(\delta(b, a), c) - h \\ &+ \sum_{i=2}^{n} F\left(\delta(y_{(i)}, y_{(i-1)}), \ m(A_{(i)})\right) \text{ by (10)} \end{split}$$

$$= y_{(1)} + F(\delta(y_{(2)}, y_{(1)}), m(A_{(2)})) + \sum_{i=3}^{n} F\left(\delta(y_{(i)}, y_{(i-1)}), m(A_{(i)})\right) = \mathfrak{C}_{F,m,\delta}(\boldsymbol{y}).$$

(b) 1 < k < n: Observe that, by (d4), it holds that:

$$\begin{aligned} \delta(y_{(k)} + \lambda, y_{(k-1)}) &\geq \delta(y_{(k)}, y_{(k-1)}) & (13) \\ \delta(y_{(k+1)}, y_{(k)}) &\geq \delta(y_{(k+1)}, y_{(k)} + \lambda). & (14) \end{aligned}$$

Then, it is possible to denote  $\delta(y_{(k)}, y_{(k-1)}) = a_1$ ,  $\delta(y_{(k)} + \lambda, y_{(k-1)}) = a_1 + h_1$ ,  $\delta(y_{(k+1)}, y_{(k)} + \lambda) = a_2$  and  $\delta(y_{(k+1)}, y_{(k)}) = a_2 + h_2$ , where  $h_1 = \delta(y_{(k)} + \lambda, y_{(k-1)}) - \delta(y_{(k)}, y_{(k-1)}) \ge 0$  and  $h_2 = \delta(y_{(k+1)}, y_{(k)}) - \delta(y_{(k+1)}, y_{(k)} + \lambda) \ge 0$ . Also denote  $b_1 = m(A_{(k)})$  and  $b_2 = m(A_{(k+1)})$  and notice that  $b_2 \le b_1$ . Then it follows that:

$$\begin{split} \mathfrak{C}_{F,m,\delta}(\boldsymbol{x}) &= y_{(1)} + \sum_{i=2}^{k-1} F(\delta(y_{(i)}, \ y_{(i-1)}), \ m(A_{(i)})) \\ &+ F(\delta(y_{(k)} + \lambda, \ y_{(k-1)}), \ m(A_{(k)})) \\ &+ F(\delta(y_{(k+1)}, \ y_{(k)} + \lambda), \ m(A_{(k+1)})) \\ &+ \sum_{i=k+2}^{n} F(\delta(y_{(i)}, \ y_{(i-1)}), \ m(A_{(i)})) \\ &= y_{(1)} + \sum_{i=2}^{k-1} F(\delta(y_{(i)}, \ y_{(i-1)}), \ m(A_{(i)})) \\ &+ F(a_1 + h_1, \ b_1) + F(a_2, \ b_2) \\ &+ \sum_{i=k+2}^{n} F(\delta(y_{(i)}, \ y_{(i-1)}), \ m(A_{(i)})) \\ &\geq y_{(1)} + \sum_{i=2}^{k-1} F(\delta(y_{(i)}, \ y_{(i-1)}), \ m(A_{(i)})) \\ &+ F(a_1, \ b_1) + F(a_2 + h_2, \ b_2) \\ &+ \sum_{i=k+2}^{n} F(\delta(y_{(i)}, \ y_{(i-1)}), \ m(A_{(i)})) \ by (13), (14), (11) \\ &= y_{(1)} + \sum_{i=1}^{k-1} F(\delta(y_{(i)}, \ y_{(i-1)}), \ m(A_{(i)})) \\ &+ F(\delta(y_{(k+1)}, \ y_{(k)}), \ m(A_{(k+1)})) \\ &+ F(\delta(y_{(k+1)}, \ y_{(k)}), \ m(A_{(k+1)})) \\ &+ \sum_{i=k+2}^{n} F(\delta(y_{(i)}, \ y_{(i-1)}), \ m(A_{(i)})) = \mathfrak{C}_{F,m,\delta}(\boldsymbol{y}). \end{split}$$

(c) k = n: In this case,  $x_{(n)} = y_{(n)} + \lambda$ . By (d4) and condition (ii) of the theorem when  $h_2 = 0$ , it follows that:

$$\mathfrak{C}_{F,m,\delta}(\boldsymbol{x}) = y_{(1)} + \sum_{i=2}^{n-1} F\left(\delta(y_{(i)}, y_{(i-1)}), \ m(A_{(i)})\right) + F(\delta(y_{(n)} + \lambda, \ y_{(n-1)}), \ m(A_{(n)})) \geq y_{(1)} + \sum_{i=2}^{n-1} F\left(\delta(y_{(i)}, y_{(i-1)}), \ m(A_{(i)})\right) + F(\delta(y_{(n)}, \ y_{(n-1)}), \ m(A_{(n)}))$$

$$=\mathfrak{C}_{F,m,\delta}(oldsymbol{y}).$$

( $\Rightarrow$ ) Since  $\mathfrak{C}_{F,m,\delta}$  is increasing, then for all  $x, y \in [0,1]^n$  there is  $k \in \{1,\ldots,n\}$  and  $\lambda \ge 0$  for which  $x_{(k)} = y_{(k)} + \lambda \in [0,1]$ , and for any  $i \in \{1,\ldots,n\}$  with  $i \ne k, x_{(k)} = y_{(k)}$ , satisfying Condition (12), it holds that:

$$\mathfrak{C}_{F,m,\delta}(\boldsymbol{x}) - \mathfrak{C}_{F,m,\delta}(\boldsymbol{y}) \ge 0$$
  

$$\Leftrightarrow x_{(1)} + \sum_{i=2}^{n} F(\delta(x_{(i)}, x_{(i-1)}), m(A_{(i)}))$$
  

$$- y_{(1)} + \sum_{i=2}^{n} F(\delta(y_{(i)}, y_{(i-1)}), m(A_{(i)})) \ge 0. \quad (15)$$

Here, the only non-zero elements are the ones that contain the k-th element: this induces to the following possibilities:

(a) 
$$k = 1$$
: In this case we have  $x_{(1)} = y_{(1)} + \lambda$  and, by (15):

$$\begin{aligned} (y_{(1)} + \lambda) + F(\delta(y_{(2)}, y_{(1)} + \lambda), m(A_{(2)}) \\ &- y_{(1)} - F(\delta(y_{(2)}, y_{(1)}), m(A_{(2)}) \ge 0 \\ \Leftrightarrow F(\delta(y_{(2)}, y_{(1)}), m(A_{(2)}) - F(\delta(y_{(2)}, y_{(1)} + \lambda), m(A_{(2)}) \\ &\le \lambda. \end{aligned}$$
(16)

By using the same notation of the item (b) of the ( $\Leftarrow$ )-part of the proof, Eq. (16) becomes:

$$F(\delta(b,a),c) - F(\delta(b,a+h),c) \le h,$$

since  $a = y_{(1)} \le b = y_{(2)}, c = m(A_{(2)}) \in (0, 1]$  and  $h = \lambda \in [0, b - a]$ . By (d1), the Condition (ii) holds. (b) 1 < k < n: By (15), one has that:

$$F(\delta(y_{(k)} + \lambda, y_{(k-1)}), m(A_{(k)})) + F(\delta(y_{(k+1)}, y_{(k)} + \lambda), m(A_{(k+1)}))) \\ \geq F(\delta(y_{(k)}, y_{(k-1)}), m(A_{(k)})) + F(\delta(y_{(k+1)}, y_{(k)}), m(A_{(k+1)}))) \\ \Leftrightarrow F(\delta(y_{(k)} + \lambda, y_{(k-1)}), m(A_{(k)})) - F(\delta(y_{(k+1)}, y_{(k)}), m(A_{(k+1)}))) \\ \geq F(\delta(y_{(k)}, y_{(k-1)}), m(A_{(k)})) - F(\delta(y_{(k+1)}, y_{(k)} + \lambda), m(A_{(k+1)})))$$
(17)

Since inequalities (13) and (14) hold, and  $b_2 = m(A_{(k+1)}) \le m(A_{(k)}) = b_1$ , (17) can be written, using the notation adopted in the item (c) of the ( $\Leftarrow$ )-part of the proof, as:

$$F(a_1 + h_1, b_1) - F(a_2 + h_2, b_2) \ge F(a_1, b_1) - F(a_2, b_2)$$

where  $h_1 = \delta(y_{(k)} + \lambda, y_{(k-1)}) - \delta(y_{(k)}, y_{(k-1)}) \ge 0$  and  $h_2 = \delta(y_{(k+1)}, y_{(k)}) - \delta(y_{(k+1)}, y_{(k)} + \lambda) \ge 0$ . Then, the Condition (ii) holds.

(c) k = n: In this case  $x_{(n)} = y_{(n)} + \lambda$  and, by (15):

$$F(\delta(y_{(n)} + \lambda, y_{(n-1)}), m(A_{(k)})) - F(\delta(y_{(n)}, y_{(n-1)}), m(A_{(k)})) \ge 0.$$

By (d4) we have that  $\delta(y_{(n)} + \lambda, y_{(n-1)}) \ge \delta(y_{(n)}, y_{(n-1)})$ . Now considering  $\delta(y_{(n)} + \lambda, y_{(n-1)}) = a_1 + \lambda_1$ ,  $\delta(y_{(n)}, y_{(n-1)}) = a_1$  and  $b_1 = m(A_{(k)})$ , we then have that

$$F(a_1+\lambda_1,b_1)-F(a_1,b_1) \ge 0 \Leftrightarrow F(a_1+\lambda_1,b_1) \ge F(a_1,b_1),$$

which is the case of having  $h_2 = 0$  in Condition (ii).

From Proposition 2 and Theorem 3, it follows that:

# **Theorem 4** (AF). $\mathfrak{C}_{F,m,\delta}$ is an aggregation function if and only if the conditions of Theorem 3 hold.

We point out that any aggregation-like operator is required to present some kind of "increasingness property" in order to guarantee the preservation of the information quality of the output related to the information quality of the inputs, in the light of Domain Theory [41]. In this sense, the higher are the values of the inputs, in some considered direction, the higher should be the aggregated value to the same direction [10], [21]. Observe, in Table III, that there may exist  $dC_F$ -integrals that are neither increasing nor directional increasing, which is the case, e.g, of  $\mathfrak{C}_{F,\delta_3,m}$  and  $\mathfrak{C}_{F,\delta_5,m}$ . Nevertheless, they are Ordered Directional (OD) monotone functions [25]. Such functions are monotonic along different directions according to the ordinal size of the coordinates of each input.

**Definition 2.** [25] Consider a function  $Od : [0,1]^n \to [0,1]$ and let  $\mathbf{r} = (r_1, \ldots, r_n)$  be a real n-dimensional vector,  $\mathbf{r} \neq \mathbf{0}$ . Od is said to be ordered directionally (OD)  $\mathbf{r}$ -increasing if, for each  $\mathbf{x} \in [0,1]^n$ , any permutation  $\sigma : \{1,\ldots,n\} \to \{1,\ldots,n\}$  with  $x_{\sigma(1)} \ge \ldots \ge x_{\sigma(n)}$ , and c > 0, with  $x_{\sigma(i)} + cr_i \in [0,1]$ , for  $i \in \{1,\ldots,n\}$ , such that  $1 \ge x_{\sigma(1)} + cr_1 \ge \ldots \ge x_{\sigma(n)} + cr_n$ , it holds that  $Od(\mathbf{x} + cr_{\sigma^{-1}}) \ge Od(\mathbf{x})$ , where  $\mathbf{r}_{\sigma^{-1}} = (r_{\sigma^{-1}(1)}, \ldots, r_{\sigma^{-1}(n)})$ . Similarly, one defines an ordered directionally (OD)  $\mathbf{r}$ -decreasing function.

**Theorem 5.** For any k > 0, the  $dC_F$ -integral is an (OD) (k, 0, ..., 0)-increasing function.

*Proof.* For all  $\boldsymbol{x} \in [0, 1]^n$  and permutation  $\sigma : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$ , with  $x_{\sigma(1)} \geq \ldots \geq x_{\sigma(n)}$ , and c > 0, with  $x_{\sigma(i)} + cr_i \in [0, 1]$ , for  $i \in \{1, \ldots, n\}$ , and  $1 \geq x_{\sigma(1)} + cr_1 \geq \ldots \geq x_{\sigma(n)} + cr_n$ , for  $\boldsymbol{r}_{\sigma^{-1}} = (r_{\sigma^{-1}(1)}, \ldots, r_{\sigma^{-1}(n)})$ , one has that:  $\mathfrak{C}_{Fm} \delta(\boldsymbol{x} + c\boldsymbol{r}_{\sigma^{-1}})$ 

$$\begin{split} &= x_{(1)} + c \cdot r_{\sigma^{-1}(1)} \\ &+ \sum_{i=2}^{n-1} F(\delta(x_{(i)} + cr_{\sigma^{-1}(i)}, x_{(i-1)} + cr_{\sigma^{-1}(i-1)}), m(A_{(i)})) \\ &+ F(\delta(x_{(n)} + cr_{\sigma^{-1}(n)}, x_{(n-1)} + cr_{\sigma^{-1}(n-1)}), m(A_{(n)})) \\ &= x_{(1)} + \sum_{i=2}^{n-1} F(\delta(x_{(i)}, x_{(i-1)}), m(A_{(i)})) \\ &+ F(\delta(x_{(n)} + ck, x_{(n-1)}), m(A_{(n)})) \\ &\geq x_{(1)} + \sum_{i=2}^{n-1} F(\delta(x_{(i)}, x_{(i-1)}), m(A_{(i)}) \\ &+ F(\delta(x_{(n)}, x_{(n-1)}), m(A_{n)}) \quad \text{by (d4)} \\ &= \mathfrak{C}_{F,m,\delta}(\boldsymbol{x}). \end{split}$$

Lastly, some other important properties are studied:

**Proposition 4.**  $\mathfrak{C}_{F,m,\delta}$  is idempotent.

*Proof.* Consider  $\boldsymbol{x} = (x, \dots, x) \in [0, 1]^n$ . Then:

$$\mathfrak{C}_{F,m,\delta}(\boldsymbol{x}) = x + \sum_{i=2}^{n} F\left(\delta(x,x), \ m(A_{(i)})\right)$$

|                                                     |              |                 | _            | Tere, in me                                      |              |        | , ,           | . ,              |                             |              |      |                 |                                                     |              |
|-----------------------------------------------------|--------------|-----------------|--------------|--------------------------------------------------|--------------|--------|---------------|------------------|-----------------------------|--------------|------|-----------------|-----------------------------------------------------|--------------|
|                                                     |              | $\delta_0($     | (x, y)       | =  x - y                                         |              |        | $\delta_1(z)$ | (x, y) =         | $(x - y)^2$                 |              |      | $\delta_2(x)$   | $(x,y) = \sqrt{ x-y }$                              |              |
| Function                                            | Agg.         | 1-inc           | 1-PA         | OD-(k,_)-inc                                     | Ave          | Agg.   | 1-inc         | 1-PA             | OD-(k,_)-inc                | Ave          | Agg. | 1-inc           | 1-PA OD-(k,_)-inc                                   | Ave          |
| $ T_M $                                             |              | $\checkmark$    | $\checkmark$ | $\checkmark$                                     | $\checkmark$ |        | $\checkmark$  | $\checkmark$     | $\checkmark$                | $\checkmark$ |      | $\checkmark$    | $\checkmark$                                        | m            |
| $ T_P $                                             | $\checkmark$ | $\checkmark$    | $\checkmark$ | $\checkmark$                                     | $\checkmark$ |        | $\checkmark$  | $\checkmark$     | $\checkmark$                | $\checkmark$ |      | $\checkmark$    | $\checkmark$                                        | m            |
| T <sub>Ł</sub>                                      |              | $\checkmark$    | $\checkmark$ | $\checkmark$                                     | $\checkmark$ |        | $\checkmark$  | $\checkmark$     | $\checkmark$                | $\checkmark$ |      | $\checkmark$    | $\checkmark$                                        | m            |
| $T_{DP}$                                            |              | √               | √            | $\checkmark$                                     | √            |        | √             | √                | <b>√</b>                    | √            |      | √               | $\checkmark$                                        | m            |
| $T_{NM}$                                            |              | √               | $\checkmark$ | $\checkmark$                                     | √            |        | V             | ~                | V                           | <b>√</b>     |      | V               | $\checkmark$                                        | m            |
| $T_{HP}$                                            |              | 1               | ~            | $\checkmark$                                     | ~            |        | V             | ~                | $\checkmark$                | ~            |      | ~               | $\checkmark$                                        | m            |
| $O_B$                                               |              | $\checkmark$    | $\checkmark$ | $\checkmark$                                     | $\checkmark$ |        | $\checkmark$  | $\checkmark$     | $\checkmark$                | $\checkmark$ |      | $\checkmark$    | $\checkmark$                                        | m            |
| $\begin{array}{c} O_{mM} \\ O_{\alpha} \end{array}$ |              | ✓<br>✓          | <b>√</b>     | $\checkmark$                                     | √<br>√       |        | $\checkmark$  | √<br>√           | V                           | ✓<br>✓       |      | ✓<br>✓          | $\checkmark$                                        | m<br>m       |
| $O_{\alpha}$<br>$O_{Div}$                           |              | <b>v</b><br>√   | v<br>√       | <b>↓</b>                                         | v<br>v       |        | <b>∨</b>      | v<br>√           | <b>v</b><br>√               | <b>∨</b>     |      | <b>∨</b>        | <b>∨</b><br>√                                       | m            |
| GM                                                  |              | <b>`</b>        | v            | ✓<br>✓                                           | m            |        | <b>`</b>      | v                | <b>v</b>                    | m            |      | <b>`</b>        | <b>↓</b>                                            | m            |
| HM                                                  |              | √               |              | √                                                | m            |        | √             |                  | $\checkmark$                | m            |      | √               | $\checkmark$                                        | m            |
| Sin                                                 |              | $\checkmark$    |              | $\checkmark$                                     | m            |        | $\checkmark$  |                  | $\checkmark$                | m            |      | $\checkmark$    | $\checkmark$                                        | m            |
| $O_{RS}$                                            |              | $\checkmark$    |              | $\checkmark$                                     | m            |        | $\checkmark$  |                  | $\checkmark$                | m            |      | $\checkmark$    | $\checkmark$                                        | m            |
| $C_F$                                               |              | $\checkmark$    | $\checkmark$ | $\checkmark$                                     | $\checkmark$ |        | $\checkmark$  | $\checkmark$     | $\checkmark$                | $\checkmark$ |      | $\checkmark$    | $\checkmark$                                        | m            |
| $C_L$                                               |              | √               | $\checkmark$ | $\checkmark$                                     | $\checkmark$ |        | √             | $\checkmark$     | $\checkmark$                | $\checkmark$ |      | √               | $\checkmark$                                        | m            |
| $F_{GL}$                                            | ,            | √               | ,            | V                                                | m            |        | V             | ,                | $\checkmark$                | m            |      | √               | $\checkmark$                                        | m            |
| $F_{BPC}$                                           | $\checkmark$ | <b>√</b>        | V            | <ul> <li>✓</li> </ul>                            | ~            |        | ~             | <b>√</b>         | ~                           | ~            |      | ~               | $\checkmark$                                        | m            |
| $F_{BD1}$                                           |              | $\checkmark$    | $\checkmark$ | $\checkmark$                                     | $\checkmark$ |        | $\checkmark$  | $\checkmark$     | ~                           | $\checkmark$ |      | 1               | $\checkmark$                                        | m            |
| $F_{NA}$<br>$F_{NA2}$                               |              | ✓<br>✓          | v            | v<br>v                                           | √<br>m       |        | ✓<br>✓        | v                | ✓<br>✓                      | v<br>m       |      | ✓<br>✓          | $\checkmark$                                        | m<br>m       |
| I'NA2                                               |              | •               |              |                                                  | m            |        | •             | \<br>\           | •                           | m            |      | •               |                                                     | m            |
| Function                                            | Ασσ          | $o_3(x, 1-inc)$ | (y) = 1-PA   | $\left \sqrt{x} - \sqrt{y}\right $<br>OD-(k)-inc | Ave          | Ασσ    | $0_4(a)$      | (x, y) =<br>1-PA | $ x^2 - y^2 $<br>OD-(k)-inc | Ave          | Ασσ  | $o_5(x, 1-inc)$ | $y) = (\sqrt{x} - \sqrt{y})^2$<br>1-PA OD-(k,_)-inc | Ave          |
| · ·                                                 | 88.          | 1 1110          |              |                                                  |              | 1.188. |               |                  |                             |              | 188. | 1 1110          |                                                     |              |
| $T_M$                                               |              |                 |              | $\checkmark$                                     | m            |        | ~             |                  | $\checkmark$                | m            |      |                 | $\checkmark$                                        | 1            |
| $T_P$<br>$T_L$                                      |              |                 |              | $\checkmark$                                     | m<br>m       |        | √<br>./       |                  | $\checkmark$                | m<br>m       |      |                 | $\checkmark$                                        | $\checkmark$ |
| $T_{DP}$                                            |              |                 |              | <b>v</b>                                         | m            |        | <b>v</b>      |                  | <b>√</b>                    | m            |      |                 | <b>v</b>                                            | <b>↓</b>     |
| $T_{NM}$                                            |              |                 |              |                                                  | m            |        | ·<br>·        |                  | $\checkmark$                | m            |      |                 | <b>↓</b>                                            | ✓            |
| $T_{HP}$                                            |              |                 |              | √                                                | m            |        | √             |                  | $\checkmark$                | m            |      |                 | $\checkmark$                                        | √            |
| $O_B$                                               |              |                 |              | $\checkmark$                                     | m            |        | $\checkmark$  |                  | $\checkmark$                | m            |      |                 | $\checkmark$                                        | $\checkmark$ |
| $ O_{mM} $                                          |              |                 |              | $\checkmark$                                     | m            |        | $\checkmark$  |                  | $\checkmark$                | m            |      |                 | $\checkmark$                                        | $\checkmark$ |
| $O_{\alpha}$                                        |              |                 |              | $\checkmark$                                     | m            |        | $\checkmark$  |                  | $\checkmark$                | m            |      |                 | $\checkmark$                                        | $\checkmark$ |
| $O_{Div}$                                           |              |                 |              | √                                                | m            |        | √             |                  | $\checkmark$                | m            |      |                 | $\checkmark$                                        | $\checkmark$ |
| GM                                                  |              |                 |              | <ul> <li>✓</li> </ul>                            | m            |        | V             |                  | $\checkmark$                | m            |      |                 | $\checkmark$                                        | m            |
| HM<br>Sin                                           |              |                 |              | $\checkmark$                                     | m            |        | V             |                  | $\checkmark$                | m            |      |                 | $\checkmark$                                        | m            |
|                                                     |              |                 |              | $\checkmark$                                     | m<br>m       |        | ~             |                  | $\checkmark$                | m<br>m       |      |                 | $\checkmark$                                        | m            |
| $\begin{array}{c} O_{RS} \\ C_{F} \end{array}$      |              |                 |              | v<br>v                                           | m            |        | v<br>V        |                  | $\checkmark$                | m            |      |                 | <b>v</b><br>√                                       | m<br>√       |
| $C_{L}$                                             |              |                 |              | •<br>•                                           | m            |        |               |                  | <b>√</b>                    | m            |      |                 | <b>√</b>                                            | <b>↓</b>     |
| $F_{GL}$                                            |              |                 |              | ✓                                                | m            |        | √             |                  | $\checkmark$                | m            |      |                 | ✓                                                   | m            |
| $F_{BPC}$                                           |              |                 |              | $\checkmark$                                     | m            |        | $\checkmark$  |                  | $\checkmark$                | m            |      |                 | $\checkmark$                                        | $\checkmark$ |
| $ F_{BD1} $                                         |              |                 |              | $\checkmark$                                     | m            |        | $\checkmark$  |                  | $\checkmark$                | m            |      |                 | $\checkmark$                                        | $\checkmark$ |
| $F_{NA}$                                            |              |                 |              | $\checkmark$                                     | m            |        | $\checkmark$  |                  | $\checkmark$                | m            |      |                 | $\checkmark$                                        | $\checkmark$ |
| $F_{NA2}$                                           |              |                 |              | $\checkmark$                                     | m            |        | $\checkmark$  |                  | $\checkmark$                | m            |      |                 | $\checkmark$                                        | m            |

TABLE III: Properties of the  $dC_F$ -integral for various F satisfying (0-LAE) and restricted dissimilarity functions, based on the results presented in this paper. Here, m means that  $\mathfrak{C}_{F,m,\delta}(\mathbf{x}) \geq \min(\mathbf{x})$ .

$$= x + \sum_{i=2}^{n} F(0, m(A_{(i)})) \text{ by (d3)}$$
  
= x by (0-LAE).

Therefore,  $\mathfrak{C}_{F,m,\delta}(\boldsymbol{x})$  is idempotent.

**Proposition 5.**  $\mathfrak{C}_{F,m,\delta}(\boldsymbol{x}) \geq \min(\boldsymbol{x})$ , for all  $\boldsymbol{x} \in [0,1]^n$ .

$$\mathfrak{C}_{F,m,\delta}(\boldsymbol{x}) = x_{(1)} + \sum_{i=2}^{n} F\left(\delta(x_{(i)}, x_{(i-1)}), \ m(A_{(i)})\right) \ge x_{(1)} = \min(\boldsymbol{x}).$$

**Proposition 6.** If F satisfies (LC) and  $\delta$  satisfies the condition

$$\sum_{i=2}^{n} \delta(a_i, \ a_{i-1}) \le a_n - a_1 \tag{18}$$

for any  $0 \le a_1 \le \ldots \le a_n \le 1$ , then  $\mathfrak{C}_{F,m,\delta}(\boldsymbol{x}) \le \max(\boldsymbol{x})$ , for all  $\boldsymbol{x} \in [0,1]^n$ .

*Proof.* Consider  $x \in [0, 1]^n$ . Then:

$$\mathfrak{C}_{F,m,\delta}(\boldsymbol{x}) = x_{(1)} + \sum_{i=2}^{n} F\left(\delta(x_{(i)}, x_{(i-1)}), \ m(A_{(i)})\right)$$
  
$$\leq x_{(1)} + \sum_{i=2}^{n} \delta(x_{(i)}, x_{(i-1)}) \text{ by (LC)}$$
  
$$\leq x_{(n)} = \max(\boldsymbol{x}) \quad \text{ by (18).}$$

Therefore,  $\mathfrak{C}_{F,m,\delta}(\boldsymbol{x}) \leq \max{(\boldsymbol{x})}$ .

From Propositions 5 and 6, it is immediate that:

**Proposition 7.** If F satisfies (LC) and the condition (18) holds then  $\mathfrak{C}_{F,m,\delta}$  is averaging.

Table III shows examples of combinations of functions Fand  $\delta$  that satisfy the following properties: aggregation (Agg.), 1-increasiness (1-inc), 1-pre-aggregation (1-PAF), OD-(k,0, ...,0)-increasing (OD-(k,\_)-inc) and averaging (Ave.). Notice that the only combinations of functions F and  $\delta$  satisfying the conditions necessary for the  $dC_F$ -integral to be an aggregation function are the pairs  $T_P$  and  $\delta_0$ , and  $F_{BPC}$  and  $\delta_0$ . Just two studied  $dC_F$ -integrals are not directional increasing, namely, the ones based on the restricted dissimilarity functions  $\delta_3$ and  $\delta_5$ . Nevertheless, not all the reminder  $dC_F$ -integrals are PAFs. Some of them, although 1-increasing, do not have their ranges equal to the unit interval, which clearly depends on the considered function F, as the  $dC_F$ -integrals based on  $\delta_0$  or  $\delta_1$ , and the functions GM, HM, sin,  $O_{RS}$ ,  $F_{GL}$  or  $F_{NA2}$ . Finally, all  $dC_F$ -integrals are OD-(k,0, ...,0)-increasing.

**Remark 3.** Notice that all RDFs presented in Table III are derived from  $\delta_0$ . In fact, they were constructed according to [29, Prop. 2]. It follows that, for  $i \in \{1, ..., 5\}$  and  $x_1, ..., x_n \in [0, 1]$ :  $\mathfrak{C}_{F,m,\delta_i}(x_1, ..., x_n) - x_{(1)} = \mathfrak{C}_{F_{\alpha_i},m,\delta_0}(x_1^{\beta_i}, ..., x_n^{\beta_i}) - x_{(1)}^{\beta_i}$ , where  $F_{\alpha_i}(u, v) = F(u^{\alpha_i}, v)$ , for  $u, v \in [0, 1]$  and  $\alpha_i, \beta_i \geq 0$ . Nevertheless, it is possible to define an RDF that is not derived from  $\delta_0$ , such as  $\delta : [0, 1]^2 \to [0, 1]$  given, for all  $x, y \in [0, 1]$  and  $c \in (0, 1)$ , by

$$\delta(x,y) = \begin{cases} 1, & \text{if } \{x,y\} = \{0,1\} \\ 0, & \text{if } x = y, \\ c, & \text{otherwise.} \end{cases}$$

The respective  $\mathfrak{C}_{F,m,\delta}$  is 1-increasing (but not a 1-PAF) and OD  $(k, 0, \ldots, 0)$ -increasing. It also holds that  $\mathfrak{C}_{F,m,\delta}(\mathbf{x}) \geq \min(\mathbf{x})$ , for all  $\mathbf{x} \in \mathbb{R}^n$ , although, it is not averaging.

#### IV. $dC_F$ -INTEGRALS IN THE FRM OF FRBCS'S

In this section, we present the application of the  $dC_F$ integral in the FRM of a FRBCS. Considering a classification problem containing t training examples  $x_p = (x_{p1}, \ldots, x_{pn}, y_p)$ , with  $p = 1, \ldots, t$ , where each  $x_{pi}$  is the value of the  $i = 1, \ldots, n$  variable, and  $y_p \in C = \{C_1, \ldots, C_M\}$  is the label of the class of the p-th training example, and M is the number of classes.

Here, we focus on FRBCS's, specifically, the Fuzzy Association Rule-based Classification model for High Dimensional Problems (FARC-HD) [42] fuzzy classifier. The structure of the fuzzy rules generated by this classifier is:

Rule 
$$R_j$$
: If  $x_1$  is  $A_{j1}$  and ... and  $x_n$  is  $A_{jn}$   
then Class is  $C_j$  with  $RW_j$ ,

where  $R_j$  is the label of the *j*-th rule,  $A_{ji}$  is a fuzzy set representing a linguistic term modeled by a triangular shaped membership function.  $C_j$  is the class label and  $RW_j \in [0, 1]$ is the rule weight [43], which in this case is computed as the confidence of the fuzzy rule.

Following the same approach used in the previous generalizations of the CI (see [11], [13], [16] and [18]), we modify the classical FRM of FARC-HD to include the  $dC_F$ -integrals in its third stage. Thus, the classification soundness degree for all classes of a new example x is computed by:

$$S_k(x) = C_k^{\mathfrak{C}_{F,m,\delta}} \left( b_1^k(x), \dots, b_L^k(x) \right),$$

where k is related with the class, L is the number of rules,  $(b_1^k(x), \ldots, b_L^k(x))$  are the association degrees of x with the class of each rule, given by  $b_j^k(x) = \mu_{A_j}(x) \cdot RW_j^k$ , where  $\mu_{A_j}(x) = AG(\mu_{A_{j1}}(x_1), \ldots, \mu_{A_{jn}}(x_n)), j = 1, \ldots, L, AG$ is an aggregation function, and  $\mu$  is the membership degree of the elements of the fuzzy set  $A_j$ . Finally,  $C_k^{\mathfrak{C}_{F,m,\delta}}$  is the  $dC_F$ -integral that aggregate the fired rules for each class.

#### V. EXPERIMENTAL FRAMEWORK

In this section, we present the experimental framework used in the study. We start providing the features of the considered datasets. Then, we show the configuration of the proposal and, finally, we discuss the statistical tests that are used to validate the quality of the results.

#### A. Datasets used in the study

This study is conducted taking into consideration 33 different datasets selected from KEEL dataset repository [31]. We highlight that these datasets are the same ones used in previous studies, such as  $C_F$ -integrals [16] and  $C_{F1F2}$ -integrals [18]. This allow a comparison with state-of-the-art approaches.

We summarize the datasets in Table IV. For each dataset, we present the corresponding identification (Id), the number of instances (#Inst), attributes (#Atts) and classes (#Class). Additionally, we point out that these datasets do not present monotonic characteristics [44].

We applied a 5-fold cross-validation procedure, which consists in spliting the datasets into five partitions containing 20% of the examples each one. The model is learned using 4 partitions for training and tested in the remaining partition. The general performance of the model is measured according to each testing partition, based on the accuracy rate (the number of correctly classified examples divided by the total number of examples). At the end, after calculating each partition performance, we use the average result of the five testing partitions to generate the output of the algorithm.

#### B. Configuration of the proposal

The new FRM presented in this paper, considering the concept of  $dC_F$ -integrals developed in Section III, is applied in the Fuzzy Association Rule-Based Classification method for High-Dimensional problems (FARC-HD) [42] fuzzy classifier. The configurations used by the algorithms are the same one suggested by the authors and is composed by: linguistic labels per variable (5), conjunction operator (Product t-norm), rule weight (Confidence), minimum support (0.05), minimum confidence (0.8), depth of the search tree (3), number of fuzzy rules that cover each example (2), population size (50), gray codification (30 bits per gene), number of evaluations (20.000).

TABLE IV: Summary of the datasets used in the study.

| Id. | Dataset       | #Inst. | #Atts. | #Class                |
|-----|---------------|--------|--------|-----------------------|
| App | Appendicitis  | 106    | 7      | 2                     |
| Bal | Balance       | 625    | 4      | 3                     |
| Ban | Banana        | 5,300  | 2      | 2                     |
| Bnd | Bands         | 365    | 19     | 2                     |
| Bup | Bupa          | 345    | 6      | 3<br>2<br>2<br>2<br>5 |
| Cle | Cleveland     | 297    | 13     | 5                     |
| Con | Contraceptive | 1,473  | 9      | 3                     |
| Eco | Ecoli         | 336    | 7      | 8                     |
| Gla | Glass         | 214    | 9      | 6                     |
| Hab | Haberman      | 306    | 3      | 2                     |
| Hay | Hayes-Roth    | 160    | 4      | 2<br>3                |
| Ion | Ionosphere    | 351    | 33     | 2<br>3                |
| Iri | Iris          | 150    | 4      | 3                     |
| Led | led7digit     | 500    | 7      | 10                    |
| Mag | Magic         | 1,902  | 10     | 2                     |
| New | Newthyroid    | 215    | 5      | 3                     |
| Pag | Pageblocks    | 5,472  | 10     | 5                     |
| Pen | Penbased      | 10,992 | 16     | 10                    |
| Pho | Phoneme       | 5,404  | 5      | 2                     |
| Pim | Pima          | 768    | 8      | 2                     |
| Rin | Ring          | 740    | 20     | 2<br>2<br>2           |
| Sah | Saheart       | 462    | 9      | 2                     |
| Sat | Satimage      | 6,435  | 36     | 7                     |
| Seg | Segment       | 2,310  | 19     | 7                     |
| Shu | Shuttle       | 58,000 | 9      | 7                     |
| Son | Sonar         | 208    | 60     | 2                     |
| Spe | Spectfheart   | 267    | 44     | 2<br>2                |
| Tit | Titanic       | 2,201  | 3      | 2                     |
| Two | Twonorm       | 740    | 20     | 2                     |
| Veh | Vehicle       | 846    | 18     | 4                     |
| Win | Wine          | 178    | 13     | 3                     |
| Wis | Wisconsin     | 683    | 11     | 2                     |
| Yea | Yeast         | 1,484  | 8      | 10                    |

#### C. Statistical test for performance comparisons

In this paper is considered hypothesis validation techniques to present a statistical analysis of the obtained results [45], [46]. Since the validity conditions of parametric tests are not satisfied, is considered the usage of non-parametric tests [47].

To perform group comparisons, the Aligned Friedman rank test [48] is used. This test uses a reverse raking, that is, the lowest rank is considered as the best one. Additionally, the post-hoc Holm's test [49] is computed to indicate when the approach achieving the less ranking (known as control method) rejects the null hypothesis. To do so, we calculate the Adjusted P-Value (APV) to be able to compare directly the control method, with a level of significance  $\alpha$ , versus the other ones.

#### VI. PERFORMANCE ANALYSIS

In this section, the results achieved when different  $dC_F$ integrals are applied to aggregate the information in the FRM are presented. The experimental study is developed with a double aim:

- 1) To analyze if the introduction of the RDFs in the  $dC_F$ integrals allows the system to enhance the results obtained when the classical difference operator is applied, which is considered as baseline of the study. Moreover, we want to check if certain RDFs are more beneficial for the system than others. The results and analyses of this aim are shown in Section V-A.
- To study if there is a synergy among the best RDFs (found in the first part of the study), the fuzzy measures

and the functions F. This study, which is shown in Section V-B, helps to reduce the number of combinations to be tested, since we can suggest a few ones achieving stable and competitive results.

In order to make a complete and robust study, this analysis considers the combinations of 5 different RDFs with 21 generalizations of the CI using 5 different fuzzy measures. All those combinations are applied in 33 datasets. In other words, 525 experiments per dataset have been conducted.

The obtained results are summarized in Tables V, VI and VII, where the rows present the different functions F used for the generalizations. The columns are related with the combination of fuzzy measures and different RDFs. Observe that the  $dC_F$ -integrals using  $\delta_0$  (the difference operator) are the original  $C_F$ -integrals, which are considered as our **baseline**. We should point out that the usage of  $\delta_0$  combined with the product t-norm as the function F ( $F = T_P$ ) result in the standard Choquet integral (first column and second row of Tables V, VI and VII). Finally, the value of each cell represents the mean of the accuracy obtained in testing in the 33 considered datasets.

Aiming at extracting the maximum information of the results and to ease their comprehension, for each function F, when comparing the different RDFs for a specific fuzzy measure, we highlight with **boldface** and <u>underline</u> the largest and lowest accuracy mean, respectively. Moreover, the symbol + indicates for each function F (row), the combination of RDF and fuzzy measure that achieves the largest accuracy among all fuzzy measures. Finally, for each RDF (column) we stress with an \* the function F providing the best result. The detailed testing results for the different combinations can be shown in (https://github.com/Giancarlo-Lucca/dCF-integrals).

## A. Studying the usefulness of RDFs

In this subsection the usefulness of the substitution of the classical difference by a RDF is studied. To do it, the results obtained by the RDFS are compared against the classical difference. After that, we will analyze whether an specific RDF is able to provide better results than the remainder ones. Performing an initial analysis of the effectiveness of the RDFs in Tables V-VII some important points are found, such as:

- The generalization based on the  $\delta_1$  achieves the lowest results for all used functions F in all considered fuzzy measures.

- The usage of the  $\delta_4$  in general, present inferior results when compared against the difference operator ( $\delta_0$ ) for all considered functions and fuzzy measures.

-  $\delta_3$  presents similar results to the classical difference.

- Generalizations considering  $\delta_2$  and  $\delta_5$  tend to improve the results obtained by the baseline. In this sense, we highlight that the usage of the  $\delta_5$  seems to provide a superior performance.

This initial analysis indicates that the results obtained by the classical difference operator can be improved if the generalizations by the RDFs are used, where  $\delta_2$  and  $\delta_5$  stand out. To clarify even more these findings, in Table VIII, we show the number of functions F in which the different RDF (columns) achieved the largest result per fuzzy measure (rows). The last row of this table, #Total, is the number of best results

TABLE V: Accuracy mean obtained in tests - Part 1

|                                                                                                                                                                                                       |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Card                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | linality                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                       | $\delta_0$                                                                                                                                                                                                                  | $\delta_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\delta_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\delta_3$                                                                                                                                                                                                                                                                  | $\delta_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\delta_5$                                                                                                                                                                                 |
| $T_M$                                                                                                                                                                                                 | 79.41                                                                                                                                                                                                                       | 77.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 79.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 79.61                                                                                                                                                                                                                                                                       | 78.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 80.38                                                                                                                                                                                      |
| $T_{P}$                                                                                                                                                                                               | 79.41                                                                                                                                                                                                                       | $\frac{77.09}{77.84}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 79.01                                                                                                                                                                                                                                                                       | 78.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 80.56 <sup>+</sup> *                                                                                                                                                                       |
| $T_{t}$                                                                                                                                                                                               | 77.12                                                                                                                                                                                                                       | $\frac{77.04}{77.09}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 77.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 76.75                                                                                                                                                                                                                                                                       | 77.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 77.95                                                                                                                                                                                      |
| $T_L$<br>$T_{DP}$                                                                                                                                                                                     | 77.12                                                                                                                                                                                                                       | 77.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 77.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{70.73}{77.19}$                                                                                                                                                                                                                                                       | 77.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 77.19                                                                                                                                                                                      |
| $T_{NM}$                                                                                                                                                                                              | $\frac{77.19}{77.21}$                                                                                                                                                                                                       | $\frac{77.19}{77.08}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{77.19}{77.72}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{77.19}{77.19}$                                                                                                                                                                                                                                                       | $\frac{77.19}{76.97}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <del>77.19</del><br>78.27                                                                                                                                                                  |
| $T_{HP}$                                                                                                                                                                                              | 79.41                                                                                                                                                                                                                       | 77.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 79.71                                                                                                                                                                                                                                                                       | 78.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 80.26                                                                                                                                                                                      |
| $O_B$                                                                                                                                                                                                 | 79.05                                                                                                                                                                                                                       | $\frac{77.70}{77.59}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80.10<br>80.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 79.26                                                                                                                                                                                                                                                                       | 78.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 79.97                                                                                                                                                                                      |
| $O_B O_{mM}$                                                                                                                                                                                          | 78.23                                                                                                                                                                                                                       | $\frac{77.39}{77.15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 79.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 79.20                                                                                                                                                                                                                                                                       | 77.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 79.97<br>79.95                                                                                                                                                                             |
| $O_{mM}$<br>$O_{\alpha}$                                                                                                                                                                              | 78.80                                                                                                                                                                                                                       | 77.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>80.40</b> +*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 78.99                                                                                                                                                                                                                                                                       | 77.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 80.27                                                                                                                                                                                      |
| $O_{\alpha} O_{div}$                                                                                                                                                                                  | 78.97                                                                                                                                                                                                                       | $\frac{77.55}{77.44}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 79.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 79.36                                                                                                                                                                                                                                                                       | 77.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 80.27<br>80.14                                                                                                                                                                             |
| GM                                                                                                                                                                                                    | 80.33*                                                                                                                                                                                                                      | $\frac{77.44}{79.13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>80.40</b>                                                                                                                                                                                                                                                                | 79.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 80.00                                                                                                                                                                                      |
| HM                                                                                                                                                                                                    | 79.64                                                                                                                                                                                                                       | $\frac{79.13}{78.00}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 79.75                                                                                                                                                                                                                                                                       | 79.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 80.00                                                                                                                                                                                      |
| Sin                                                                                                                                                                                                   | 80.12                                                                                                                                                                                                                       | 80.12*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 80.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 80.12                                                                                                                                                                                                                                                                       | 80.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 80.12                                                                                                                                                                                      |
| $O_{RS}$                                                                                                                                                                                              | $\frac{80.12}{80.17}$                                                                                                                                                                                                       | $\frac{30.12}{79.02}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>80.56</b> <sup>+</sup> *                                                                                                                                                                                                                                                 | $\frac{80.12}{79.26}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{80.12}{80.24}$                                                                                                                                                                      |
| $C_{F}$                                                                                                                                                                                               | 78.52                                                                                                                                                                                                                       | $\frac{79.02}{77.46}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 79.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 78.98                                                                                                                                                                                                                                                                       | 77.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 80.24<br>80.24                                                                                                                                                                             |
| $C_F \\ C_L$                                                                                                                                                                                          | 79.41                                                                                                                                                                                                                       | $\frac{77.40}{77.69}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>80.13</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 79.18                                                                                                                                                                                                                                                                       | 78.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 79.83                                                                                                                                                                                      |
| $F_{GL}$                                                                                                                                                                                              | 80.15                                                                                                                                                                                                                       | $\frac{77.09}{79.26}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 79.91                                                                                                                                                                                                                                                                       | 80.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>80.43</b>                                                                                                                                                                               |
| $F_{BPC}$                                                                                                                                                                                             | 77.72                                                                                                                                                                                                                       | $\frac{77.20}{77.24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 79.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 78.13                                                                                                                                                                                                                                                                       | 77.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 79.72                                                                                                                                                                                      |
| $F_{BD1}$                                                                                                                                                                                             | 79.60                                                                                                                                                                                                                       | $\frac{77.24}{77.89}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 79.64                                                                                                                                                                                                                                                                       | 78.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 79.96                                                                                                                                                                                      |
| $F_{NA}$                                                                                                                                                                                              | 79.10                                                                                                                                                                                                                       | 77.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80.38+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 79.24                                                                                                                                                                                                                                                                       | 78.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 79.84                                                                                                                                                                                      |
| $F_{NA2}$                                                                                                                                                                                             | 80.16                                                                                                                                                                                                                       | 80.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 79.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 80.15                                                                                                                                                                                                                                                                       | 80.34*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>79.91</u>                                                                                                                                                                               |
| Mean                                                                                                                                                                                                  | 79.02                                                                                                                                                                                                                       | 78.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 79.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 79.11                                                                                                                                                                                                                                                                       | 78.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 79.78                                                                                                                                                                                      |
|                                                                                                                                                                                                       |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                            |
|                                                                                                                                                                                                       |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | irac                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                            |
|                                                                                                                                                                                                       | $\delta_0$                                                                                                                                                                                                                  | $\delta_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\delta_2$ D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                             | $\delta_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\delta_5$                                                                                                                                                                                 |
|                                                                                                                                                                                                       | δ <sub>0</sub><br>79.41                                                                                                                                                                                                     | $\delta_1$ <u>77.44</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | irac                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | δ <sub>5</sub><br>79.30                                                                                                                                                                    |
| $T_M$<br>$T_P$                                                                                                                                                                                        |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\delta_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | irac $\delta_3$                                                                                                                                                                                                                                                             | $\delta_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                          |
|                                                                                                                                                                                                       | 79.41                                                                                                                                                                                                                       | 77.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | δ <sub>2</sub><br>78.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | irac $\delta_3$ 78.41                                                                                                                                                                                                                                                       | δ <sub>4</sub><br>77.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 79.30<br><b>79.30</b><br><b>79.30</b>                                                                                                                                                      |
| $T_P$                                                                                                                                                                                                 | <b>79.41</b><br>79.02                                                                                                                                                                                                       | 77.44<br>77.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{\delta_2}{78.82}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | irac<br>δ <sub>3</sub><br>78.41<br>78.41                                                                                                                                                                                                                                    | δ <sub>4</sub><br>77.78<br>77.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 79.30<br><b>79.30</b>                                                                                                                                                                      |
| $T_P$<br>$T_L$                                                                                                                                                                                        | <b>79.41</b><br>79.02<br><u>77.12</u>                                                                                                                                                                                       | <u>77.44</u><br><u>77.44</u><br>77.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\delta_2$ 78.82 78.82 78.82 78.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                             | $\delta_4$ 77.78 77.78 77.78 77.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 79.30<br><b>79.30</b><br><b>79.30</b>                                                                                                                                                      |
| $T_P \\ T_L \\ T_{DP}$                                                                                                                                                                                | <b>79.41</b><br>79.02<br><u>77.12</u><br><u>77.19</u><br><u>77.21</u><br><b>79.41</b>                                                                                                                                       | 77.44<br>77.44<br>77.44<br>77.44<br>77.44<br>77.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{\delta_2}{78.82} \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.8$ | $\begin{array}{r} \mathbf{irac} \\ \delta_3 \\ \hline 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \end{array}$                                                                                                                                     | δ <sub>4</sub><br>77.78<br>77.78<br>77.78<br>77.78<br>77.78<br>77.78<br>77.78<br>77.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 79.30<br>79.30<br>79.30<br>79.30+<br>79.30<br>79.30                                                                                                                                        |
| $T_P \\ T_L \\ T_{DP} \\ T_{NM}$                                                                                                                                                                      | <b>79.41</b><br>79.02<br>77.12<br>77.19<br>77.21<br><b>79.41</b><br>79.05                                                                                                                                                   | 77.44<br>77.44<br>77.44<br>77.44<br>77.44<br>77.44<br>77.44<br>77.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{r} \delta_2 \\ \hline 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} \text{irac} \\ \delta_3 \\ \hline 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \end{array}$                                                                                                                     | $\delta_4$<br>77.78<br>77.78<br>77.78<br>77.78<br>77.78<br>77.78<br>77.78<br>77.78<br>77.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 79.30<br>79.30<br>79.30<br>79.30 <sup>+</sup><br>79.30<br>79.30<br>79.30                                                                                                                   |
| $T_P$ $T_L$ $T_{DP}$ $T_{NM}$ $T_{HP}$ $O_B$ $O_{mM}$                                                                                                                                                 | <b>79.41</b><br>79.02<br>77.12<br>77.19<br>77.21<br><b>79.41</b><br>79.05<br>78.23                                                                                                                                          | $\frac{77.44}{77.44}$ $\frac{77.44}{77.44}$ $\frac{77.44}{77.44}$ $\frac{77.44}{77.44}$ $\frac{77.44}{77.44}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{r} \delta_2 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \text{irac} \\ \delta_3 \\ \hline 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \end{array}$                                                                                                            | $\delta_4$<br>77.78<br>77.78<br>77.78<br>77.78<br>77.78<br>77.78<br>77.78<br>77.78<br>77.78<br>77.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 79.30<br>79.30<br>79.30<br>79.30 <sup>+</sup><br>79.30<br>79.30<br>79.30<br>79.30<br>79.30                                                                                                 |
| $T_P$ $T_L$ $T_{DP}$ $T_{MM}$ $T_{HP}$ $O_B$ $O_mM$ $O_\alpha$                                                                                                                                        | <b>79.41</b><br>79.02<br>77.12<br>77.19<br>77.21<br><b>79.41</b><br>79.05<br>78.23<br>78.80                                                                                                                                 | $\frac{77.44}{77.44}$ $\frac{77.44}{77.44}$ $\frac{77.44}{77.44}$ $\frac{77.44}{77.44}$ $\frac{77.44}{77.44}$ $\frac{77.44}{77.44}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{\delta_2}{78.82}\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} \text{irac} \\ \hline \delta_3 \\ \hline 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \end{array}$                                                                                                     | $\frac{\delta_4}{77.78}\\77.78\\77.78\\77.78\\77.78\\77.78\\77.78\\77.78\\77.78\\77.78\\77.78\\77.78\\77.78\\77.78$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 79.30<br>79.30<br>79.30<br>79.30 <sup>+</sup><br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30                                                                                        |
| $T_P T_L T_{DP} T_{NM} T_{HP} O_B O_{mM} O_{\alpha} O_{div}$                                                                                                                                          | <b>79.41</b><br>79.02<br>77.12<br>77.19<br>77.21<br><b>79.41</b><br>79.05<br>78.23<br>78.80<br>78.97                                                                                                                        | $\frac{77.44}{77.44}$ $\frac{77.44}{77.44}$ $\frac{77.44}{77.44}$ $\frac{77.44}{77.44}$ $\frac{77.44}{77.44}$ $\frac{77.44}{77.44}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{\delta_2}{78.82}\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} \textbf{irac} \\ \hline & \delta_3 \\ \hline & 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \end{array}$                                                                                      | $\frac{\delta_4}{77.78} \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.7$                      | 79.30<br>79.30<br>79.30<br>79.30+<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30                                                                                           |
| $T_P$ $T_L$ $T_{DP}$ $T_{NM}$ $T_{HP}$ $O_B$ $O_mM$ $O_\alpha$ $O_{div}$ $GM$                                                                                                                         | <b>79.41</b><br>79.02<br>77.12<br>77.19<br>77.21<br><b>79.41</b><br>79.05<br>78.23<br>78.80<br>78.97<br><b>80.33</b> *                                                                                                      | $\frac{77.44}{77.44}$ 77.44 77.44 77.44 77.44 77.44 77.44 77.44 77.44 77.44 77.44 77.44 77.44 77.44 78.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{r} \delta_2 \\ \hline 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 79.67 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} \hline \mathbf{irac} \\ \hline \delta_3 \\ \hline 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 79.30 \\ \end{array}$                                                              | δ4           77.78           77.78           77.78           77.78           77.78           77.78           77.78           77.78           77.78           77.78           77.78           77.78           77.78           77.78           77.78           77.78           77.78           77.78           77.78           77.78           77.78           78.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30                                                                          |
| $T_P$ $T_k$ $T_{DP}$ $T_{NM}$ $T_{HP}$ $O_B$ $O_{mM}$ $O_{\alpha}$ $O_{div}$ $GM$ $HM$                                                                                                                | <b>79.41</b><br>79.02<br>77.12<br>77.19<br>77.21<br><b>79.41</b><br>79.05<br>78.23<br>78.80<br>78.97<br><b>80.33</b> *<br><b>79.64</b>                                                                                      | $\frac{77.44}{77.44}$ 77.44 77.44 77.44 77.44 77.44 77.44 77.44 77.44 77.44 77.44 77.44 77.44 77.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{r} \delta_2 \\ \hline 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 79.67 \\ 79.24 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} \textbf{irac} \\ \hline \delta_3 \\ \hline 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.30 \\ 78.59 \end{array}$                                                                        | $\frac{\delta_4}{77.78} \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 \\ 77.8 $ | 79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.69<br>79.07                                                                 |
| $ \begin{array}{c} T_P \\ T_L \\ T_{DP} \\ T_{NM} \\ T_{HP} \\ O_B \\ O_m \\ O_\alpha \\ O_{div} \\ GM \\ HM \\ Sin \end{array} $                                                                     | <b>79.41</b><br>79.02<br>77.12<br>77.19<br>77.21<br><b>79.41</b><br>79.05<br>78.23<br>78.80<br>78.97<br><b>80.33</b> *<br><b>79.64</b><br>80.12                                                                             | $\frac{77.44}{77.44}$ 77.44 77.44 77.44 77.44 77.44 77.44 77.44 77.44 77.44 77.44 77.42 78.27 77.52 80.12*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{r} \delta_2 \\ \hline 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.61 \\ 79.67 \\ 79.24 \\ \underline{80.12} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \text{irac} \\ \hline \delta_3 \\ \hline 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.59 \\ \underline{80.12} \end{array}$                                                     | $\frac{\delta_4}{77.78} \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 78.75 \\ 77.86 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.12 \\ 80.1$                      | 79.30<br>79.30<br>79.30<br>79.30 <sup>+</sup><br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.69<br>79.07<br>80.12*                                          |
| $\begin{array}{c} T_P \\ T_L \\ T_{DP} \\ T_{NM} \\ T_{HP} \\ O_B \\ O_{mM} \\ O_{\alpha} \\ O_{div} \\ GM \\ HM \\ Sin \\ O_{RS} \end{array}$                                                        | <b>79.41</b><br>79.02<br>77.12<br>77.19<br>77.21<br><b>79.41</b><br>79.05<br>78.23<br>78.80<br>78.97<br><b>80.33</b> *<br><b>79.64</b><br><u>80.12</u><br>80.17                                                             | $\frac{77.44}{77.44}$ 77.44 77.44 77.44 77.44 77.44 77.44 77.44 77.44 77.44 77.44 78.27 77.52 80.12* 78.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{\delta_2}{78.82}\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\79.67\\79.24\\\underline{80.12}\\79.67$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \text{irac} \\ \hline \delta_3 \\ \hline 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.30 \\ 78.59 \\ \hline 80.12 \\ \hline 79.30 \end{array}$                                          | $\frac{\delta_4}{77.78} \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 78.75 \\ 77.86 \\ \underline{80.12} \\ 78.75 \\ 78.75 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.69<br>79.07<br>80.12*<br>79.69                                              |
| $\begin{array}{c} T_P \\ T_L \\ T_{DP} \\ T_{NM} \\ T_{HP} \\ O_B \\ O_{mM} \\ O_{\alpha} \\ O_{div} \\ GM \\ HM \\ Sin \\ O_{RS} \\ C_F \end{array}$                                                 | <b>79.41</b><br>79.02<br>77.12<br>77.19<br>77.21<br><b>79.41</b><br>79.05<br>78.23<br>78.80<br>78.97<br><b>80.33</b> *<br><b>79.64</b><br><u>80.12</u><br>80.17<br>78.52                                                    | $\frac{77.44}{77.44}$ 77.44 77.44 77.44 77.44 77.44 77.44 77.44 77.44 77.44 77.44 77.52 80.12* 78.27 77.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{r} \delta_2 \\ \hline \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 78.82 \\ 79.67 \\ 79.24 \\ \underline{80.12} \\ 79.67 \\ 78.82 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \text{irac} \\ \hline \delta_3 \\ \hline 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.41 \\ 78.59 \\ \hline 80.12 \\ \hline 79.30 \\ 78.59 \\ \hline 80.12 \\ \hline 79.30 \\ 78.41 \end{array}$ | $\frac{\delta_4}{77.78} \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 78.75 \\ 77.86 \\ \underline{80.12} \\ 78.75 \\ 77.78 \\ 77.78 \\ 80.12 \\ 78.75 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 7$             | 79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.69<br>79.07<br>80.12*<br>79.69<br>79.30                                              |
| $\begin{array}{c} T_P \\ T_L \\ T_{DP} \\ T_{NM} \\ T_{HP} \\ O_B \\ O_{mM} \\ O_{\alpha} \\ O_{div} \\ GM \\ HM \\ Sin \\ O_{RS} \\ C_F \\ C_L \end{array}$                                          | <b>79.41</b><br>79.02<br>77.12<br>77.19<br>77.21<br><b>79.41</b><br>79.05<br>78.23<br>78.80<br>78.97<br><b>80.33*</b><br><b>79.64</b><br>80.12<br>80.17<br>78.52<br><b>79.41</b>                                            | $\begin{array}{r} \underline{77.44}\\ \underline{77.52}\\ \underline{80.12^*}\\ \underline{77.44}\\ 77.44$ | $\frac{\delta_2}{78.82}\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\79.67\\79.24\\\underline{80.12}\\79.67\\78.82\\78.82\\78.82\\78.82$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} \hline \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k}$                                                                                                                                                           | $\frac{\delta_4}{77.78} \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.7$                      | 79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.69<br>79.07<br>80.12*<br>79.69<br>79.30<br>79.30                                     |
| $\begin{array}{c} T_P \\ T_L \\ T_{DP} \\ T_{NM} \\ T_{HP} \\ O_B \\ O_{\alpha} \\ O_{div} \\ GM \\ HM \\ Sin \\ O_{RS} \\ C_F \\ C_L \\ F_{GL} \end{array}$                                          | <b>79.41</b><br>79.02<br>77.12<br>77.19<br>77.21<br><b>79.41</b><br>79.05<br>78.23<br>78.80<br>78.97<br><b>80.33*</b><br><b>79.64</b><br>80.12<br>80.17<br>78.52<br><b>79.64</b><br>80.17<br>78.52<br><b>79.41</b><br>80.15 | $\begin{array}{r} \underline{77.44}\\ \underline{77.52}\\ \underline{80.12^*}\\ \underline{78.27}\\ \underline{77.44}\\ \underline{77.44}\\ \underline{77.44}\\ \underline{77.44}\\ \underline{77.44}\\ \underline{77.44}\\ \underline{77.44}\\ \underline{79.12}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{\delta_2}{78.82}\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\79.67\\79.24\\\underline{80.12}\\79.67\\79.24\\\underline{80.12}\\79.67\\78.82\\80.40^*$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} \hline \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k}$                                                                                                                                                           | $\frac{\delta_4}{77.78} \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 80.12 \\ 77.78 \\ 80.19^*$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.69<br>79.07<br>80.12*<br>79.69<br>79.30<br>79.30<br>80.02                                     |
| $\begin{array}{c} T_P \\ T_L \\ T_{DP} \\ T_{NM} \\ T_{HP} \\ O_B \\ O_{mM} \\ O_{\alpha} \\ O_{div} \\ GM \\ HM \\ Sin \\ O_{RS} \\ C_F \\ C_L \\ F_{GL} \\ F_{BPC} \end{array}$                     | <b>79.41</b><br>79.02<br>77.12<br>77.19<br>77.21<br><b>79.41</b><br>79.05<br>78.23<br>78.80<br>78.97<br><b>80.33*</b><br><b>79.64</b><br>80.12<br>80.17<br>78.52<br><b>79.64</b><br>80.15<br>77.72                          | $\frac{77.44}{77.44}$ $77.44$ $77.44$ $77.44$ $77.44$ $77.44$ $77.44$ $77.44$ $77.44$ $77.44$ $77.44$ $77.52$ $80.12^{*}$ $78.27$ $77.52$ $80.12^{*}$ $77.44$ $77.44$ $77.44$ $77.44$ $77.44$ $77.44$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{\delta_2}{78.82}\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\79.67\\79.24\\\underline{80.12}\\79.67\\79.24\\\underline{80.12}\\79.67\\78.82\\80.40^*\\78.82$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} \hline \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k}$                                                                                                                                                           | $\frac{\delta_4}{77.78} \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 80.12 \\ 78.75 \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 80.19^* \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ $                                         | 79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.69<br>79.07<br>80.12*<br>79.69<br>79.30<br>79.30<br>80.02<br>79.30                   |
| $\begin{array}{c} T_P \\ T_L \\ T_{DP} \\ T_{NM} \\ T_{HP} \\ O_B \\ O_m \\ O_\alpha \\ O_{div} \\ GM \\ HM \\ Sin \\ O_{RS} \\ C_F \\ C_L \\ F_{GL} \\ F_{GL} \\ F_{BPC} \\ F_{BD1} \end{array}$     | <b>79.41</b><br>79.02<br>77.12<br>77.19<br>77.21<br><b>79.41</b><br>79.05<br>78.23<br>78.80<br>78.97<br><b>80.33*</b><br><b>79.64</b><br>80.12<br>80.17<br>78.52<br><b>79.41</b><br>80.15<br>77.72<br>79.60                 | $\begin{array}{r} \underline{77.44}\\ \underline{77.52}\\ \underline{80.12^*}\\ \underline{78.27}\\ \underline{77.44}\\ \underline{77.44}\\ \underline{77.44}\\ \underline{77.44}\\ \underline{77.44}\\ \underline{77.44}\\ \underline{77.51}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{\delta_2}{78.82}\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\79.67\\79.24\\\underline{80.12}\\79.67\\79.24\\\underline{80.12}\\78.82\\80.40*\\78.82\\80.13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \hline \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k}$                                                                                                                                                           | $\frac{\delta_4}{77.78} \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 80.19^* \\ 77.78 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 77.78 \\ 78.60 \\ 77.78 \\ 78.60 \\ 77.78 \\ 78.60 \\ 77.78 \\ 78.60 \\ 77.78 \\ 78.60 \\ 77.78 \\ 78.60 \\ 77.78 \\ 78.60 \\ 78.60 \\ 77.78 \\ 78.60 \\ 78.60 \\ 77.78 \\ 78.60 \\ 78.60 \\ 77.78 \\ 78.60 \\ 78.60 \\ 77.78 \\ 78.60 \\ 78.60 \\ 77.78 \\ 78.60 \\ 77.78 \\ 78.60 \\ 77.78 \\ 78.60 \\ 77.78 \\ 78.60 \\ 77.78 \\ 78.60 \\ 78.60 \\ 77.78 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78$                      | 79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.69<br>79.07<br>80.12*<br>79.69<br>79.30<br>79.30<br>80.02<br>79.30<br>80.02          |
| $\begin{array}{c} T_P \\ T_L \\ T_{DP} \\ T_{NM} \\ T_{HP} \\ O_B \\ O_{mM} \\ O_{\alpha} \\ O_{div} \\ GM \\ HM \\ Sin \\ O_{RS} \\ C_F \\ C_L \\ F_{GL} \\ F_{GL} \\ F_{BD1} \\ F_{NA} \end{array}$ | <b>79.41</b><br>79.02<br>77.12<br>77.19<br>77.21<br><b>79.41</b><br>79.05<br>78.23<br>78.80<br>78.97<br><b>80.33*</b><br><b>79.64</b><br>80.12<br>80.17<br>78.52<br><b>79.41</b><br>80.15<br>77.72<br>79.60<br>79.10        | $\begin{array}{r} \underline{77.44}\\ \underline{77.52}\\ \underline{80.12^*}\\ \underline{78.27}\\ \underline{77.44}\\ \underline{77.44}\\ \underline{77.44}\\ \underline{77.44}\\ \underline{77.44}\\ \underline{77.44}\\ \underline{77.51}\\ \underline{77.44}\\ \underline{77.44}\\ \underline{77.44}\\ \underline{77.51}\\ \underline{77.44}\\ \underline{77.44}\\ \underline{77.44}\\ \underline{77.51}\\ \underline{77.44}\\ \underline{77.44}\\ \underline{77.44}\\ \underline{77.44}\\ \underline{77.51}\\ \underline{77.44}\\ 77.44$ | $\frac{\delta_2}{78.82}\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.67\\79.24\\\underline{80.12}\\79.67\\79.24\\\underline{80.12}\\79.67\\78.82\\80.40*\\78.82\\80.13\\78.82$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} \hline \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k}$                                                                                                                                                           | $\frac{\delta_4}{77.78} \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 80.12 \\ 78.75 \\ 77.78 \\ 80.19 \\ 77.78 \\ 78.60 \\ 77.78 \\ 78.60 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.7$                      | 79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.69<br>79.07<br>80.12*<br>79.69<br>79.30<br>79.30<br>80.02<br>79.30<br>80.00<br>79.30 |
| $\begin{array}{c} T_P \\ T_L \\ T_{DP} \\ T_{NM} \\ T_{HP} \\ O_B \\ O_m \\ O_\alpha \\ O_{div} \\ GM \\ HM \\ Sin \\ O_{RS} \\ C_F \\ C_L \\ F_{GL} \\ F_{GL} \\ F_{BPC} \\ F_{BD1} \end{array}$     | <b>79.41</b><br>79.02<br>77.12<br>77.19<br>77.21<br><b>79.41</b><br>79.05<br>78.23<br>78.80<br>78.97<br><b>80.33*</b><br><b>79.64</b><br>80.12<br>80.17<br>78.52<br><b>79.41</b><br>80.15<br>77.72<br>79.60                 | $\begin{array}{r} \underline{77.44}\\ \underline{77.52}\\ \underline{80.12^*}\\ \underline{78.27}\\ \underline{77.44}\\ \underline{77.44}\\ \underline{77.44}\\ \underline{77.44}\\ \underline{77.44}\\ \underline{77.44}\\ \underline{77.51}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{\delta_2}{78.82}\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\78.82\\79.67\\79.24\\\underline{80.12}\\79.67\\79.24\\\underline{80.12}\\78.82\\80.40*\\78.82\\80.13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \hline \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k}$                                                                                                                                                           | $\frac{\delta_4}{77.78} \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 77.78 \\ 80.19^* \\ 77.78 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 77.78 \\ 78.60 \\ 77.78 \\ 78.60 \\ 77.78 \\ 78.60 \\ 77.78 \\ 78.60 \\ 77.78 \\ 78.60 \\ 77.78 \\ 78.60 \\ 77.78 \\ 78.60 \\ 78.60 \\ 77.78 \\ 78.60 \\ 78.60 \\ 77.78 \\ 78.60 \\ 78.60 \\ 77.78 \\ 78.60 \\ 78.60 \\ 77.78 \\ 78.60 \\ 78.60 \\ 77.78 \\ 78.60 \\ 77.78 \\ 78.60 \\ 77.78 \\ 78.60 \\ 77.78 \\ 78.60 \\ 77.78 \\ 78.60 \\ 78.60 \\ 77.78 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78.60 \\ 78$                      | 79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.30<br>79.69<br>79.07<br>80.12*<br>79.69<br>79.30<br>79.30<br>80.02<br>79.30<br>80.02          |

of each RDF. Also, we provide in the last column,  $\#\delta$ \_Total, the number of functions where any RDF ( $\delta_1$  to  $\delta_5$ ) enhanced the mean obtained by the classical difference for a specific fuzzy measure (consequently the largest number could be 21).

From the results in Table VIII, it is observable that the usage of the RDFs are suitable since the number of times where they improve the results of the classical difference is high (see the last column of the table). It is noticeable in this analysis that, in 81 out of the 105 combinations (each fuzzy measure is generalized by 21 different functions), the achieved mean by any RDF is superior than that of the classical difference. Among the new RDFs, it is noticeable the superiority of the  $\delta_5$  approach, since it provides 43 of these 81 combinations where a RDF is better than the classical difference. A satisfactory number of combinations is also obtained when  $\delta_2$  is considered.

Another interesting observation can be noticed when com-

TABLE VI: Accuracy mean obtained in tests - Part 2

|              |            |              | 0          | WA         |            |            |
|--------------|------------|--------------|------------|------------|------------|------------|
|              | $\delta_0$ | $\delta_1$   | $\delta_2$ | $\delta_3$ | $\delta_4$ | $\delta_5$ |
| $T_M$        | 79.17      | 77.44        | 79.35      | 78.97      | 77.98      | 79.46      |
| $T_P$        | 78.64      | 76.76        | 79.49      | 78.42      | 77.19      | 79.20      |
| $T_{\rm fl}$ | 77.22      | 76.85        | 77.17      | 76.79      | 77.05      | 77.00      |
| $T_{DP}$     | 77.19      | 77.19        | 77.19      | 77.19      | 77.19      | 77.19      |
| $T_{NM}$     | 77.23      | 76.94        | 76.89      | 76.97      | 77.14      | 77.02      |
| $T_{HP}$     | 79.40      | 76.97        | 79.82      | 79.02      | 77.90      | 79.53      |
| $O_B$        | 78.89      | 76.61        | 79.55      | 79.06      | 77.37      | 79.58      |
| $O_{mM}^-$   | 77.97      | 77.12        | 78.60      | 77.63      | 76.76      | 78.63      |
| $O_{\alpha}$ | 78.51      | 76.68        | 79.36      | 78.41      | 77.09      | 79.15      |
| $O_{div}$    | 79.27      | 77.05        | 79.26      | 78.74      | 77.96      | 79.48      |
| GM           | 80.32      | 78.46        | 80.04      | 79.61      | 78.96      | 79.84      |
| HM           | 79.53      | 77.12        | 80.05      | 79.29      | 78.26      | 79.72      |
| Sin          | 80.12      | 80.12*       | 80.12      | 80.12      | 80.12      | 80.12*     |
| $O_{RS}$     | 80.12      | 77.69        | 79.72      | 79.20      | 78.83      | 79.66      |
| $C_F$        | 78.55      | 76.79        | 79.35      | 78.31      | 77.26      | 79.29      |
| $C_L$        | 79.33      | 76.83        | 79.53      | 78.77      | 77.93      | 79.42      |
| $F_{GL}$     | 80.50*     | 79.42        | 80.40*     | 80.33*     | 80.20*     | 79.99      |
| $F_{BPC}$    | 78.09      | 77.41        | 78.74      | 77.65      | 77.13      | 78.57      |
| $F_{BD1}$    | 79.52      | 78.04        | 79.88      | 79.22      | 78.35      | 79.99      |
| $F_{NA}$     | 79.19      | 77.07        | 79.89      | 79.00      | 77.97      | 79.79      |
| $F_{NA2}$    | 80.21      | 79.23        | 79.64      | 79.48      | 79.31      | 79.61      |
| Mean         | 79.00      | <u>77.51</u> | 79.24      | 78.68      | 78.00      | 79.15      |

paring exclusively the standard CI (with  $\delta_0$  and  $T_P$ ) using the different RDFs (see Tables V, VI and VII). Its noticeable that for any fuzzy measure, in all cases we have RDFs that have obtained a superior accuracy mean compared with the CI.

Up to this point, it is clear that the usage of  $dC_F$ -integrals is a good alternative when compared with  $C_F$ -integrals, which uses the difference operator. However, in order to give a support to the previous findings, a statistical study by applying the Aligned Friedman rank test is performed.

In this test, we compare the performance of the 6 RDFs for each fuzzy measure, analyzing whether a RDF is statistically better than the remainder ones or not. Since this is a large study, in Table IX the results considering exclusively the PM are presented, since this fuzzy measure is the one that achieves the best synergy with the RDFs (see Subsection VI-B). We stress out that the complete statistical analysis, considering all fuzzy measures is also available in the git repository.

In Table IX, for each function F, the RDFs are sorted from the lowest to the highest obtained rank (the lowest one is considered as control method and it is compared with the remaining ones). The APV column indicates if there are statistical differences between the method in the row and the control one. When the obtained APV is inferior than 0.10 it is <u>underlined</u>, indicating that there is a statistical difference in favor to the control method.

To ease the interpretation of the statistical results, a summary is provided in Table X. In this table, the rows are the different RDFs and the columns the fuzzy measures. The value of each cell is the number of times in which the RDF in the row is considered as the control method in the Aligned Friedman rank test (therefore, the best method) for each fuzzy measure. For instance, taking a look at the column of the PM, it is observable that count for  $\delta_0$ ,  $\delta_2$  and  $\delta_5$  are 3, 8 and 8, respectively, these are the number of times that each RDF, is

TABLE VII: Accuracy mean obtained in tests - Part 3

|                                                                                                                                                                                                             |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                              | Wı                                                                                                                                                                                                                                                                                                             | nean                                                                                                                                                                             |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                             | $\delta_0$                                                                                                                                                                                | $\delta_1$                                                                                                                                                                                                                                                                                                                                                                                                   | $\delta_2$                                                                                                                                                                                                                                                                                                     | $\delta_3$                                                                                                                                                                       | $\delta_4$                                                                                                                                                                                                                       | $\delta_5$                                                                                                                                                                                                                                                               |
| $T_M$                                                                                                                                                                                                       | 78.64                                                                                                                                                                                     | 77.99                                                                                                                                                                                                                                                                                                                                                                                                        | 80.17                                                                                                                                                                                                                                                                                                          | 79.54                                                                                                                                                                            | 78.38                                                                                                                                                                                                                            | 79.90                                                                                                                                                                                                                                                                    |
| $T_P$                                                                                                                                                                                                       | 77.69                                                                                                                                                                                     | 77.41                                                                                                                                                                                                                                                                                                                                                                                                        | 80.12                                                                                                                                                                                                                                                                                                          | 78.94                                                                                                                                                                            | 77.84                                                                                                                                                                                                                            | 79.97                                                                                                                                                                                                                                                                    |
| $T_{L}$                                                                                                                                                                                                     | 76.86                                                                                                                                                                                     | 76.97                                                                                                                                                                                                                                                                                                                                                                                                        | 77.70                                                                                                                                                                                                                                                                                                          | 77.51                                                                                                                                                                            | 77.11                                                                                                                                                                                                                            | 77.45                                                                                                                                                                                                                                                                    |
| $T_{DP}$                                                                                                                                                                                                    | 77.19                                                                                                                                                                                     | 77.19                                                                                                                                                                                                                                                                                                                                                                                                        | 77.19                                                                                                                                                                                                                                                                                                          | 77.19                                                                                                                                                                            | 77.19                                                                                                                                                                                                                            | 77.19                                                                                                                                                                                                                                                                    |
| $T_{NM}$                                                                                                                                                                                                    | 77.12                                                                                                                                                                                     | 76.88                                                                                                                                                                                                                                                                                                                                                                                                        | 77.77                                                                                                                                                                                                                                                                                                          | 77.39                                                                                                                                                                            | 76.92                                                                                                                                                                                                                            | 78.16                                                                                                                                                                                                                                                                    |
| $T_{HP}$                                                                                                                                                                                                    | 78.71                                                                                                                                                                                     | 77.66                                                                                                                                                                                                                                                                                                                                                                                                        | 79.77                                                                                                                                                                                                                                                                                                          | 79.47                                                                                                                                                                            | 78.60                                                                                                                                                                                                                            | 80.26                                                                                                                                                                                                                                                                    |
| $O_B$                                                                                                                                                                                                       | 78.42                                                                                                                                                                                     | 77.62                                                                                                                                                                                                                                                                                                                                                                                                        | 80.07                                                                                                                                                                                                                                                                                                          | 79.20                                                                                                                                                                            | 78.17                                                                                                                                                                                                                            | 80.43*                                                                                                                                                                                                                                                                   |
| $O_{mM}$                                                                                                                                                                                                    | 77.14                                                                                                                                                                                     | 77.39                                                                                                                                                                                                                                                                                                                                                                                                        | 79.49                                                                                                                                                                                                                                                                                                          | 78.12                                                                                                                                                                            | 77.53                                                                                                                                                                                                                            | 79.71                                                                                                                                                                                                                                                                    |
| $O_{\alpha}$                                                                                                                                                                                                | 77.86                                                                                                                                                                                     | 77.64                                                                                                                                                                                                                                                                                                                                                                                                        | 79.83                                                                                                                                                                                                                                                                                                          | 79.24                                                                                                                                                                            | 78.32                                                                                                                                                                                                                            | 80.07                                                                                                                                                                                                                                                                    |
| $O_{div}$                                                                                                                                                                                                   | 78.65                                                                                                                                                                                     | 77.64                                                                                                                                                                                                                                                                                                                                                                                                        | 79.70                                                                                                                                                                                                                                                                                                          | 79.16                                                                                                                                                                            | 78.15                                                                                                                                                                                                                            | 79.89                                                                                                                                                                                                                                                                    |
| GM                                                                                                                                                                                                          | 79.90                                                                                                                                                                                     | 79.01                                                                                                                                                                                                                                                                                                                                                                                                        | 80.16                                                                                                                                                                                                                                                                                                          | 80.55+*                                                                                                                                                                          | 80.22                                                                                                                                                                                                                            | 80.33                                                                                                                                                                                                                                                                    |
| HM                                                                                                                                                                                                          | 79.37                                                                                                                                                                                     | 78.37                                                                                                                                                                                                                                                                                                                                                                                                        | 80.16                                                                                                                                                                                                                                                                                                          | 79.83                                                                                                                                                                            | 78.92                                                                                                                                                                                                                            | 79.78                                                                                                                                                                                                                                                                    |
| Sin                                                                                                                                                                                                         | 80.12                                                                                                                                                                                     | $\frac{70.57}{80.12}$                                                                                                                                                                                                                                                                                                                                                                                        | 80.12                                                                                                                                                                                                                                                                                                          | 80.12                                                                                                                                                                            | 80.12                                                                                                                                                                                                                            | 80.12                                                                                                                                                                                                                                                                    |
| $O_{RS}$                                                                                                                                                                                                    | $\frac{00.12}{79.49}$                                                                                                                                                                     | 78.64                                                                                                                                                                                                                                                                                                                                                                                                        | 80.31                                                                                                                                                                                                                                                                                                          | 79.97                                                                                                                                                                            | 79.26                                                                                                                                                                                                                            | 80.15                                                                                                                                                                                                                                                                    |
| $C_F$                                                                                                                                                                                                       | 77.75                                                                                                                                                                                     | 77.57                                                                                                                                                                                                                                                                                                                                                                                                        | 80.03                                                                                                                                                                                                                                                                                                          | 79.06                                                                                                                                                                            | 77.73                                                                                                                                                                                                                            | 79.78                                                                                                                                                                                                                                                                    |
| $\widetilde{C}_L^F$                                                                                                                                                                                         | 78.47                                                                                                                                                                                     | 77.64                                                                                                                                                                                                                                                                                                                                                                                                        | 79.84                                                                                                                                                                                                                                                                                                          | 79.22                                                                                                                                                                            | 78.45                                                                                                                                                                                                                            | 79.99                                                                                                                                                                                                                                                                    |
| $F_{GL}$                                                                                                                                                                                                    | 80.32*                                                                                                                                                                                    | $\frac{79.17}{79.17}$                                                                                                                                                                                                                                                                                                                                                                                        | 80.24                                                                                                                                                                                                                                                                                                          | 80.13                                                                                                                                                                            | 80.23*                                                                                                                                                                                                                           | 79.89                                                                                                                                                                                                                                                                    |
| $F_{BPC}$                                                                                                                                                                                                   | 77.10                                                                                                                                                                                     | 77.39                                                                                                                                                                                                                                                                                                                                                                                                        | 79.39                                                                                                                                                                                                                                                                                                          | 78.12                                                                                                                                                                            | 77.58                                                                                                                                                                                                                            | 79.45                                                                                                                                                                                                                                                                    |
| $F_{BD1}$                                                                                                                                                                                                   | 79.19                                                                                                                                                                                     | 77.63                                                                                                                                                                                                                                                                                                                                                                                                        | 80.32*                                                                                                                                                                                                                                                                                                         | 79.80                                                                                                                                                                            | 78.59                                                                                                                                                                                                                            | 79.91                                                                                                                                                                                                                                                                    |
| $F_{NA}$                                                                                                                                                                                                    | 78.66                                                                                                                                                                                     | 77.83                                                                                                                                                                                                                                                                                                                                                                                                        | 79.93                                                                                                                                                                                                                                                                                                          | 79.41                                                                                                                                                                            | 78.61                                                                                                                                                                                                                            | 79.94                                                                                                                                                                                                                                                                    |
| $F_{NA2}$                                                                                                                                                                                                   | 80.03                                                                                                                                                                                     | 80.40*                                                                                                                                                                                                                                                                                                                                                                                                       | 79.90                                                                                                                                                                                                                                                                                                          | 79.86                                                                                                                                                                            | 80.05                                                                                                                                                                                                                            | <u>79.84</u>                                                                                                                                                                                                                                                             |
| Mean                                                                                                                                                                                                        | 78.51                                                                                                                                                                                     | 78.01                                                                                                                                                                                                                                                                                                                                                                                                        | 79.63                                                                                                                                                                                                                                                                                                          | 79.13                                                                                                                                                                            | 78.47                                                                                                                                                                                                                            | 79.63                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                             |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                              | ŀ                                                                                                                                                                                                                                                                                                              | M                                                                                                                                                                                |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                             | $\delta_0$                                                                                                                                                                                | $\delta_1$                                                                                                                                                                                                                                                                                                                                                                                                   | $\delta_2$                                                                                                                                                                                                                                                                                                     | $\delta_3$                                                                                                                                                                       | $\delta_4$                                                                                                                                                                                                                       | $\delta_5$                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                             | 00                                                                                                                                                                                        | 01                                                                                                                                                                                                                                                                                                                                                                                                           | 02                                                                                                                                                                                                                                                                                                             | 03                                                                                                                                                                               | 04                                                                                                                                                                                                                               | 05                                                                                                                                                                                                                                                                       |
| $T_M$                                                                                                                                                                                                       | 79.30                                                                                                                                                                                     | <u>77.73</u>                                                                                                                                                                                                                                                                                                                                                                                                 | 80.40                                                                                                                                                                                                                                                                                                          | 79.42                                                                                                                                                                            | 78.54                                                                                                                                                                                                                            | <b>80.57</b> +*                                                                                                                                                                                                                                                          |
| $T_M$<br>$T_P$                                                                                                                                                                                              |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                |                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                        |
| $T_M$<br>$T_P$<br>$T_L$                                                                                                                                                                                     | 79.30                                                                                                                                                                                     | <u>77.73</u>                                                                                                                                                                                                                                                                                                                                                                                                 | 80.40                                                                                                                                                                                                                                                                                                          | 79.42                                                                                                                                                                            | 78.54                                                                                                                                                                                                                            | 80.57+*                                                                                                                                                                                                                                                                  |
| $T_P$                                                                                                                                                                                                       | 79.30<br>79.20                                                                                                                                                                            | $\frac{77.73}{78.06}$                                                                                                                                                                                                                                                                                                                                                                                        | 80.40<br><b>80.46</b>                                                                                                                                                                                                                                                                                          | 79.42<br>79.55                                                                                                                                                                   | 78.54<br>78.49                                                                                                                                                                                                                   | <b>80.57</b> +*<br>80.10                                                                                                                                                                                                                                                 |
| $T_P$<br>$T_L$                                                                                                                                                                                              | 79.30<br>79.20<br>78.35                                                                                                                                                                   | 77.73<br>78.06<br>77.10                                                                                                                                                                                                                                                                                                                                                                                      | 80.40<br><b>80.46</b><br>79.32                                                                                                                                                                                                                                                                                 | 79.42<br>79.55<br>78.43                                                                                                                                                          | 78.54<br>78.49<br>78.07                                                                                                                                                                                                          | <b>80.57</b> <sup>+*</sup><br>80.10<br><b>79.65</b> <sup>+</sup>                                                                                                                                                                                                         |
| $T_P$<br>$T_L$<br>$T_{DP}$                                                                                                                                                                                  | 79.30<br>79.20<br>78.35<br><u>77.19</u>                                                                                                                                                   | $\frac{77.73}{78.06}\\\frac{77.10}{77.19}$                                                                                                                                                                                                                                                                                                                                                                   | 80.40<br><b>80.46</b><br>79.32<br><u>77.19</u>                                                                                                                                                                                                                                                                 | 79.42<br>79.55<br>78.43<br>77.19                                                                                                                                                 | 78.54<br>78.49<br>78.07<br><u>77.19</u>                                                                                                                                                                                          | <b>80.57</b> <sup>+</sup> *<br>80.10<br><b>79.65</b> <sup>+</sup><br><u>77.19</u>                                                                                                                                                                                        |
| $T_P \\ T_L \\ T_{DP} \\ T_{NM}$                                                                                                                                                                            | 79.30<br>79.20<br>78.35<br><u>77.19</u><br>79.02                                                                                                                                          | 77.73<br>78.06<br>77.10<br>77.19<br>77.21                                                                                                                                                                                                                                                                                                                                                                    | 80.40<br><b>80.46</b><br>79.32<br><u>77.19</u><br><b>79.83</b> <sup>+</sup>                                                                                                                                                                                                                                    | 79.42<br>79.55<br>78.43<br><u>77.19</u><br>78.31<br>79.47                                                                                                                        | 78.54<br>78.49<br>78.07<br><u>77.19</u><br>77.81                                                                                                                                                                                 | <b>80.57</b> <sup>+</sup> *<br>80.10<br><b>79.65</b> <sup>+</sup><br><u>77.19</u><br>79.76                                                                                                                                                                               |
| $T_P \\ T_L \\ T_{DP} \\ T_{NM} \\ T_{HP} \\ O_B$                                                                                                                                                           | 79.30<br>79.20<br>78.35<br><u>77.19</u><br>79.02<br>79.74                                                                                                                                 | 77.73<br>78.06<br>77.10<br>77.19<br>77.21<br>77.76                                                                                                                                                                                                                                                                                                                                                           | 80.40<br><b>80.46</b><br>79.32<br><u>77.19</u><br><b>79.83</b> <sup>+</sup><br>80.26                                                                                                                                                                                                                           | 79.42<br>79.55<br>78.43<br><u>77.19</u><br>78.31                                                                                                                                 | 78.54<br>78.49<br>78.07<br><u>77.19</u><br>77.81<br>78.53                                                                                                                                                                        | <b>80.57</b> <sup>+*</sup><br>80.10<br><b>79.65</b> <sup>+</sup><br><u>77.19</u><br>79.76<br><b>80.33</b> <sup>+</sup>                                                                                                                                                   |
| $T_P$<br>$T_L$<br>$T_{DP}$<br>$T_{NM}$<br>$T_{HP}$                                                                                                                                                          | 79.30<br>79.20<br>78.35<br><u>77.19</u><br>79.02<br>79.74<br>79.44                                                                                                                        | 77.73<br>78.06<br>77.10<br>77.19<br>77.21<br>77.76<br>77.74                                                                                                                                                                                                                                                                                                                                                  | 80.40<br><b>80.46</b><br>79.32<br><u>77.19</u><br><b>79.83</b> <sup>+</sup><br>80.26<br><b>80.49</b> <sup>+</sup>                                                                                                                                                                                              | 79.42<br>79.55<br>78.43<br><u>77.19</u><br>78.31<br>79.47<br>79.61                                                                                                               | 78.54<br>78.49<br>78.07<br><u>77.19</u><br>77.81<br>78.53<br>78.71                                                                                                                                                               | <b>80.57</b> <sup>+*</sup><br>80.10<br><b>79.65</b> <sup>+</sup><br><u>77.19</u><br>79.76<br><b>80.33</b> <sup>+</sup><br>79.98                                                                                                                                          |
| $T_P$ $T_L$ $T_{DP}$ $T_{NM}$ $T_{HP}$ $O_B$ $O_{mM}$                                                                                                                                                       | 79.30<br>79.20<br>78.35<br><u>77.19</u><br>79.02<br>79.74<br>79.44<br>79.19                                                                                                               | $\begin{array}{r} \underline{77.73}\\ \underline{78.06}\\ \underline{77.10}\\ \underline{77.19}\\ \underline{77.21}\\ \underline{77.76}\\ \underline{77.74}\\ \underline{77.84}\end{array}$                                                                                                                                                                                                                  | 80.40<br><b>80.46</b><br>79.32<br><u>77.19</u><br><b>79.83</b> <sup>+</sup><br>80.26<br><b>80.49</b> <sup>+</sup><br><b>80.06</b> <sup>+</sup>                                                                                                                                                                 | 79.42<br>79.55<br>78.43<br>77.19<br>78.31<br>79.47<br>79.61<br>78.99<br>79.87                                                                                                    | 78.54<br>78.49<br>78.07<br><u>77.19</u><br>77.81<br>78.53<br>78.71<br>78.64                                                                                                                                                      | <b>80.57</b> <sup>+*</sup><br>80.10<br><b>79.65</b> <sup>+</sup><br><u>77.19</u><br>79.76<br><b>80.33</b> <sup>+</sup><br>79.98<br>80.05                                                                                                                                 |
| $T_P \\ T_L \\ T_{DP} \\ T_{NM} \\ T_{HP} \\ O_B \\ O_m \\ O_\alpha$                                                                                                                                        | 79.30<br>79.20<br>78.35<br>77.19<br>79.02<br>79.74<br>79.44<br>79.19<br>79.25                                                                                                             | $\frac{77.73}{78.06}$ $\frac{77.10}{77.19}$ $\frac{77.21}{77.76}$ $\frac{77.74}{77.84}$ $\frac{77.72}{77.72}$                                                                                                                                                                                                                                                                                                | 80.40<br>80.46<br>79.32<br>77.19<br>79.83 <sup>+</sup><br>80.26<br>80.49 <sup>+</sup><br>80.06 <sup>+</sup><br>80.16                                                                                                                                                                                           | 79.42<br>79.55<br>78.43<br><u>77.19</u><br>78.31<br>79.47<br>79.61<br>78.99                                                                                                      | 78.54<br>78.49<br>78.07<br><u>77.19</u><br>77.81<br>78.53<br>78.71<br>78.64<br>78.64                                                                                                                                             | <b>80.57</b> <sup>+*</sup><br>80.10<br><b>79.65</b> <sup>+</sup><br><u>77.19</u><br>79.76<br><b>80.33</b> <sup>+</sup><br>79.98<br>80.05<br><b>80.19</b>                                                                                                                 |
| $T_P T_L T_{DP} T_{NM} T_{HP} O_B O_{mM} O_{\alpha} O_{div}$                                                                                                                                                | 79.30<br>79.20<br>78.35<br>77.19<br>79.02<br>79.74<br>79.44<br>79.19<br>79.25<br>79.26                                                                                                    | $\frac{77.73}{78.06}$ $\frac{77.10}{77.19}$ $\frac{77.21}{77.76}$ $\frac{77.74}{77.84}$ $\frac{77.72}{77.77}$                                                                                                                                                                                                                                                                                                | 80.40<br>80.46<br>79.32<br>77.19<br>79.83+<br>80.26<br>80.49+<br>80.06+<br>80.16<br>80.34+                                                                                                                                                                                                                     | 79.42<br>79.55<br>78.43<br><u>77.19</u><br>78.31<br>79.47<br>79.61<br>78.99<br>79.87<br>79.53<br>80.17                                                                           | 78.54<br>78.49<br>78.07<br>77.19<br>77.81<br>78.53<br>78.71<br>78.64<br>78.64<br>78.64<br>78.61<br>80.02                                                                                                                         | <b>80.57</b> +*<br>80.10<br><b>79.65</b> +<br>77.19<br>79.76<br><b>80.33</b> +<br>79.98<br>80.05<br><b>80.19</b><br>80.24                                                                                                                                                |
| $\begin{array}{c} T_P \\ T_L \\ T_{DP} \\ T_{NM} \\ T_{HP} \\ O_B \\ O_{mM} \\ O_{\alpha} \\ O_{div} \\ GM \end{array}$                                                                                     | 79.30<br>79.20<br>78.35<br><u>77.19</u><br>79.02<br>79.74<br>79.44<br>79.19<br>79.25<br>79.26<br>80.23                                                                                    | $\begin{array}{r} 77.73\\ \hline 78.06\\ \hline 77.10\\ \hline 77.19\\ \hline 77.21\\ \hline 77.76\\ \hline 77.74\\ \hline 77.74\\ \hline 77.72\\ \hline 77.77\\ \hline 79.22\\ \end{array}$                                                                                                                                                                                                                 | 80.40<br>80.46<br>79.32<br>77.19<br>79.83+<br>80.26<br>80.49+<br>80.06+<br>80.16<br>80.34+<br>80.43                                                                                                                                                                                                            | 79.42<br>79.55<br>78.43<br><u>77.19</u><br>78.31<br>79.47<br>79.61<br>78.99<br>79.87<br>79.53                                                                                    | 78.54<br>78.49<br>78.07<br><u>77.19</u><br>77.81<br>78.53<br>78.71<br>78.64<br>78.64<br>78.64                                                                                                                                    | <b>80.57</b> +*<br>80.10<br><b>79.65</b> +<br>77.19<br>79.76<br><b>80.33</b> +<br>79.98<br>80.05<br><b>80.19</b><br>80.24<br>80.21                                                                                                                                       |
| $T_P \\ T_L \\ T_DP \\ T_{MM} \\ T_{HP} \\ O_B \\ O_{\alpha} \\ O_{\alpha} \\ O_{\alpha} \\ O_{\alpha} \\ GM \\ HM \\ Sin \\$                                                                               | 79.30<br>79.20<br>78.35<br>77.19<br>79.02<br>79.74<br>79.44<br>79.19<br>79.25<br>79.26<br>80.23<br>80.28                                                                                  | $\begin{array}{r} 77.73\\ \overline{78.06}\\ 77.10\\ 77.19\\ 77.21\\ 77.76\\ \overline{77.74}\\ 77.84\\ \overline{77.72}\\ \overline{77.77}\\ \overline{79.22}\\ \overline{78.32}\\ \end{array}$                                                                                                                                                                                                             | 80.40<br>80.46<br>79.32<br>77.19<br>79.83 <sup>+</sup><br>80.26<br>80.49 <sup>+</sup><br>80.06 <sup>+</sup><br>80.16<br>80.34 <sup>+</sup><br>80.43<br>80.30                                                                                                                                                   | 79.42<br>79.55<br>78.43<br>77.19<br>78.31<br>79.47<br>79.61<br>78.99<br>79.87<br>79.53<br>80.17<br>79.82                                                                         | 78.54<br>78.49<br>78.07<br>77.19<br>77.81<br>78.53<br>78.71<br>78.64<br>78.64<br>78.61<br>80.02<br>79.06                                                                                                                         | <b>80.57</b> <sup>+*</sup><br>80.10<br><b>79.65</b> <sup>+</sup><br><u>77.19</u><br>79.76<br><b>80.33</b> <sup>+</sup><br>79.98<br>80.05<br><b>80.19</b><br>80.24<br>80.21<br><b>80.36</b> <sup>+</sup>                                                                  |
| $T_P \\ T_L \\ T_{DP} \\ T_{NM} \\ T_{HP} \\ O_B \\ O_{\alpha} \\ O_{\alpha} \\ O_{\alpha} \\ O_{\alpha} \\ GM \\ HM \\ Sin \\ O_{RS} \\ \end{bmatrix}$                                                     | 79.30<br>79.20<br>78.35<br>77.19<br>79.02<br>79.74<br>79.44<br>79.19<br>79.25<br>79.26<br>80.23<br>80.28<br>80.12                                                                         | $\begin{array}{r} 77.73\\ 78.06\\ 77.10\\ 77.19\\ 77.21\\ 77.76\\ 77.74\\ 77.72\\ 77.72\\ 77.77\\ 79.22\\ 78.32\\ 80.12\\ \end{array}$                                                                                                                                                                                                                                                                       | 80.40<br>80.46<br>79.32<br>77.19<br>79.83 <sup>+</sup><br>80.26<br>80.49 <sup>+</sup><br>80.06 <sup>+</sup><br>80.34 <sup>+</sup><br>80.34<br>80.30<br>80.30                                                                                                                                                   | 79.42<br>79.55<br>78.43<br>77.19<br>78.31<br>79.47<br>79.61<br>78.99<br>79.87<br>79.53<br>80.17<br>79.82<br>80.12                                                                | 78.54<br>78.49<br>78.07<br>77.19<br>77.81<br>78.53<br>78.71<br>78.64<br>78.64<br>78.64<br>78.61<br>80.02<br>79.06<br>80.12                                                                                                       | <b>80.57</b> <sup>+*</sup><br>80.10<br><b>79.65</b> <sup>+</sup><br><u>77.19</u><br>79.76<br><b>80.33</b> <sup>+</sup><br>79.98<br>80.05<br><b>80.19</b><br>80.24<br>80.21<br><b>80.36</b> <sup>+</sup><br><u>80.12</u>                                                  |
| $\begin{array}{c} T_P \\ T_k \\ T_{DP} \\ T_{NM} \\ T_{HP} \\ O_B \\ O_{mM} \\ O_{\alpha} \\ O_{div} \\ GM \\ HM \\ Sin \\ O_{RS} \\ C_F \end{array}$                                                       | 79.30<br>79.20<br>78.35<br>77.19<br>79.02<br>79.74<br>79.44<br>79.19<br>79.25<br>79.26<br>80.23<br>80.23<br>80.28<br><u>80.12</u><br><b>80.46</b>                                         | $\begin{array}{r} 77.73\\ \hline 78.06\\ \hline 77.10\\ \hline 77.19\\ \hline 77.21\\ \hline 77.76\\ \hline 77.74\\ \hline 77.84\\ \hline 77.72\\ \hline 77.72\\ \hline 79.22\\ \hline 78.32\\ \hline 80.12\\ \hline 79.20\\ \hline 77.79\end{array}$                                                                                                                                                        | 80.40<br>80.46<br>79.32<br>77.19<br>79.83 <sup>+</sup><br>80.26<br>80.49 <sup>+</sup><br>80.06 <sup>+</sup><br>80.16<br>80.34 <sup>+</sup><br>80.43<br>80.30<br><u>80.12</u><br>80.30                                                                                                                          | 79.42<br>79.55<br>78.43<br>77.19<br>78.31<br>79.47<br>79.61<br>78.99<br>79.87<br>79.53<br>80.17<br>79.82<br><u>80.12</u><br>80.10                                                | 78.54<br>78.49<br>78.07<br>77.19<br>77.81<br>78.53<br>78.71<br>78.64<br>78.64<br>78.64<br>78.61<br>80.02<br>79.06<br><u>80.12</u><br>80.19                                                                                       | <b>80.57</b> +*<br>80.10<br><b>79.65</b> +<br><u>77.19</u><br>79.76<br><b>80.33</b> +<br>79.98<br>80.05<br><b>80.19</b><br>80.24<br>80.24<br>80.21<br><b>80.36</b> +<br><u>80.12</u><br>80.23                                                                            |
| $\begin{array}{c} T_P \\ T_L \\ T_{DP} \\ T_{NM} \\ T_{HP} \\ O_B \\ O_{\alpha} \\ O_{div} \\ GM \\ HM \\ Sin \\ O_{RS} \\ C_F \\ C_L \end{array}$                                                          | 79.30<br>79.20<br>78.35<br>77.19<br>79.02<br>79.74<br>79.44<br>79.19<br>79.25<br>79.26<br>80.23<br>80.28<br>80.12<br><b>80.46</b><br>79.34                                                | $\begin{array}{r} 77.73\\ 78.06\\ 77.10\\ 77.19\\ 77.21\\ 77.76\\ 77.74\\ 77.84\\ 77.72\\ 77.77\\ 79.22\\ 78.32\\ 80.12\\ 79.20\\ \end{array}$                                                                                                                                                                                                                                                               | 80.40<br>80.46<br>79.32<br>77.19<br>79.83 <sup>+</sup><br>80.26<br>80.49 <sup>+</sup><br>80.06 <sup>+</sup><br>80.16<br>80.34 <sup>+</sup><br>80.43<br>80.30<br><u>80.12</u><br>80.30<br>80.05                                                                                                                 | 79.42<br>79.55<br>78.43<br>77.19<br>78.31<br>79.47<br>79.61<br>78.99<br>79.87<br>79.53<br>80.17<br>79.82<br><u>80.12</u><br>80.10<br>79.52                                       | $\begin{array}{c} 78.54\\ 78.49\\ 78.07\\ \overline{77.19}\\ 77.81\\ 78.53\\ 78.71\\ 78.64\\ 78.64\\ 78.64\\ 78.64\\ 78.61\\ 80.02\\ 79.06\\ \underline{80.12}\\ 80.19\\ 78.47\\ 78.68 \end{array}$                              | <b>80.57</b> +*<br>80.10<br><b>79.65</b> +<br><u>77.19</u><br>79.76<br><b>80.33</b> +<br>79.98<br>80.05<br><b>80.19</b><br>80.24<br>80.24<br>80.24<br>80.23<br><b>80.23</b>                                                                                              |
| $\begin{array}{c} T_P \\ T_L \\ T_{DP} \\ T_{NM} \\ T_{HP} \\ O_B \\ O_\alpha \\ O_{div} \\ GM \\ HM \\ Sin \\ O_{RS} \\ C_F \\ C_L \\ F_{GL} \end{array}$                                                  | 79.30<br>79.20<br>78.35<br>77.19<br>79.02<br>79.74<br>79.44<br>79.19<br>79.25<br>79.26<br>80.23<br>80.28<br>80.46<br>79.34<br>79.25                                                       | $\begin{array}{r} 77.73\\ \overline{78.06}\\ 77.10\\ 77.19\\ \overline{77.21}\\ \overline{77.76}\\ \overline{77.74}\\ \overline{77.74}\\ \overline{77.84}\\ \overline{77.72}\\ \overline{77.72}\\ \overline{79.22}\\ \overline{78.32}\\ \overline{80.12}\\ \overline{79.20}\\ \overline{77.79}\\ \overline{77.56}\end{array}$                                                                                | 80.40<br><b>80.46</b><br>79.32<br><u>77.19</u><br><b>79.83</b> <sup>+</sup><br>80.26<br><b>80.49</b> <sup>+</sup><br><b>80.66</b> <sup>+</sup><br><b>80.66</b> <sup>+</sup><br><b>80.34</b> <sup>+</sup><br><b>80.43</b><br>80.30<br><u>80.12</u><br>80.30<br>80.05<br>80.11                                   | 79.42<br>79.55<br>78.43<br><u>77.19</u><br>78.31<br>79.47<br>79.61<br>78.99<br>79.87<br>79.53<br>80.17<br>79.82<br><u>80.12</u><br>80.10<br>79.52<br>79.74                       | $\begin{array}{c} 78.54\\ 78.49\\ 78.07\\ 77.19\\ 77.81\\ 78.53\\ 78.71\\ 78.64\\ 78.64\\ 78.61\\ 80.02\\ 79.06\\ \underline{80.12}\\ 80.19\\ 78.47\\ 78.68\\ 80.39^* \end{array}$                                               | <b>80.57</b> +*<br>80.10<br><b>79.65</b> +<br><u>77.19</u><br>79.76<br><b>80.33</b> +<br>79.98<br>80.05<br><b>80.19</b><br>80.24<br>80.21<br><b>80.26</b> +<br><u>80.23</u><br><b>80.23</b><br><b>80.23</b><br><b>80.41</b> +                                            |
| $\begin{array}{c} T_P \\ T_L \\ T_{DP} \\ T_{NM} \\ T_{HP} \\ O_B \\ O_m \\ O_\alpha \\ O_{div} \\ GM \\ HM \\ Sin \\ O_{RS} \\ C_F \\ C_L \\ F_{GL} \\ F_{GL} \\ F_{BPC} \end{array}$                      | 79.30<br>79.20<br>78.35<br>77.19<br>79.02<br>79.74<br>79.44<br>79.44<br>79.19<br>79.25<br>79.26<br>80.23<br>80.28<br>80.46<br>79.34<br>79.34<br>79.25<br>80.26<br>79.19                   | $\begin{array}{r} 77.73\\78.06\\77.10\\77.19\\77.21\\77.76\\77.74\\77.84\\77.72\\77.77\\79.22\\78.32\\80.12\\79.20\\77.79\\77.56\\79.11\\77.87\end{array}$                                                                                                                                                                                                                                                   | 80.40<br><b>80.46</b><br>79.32<br><u>77.19</u><br><b>79.83</b> <sup>+</sup><br>80.26<br><b>80.49</b> <sup>+</sup><br><b>80.06</b> <sup>+</sup><br><b>80.34</b> <sup>+</sup><br><b>80.30</b><br><u>80.30</u><br><u>80.30</u><br><u>80.30</u><br>80.30<br><b>80.50</b> <sup>*</sup><br><b>80.55</b> <sup>+</sup> | 79.42<br>79.55<br>78.43<br>77.19<br>78.31<br>79.47<br>79.61<br>78.99<br>79.87<br>79.53<br>80.17<br>79.82<br><u>80.12</u><br>80.10<br>79.52<br>79.74<br>80.15<br>79.14            | $\begin{array}{c} 78.54\\ 78.49\\ 78.07\\ 77.19\\ 77.81\\ 78.53\\ 78.71\\ 78.64\\ 78.64\\ 78.61\\ 80.02\\ 79.06\\ \underline{80.12}\\ 80.19\\ 78.47\\ 78.68\\ 80.39^*\\ 78.21\\ \end{array}$                                     | <b>80.57</b> +*<br>80.10<br><b>79.65</b> +<br><u>77.19</u><br>79.76<br><b>80.33</b> +<br>79.98<br>80.05<br><b>80.19</b><br>80.24<br>80.21<br><b>80.36</b> +<br><u>80.23</u><br><b>80.23</b><br><b>80.23</b><br><b>80.41</b> +<br>80.34<br>80.00                          |
| $\begin{array}{c} T_P \\ T_L \\ T_{DP} \\ T_{NM} \\ T_{HP} \\ O_B \\ O_m \\ O_\alpha \\ O_{div} \\ GM \\ HM \\ Sin \\ O_{RS} \\ C_F \\ C_L \\ F_{GL} \\ F_{GL} \\ F_{BPC} \\ F_{BD1} \end{array}$           | 79.30<br>79.20<br>78.35<br>77.19<br>79.02<br>79.74<br>79.44<br>79.19<br>79.25<br>79.26<br>80.23<br>80.28<br>80.23<br>80.28<br>80.12<br>80.46<br>79.34<br>79.25<br>80.26<br>79.19<br>79.79 | $\begin{array}{r} 77.73\\78.06\\77.10\\77.19\\77.21\\77.76\\77.74\\77.74\\77.72\\77.77\\79.22\\78.32\\80.12\\79.20\\77.79\\77.56\\79.11\\77.87\\77.67\end{array}$                                                                                                                                                                                                                                            | 80.40<br><b>80.46</b><br>79.32<br><u>77.19</u><br><b>79.83</b> <sup>+</sup><br>80.26<br><b>80.49</b> <sup>+</sup><br><b>80.66</b><br><b>80.34</b> <sup>+</sup><br><b>80.43</b><br>80.30<br><u>80.12</u><br>80.30<br>80.05<br>80.11<br><b>80.50</b> *                                                           | 79.42<br>79.55<br>78.43<br>77.19<br>78.31<br>79.47<br>79.61<br>78.99<br>79.87<br>79.53<br>80.17<br>79.82<br><u>80.12</u><br>80.10<br>79.52<br>79.74<br>80.15<br>79.14<br>79.41   | $\begin{array}{c} 78.54\\ 78.49\\ 78.07\\ 77.19\\ 77.81\\ 78.53\\ 78.71\\ 78.64\\ 78.64\\ 78.64\\ 78.61\\ 80.02\\ 79.06\\ \underline{80.12}\\ 80.19\\ 78.47\\ 78.68\\ 80.39^*\\ 78.21\\ 78.61\\ \end{array}$                     | <b>80.57</b> +*<br>80.10<br><b>79.65</b> +<br>77.19<br>79.76<br><b>80.33</b> +<br>79.98<br>80.05<br><b>80.19</b><br>80.24<br>80.21<br><b>80.36</b> +<br>80.23<br><b>80.23</b><br><b>80.23</b><br><b>80.41</b> +<br>80.34<br>80.34<br>80.04 <b>8</b> +                    |
| $\begin{array}{c} T_P \\ T_L \\ T_{DP} \\ T_{NM} \\ T_{HP} \\ O_B \\ O_m \\ O_\alpha \\ O_{div} \\ GM \\ HM \\ Sin \\ O_{RS} \\ C_F \\ C_L \\ F_{GL} \\ F_{GL} \\ F_{BPC} \end{array}$                      | 79.30<br>79.20<br>78.35<br>77.19<br>79.02<br>79.74<br>79.44<br>79.44<br>79.19<br>79.25<br>79.26<br>80.23<br>80.28<br>80.46<br>79.34<br>79.34<br>79.25<br>80.26<br>79.19                   | $\begin{array}{r} 77.73\\78.06\\77.10\\77.19\\77.21\\77.76\\77.74\\77.84\\77.72\\77.77\\79.22\\78.32\\80.12\\79.20\\77.79\\77.56\\79.11\\77.87\end{array}$                                                                                                                                                                                                                                                   | 80.40<br>80.46<br>79.32<br>77.19<br>79.83 <sup>+</sup><br>80.26<br>80.49 <sup>+</sup><br>80.06 <sup>+</sup><br>80.30<br>80.30<br>80.30<br>80.30<br>80.30<br>80.05<br>80.11<br>80.50*<br>80.25 <sup>+</sup><br>79.98                                                                                            | 79.42<br>79.55<br>78.43<br>77.19<br>78.31<br>79.47<br>79.61<br>78.99<br>79.87<br>79.53<br>80.17<br>79.82<br><u>80.12</u><br>80.10<br>79.52<br>79.74<br>80.15<br>79.14            | $\begin{array}{c} 78.54\\ 78.49\\ 78.07\\ 77.19\\ 77.81\\ 78.53\\ 78.71\\ 78.64\\ 78.64\\ 78.61\\ 80.02\\ 79.06\\ \underline{80.12}\\ 80.19\\ 78.47\\ 78.68\\ 80.39^*\\ 78.21\\ \end{array}$                                     | <b>80.57</b> +*<br>80.10<br><b>79.65</b> +<br><u>77.19</u><br>79.76<br><b>80.33</b> +<br>79.98<br>80.05<br><b>80.19</b><br>80.24<br>80.21<br><b>80.36</b> +<br><u>80.23</u><br><b>80.23</b><br><b>80.23</b><br><b>80.41</b> +<br>80.34<br>80.00                          |
| $\begin{array}{c} T_P \\ T_L \\ T_{DP} \\ T_{NM} \\ T_{HP} \\ O_B \\ O_m \\ O_\alpha \\ O_{div} \\ GM \\ HM \\ Sin \\ O_{RS} \\ C_F \\ C_L \\ F_{GL} \\ F_{GL} \\ F_{BPC} \\ F_{BD1} \\ F_{NA} \end{array}$ | 79.30<br>79.20<br>78.35<br>77.19<br>79.02<br>79.74<br>79.44<br>79.19<br>79.25<br>79.26<br>80.23<br>80.28<br>80.28<br>80.12<br>80.46<br>79.34<br>79.25<br>80.26<br>79.19<br>79.79<br>79.64 | $\begin{array}{r} 77.73\\ \overline{78.06}\\ 77.10\\ 77.19\\ \overline{77.19}\\ \overline{77.21}\\ \overline{77.76}\\ \overline{77.74}\\ \overline{77.72}\\ \overline{77.72}\\ \overline{77.72}\\ \overline{77.72}\\ \overline{77.72}\\ \overline{79.22}\\ \overline{78.32}\\ \overline{80.12}\\ \overline{79.20}\\ \overline{77.56}\\ \overline{79.11}\\ \overline{77.61}\\ \overline{77.61}\\ \end{array}$ | 80.40<br>80.46<br>79.32<br>77.19<br>79.83 <sup>+</sup><br>80.26<br>80.49 <sup>+</sup><br>80.06 <sup>+</sup><br>80.34 <sup>+</sup><br>80.30<br>80.30<br>80.30<br>80.05<br>80.11<br>80.50 <sup>*</sup><br>80.25 <sup>+</sup><br>79.98<br>80.27                                                                   | 79.42<br>79.55<br>78.43<br>77.19<br>78.31<br>79.47<br>79.61<br>78.99<br>79.87<br>79.53<br>80.17<br>79.82<br>80.12<br>80.10<br>79.52<br>79.74<br>80.15<br>79.14<br>79.41<br>79.43 | $\begin{array}{c} 78.54\\ 78.49\\ 78.07\\ 77.19\\ 77.81\\ 78.53\\ 78.71\\ 78.64\\ 78.64\\ 78.64\\ 78.61\\ 80.02\\ 79.06\\ \underline{80.12}\\ 80.19\\ 78.47\\ 78.68\\ \underline{80.39}^*\\ 78.21\\ 78.61\\ 78.91\\ \end{array}$ | 80.57 <sup>+*</sup><br>80.10<br>79.65 <sup>+</sup><br>77.19<br>79.76<br>80.33 <sup>+</sup><br>79.98<br>80.05<br>80.19<br>80.24<br>80.21<br>80.36 <sup>+</sup><br>80.23<br>80.23<br>80.23<br>80.23<br>80.41 <sup>+</sup><br>80.34<br>80.34<br>80.43 <sup>+</sup><br>79.91 |

TABLE VIII: Relation of times that each RDF combined with the fuzzy measures obtained a **bold face** among the analysis

|             | $\delta_0$ | $\delta_1$ | $\delta_2$ | $\delta_3$ | $\delta_4$ | $\delta_5$ | $\#\delta$ _Total |
|-------------|------------|------------|------------|------------|------------|------------|-------------------|
| Cardinality | 0          | 0          | 6          | 2          | 1          | 10         | 19                |
| Dirac       | 6          | 0          | 2          | 1          | 0          | 11         | 14                |
| OWA         | 6          | 0          | 8          | 0          | 0          | 5          | 13                |
| Wmean       | 1          | 1          | 7          | 1          | 0          | 9          | 18                |
| PM          | 2          | 0          | 9          | 0          | 0          | 8          | 17                |
| #Total      | 15         | 1          | 32         | 4          | 1          | 43         | 81                |

considered as control method in Table X<sup>1</sup>. Finally, in the last row, the number of times (#nDiff) in which the  $\delta_0$  (baseline) is statistically outperformed by any RDF is provided.

If the cardinality and PM are used, since they are the fuzzy measures that achieve the best results (see Sect. VI-B), we see that  $\delta_0$  is statistically improved in almost half of the cases.

<sup>1</sup>We point out that we do not count the results of both functions  $T_{DP}$  and Sin, as all the RDFs are the same, APV = 1.0

Furthermore, in general,  $\delta_5$  is the best option, followed by  $\delta_2$ .

Another observation can be made by taking an exclusive look to the CI, which is the function base of this study, in the statistical analysis. It is observable from the second column of Table IX, that the  $\delta_2$  can be considered as statistically superior than the CI since it have a lowest rank and the obtained APV when comparing this two cases is small.

In light of the obtained means and the statistical tests, it is noticeable that the use of  $dC_F$ -integrals are an interesting approach in alternative to the  $C_F$ -integrals. It is also noticeable that there are many approaches in which there are statistical differences with respect to the  $\delta_0$ . Therefore, the suitability of the new approach is empirically proved.

# B. Analyzing the synergy among the RDFs, functions F and fuzzy measures

In this subsection the synergy among the use of RDFs, functions F and fuzzy measures is analyzed. Taking a look at Table VIII, it can be observed that the number of functions F where RDFs achieve a competitive performance is large. In order to reduce the number of functions and to focus on the best synergies, in this subsection we only provide a study using  $\delta_2$  and  $\delta_5$  as RDFs and the cardinality and PM as fuzzy measures. This is due to the fact that their application led to a general improvement of the dCF-integrals.

To clarify the synergy of the methods, we show in Table XI for the considered fuzzy measures (rows) and RDFs (columns), the top 3 (where #Top1 is the highest accuracy, #Top2 is the second one and #Top3 the third) functions F that achieved the best averaged behaviours among the 33 considered datasets. Observe that this ranking is obtained by analyzing the respective column (fuzzy measure and RDF) in Tables V-VII.

From the results in Table XI some interesting findings emerge. Considering the functions F, we observe that  $F_{GL}$ ,  $T_P$  and  $T_M$  appeared two times, while the remaining functions just once, in specific cases. We highlight that the  $F_{GL}$  and  $T_P$  appeared for both,  $\delta_2$  and  $\delta_5$ . We also want to stress that  $T_M$  appears in both fuzzy measures when combined with  $\delta_5$ , which clearly shows the good synergy between this function and RDF. In fact, observe that the combination of PM with  $\delta_5$ and  $T_M$  led to the largest accuracy mean in the study.

#### VII. CONCLUSION

In this paper, the concept of  $dC_F$ -integrals was introduced. These functions generalize the  $C_F$ -integrals [16] by restricted dissimilarity functions  $\delta$  [29], that is, the difference operator used by the  $C_F$ -integrals is replaced by restricted dissimilarity functions. Also,  $dC_F$ -integrals can be understood as a generalization of the d-Choquet integral [27] by a function F. Important properties that the  $dC_F$ -integrals satisfy, which are based on characteristics of the function F and the restricted dissimilarity functions, were shown.

The  $dC_F$ -integrals were applied as the aggregation-like operator in the FRM of a state-of-the-art FRBC, in a large experiment, with different analyses, considering several points of view. Taking into account the obtained results, it is noticeable that  $dC_F$ -integrals could be considered as a good alternative

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$              | -                                               | <b>—</b>                   |                     |              |                             | -            |                           |                  |               | <u> </u>               |                            |                             |          | -          |      |
|----------------------------------------------------------------------|-------------------------------------------------|----------------------------|---------------------|--------------|-----------------------------|--------------|---------------------------|------------------|---------------|------------------------|----------------------------|-----------------------------|----------|------------|------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                |                                                 | $T_M$ Rank                 | APV                 | Met          | hod                         | $T_P$ Rank   | APV                       | Meth             | od            | T <sub>Ł</sub><br>Rank | APV                        | Method                      | 1        | DP<br>Rank | APV  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                | $\delta_5$                                      | 58.82                      | (-)                 | δ2           |                             | 57.79        | (-)                       | $\delta_5$       |               | 60.80                  | (-)                        | $\delta_0 (\mathfrak{C}^T$  | DP)      | 99.50      | (-)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                |                                                 |                            | 0.45                |              |                             | 72.91        | 0.28                      |                  |               |                        | 0.45                       | $\delta_1$                  | )        |            |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $              | $\delta_3$                                      | 94.20                      | 0.02                | $\delta_3$   |                             | 89.06        | 0.05                      | $\delta_3$       |               |                        | 0.00                       | $\delta_2$                  |          |            |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $              | $\delta_0 (\mathfrak{C}^{T_M})$                 |                            |                     | δο (         | $\mathfrak{C}^{T_P}$        |              |                           | δο (0            | $(T_{\rm L})$ |                        |                            | $\delta_3$                  |          |            |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $              |                                                 |                            | $\frac{0.00}{0.00}$ | $\delta_{4}$ | ( )                         | 132.89       | $\frac{0.00}{0.00}$       | $\delta_{4}$     | )             |                        | $\frac{0.00}{0.00}$        | $\delta_{4}$                |          |            |      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$              |                                                 |                            |                     | $\delta_1$   |                             |              | $\frac{0.00}{0.00}$       | $\delta_1$       |               | 143.44                 |                            | $\delta_5$                  |          |            |      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$              |                                                 |                            |                     | . 1          |                             |              |                           | . 1              | (             |                        |                            |                             | (        |            |      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                | Method                                          | Rank                       | APV                 | Met          | hod                         |              | APV                       | Meth             | od            | Rank                   | APV                        | Method                      |          |            | APV  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                | $\delta_5$                                      |                            | (-)                 | $\delta_2$   |                             | 71.11        | (-)                       | $\delta_5$       |               | 69.14                  | (-)                        | $\delta_2$                  |          | 85.05      | (-)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                | $\delta_2$                                      | 65.94                      | 0.77                | $\delta_5$   |                             | 72.21        | 1.00                      | $\delta_2$       |               | 69.59                  | 0.97                       | $\delta_0 (\mathfrak{C}^G)$ | (M)      | 93.08      | 1.00 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $              | $\delta_0 \left( \mathfrak{C}^{O_{mM}} \right)$ | 99.06                      | 0.01                | $\delta_3$   |                             | 79.26        | 1.00                      | $\delta_3$       |               | 88.53                  | 0.33                       | $\delta_5$                  | /        | 95.26      | 1.00 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $              |                                                 |                            |                     | $\delta_0$ ( | $\mathfrak{C}^{O_{\alpha}}$ |              |                           | $\delta_0$ (e    | $O_{div}$     |                        |                            |                             |          | 96.32      | 1.00 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $              |                                                 |                            | $\overline{0.00}$   | $\delta_4$   | (- )                        | 122.73       | $\overline{0.00}$         | $\delta_4$       |               |                        | $\overline{0.00}$          | $\delta_4$                  |          |            |      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$              |                                                 |                            |                     | $\delta_1$   |                             |              |                           | $\delta_1$       |               | 142.82                 |                            | $\delta_1$                  |          |            |      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$              |                                                 |                            |                     |              |                             |              |                           | -                |               |                        |                            | -                           | F        |            |      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                | Method                                          |                            | APV                 | Met          | hod                         |              | APV                       | Meth             | od            | Rank                   | APV                        |                             | 1        | Rank       | APV  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                | $\delta_5$                                      |                            | (-)                 | $\delta_5$   |                             |              | (-)                       | $\delta_2$       |               |                        | (-)                        | $\delta_2$                  |          |            | (-)  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$               | $\delta_2$                                      |                            | 0.50                | $\delta_2$   |                             |              | 0.97                      |                  |               | 87.12                  |                            | $\delta_5$                  |          |            |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$               | $\delta_3$                                      | 88.85                      |                     | $\delta_3$   |                             | 80.21        | 0.81                      | $\delta_4$       |               | 90.05                  | 1.00                       | $\delta_0 (\mathfrak{C}^F$  | BPC      | 95.89      | 0.03 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$               | $\delta_0 (\mathfrak{C}^{C_F})$                 | 94.38                      | 0.18                | $\delta_0$ ( | $(\mathfrak{C}^{C_L})$      | 104.80       | 0.03                      | $\delta_0$ (e    | $F^{GL}$      | 95.97                  | 0.84                       | $\delta_3$                  | <i>,</i> | 96.06      | 0.03 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $              |                                                 |                            |                     | $\delta_4$   |                             |              | 0.00                      | $\delta_3$       |               | 107.86                 |                            | $\delta_4$                  |          |            | 0.00 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$              |                                                 |                            | 0.00                | $\delta_1$   |                             |              |                           | $\delta_1$       |               | 135.18                 |                            | $\delta_1$                  |          | 142.61     | 0.00 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$               |                                                 | Metho                      | $T_{\rm d}$         | NM<br>Rank   | APV                         | Me           | thod                      | $T_{HP}$<br>Rank | APV           | Me                     | thod                       | O <sub>B</sub><br>Rank      | APV      |            |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$               |                                                 |                            |                     |              |                             |              | liiou                     |                  |               |                        | linou                      |                             |          | _          |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$               |                                                 |                            |                     | 58.23        | (-)                         |              |                           | 68.09            | (-)           |                        |                            |                             |          |            |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$               |                                                 | 05                         | <b></b>             |              |                             | 02           | ( aT                      | 69.32            |               |                        |                            |                             |          |            |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$               |                                                 |                            | • N M )             |              |                             | $\delta_0$   | $(\mathfrak{C}^{IHP})$    | 83.39            |               | $\delta_5$             | (0,0)                      |                             |          |            |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$               |                                                 |                            |                     |              |                             |              |                           |                  |               | $\delta_0$             | $(\mathfrak{C}^{O_B})$     |                             |          |            |      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $               |                                                 |                            |                     |              |                             | $\delta_4$   |                           |                  |               |                        |                            |                             |          |            |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $              |                                                 | $\delta_1$                 |                     |              | 0.00                        | $\delta_1$   |                           |                  | <u>0.00</u>   | $\delta_1$             |                            |                             | 0.00     | _          |      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$              |                                                 | <b>M</b> (1                |                     |              |                             |              |                           |                  | 4.017         | 14                     |                            | $O_{RS}$                    | 4.017    |            |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$               |                                                 |                            |                     |              |                             |              |                           |                  |               |                        |                            |                             |          | _          |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$               |                                                 | $\delta_0 (e^2)$           | )                   |              | (-)                         | 00           | (e <sup>51</sup> ")       |                  |               | $\delta_0$             | $(\mathbf{e}^{O_{RS}})$    |                             | (-)      |            |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$               |                                                 | $\partial_5$               |                     |              |                             | $\delta_1$   |                           | 99.50            |               | $\delta_2$             |                            | 93.59                       |          |            |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$               |                                                 | 02                         |                     |              |                             | 02           |                           |                  |               | 04                     |                            | 94.33                       |          |            |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$               |                                                 | 03                         |                     |              |                             | 03           |                           |                  |               |                        |                            | 96.88                       |          |            |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $              |                                                 |                            |                     |              |                             | 04<br>S      |                           |                  |               |                        |                            |                             |          |            |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $              |                                                 | 01                         | F                   |              | 0.00                        | 05           |                           |                  | 1.00          | 01                     |                            |                             | 0.00     | _          |      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                |                                                 | Metho                      | d F                 | BD1<br>Rank  | APV                         | Me           | thod                      | Rank             | APV           |                        | thod                       | <sup>7</sup> NA2<br>Rank    | APV      |            |      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                |                                                 | $\delta_5$                 |                     |              | (-)                         | $\delta_2$   |                           |                  |               | $\delta_0$             | $(\mathfrak{C}^{F_{NA2}})$ |                             | (-)      |            |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                 |                                                 | $\delta_0 (\mathfrak{C}^1$ | $F^{BD1}$           | 80.82        | 0.21                        | $\delta_{5}$ |                           |                  |               | $\delta_1$             | ,                          | 89.58                       | 0.36     |            |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                 |                                                 | $\delta_2$                 | ,                   |              | 0.21                        | $\delta_0$   | $(\mathfrak{C}^{F_{NA}})$ |                  | 0.51          | $\delta_4$             |                            |                             |          |            |      |
| $\delta_4$ 125.18 0.00 $\delta_4$ 113.08 0.00 $\delta_2$ 120.73 0.00 |                                                 | $\delta_3$                 |                     | 98.88        | 0.01                        | $\delta_3$   | ` '                       | 94.23            | 0.26          | $\delta_3$             |                            | 95.70                       | 0.34     |            |      |
|                                                                      |                                                 | $\delta_4$                 |                     |              | 0.00                        | $\delta_4$   |                           | 113.08           |               | $\delta_2$             |                            |                             |          |            |      |
|                                                                      |                                                 |                            |                     | 150.02       | 0.00                        | $\delta_1$   |                           | 153.50           | 0.00          |                        |                            | 125.50                      | 0.00     |            |      |

TABLE IX: Align Friedman rank tests and APV considering PM as fuzzy measure.

TABLE X: Total of times that each approach is considered as control variable in the Friedman rank test

|            | Cardinality | Dirac | OWA | Wmean | PM |
|------------|-------------|-------|-----|-------|----|
| $\delta_0$ | _           | 5     | 8   | 1     | 3  |
| $\delta_1$ | -           | -     | -   | 1     | -  |
| $\delta_2$ | 5           | 2     | 8   | 7     | 8  |
| $\delta_3$ | 2           | 1     | -   | 1     | -  |
| $\delta_4$ | 1           | -     | -   | _     | -  |
| $\delta_5$ | 11          | 11    | 3   | 9     | 8  |
| #nDiff     | 8           | 5     | 0   | 16    | 9  |

TABLE XI: Summary of the functions that achieved the top 3 best performance per generalization and fuzzy measure.

|             |              | $\delta_2$ |          |       | $\delta_5$ |       |  |  |  |
|-------------|--------------|------------|----------|-------|------------|-------|--|--|--|
|             | #Top1        | #Top2      | #Top3    | #Tc   | p1 #Top2   | #Top3 |  |  |  |
| Cardinality | $O_{\alpha}$ | $F_{NA}$   | $O_{RS}$ | $T_P$ | $F_{GL}$   | $T_M$ |  |  |  |
| PM          | $F_{GL}$     | $O_b$      | $T_P$    | $T_M$ | $F_{BD1}$  | $C_L$ |  |  |  |

to be used instead of  $C_F$ -integrals in classification problems, since they improve the performance of the classical difference operator. We highlight the usage of the RDF  $\delta_5$  combined with the function  $T_M$  and the fuzzy measure PM.

In a broader scenario, our developments showed that the

 $dC_F$ -integrals can enlarge the flexibility of  $C_F$ -integrals, since different combinations of RDFs, functions F and fuzzy measures can be used, so being adapted to each kind of problem.

Future works are in two directions. For the theoretical part, we intend to (i) study the relation between the generalizations of the Choquet integral and the fuzzy t-conorm integral, and (ii) defined the  $dC_F$ -integrals in the interval-valued context.

As for the applied part, we want to study: (i) the application in the context of multi-criteria decision making; (ii) to consider methods for learning general fuzzy measures; and (iii) to analyze the behavior of this new approach when considering monotone (or not) datasets.

#### ACKNOWLEDGMENT

Supported by Navarra de Servicios y Tecnologías, S.A. (NASERTIC), PNPD/CAPES (464880/2019-00), FAPERGS (19/2551-0001279-9, 19/2551-0001660), CNPq (301618/2019-4, 305805/2021-5), the Spanish Ministry of Science and Technology (TIN2016-77356-P) and [PID2019-108392GB I00 (MCIN/AEI/10.13039/501100011033)] and UPNA (PJUPNA1926).

Generated by IEEEtran.bst, version: 1.14 (2015/08/26)

#### REFERENCES

- G. Beliakov, H. Bustince, and T. Calvo, A Practical Guide to Averaging Functions. Berlin, New York: Springer, 2016.
- [2] E. P. Klement, R. Mesiar, and E. Pap, *Triangular Norms*. Dordrecht: Kluwer Academic Publisher, 2000.
- [3] R. R. Yager and J. Kacprzyk, Eds., The Ordered Weighted Averaging Operators: Theory and Applications. Norwell: Kluwer, 1997.
- [4] G. Choquet, "Theory of capacities," Annales de l'Institut Fourier, vol. 5, pp. 131–295, 1953–1954.
- [5] H. Ishibuchi, T. Nakashima, and M. Nii, Classification and Modeling with Linguistic Information Granules, Advanced Approaches to Linguistic Data Mining, ser. Advanced Information Processing. Berlin: Springer, 2005.
- [6] O. Cordon, M. J. del Jesus, and F. Herrera, "Analyzing the reasoning mechanisms in fuzzy rule based classification systems," *Mathware and Soft Computing*, vol. 5, no. 2-3, pp. 321 – 332, 1998.
- [7] O. Cordón, M. J. del Jesus, and F. Herrera, "A proposal on reasoning methods in fuzzy rule-based classification systems," *International Journal of Approximate Reasoning*, vol. 20, no. 1, pp. 21 – 45, 1999.
- [8] T. Murofushi, M. Sugeno, and M. Machida, "Non-monotonic fuzzy measures and the Choquet integral," *Fuzzy Sets and Systems*, vol. 64, no. 1, pp. 73 – 86, 1994.
- [9] E. Barrenechea, H. Bustince, J. Fernandez, D. Paternain, and J. A. Sanz, "Using the Choquet integral in the fuzzy reasoning method of fuzzy rule-based classification systems," *Axioms*, vol. 2, no. 2, pp. 208–223, 2013.
- [10] G. P. Dimuro, J. Fernández, B. Bedregal, R. Mesiar, J. A. Sanz, G. Lucca, and H. Bustince, "The state-of-art of the generalizations of the Choquet integral: From aggregation and pre-aggregation to ordered directionally monotone functions," *Information Fusion*, vol. 57, pp. 27 – 43, 2020.
- [11] G. Lucca, J. Sanz, G. Pereira Dimuro, B. Bedregal, R. Mesiar, A. Kolesárová, and H. Bustince Sola, "Pre-aggregation functions: construction and an application," *IEEE Transactions on Fuzzy Systems*, vol. 24, no. 2, pp. 260–272, April 2016.
- [12] J. C. Wieczynski, G. P. Dimuro, E. N. Borges, H. S. Santos, G. Lucca, R. Lourenzutti, and H. Bustince, "Generalizing the GMC-RTOPSIS method using CT-integral pre-aggregation functions," in 2020 IEEE International Conference on Fuzzy Systems. IEEE, 2020, pp. 1–8.
- [13] G. Lucca, J. A. Sanz, G. P. Dimuro, B. Bedregal, M. J. Asiain, M. Elkano, and H. Bustince, "CC-integrals: Choquet-like copula-based aggregation functions and its application in fuzzy rule-based classification systems," *Knowledge-Based Systems*, vol. 119, pp. 32 – 43, 2017.
- [14] L. Ko, Y. Lu, H. Bustince, Y. Chang, Y. Chang, J. Fernandez, Y. Wang, J. A. Sanz, G. Pereira Dimuro, and C. Lin, "Multimodal fuzzy fusion for enhancing the motor-imagery-based brain computer interface," *IEEE Computational Intelligence Magazine*, vol. 14, no. 1, pp. 96–106, 2019.
- [15] J. Wieczynski, G. Lucca, E. Borges, G. Dimuro, R. Lourenzutti, and H. Bustince, "CC-separation measure applied in business group decision making," in *Proc. of the 23rd International Conference on Enterprise Information Systems - Vol 1.* SciTePress, 2021, pp. 452–462.
- [16] G. Lucca, J. A. Sanz, G. P. Dimuro, B. Bedregal, H. Bustince, and R. Mesiar, "CF-integrals: A new family of pre-aggregation functions with application to fuzzy rule-based classification systems," *Information Sciences*, vol. 435, pp. 94 – 110, 2018.

- [17] C. Marco-Detchart, G. Lucca, C. Lopez-Molina, L. D. Miguel, G. P. Dimuro, and H. Bustince, "Neuro-inspired edge feature fusion using Choquet integrals," *Information Sciences*, vol. 581, pp. 740 – 754, 2021.
- [18] G. Lucca, G. P. Dimuro, J. Fernandez, H. Bustince, B. Bedregal, and J. A. Sanz, "Improving the performance of fuzzy rule-based classification systems based on a nonaveraging generalization of CC-integrals named  $C_{F_1F_2}$ -integrals," *IEEE Transactions on Fuzzy Systems*, vol. 27, no. 1, pp. 124–134, Jan 2019.
- [19] T. Murofushi and M. Sugeno, "Fuzzy t-conorm integral with respect to fuzzy measures: Generalization of Sugeno integral and Choquet integral," *Fuzzy Sets and Systems*, vol. 42, no. 1, pp. 57–71, 1991.
- [20] Y. Narukawa and V. Torra, "Generalized transformed t-conorm integral and multifold integral," *Fuzzy Sets and Systems*, vol. 157, no. 10, pp. 1384–1392, 2006.
- [21] G. P. Dimuro, G. Lucca, B. Bedregal, R. Mesiar, J. A. Sanz, C.-T. Lin, and H. Bustince, "Generalized  $C_{F_1F_2}$ -integrals: From Choquetlike aggregation to ordered directionally monotone functions," *Fuzzy Sets and Systems*, vol. 378, pp. 44 – 67, 2020.
- [22] L. Horanská and A. Šipošová, "A generalization of the discrete Choquet and Sugeno integrals based on a fusion function," *Information Sciences*, vol. 451-452, pp. 83–99, 2018.
- [23] R. Mesiar, A. Kolesárová, H. Bustince, G.P. Dimuro, B.C. Bedregal, "Fusion functions based discrete Choquet-like integrals," *European Journal of Operational Research*, vol. 252, no. 2, pp. 601–609, 2016.
- [24] H. Bustince, J. Fernandez, A. Kolesárová, and R. Mesiar, "Directional monotonicity of fusion functions," *European Journal of Operational Research*, vol. 244, no. 1, pp. 300–308, 2015.
- [25] H. Bustince, E. Barrenechea, M. Sesma-Sara, J. Lafuente, G. P. Dimuro, R. Mesiar, and A. Kolesárová, "Ordered directionally monotone functions. justification and application," *IEEE Transactions on Fuzzy Systems*, vol. 26, no. 4, pp. 2237–2250, 2017.
- [26] C. Alsina, M. J. Frank, and B. Schweizer, Associative Functions: Triangular Norms and Copulas. World Scientific, 2006.
- [27] H. Bustince, R. Mesiar, J. Fernandez, M. Galar, D. Paternain, A. Altalhi, G. Dimuro, B. Bedregal, and Z. Takáč, "d-Choquet integrals: Choquet integrals based on dissimilarities," *Fuzzy Sets and Systems*, vol. 414, pp. 1–27, 2021.
- [28] H. Bustince, E. Barrenechea, and M. Pagola, "Restricted equivalence functions," *Fuzzy Sets and Systems*, vol. 157, no. 17, pp. 2333 – 2346, 2006.
- [29] H. Bustince, E. Barrenechea, and M. Pagola, "Relationship between restricted dissimilarity functions, restricted equivalence functions and normal EN-functions: Image thresholding invariant," *Pattern Recognition Letters*, vol. 29, no. 4, pp. 525 – 536, 2008.
- [30] Z. Takác, M. Uriz, M. Galar, D. Paternain, and H. Bustince, "Discrete IV d<sub>G</sub>-Choquet integrals with respect to admissible orders," *Fuzzy Sets* and Systems, 2021. (In Press, Corrected Proof).
- [31] J. Alcalá-Fdez, L. Sánchez, S. García, M. Jesus, S. Ventura, J. Garrell, J. Otero, C. Romero, J. Bacardit, V. Rivas, J. Fernández, and F. Herrera, "Keel: a software tool to assess evolutionary algorithms for data mining problems," *Soft Computing*, vol. 13, no. 3, pp. 307–318, 2009.
- [32] T. Wilkin and G. Beliakov, "Weakly monotone aggregation functions," International Journal of Intelligent Systems, vol. 30, pp. 144–169, 2015.
- [33] G. P. Dimuro, B. Bedregal, H. Bustince, J. Fernandez, G. Lucca, and R. Mesiar, "New results on pre-aggregation functions," in *Uncertainty Modelling in Knowledge Engineering and Decision Making, Proceedings of the 12th International FLINS Conference*, World Scientific Proceedings Series on Computer Engineering and Information Science. Singapura: World Scientific, 2016, vol. 10, pp. 213–219.
- [34] G. Lucca, J. A. Sanz, G. P. Dimuro, E. N. Borges, H. Santos, and H. Bustince, "Analyzing the performance of different fuzzy measures with generalizations of the Choquet integral in classification problems," in *IEEE International Conference on Fuzzy Systems*, 2019, pp. 1–6.
- [35] H. Bustince, J. Fernandez, R. Mesiar, J. Montero, and R. Orduna, "Overlap functions," *Nonlinear Analysis: Theory, Methods & Applications*, vol. 72, no. 3-4, pp. 1488–1499, 2010.
- [36] R. B. Nelsen, An introduction to copulas, ser. Lecture Notes in Statistics. New York: Springer, 1999, vol. 139.
- [37] G. P. Dimuro and B. Bedregal, "Archimedean overlap functions: The ordinal sum and the cancellation, idempotency and limiting properties," *Fuzzy Sets and Systems*, vol. 252, pp. 39 – 54, 2014.
- [38] H. Bustince, J. Fernandez, R. Mesiar, and T. Calvo, "Additive generators of overlap functions," in *Aggregation Functions in Theory and in Practice*, ser. Advances in Intelligent Systems and Computing, Eds. Berlin: Springer, 2013, vol. 228, pp. 167–178.

- [39] G. P. Dimuro, B. Bedregal, H. Bustince, M. J. Asiáin, and R. Mesiar, "On additive generators of overlap functions," *Fuzzy Sets and Systems*, vol. 287, pp. 76 – 96, 2016.
- [40] M. Elkano, M. Galar, J. Sanz, A. Fernández, E. Barrenechea, F. Herrera, and H. Bustince, "Enhancing multi-class classification in FARC-HD fuzzy classifier: On the synergy between n-dimensional overlap functions and decomposition strategies," *IEEE Transactions on Fuzzy Systems*, vol. 23, no. 5, pp. 1562–1580, 2015.
- [41] A. Stoltenberg-Hansen, I. Lindström, and E. B. Griffor, *Mathematical Theory of Domains*, ser. Cambridge Tracts in Theoretical Computer Science. Cambridge: Cambridge University Press, 1994, vol. 22.
- [42] J. Alcala-Fdez, R. Alcala, and F. Herrera, "A fuzzy association rulebased classification model for high-dimensional problems with genetic rule selection and lateral tuning," *IEEE Transactions on Fuzzy Systems*, vol. 19, no. 5, pp. 857–872, 2011.
- [43] H. Ishibuchi and T. Nakashima, "Effect of rule weights in fuzzy rulebased classification systems," *IEEE Transactions on Fuzzy Systems*, vol. 9, no. 4, pp. 506–515, 2001.
- [44] J.-R. Cano, P. A. Gutiérrez, B. Krawczyk, M. Woźniak, and S. García, "Monotonic classification: An overview on algorithms, performance measures and data sets," *Neurocomputing*, vol. 341, pp. 168–182, 2019.
- [45] D. Sheskin, Handbook of parametric and nonparametric statistical procedures, 2nd ed. Chapman &Hall/CRC, 2006.
- [46] S. García, A. Fernández, J. Luengo, and F. Herrera, "A study of statistical techniques and performance measures for genetics-based machine learning: Accuracy and interpretability," *Soft Computing*, vol. 13, no. 10, pp. 959–977, 2009.
- [47] J. Demšar, "Statistical comparisons of classifiers over multiple data sets," *Journal of Machine Learning Research*, vol. 7, pp. 1–30, 2006.
- [48] J. L. Hodges and E. L. Lehmann, "Ranks methods for combination of independent experiments in analysis of variance," *Annals of Mathematical Statistics*, vol. 33, pp. 482–497, 1962.
- [49] S. Holm, "A simple sequentially rejective multiple test procedure," *Scandinavian Journal of Statistics*, vol. 6, pp. 65–70, 1979.



Jonata Wieczynski received the degree in applied mathematics from the Universidade Federal do Rio Grande, Brazil, in 2019, and the M.Sc. degree in computer engineering, in 2021, from the same university. He is currently a Ph.D. candidate at Universidad Pública de Navarra, in Spain. His research interests include fuzzy logic and aggregation functions, machine intelligence, multi-criteria decision making, and brain-computer interfaces.



Giancarlo Lucca is currently a post doctorate researcher in the Federal University of Rio Grande (FURG). He received his Ph.D from the Public University of Navarre (UPNa). He is member of the Grupo de Gestão da Informação (GInfo), Computação Flexível (CFlex) and Grupo de Inteligência Artificial y Razonamiento Aproximado (GIARA).



Eduardo Borges (member, IEEE) is a professor at the Center for Computational Sciences at the Federal University of Rio Grande. He received his master's and doctorate in Computing from the Federal University of Rio Grande do Sul, where he was also a postdoctoral researcher. He is project portfolio coordinator for the Unit of the Brazilian Company for Industrial Research and Innovation (EMBRAPII) called iTec/FURG. He is the Graduate Program in Computing chair, working mainly on the following subjects: data science, fuzzy rule-based

classification, deduplication, similarity, and information retrieval.



José Antonio Sanz received the M.Sc. and Ph.D. degrees in computer sciences from the Public University of Navarra, Pamplona, Spain, in 2008 and 2011, respectively. He is currently an Associate Lecturer with the Department of Automatics and Computation, Public University of Navarre. He is the author of 37 published original articles in international journals. He received the best paper award in the FLINS 2012 international conference and the Pepe Millá award in 2014.



**Tiago da Cruz Asmus** received the M.Sc. degree in computational modelling from the Universidade Federal do Rio Grande, Brazil, in 2013. In 2014, he became an Assistant Professor in Departamento de Matemática, Estatística e Física, Universidade Federal do Rio Grande, Brazil. He is currently working toward the Ph.D. degree with the Universidad Pública de Navarra, Spain, under the advising of Prof. José A. Sanz and Prof. Graçaliz P. Dimuro.



computer sciences.

**Javier Fernández** (Member, IEEE) received the M.Sc. degree in mathematics from the University of Zaragoza, Zaragoza, Spain, in 1999, and the Ph.D. degree in mathematics from the University of the Basque Country, Leioa, Spain, in 2003.

He has authored or coauthored approximately 45 original articles. Currently, he is an Associate Lecturer with the Department of Automatics and Computation, Public University of Navarre, Spain. He is involved with teaching artificial intelligence and computational mathematics for students of the



**Graçaliz Dimuro** (member, IEEE) received M.Sc. (1991) and Ph.D. (1998) degrees from the Inst. Informática of Universidade Federal do Rio Grande do Sul, Brazil. In 2015, she was a POS-DOC of the Brazilian Research Funding Agency CNPq, with GIARA group at Universidad Publica de Navarra (UPNA), Spain, and, in 2017, she had a talent grant with the Institute of Smart Cities of UPNA. Currently, she is a full professor with Universidad Federal do Rio Grande, Brazil, a Researcher of level 1 of CNPq, and a visitant professor with UPNA.



Humberto Bustince (Fellow, IEEE) received the Graduate degree in physics from the University of Salamanca, Salamanca, Spain, in 1983, and the Ph.D. degree in mathematics from the Public University of Navarra, Pamplona, Spain, in 1994. He is full professor in the Public University of Navarra and Honorary Professor in the University of Navarra and Honorary Professor in the University of Nottingham. He has authored more than 210 works in conferences and international journals, with around 110 of them in journals of the first quartile of JCR. He is an associated editor of the IEEE Transactions on Fuzzy

Systems and member of the editorial board of Fuzzy Sets and Systems, Information Fusion, International Journal of Computational Intelligence Systems and Journal of Intelligent & Fuzzy Systems.