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Abstract—The Choquet integral (CI) is an averaging aggrega-
tion function that has been used, e.g., in the Fuzzy Reasoning
Method (FRM) of Fuzzy Rule-Based Classification Systems
(FRBCS’s) and in multi-criteria decision making in order to
take into account the interactions among data/criteria. Several
generalizations of the CI have been proposed in the literature
in order to improve the performance of FRBCS’s, and also
to provide more flexibility in the different models by relaxing
both the monotonicity requirement and averaging conditions
of aggregation functions. An important generalization are the
CF -integrals, which are pre-aggregation functions that may
present interesting non-averaging behavior depending on the
function F adopted in the construction and, in this case, offering
competitive results in classification. Recently, the concept of d-
Choquet integrals was introduced as a generalization of the
CI by Restricted Dissimilarity Functions (RDFs), improving the
usability of CIs, as when comparing inputs by the usual difference
may not be viable. The objective of this paper is to introduce
the concept of dCF -integrals, which is a generalization of CF -
integrals by RDFs. The aim is to analyze whether the usage
of dCF -integrals in the FRM of FRBCS’s represents a good
alternative towards the standard CF -integrals that just consider
the difference as a dissimilarity measure. For that, we consider
six RDFs combined with five fuzzy measures, applied with more
than twenty functions F . The analysis of the results are based
on statistical tests, demonstrating their efficiency. Additionally,
comparing the applicability of dCF -integrals versus CF -integrals,
the range of the good generalizations of the former is much larger
than that of the latter.

Index Terms—CF-integrals, d-Choquet integrals, restricted
dissimilarity functions, fuzzy rule based classification systems,
pre-aggregation functions

I. INTRODUCTION

An aggregation function (AF) [1] is a special type of
function that fuses different values into a single one, which
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represents all the considered values. The arithmetic mean, the
Product t-norm [2], the Ordered Weight Average [3] and the
Choquet integral (CI) [4] are examples of AFs.

Aggregation functions have an important role in Fuzzy
Rule-Based Classification Systems (FRBCS’s) [5], since they
are responsible for aggregating information in several stages
of the Fuzzy Reasoning Method (FRM) [6]. While the FRM
of Winning Rule (WR) [7] takes into account only the fuzzy
rule having the largest compatibility with the example, the
usage of the CI in the FRM allows to model the relation
among the fired rules by considering a fuzzy measure [8].
In fact, Barrenechea et al. [9] introduced a FRM considering
the CI, and obtained an improvement in the performance of
the classifier when associated to the power measure.

The CI was generalized in many ways see, e.g., [10]) and
some of those generalizations were used in the FRM of FR-
BCS’s, such as the CT -integrals [11] (also applied in MCDM
[12]), CC-integrals [13] (also used in motor-imagery-based
brain computer interface systems [14] and group MCDM [15]),
CF -integrals [16] (also used in image processing [17]) and
CF1F2-integrals [18], all of them introduced by Lucca et al.
Also, a well known generalization of the CI is the fuzzy t-
conorm integral S (called fuzzy t-integral by Murofushi &
Sugeno [19], or generalized t-conorm integral by Narukawa
& Torra [20]) for a t-system (⊥1,⊥2,⊥3,⊡), where ⊥1,⊥2

,⊥3 are continuous t-conorms which are the maximum or
Archimedean, and ⊡ is an increasing function satisfying spe-
cial constraints [19, Def. 2.1]. See also the gCF1F2-integrals
by Dimuro et al. [21] and the Cm

F -integrals by Horanska &
Šipošová [22].

The main features of those generalizations are that some of
them may be neither aggregation functions (since they may
not be increasing in the standard sense) nor averaging (i.e.,
the output of the “aggregation” operator is not bounded by
the minimum or the maximum of the inputs). Table I shows
an overview of such characteristics, which depend on specific
properties of the functions used in the generalization, where
T is a t-norm [2], C is a copula [26] and F , F1 and F2 are
more general functions.

Recently, Bustince et al. [27] introduced the concept of
d-Choquet integrals by replacing the difference operator in
the definition of the CI by restricted dissimilarity functions
(RDFs) [28], [29]. This interesting generalization can improve
the usability of the standard CI in some contexts, since it can
be applied when the comparison of inputs using the usual
difference is not possible/viable, as in the case of intervals
[30]. Moreover, since there are several ways of defining

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or 
redistribution to servers or lists, or reuse of any copyrighted component of this work in other work



2

TABLE I: Main features of the generalizations of the CI

Integral Incr. D. Incr. OD incr. Aver. Non-aver.
(AF) (PAF) -

CI ✓ ✓ ✓ ✓
CT

∗ ✓ ✓
CC ✓ ✓ ✓ ✓
CF ✓ ✓ ✓
CF1F2

∗∗ ✓ ✓ ✓
gCF1F2

✓ ✓ ✓ ✓ ✓
Cm

F
∗∗∗ ✓ ✓ ✓ ✓ ✓

S∗∗∗∗ ✓ ✓ ✓
∗ When T is different from the product t-norm;
∗∗ when F1 and F2 are not copulae;
∗∗∗ under certain constraints [22, Props. 6 and 10];
∗∗∗∗ whenever (1−⊥1

0) ⊡ 1 = 1;
Incr.: increasing; D. Incr.: directional increasing [24];
OD incr.: ordered directional increasing [25];
AF: aggregation function [1]; PAF: pre-aggregation function [11];
Aver.: averaging [1]; Non-aver.: Non averaging [1].

dissimilarity functions, one can adopt the one that best fits
the faced problem, providing more flexibility to the model.

Then, in an attempt to improve both the performance and
flexibility of CF -integrals in FRBCS’s, the general objective of
this paper is to introduce the concept of dCF -integrals, which
is a generalization of the Choquet-based CF -integrals by
replacing the difference operator by RDFs. For that, we have
two specific goals: (i) a theoretical study, showing the main
features of this new aggregation-like function according to
both, the function F and the restricted dissimilarity functions
used in its construction and (ii) the application of dCF -
integrals in the FRM of a FRBCS, performing an extensive
analysis of its behaviour and performance. In this sense, we
aim at answering the following research questions:
1. Is it useful to substitute the classical difference by restricted
dissimilarity functions in CF integrals when applied to tackle
classification problems?
2. Which combinations of functions F , restricted dissimilarity
functions and fuzzy measures provide better performance?
3. Do dCF -integrals enlarge the flexibility of CF -integrals?

In order to present a complete and robust study, we
consider 33 different datasets selected from KEEL dataset
repository [31]. We combine 21 different functions F with
six different restricted dissimilarity functions. All these com-
binations are also tested with five different fuzzy measures.
The performance of the dCF -integrals are measured using
the accuracy rate and the results are supported and analyzed
considering statistical tests.

The organization of this paper follows this structure. Sec-
tion II presents the preliminary concepts. In Section III, we
introduce the concept of dCF -integrals as well as a theoret-
ical study. The new FRM is presented in Section IV. The
experimental framework is described in Section V. After that,
the obtained results are analysed in Section VI. Finally, the
conclusions are drawn in Section VII.

II. PRELIMINARIES

A function F : [0, 1]2 → [0, 1] with 0 as left annihilator
element (0-LAE), that is, F (0, y) = 0, ∀y ∈ [0, 1], is said to
be left 0-absorbent. If F (x, 1) = x, for any x ∈ [0, 1], then

we say that it has 1 as right neutral element (1-RNE). Also,
when F (x, y) ≤ x, ∀x, y ∈ [0, 1], we say that F follows the
Left Conjunctive Property (LC) [16].

Since we are working with generalizations of the CI, two
definitions are essential. The first one is the definition of
aggregation functions [1]: let A : [0, 1]n → [0, 1] be an n-
ary function, if A satisfies:

(A1) Increasingness in each argument: ∀i ∈
{1, . . . , n}: if xi ≤ y then A(x1, . . . , xn) ≤
A(x1, . . . , xi−1, y, xi+1, . . . , xn);

(A2) Boundary conditions: A(0, . . . , 0) = 0, A(1, . . . , 1) = 1;
then A is an aggregation function (AF).

The second is a more generic definition, where we ask
the function to be increasing only in a pre-defined direction,
that is, to be directional monotonic [24]. Let H be an n-ary
function and r = (r1, . . . , rn) an n-dimensional vector, with
r ̸= 0 = (0, . . . , 0). We say that H is r-increasing if, for all
x ∈ [0, 1]n and c>0 such that (x+ cr) ∈ [0, 1]n, it holds that

H(x1 + cr1, . . . , xn + crn) ≥ H(x1, . . . , xn).

If r = 1 = (1, . . . , 1), H is said to be weak increasing [32]. If
H is r-increasing, for some r ̸= 0, and satisfies the boundary
conditions (A2), then H is an r-pre-aggregation function (r-
PAF) [11], [33].

By working with fuzzy integrals we also work with fuzzy
measures [4], that is, m : 2N → [0, 1] such that, for all X,Y ⊆
N = {1, . . . , n}, the following properties holds:

(m1) Increasingness: if X ⊆ Y , then m(X) ≤ m(Y );
(m2) Boundary conditions: m(∅) = 0 and m(N) = 1.

The fuzzy measures considered in this study, are the same as
those used in [9], whose performances were analyzed in [34].
Their definitions are the following, where X ⊆ N :

• Cardinality or uniform measure: mC(X) = |X|/n.
• Dirac’s measure: For a fixed i ∈ N ,

mD(X) =

{
1 if i ∈ X
0 if i ̸∈ X.

• Weighted mean (Wmean): Let (w1, . . . , wn) ∈ [0, 1]n

be a weight vector, such that
∑n

i=1 wi = 1. Define:
m({1}) = w1, . . . ,m({n}) = wn and then the Wmean
is given by: mWM (X) =

∑
i∈X m({i}), which is a

probability measure on N , being the uniform measure
a particular case.

• Ordered Weighted Averaging (OWA): Let m be a
symmetric fuzzy measure and derive a weight vector
(w1, . . . , wn)∈[0, 1]n as wi=m(An−i+1) − m(An−i),
for i∈{1, . . ., n}, Ai any subset with |Ai|=i. Define
mOWA({i})=wj , with j being the i-th biggest compo-
nent of X , and: mOWA(X) =

∑
i∈X mOWA({i}).

• Power Measure (PM): mP (X) = (|X|/n)q , with q > 0.
In this study, for the PM, we stress out that the value of

the exponent q is learned by means of a genetic algorithm. In
fact, as we have as many fuzzy measures as classes, we learn
as many values for the parameter q as classes. This approach
follows the idea introduced in [9] and widely used by the
different generalizations of the CI (see [11], [13], [16], [18]).
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Using a fuzzy measure m : 2N → [0, 1], the discrete
Choquet integral (CI) [4] with respect to m, is the function
Cm : [0, 1]n → [0, 1], defined, for all x ∈ [0, 1]n, by

Cm(x) =

n∑
i=1

(
x(i) − x(i−1)

)
·m

(
A(i)

)
,

where (x(1), . . . , x(n)) is an increasing permutation of x,
x(0) = 0 and A(i) = {(i), . . . , (n)} is the subset of indices of
n− i+ 1 largest components of x.

As discussed in the Introduction, several generalizations of
the CI may be found in the literature [10]. Recently, Lucca et
al. [16] introduced the concept of CF -integral (which is similar
to the F-based discrete Choquet-like integral [23]). Let F :
[0, 1]2 → [0, 1] be a bivariate function. The CF -integral with
respect to a fuzzy measure m : 2N → [0, 1] is the function
CF
m : [0, 1]n → [0, 1] defined, for all x ∈ [0, 1]n, by

CF
m(x) = min

{
1,

n∑
i=1

F
(
x(i) − x(i−1), m

(
A(i)

))}
,

where x(i) and A(i) were defined in the previous paragraph
for the CI. For examples of functions F , see Table II.

As a key concept in this work, a restricted dissimilarity
function [28], [29] is a function δ : [0, 1]2 → [0, 1] that
satisfies, for all x, y, z ∈ [0, 1], the following conditions:

(d1) δ(x, y) = δ(y, x);
(d2) δ(x, y) = 1 if and only if {x, y} = {0, 1};
(d3) δ(x, y) = 0 if and only if x = y;
(d4) if x ≤ y ≤ z, then δ(x, y) ≤ δ(x, z) and δ(y, z) ≤

δ(x, z).
By replacing the difference operator in the definition of

the CI by a restricted dissimilarity function, Bustince et al.
[27] introduced the d-Choquet integral (d-integral, for short).
A discrete d-Choquet integral with respect to a fuzzy measure
m : 2N → [0, 1] and a restricted dissimilarity function
δ : [0, 1]2 → [0, 1] is a mapping Cm,δ : [0, 1]n → [0, n],
defined, for all x ∈ [0, 1]n, by:

Cm,δ(x) =

n∑
i=1

δ
(
x(i), x(i−1)

)
·m

(
A(i)

)
where x(i) and A(i) were defined previously. For examples of
restricted dissimilarity functions, see Table III (functions δ).

III. dCF -INTEGRALS

This section introduces the definition of dCF -integral,
analysing the most important properties.

Definition 1 (dCF -integral). Let F : [0, 1]2 → [0, 1] be a
function satisfying (0-LAE), δ : [0, 1]2 → [0, 1] be a restricted
dissimilarity function and m : 2N → [0, 1] be a fuzzy measure.
Then, the generalization of the CI by the function F , with
respect to δ and m, called dCF -integral, is the function
CF,m,δ : [0, 1]n → [0, n], defined, for all x ∈ [0, 1]n, by:

CF,m,δ(x) = x(1) +

n∑
i=2

F
(
δ(x(i), x(i−1)), m(A(i))

)
(1)

where (x(1), . . . , x(n)) is an increasing permutation on the
input x and A(i) = {(i), . . . , (n)}.

TABLE II: (1, 0)-increasing functions F satisfying (0-LAE).

Definition Description

TM (x, y) = min{x, y} Minimum t-norm
TP (x, y) = xy Algebraic product
TŁ(x, y) = max{0, x+ y − 1} Łukasiewicz

TDP (x, y) =


x if y = 1

y if x = 1

0 otherwise.
Drastic Product

TNM (x, y) =

{
min{x, y} if x+ y > 1

0 otherwise.
Nilpotent Minimum

THP (x, y) =

{
0 if x = y = 0

xy
x+y−xy

otherwise.
Hamacher Product

OB(x, y) = min{x√y, y
√
x} [35], Cuadras-Augé

copula [36]
OmM (x, y) = min{x, y}max{x2, y2} [37], [38], [39]

Oα(x, y) = xy(1 + α(1− x)(1− y)),
with α ∈ [−1, 1] \ {0}

[26], Farlie-Gumbel-
Morgenstern
copula family

ODiv(x, y) =
xy+min{x,y}

2
[26], [13]

GM(x, y) =
√
xy Geometric Mean, [40]

HM(x, y) =

{
0 if x = 0 or y = 0

2
1
x
+ 1

y

otherwise. Harmonic Mean, [40]

Sin(x, y) = sin
(

π
2
(xy)

1
4

)
Sine, [40]

ORS(x, y) = min
{

(x+1)
√
y

2
, y

√
x
}

CF (x, y) = xy + x2y(1− x)(1− y) [2], [13]
CL(x, y) = max{min{x, y

2
}, x+ y − 1} [26], [13]

FGL(x, y) =
√

x(y+1)
2

FBPC(x, y) = xy2 [1]
FBD1(x, y) = min{x, 1− x+min{x, yq}},
with 0 < q ≤ 1

[16], [18]

FNA(x, y) =

{
x if x ≤ y

min{x
2
, y} otherwise.

[16], [18]

FNA2(x, y) =


0 if x = 0
x+y
2

if 0 < x ≤ y

min{x
2
, y} otherwise.

[16], [18]

Proposition 1. CF,m,δ is well defined.

Proof. It is immediate that, for any x ∈ [0, 1]n, 0 ≤
CF,m,δ(x) ≤ n. Take an input x ∈ [0, 1]n, for which there
may be different increasing permutations (i.e., x has repeated
elements). For the sake of simplicity, but without loss of
generality, consider that there exist r, s ∈ {1, . . . , n} such
that xr = xs = z ∈ [0, 1] and, for all i ∈ {1, . . . , n}, with
i ̸= r, s, it holds that xi ̸= xr, xs. Two possible increasing
permutations are:

(x(1), . . . , x(k−1) = xr, x(k) = xs, . . . , x(n)) (2)
(x(1), . . . , x(k−1) = xs, x(k) = xr, . . . , x(n)) (3)

Denote by m
(1)
(i) = m(1)(A(i)) and m

(2)
(i) = m(2)(A(i)), with

i ∈ {1, . . . , n}, the fuzzy measures of the subsets of A(i) of
indices corresponding to the n− i+ 1 largest components of
x with respect to the permutations (2) and (3), respectively.
Then, for all i ̸= k, it holds that

m
(1)
(i) = m

(2)
(i) , and (4)

m
(1)
(k) = m({s, (k + 1), . . . , (n)}) (5)



4

m
(2)
(k) = m({r, (k + 1), . . . , (n)}), (6)

which means that it may be the case that m(1)
(k) ̸= m

(2)
(k). Denote

by C
(1)
F,m,δ and C

(2)
F,m,δ the dCF -integrals with respect to the

permutations (2) and (3), respectively, and suppose that

C
(1)
F,m,δ(x) ̸= C

(2)
F,m,δ(x). (7)

From Eqs. (4), (5), (6), whenever k ̸= 1, one has that:

C
(1)
F,m,δ(x)− C

(2)
F,m,δ(x)

=F
(
δ(x(k), x(k−1)), m

(1)
(k)

)
− F

(
δ(x(k), x(k−1)), m

(2)
(k)

)
=F (δ(xs, xr), m({s, (k + 1), . . . , (n)}))−

F (δ(xr, xs), m({r, (k + 1), . . . , (n)}))
=F (δ(z, z), m({s, (k + 1), . . . , (n)}))−

F (δ(z, z), m({r, (k + 1), . . . , (n)}))
=F (0, m({s, (k + 1), . . . , (n)}))−

F (0, m({r, (k + 1), . . . , (n)})) by (d3)
=0 by (0-LAE)

which is a contradiction with (7). Analogous result can be
shown for k = 1. The result can be generalized for any subsets
of repeated elements in the input x. Then, for any different
increasing permutations of the same input x one always get
the same result CF,m,δ(x).

Remark 1. Observe that the first element of the summation
in the definition of CF,m,δ is just x(1) instead of

F
(
δ(x(1), x(0)), m(A(1))

)
.

This is considered to avoid the initial discrepant behavior of
non-averaging functions in the initial phase of the aggregation
process, as pointed out in [18]. For example, consider a vector
with only one component x = (0.1), δ1(x, y) = |x− y| and

FNA2(x, y) =


0 if x = 0
x+y
2 if 0 < x ≤ y

min{x
2 , y} otherwise.

If we included the first element in the summation of the integral
the result would be:

CF,m,δ1(0.1) = FNA2

(
δ1(x(1), x(0)), m(A(1))

)
= FNA2(0.1− 0, 1) =

0.1 + 1

2
= 0.55.

Observe here the large discrepancy of the result (a relative
error of 450%), since one expects that the aggregated value
would be 0.1. Using our definition of dCF -integral (Equation
(1)), this unexpected behavior is avoided and the result is 0.1.

In the following, consider all fuzzy measures m : 2N →
[0, 1], functions F : [0, 1]2 → [0, 1] satisfying (0-LAE) and
restricted dissimilarity functions δ : [0, 1]2 → [0, 1].

Since the ranges of dCF -integrals are in [0, n], there is
no sense to talk about their boundary conditions in general,
unless one just deals with increasing dCF -integrals. Then, in
the context of this paper, the boundary conditions of AF and
PAF (conditions (A2)), are referred just by 0, 1-conditions.

Proposition 2 (0, 1-conditions). CF,m,δ satisfies the 0, 1-
conditions.

Proof. (i) Take x = 0 = (0, . . . , 0). Then:

CF,m,δ(0) = 0 +

n∑
i=2

F
(
δ(0, 0), m(A(i))

)
=

n∑
i=2

F
(
0, m(A(i))

)
by (d3)

= 0 (by 0-LAE)

(ii) For x = 1 = (1, . . . , 1), we have:

CF,m,δ(x) = 1 +

n∑
i=2

F
(
δ(1, 1), m(A(i))

)
= 1 +

n∑
i=2

F
(
0, m(A(i))

)
by (d3)

= 1 by (0-LAE)

In what follows, denote the range of a dCF -integral CF,m,δ

by Ran(CF,m,δ).

Remark 2. If the range of a dCF -integral is [0, 1], then
the 0, 1-conditions are equivalent to the boundary conditions
(A2). Additionally, whenever a dCF -integral is increasing
and satisfies the 0, 1-conditions then its range is [0, 1]. Now,
whenever a dCF -integral is not increasing, then, even if it
satisfies the 0, 1-conditions, there may exist y ∈ [0, 1]n,
0 < y < 1 such that CF,m,δ(y) > 1, as it was shown in
[27, Example 3.6 (iii)], which is the particular case of a dCF -
integral for F = TP (the product t-norm) (in fact, the standard
d-Choquet integral).

Proposition 3. Ran(CF,m,δ) ⊆ [0, 1] if F satisfies (LC) and
the following condition holds, for all x ∈ [0, 1]n:

n∑
i=2

δ(x(i), x(i−1)) ≤ 1− x(1). (8)

Proof. For any x ∈ [0, 1]n, CF,m,δ(x) ≥ 0 and

CF,m,δ(x) = x(1) +

n∑
i=2

F
(
δ(x(i), x(i−1)), m(A(i))

)
≤ x(1) +

n∑
i=2

δ(x(i), x(i−1)) by (LC)

≤ 1 by (8).

Theorem 1 (Directional monotonicity). If F is (1, 0)-
increasing and, for all a, b ∈ [0, 1], with a ≥ b, and h > 0
such that a+ h, b+ h ∈ [0, 1], it holds that:

δ(a+ h, b+ h) ≥ δ(a, b), (9)

then CF,m,δ is 1-increasing

Proof. For any x ∈ [0, 1]n, c = (c, . . . , c), with c > 0 and
x + c ∈ [0, 1]n, consider that Eq. (9) holds whenever h =
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c, a = x(i) and b = x(i−1), for any i = 2, . . . , n, that is,
δ(x(i) + c, x(i−1) + c) ≥ δ(x(i), x(i−1)). Since F is (1, 0)-
increasing, then we have that F

(
δ(x(i), x(i−1)), m(A(i))

)
−

F
(
δ(x(i) + c, x(i−1) + c), m(A(i))

)
< 0. Thus:

n∑
i=2

F
(
δ(x(i), x(i−1)), m(A(i))

)
−

n∑
i=2

F
(
δ(x(i) + c, x(i−1) + c), m(A(i))

)
< 0 < c.

Therefore:

(x(1) + c) +

n∑
i=2

F
(
δ(x(i) + c, x(i−1) + c), m(A(i))

)
>x(1) +

n∑
i=2

F
(
δ(x(i), x(i−1)), m(A(i))

)
,

thus CF,m,δ(x+ c) > CF,m,δ(x), and CF,m,δ is 1-increasing.

It is immediate that:

Theorem 2 (PAF). If F is (1, 0)-increasing and (LC), and
also both Condition (8) of Proposition 3 and Condition (9) of
Theorem 1 hold, then CF,m,δ is an 1-PAF.

Theorem 3 (Monotonicity). CF,m,δ is increasing if and only
if the following conditions hold:
(i) For all a, b ∈ [0, 1], with a ≤ b, c ∈ Ran(m) and h ∈
[0, b− a] it holds that:

F (δ(a, b), c)− F (δ(a+ h, b), c) ≤ h; (10)

(ii) For all a1, a2, b1, b2 ∈ [0, 1], there exist h1, h2 ≥ 0, with
a1 + h1, a2 + h2 ∈ [0, 1] such that: If b2 ≤ b1 and h2 ≤ h1

then:

F (a1 + h1, b1)− F (a2 + h2, b2) ≥ F (a1, b1)− F (a2, b2).
(11)

Proof. (⇐) Take x,y ∈ [0, 1]n such that, for some k ∈
{1, . . . , n} and λ ≥ 0, it holds that x(k) = y(k) + λ, and,
for all i ̸= k, x(i) = y(i), such that:

x(k−1) = y(k−1) ≤ x(k) = y(k)+λ ≤ x(k+1) = y(k+1). (12)

Then, one has the following possibilities:
(a) k = 1: In this case, x(1) = y(1) + λ. Denote a = y(1),
b = y(2), c = m(A(2)) ∈ (0, 1] and h = λ ∈ [0, b− a]. Since
(d1) holds, it follows that:

CF,m,δ(x) = (y(1) + λ) + F (δ(y(2), y(1) + λ),m(A(2)))

+

n∑
i=3

F
(
δ(y(i), y(i−1)), m(A(i))

)
= a+ h+ F (δ(b, a+ h), c)

+

n∑
i=3

F
(
δ(y(i), y(i−1)), m(A(i))

)
≥ a+ h+ F (δ(b, a), c)− h

+

n∑
i=3

F
(
δ(y(i), y(i−1)), m(A(i))

)
by (10)

= y(1) + F (δ(y(2), y(1)),m(A(2)))

+

n∑
i=3

F
(
δ(y(i), y(i−1)), m(A(i))

)
= CF,m,δ(y).

(b) 1 < k < n: Observe that, by (d4), it holds that:

δ(y(k) + λ, y(k−1)) ≥ δ(y(k), y(k−1)) (13)
δ(y(k+1), y(k)) ≥ δ(y(k+1), y(k) + λ). (14)

Then, it is possible to denote δ(y(k), y(k−1)) = a1, δ(y(k) +
λ, y(k−1)) = a1 + h1, δ(y(k+1), y(k) + λ) = a2 and
δ(y(k+1), y(k)) = a2 + h2, where h1 = δ(y(k) + λ, y(k−1)) −
δ(y(k), y(k−1)) ≥ 0 and h2 = δ(y(k+1), y(k))−δ(y(k+1), y(k)+
λ) ≥ 0. Also denote b1 = m(A(k)) and b2 = m(A(k+1)) and
notice that b2 ≤ b1. Then it follows that:

CF,m,δ(x)

= y(1) +

k−1∑
i=2

F (δ(y(i), y(i−1)), m(A(i)))

+ F (δ(y(k) + λ, y(k−1)), m(A(k)))

+ F (δ(y(k+1), y(k) + λ), m(A(k+1)))

+

n∑
i=k+2

F (δ(y(i), y(i−1)), m(A(i)))

= y(1) +

k−1∑
i=2

F (δ(y(i), y(i−1)), m(A(i)))

+ F (a1 + h1, b1) + F (a2, b2)

+

n∑
i=k+2

F (δ(y(i), y(i−1)), m(A(i)))

≥ y(1) +

k−1∑
i=2

F (δ(y(i), y(i−1)), m(A(i)))

+ F (a1, b1) + F (a2 + h2, b2)

+

n∑
i=k+2

F (δ(y(i), y(i−1)), m(A(i))) by (13), (14), (11)

= y(1) +

k−1∑
i=1

F (δ(y(i), y(i−1)),m(A(i)))

+ F (δ(y(k), y(k−1)), m(A(k)))

+ F (δ(y(k+1), y(k)), m(A(k+1)))

+

n∑
i=k+2

F (δ(y(i), y(i−1)), m(A(i))) = CF,m,δ(y).

(c) k = n: In this case, x(n) = y(n)+λ. By (d4) and condition
(ii) of the theorem when h2 = 0, it follows that:

CF,m,δ(x) = y(1) +

n−1∑
i=2

F
(
δ(y(i), y(i−1)), m(A(i))

)
+ F (δ(y(n) + λ, y(n−1)), m(A(n)))

≥ y(1) +

n−1∑
i=2

F
(
δ(y(i), y(i−1)), m(A(i))

)
+ F (δ(y(n), y(n−1)), m(A(n)))
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= CF,m,δ(y).

(⇒) Since CF,m,δ is increasing, then for all x,y ∈ [0, 1]n

there is k ∈ {1, . . . , n} and λ ≥ 0 for which x(k) = y(k)+λ ∈
[0, 1], and for any i ∈ {1, . . . , n} with i ̸= k, x(k) = y(k),
satisfying Condition (12), it holds that:

CF,m,δ(x)− CF,m,δ(y) ≥ 0

⇔ x(1) +

n∑
i=2

F (δ(x(i), x(i−1)), m(A(i)))

− y(1) +

n∑
i=2

F (δ(y(i), y(i−1)), m(A(i))) ≥ 0. (15)

Here, the only non-zero elements are the ones that contain the
k-th element: this induces to the following possibilities:
(a) k = 1: In this case we have x(1) = y(1) + λ and, by (15):

(y(1) + λ) + F (δ(y(2), y(1) + λ),m(A(2))

− y(1) − F (δ(y(2), y(1)),m(A(2)) ≥ 0

⇔ F (δ(y(2), y(1)),m(A(2))− F (δ(y(2), y(1) + λ),m(A(2))

≤ λ. (16)

By using the same notation of the item (b) of the (⇐)-part of
the proof, Eq. (16) becomes:

F (δ(b, a), c)− F (δ(b, a+ h), c) ≤ h,

since a = y(1) ≤ b = y(2), c = m(A(2)) ∈ (0, 1] and h = λ ∈
[0, b− a]. By (d1), the Condition (ii) holds.
(b) 1 < k < n: By (15), one has that:

F (δ(y(k) + λ, y(k−1)),m(A(k)))

+F (δ(y(k+1), y(k) + λ),m(A(k+1)))

≥ F (δ(y(k), y(k−1)),m(A(k)))

+F (δ(y(k+1), y(k)),m(A(k+1)))

⇔ F (δ(y(k) + λ, y(k−1)),m(A(k)))

−F (δ(y(k+1), y(k)),m(A(k+1)))

≥ F (δ(y(k), y(k−1)),m(A(k)))

−F (δ(y(k+1), y(k) + λ),m(A(k+1))) (17)

Since inequalities (13) and (14) hold, and b2 = m(A(k+1)) ≤
m(A(k)) = b1, (17) can be written, using the notation adopted
in the item (c) of the (⇐)-part of the proof, as:

F (a1 + h1, b1)− F (a2 + h2, b2) ≥ F (a1, b1)− F (a2, b2),

where h1 = δ(y(k) + λ, y(k−1)) − δ(y(k), y(k−1)) ≥ 0 and
h2 = δ(y(k+1), y(k)) − δ(y(k+1), y(k) + λ) ≥ 0. Then, the
Condition (ii) holds.
(c) k = n: In this case x(n) = y(n) + λ and, by (15):

F (δ(y(n) + λ, y(n−1)), m(A(k)))

− F (δ(y(n), y(n−1)), m(A(k))) ≥ 0.

By (d4) we have that δ(y(n) + λ, y(n−1)) ≥ δ(y(n), y(n−1)).
Now considering δ(y(n) + λ, y(n−1)) = a1 + λ1,
δ(y(n), y(n−1)) = a1 and b1 = m(A(k)), we then have that

F (a1+λ1, b1)−F (a1, b1) ≥ 0 ⇔ F (a1+λ1, b1) ≥ F (a1, b1),

which is the case of having h2 = 0 in Condition (ii).

From Proposition 2 and Theorem 3, it follows that:

Theorem 4 (AF). CF,m,δ is an aggregation function if and
only if the conditions of Theorem 3 hold.

We point out that any aggregation-like operator is required
to present some kind of “increasingness property” in order to
guarantee the preservation of the information quality of the
output related to the information quality of the inputs, in the
light of Domain Theory [41]. In this sense, the higher are the
values of the inputs, in some considered direction, the higher
should be the aggregated value to the same direction [10],
[21]. Observe, in Table III, that there may exist dCF -integrals
that are neither increasing nor directional increasing, which
is the case, e.g, of CF,δ3,m and CF,δ5,m. Nevertheless, they
are Ordered Directional (OD) monotone functions [25]. Such
functions are monotonic along different directions according
to the ordinal size of the coordinates of each input.

Definition 2. [25] Consider a function Od : [0, 1]n → [0, 1]
and let r = (r1, . . . , rn) be a real n-dimensional vector, r ̸=
0. Od is said to be ordered directionally (OD) r-increasing
if, for each x ∈ [0, 1]n, any permutation σ : {1, . . . , n} →
{1, . . . , n} with xσ(1) ≥ . . . ≥ xσ(n), and c > 0, with xσ(i) +
cri ∈ [0, 1], for i ∈ {1, . . . , n}, such that 1 ≥ xσ(1) + cr1 ≥
. . . ≥ xσ(n) + crn, it holds that Od(x + crσ−1) ≥ Od(x),
where rσ−1 = (rσ−1(1), . . . , rσ−1(n)). Similarly, one defines
an ordered directionally (OD) r-decreasing function.

Theorem 5. For any k > 0, the dCF -integral is an (OD)
(k, 0, . . . , 0)-increasing function.

Proof. For all x ∈ [0, 1]n and permutation σ : {1, . . . , n} →
{1, . . . , n}, with xσ(1) ≥ . . . ≥ xσ(n), and c > 0, with xσ(i)+
cri ∈ [0, 1], for i ∈ {1, . . . , n}, and 1 ≥ xσ(1) + cr1 ≥ . . . ≥
xσ(n) + crn, for rσ−1 = (rσ−1(1), . . . , rσ−1(n)), one has that:

CF,m,δ(x+ crσ−1)

= x(1) + c · rσ−1(1)

+

n−1∑
i=2

F (δ(x(i) + crσ−1(i), x(i−1) + crσ−1(i−1)),m(A(i)))

+ F (δ(x(n) + crσ−1(n), x(n−1) + crσ−1(n−1)),m(A(n)))

= x(1) +

n−1∑
i=2

F (δ(x(i), x(i−1)),m(A(i)))

+ F (δ(x(n) + ck, x(n−1)),m(A(n)))

≥ x(1) +

n−1∑
i=2

F (δ(x(i), x(i−1)),m(A(i))

+ F (δ(x(n), x(n−1)),m(An)) by (d4)
= CF,m,δ(x).

Lastly, some other important properties are studied:

Proposition 4. CF,m,δ is idempotent.

Proof. Consider x = (x, . . . , x) ∈ [0, 1]n. Then:

CF,m,δ(x) = x+

n∑
i=2

F
(
δ(x, x), m(A(i))

)
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TABLE III: Properties of the dCF -integral for various F satisfying (0-LAE) and restricted dissimilarity functions, based on
the results presented in this paper. Here, m means that CF,m,δ(x) ≥ min (x).

δ0(x, y) = |x− y| δ1(x, y) = (x− y)2 δ2(x, y) =
√

|x− y|
Function Agg. 1-inc 1-PA OD-(k, )-inc Ave Agg. 1-inc 1-PA OD-(k, )-inc Ave Agg. 1-inc 1-PA OD-(k, )-inc Ave

TM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ m
TP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ m
TŁ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ m
TDP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ m
TNM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ m
THP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ m
OB ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ m
OmM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ m
Oα ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ m
ODiv ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ m
GM ✓ ✓ m ✓ ✓ m ✓ ✓ m
HM ✓ ✓ m ✓ ✓ m ✓ ✓ m
Sin ✓ ✓ m ✓ ✓ m ✓ ✓ m
ORS ✓ ✓ m ✓ ✓ m ✓ ✓ m
CF ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ m
CL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ m
FGL ✓ ✓ m ✓ ✓ m ✓ ✓ m
FBPC ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ m
FBD1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ m
FNA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ m
FNA2 ✓ ✓ m ✓ ✓ m ✓ ✓ m

δ3(x, y) = |
√
x−√

y| δ4(x, y) = |x2 − y2| δ5(x, y) = (
√
x−√

y)2

Function Agg. 1-inc 1-PA OD-(k, )-inc Ave Agg. 1-inc 1-PA OD-(k, )-inc Ave Agg. 1-inc 1-PA OD-(k, )-inc Ave

TM ✓ m ✓ ✓ m ✓ ✓
TP ✓ m ✓ ✓ m ✓ ✓
TŁ ✓ m ✓ ✓ m ✓ ✓
TDP ✓ m ✓ ✓ m ✓ ✓
TNM ✓ m ✓ ✓ m ✓ ✓
THP ✓ m ✓ ✓ m ✓ ✓
OB ✓ m ✓ ✓ m ✓ ✓
OmM ✓ m ✓ ✓ m ✓ ✓
Oα ✓ m ✓ ✓ m ✓ ✓
ODiv ✓ m ✓ ✓ m ✓ ✓
GM ✓ m ✓ ✓ m ✓ m
HM ✓ m ✓ ✓ m ✓ m
Sin ✓ m ✓ ✓ m ✓ m
ORS ✓ m ✓ ✓ m ✓ m
CF ✓ m ✓ ✓ m ✓ ✓
CL ✓ m ✓ ✓ m ✓ ✓
FGL ✓ m ✓ ✓ m ✓ m
FBPC ✓ m ✓ ✓ m ✓ ✓
FBD1 ✓ m ✓ ✓ m ✓ ✓
FNA ✓ m ✓ ✓ m ✓ ✓
FNA2 ✓ m ✓ ✓ m ✓ m

= x+

n∑
i=2

F
(
0, m(A(i))

)
by (d3)

= x by (0-LAE).

Therefore, CF,m,δ(x) is idempotent.

Proposition 5. CF,m,δ(x) ≥ min (x), for all x ∈ [0, 1]n.

Proof. It follows that

CF,m,δ(x) = x(1)

+

n∑
i=2

F
(
δ(x(i), x(i−1)), m(A(i))

)
≥ x(1) = min(x).

Proposition 6. If F satisfies (LC) and δ satisfies the condition
n∑

i=2

δ(ai, ai−1) ≤ an − a1 (18)

for any 0 ≤ a1 ≤ . . . ≤ an ≤ 1, then CF,m,δ(x) ≤ max (x),
for all x ∈ [0, 1]n.

Proof. Consider x ∈ [0, 1]n. Then:

CF,m,δ(x) = x(1) +

n∑
i=2

F
(
δ(x(i), x(i−1)), m(A(i))

)
≤ x(1) +

n∑
i=2

δ(x(i), x(i−1)) by (LC)

≤ x(n) = max (x) by (18).

Therefore, CF,m,δ(x) ≤ max (x).

From Propositions 5 and 6, it is immediate that:

Proposition 7. If F satisfies (LC) and the condition (18) holds
then CF,m,δ is averaging.
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Table III shows examples of combinations of functions F
and δ that satisfy the following properties: aggregation (Agg.),
1-increasiness (1-inc), 1-pre-aggregation (1-PAF), OD-(k,0,
. . . ,0)-increasing (OD-(k, )-inc) and averaging (Ave.). Notice
that the only combinations of functions F and δ satisfying the
conditions necessary for the dCF -integral to be an aggregation
function are the pairs TP and δ0, and FBPC and δ0. Just two
studied dCF -integrals are not directional increasing, namely,
the ones based on the restricted dissimilarity functions δ3
and δ5. Nevertheless, not all the reminder dCF -integrals are
PAFs. Some of them, although 1-increasing, do not have their
ranges equal to the unit interval, which clearly depends on the
considered function F , as the dCF -integrals based on δ0 or
δ1, and the functions GM , HM , sin, ORS , FGL or FNA2.
Finally, all dCF -integrals are OD-(k,0, . . . ,0)-increasing.

Remark 3. Notice that all RDFs presented in Table III are de-
rived from δ0. In fact, they were constructed according to [29,
Prop. 2]. It follows that, for i ∈ {1, . . . , 5} and x1, . . . , xn ∈
[0, 1]: CF,m,δi(x1, . . . , xn)−x(1) = CFαi

,m,δ0(x
βi

1 , . . . , xβi
n )−

xβi

(1), where Fαi(u, v) = F (uαi , v), for u, v ∈ [0, 1] and
αi, βi ≥ 0. Nevertheless, it is possible to define an RDF that
is not derived from δ0, such as δ : [0, 1]2 → [0, 1] given, for
all x, y ∈ [0, 1] and c ∈ (0, 1), by

δ(x, y) =


1, if {x, y} = {0, 1},
0, if x = y,

c, otherwise.

The respective CF,m,δ is 1-increasing (but not a 1-PAF) and
OD (k, 0, . . . , 0)-increasing. It also holds that CF,m,δ(x) ≥
min (x), for all x ∈ Rn, although, it is not averaging.

IV. dCF -INTEGRALS IN THE FRM OF FRBCS’S

In this section, we present the application of the dCF -
integral in the FRM of a FRBCS. Considering a clas-
sification problem containing t training examples xp =
(xp1, . . . , xpn, yp), with p = 1, . . . , t, where each xpi is
the value of the i = 1, . . . , n variable, and yp ∈ C =
{C1, . . . , CM} is the label of the class of the p-th training
example, and M is the number of classes.

Here, we focus on FRBCS’s, specifically, the Fuzzy Asso-
ciation Rule-based Classification model for High Dimensional
Problems (FARC-HD) [42] fuzzy classifier. The structure of
the fuzzy rules generated by this classifier is:

Rule Rj : If x1 is Aj1 and . . . and xn is Ajn

then Class is Cj with RWj ,

where Rj is the label of the j-th rule, Aji is a fuzzy set
representing a linguistic term modeled by a triangular shaped
membership function. Cj is the class label and RWj ∈ [0, 1]
is the rule weight [43], which in this case is computed as the
confidence of the fuzzy rule.

Following the same approach used in the previous general-
izations of the CI (see [11], [13], [16] and [18]), we modify
the classical FRM of FARC-HD to include the dCF -integrals

in its third stage. Thus, the classification soundness degree for
all classes of a new example x is computed by:

Sk(x) = C
CF,m,δ

k

(
bk1(x), . . . , b

k
L(x)

)
,

where k is related with the class, L is the number of rules,(
bk1(x), . . . , b

k
L(x)

)
are the association degrees of x with the

class of each rule, given by bkj (x) = µAj
(x) · RW k

j , where
µAj (x) = AG

(
µAj1(x1), . . . , µAjn(xn)

)
, j = 1, . . . , L, AG

is an aggregation function, and µ is the membership degree
of the elements of the fuzzy set Aj . Finally, CCF,m,δ

k is the
dCF -integral that aggregate the fired rules for each class.

V. EXPERIMENTAL FRAMEWORK

In this section, we present the experimental framework used
in the study. We start providing the features of the considered
datasets. Then, we show the configuration of the proposal and,
finally, we discuss the statistical tests that are used to validate
the quality of the results.

A. Datasets used in the study

This study is conducted taking into consideration 33 differ-
ent datasets selected from KEEL dataset repository [31]. We
highlight that these datasets are the same ones used in previous
studies, such as CF -integrals [16] and CF1F2-integrals [18].
This allow a comparison with state-of-the-art approaches.

We summarize the datasets in Table IV. For each dataset,
we present the corresponding identification (Id), the number
of instances (#Inst), attributes (#Atts) and classes (#Class).
Additionally, we point out that these datasets do not present
monotonic characteristics [44].

We applied a 5-fold cross-validation procedure, which con-
sists in spliting the datasets into five partitions containing
20% of the examples each one. The model is learned using 4
partitions for training and tested in the remaining partition. The
general performance of the model is measured according to
each testing partition, based on the accuracy rate (the number
of correctly classified examples divided by the total number
of examples). At the end, after calculating each partition
performance, we use the average result of the five testing
partitions to generate the output of the algorithm.

B. Configuration of the proposal

The new FRM presented in this paper, considering the
concept of dCF -integrals developed in Section III, is applied
in the Fuzzy Association Rule-Based Classification method for
High-Dimensional problems (FARC-HD) [42] fuzzy classifier.
The configurations used by the algorithms are the same one
suggested by the authors and is composed by: linguistic
labels per variable (5), conjunction operator (Product t-norm),
rule weight (Confidence), minimum support (0.05), minimum
confidence (0.8), depth of the search tree (3), number of fuzzy
rules that cover each example (2), population size (50), gray
codification (30 bits per gene), number of evaluations (20.000).
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TABLE IV: Summary of the datasets used in the study.

Id. Dataset #Inst. #Atts. #Class
App Appendicitis 106 7 2
Bal Balance 625 4 3
Ban Banana 5,300 2 2
Bnd Bands 365 19 2
Bup Bupa 345 6 2
Cle Cleveland 297 13 5
Con Contraceptive 1,473 9 3
Eco Ecoli 336 7 8
Gla Glass 214 9 6
Hab Haberman 306 3 2
Hay Hayes-Roth 160 4 3
Ion Ionosphere 351 33 2
Iri Iris 150 4 3
Led led7digit 500 7 10
Mag Magic 1,902 10 2
New Newthyroid 215 5 3
Pag Pageblocks 5,472 10 5
Pen Penbased 10,992 16 10
Pho Phoneme 5,404 5 2
Pim Pima 768 8 2
Rin Ring 740 20 2
Sah Saheart 462 9 2
Sat Satimage 6,435 36 7
Seg Segment 2,310 19 7
Shu Shuttle 58,000 9 7
Son Sonar 208 60 2
Spe Spectfheart 267 44 2
Tit Titanic 2,201 3 2
Two Twonorm 740 20 2
Veh Vehicle 846 18 4
Win Wine 178 13 3
Wis Wisconsin 683 11 2
Yea Yeast 1,484 8 10

C. Statistical test for performance comparisons

In this paper is considered hypothesis validation techniques
to present a statistical analysis of the obtained results [45],
[46]. Since the validity conditions of parametric tests are not
satisfied, is considered the usage of non-parametric tests [47].

To perform group comparisons, the Aligned Friedman rank
test [48] is used. This test uses a reverse raking, that is, the
lowest rank is considered as the best one. Additionally, the
post-hoc Holm’s test [49] is computed to indicate when the
approach achieving the less ranking (known as control method)
rejects the null hypothesis. To do so, we calculate the Adjusted
P-Value (APV) to be able to compare directly the control
method, with a level of significance α, versus the other ones.

VI. PERFORMANCE ANALYSIS

In this section, the results achieved when different dCF -
integrals are applied to aggregate the information in the FRM
are presented. The experimental study is developed with a
double aim:

1) To analyze if the introduction of the RDFs in the dCF -
integrals allows the system to enhance the results ob-
tained when the classical difference operator is applied,
which is considered as baseline of the study. Moreover,
we want to check if certain RDFs are more beneficial
for the system than others. The results and analyses of
this aim are shown in Section V-A.

2) To study if there is a synergy among the best RDFs
(found in the first part of the study), the fuzzy measures

and the functions F. This study, which is shown in
Section V-B, helps to reduce the number of combinations
to be tested, since we can suggest a few ones achieving
stable and competitive results.

In order to make a complete and robust study, this analysis
considers the combinations of 5 different RDFs with 21
generalizations of the CI using 5 different fuzzy measures.
All those combinations are applied in 33 datasets. In other
words, 525 experiments per dataset have been conducted.

The obtained results are summarized in Tables V, VI and
VII, where the rows present the different functions F used for
the generalizations. The columns are related with the combi-
nation of fuzzy measures and different RDFs. Observe that
the dCF -integrals using δ0 (the difference operator) are the
original CF -integrals, which are considered as our baseline.
We should point out that the usage of δ0 combined with
the product t-norm as the function F (F = TP ) result in
the standard Choquet integral (first column and second row
of Tables V, VI and VII). Finally, the value of each cell
represents the mean of the accuracy obtained in testing in the
33 considered datasets.

Aiming at extracting the maximum information of the
results and to ease their comprehension, for each function
F , when comparing the different RDFs for a specific fuzzy
measure, we highlight with boldface and underline the largest
and lowest accuracy mean, respectively. Moreover, the symbol
+ indicates for each function F (row), the combination of RDF
and fuzzy measure that achieves the largest accuracy among
all fuzzy measures. Finally, for each RDF (column) we stress
with an ∗ the function F providing the best result. The detailed
testing results for the different combinations can be shown in
(https://github.com/Giancarlo-Lucca/dCF-integrals).

A. Studying the usefulness of RDFs

In this subsection the usefulness of the substitution of the
classical difference by a RDF is studied. To do it, the results
obtained by the RDFS are compared against the classical
difference. After that, we will analyze whether an specific
RDF is able to provide better results than the remainder ones.
Performing an initial analysis of the effectiveness of the RDFs
in Tables V-VII some important points are found, such as:
- The generalization based on the δ1 achieves the lowest results
for all used functions F in all considered fuzzy measures.
- The usage of the δ4 in general, present inferior results
when compared against the difference operator (δ0) for all
considered functions and fuzzy measures.
- δ3 presents similar results to the classical difference.
- Generalizations considering δ2 and δ5 tend to improve the
results obtained by the baseline. In this sense, we highlight that
the usage of the δ5 seems to provide a superior performance.

This initial analysis indicates that the results obtained by
the classical difference operator can be improved if the gen-
eralizations by the RDFs are used, where δ2 and δ5 stand
out. To clarify even more these findings, in Table VIII, we
show the number of functions F in which the different RDF
(columns) achieved the largest result per fuzzy measure (rows).
The last row of this table, #Total, is the number of best results
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TABLE V: Accuracy mean obtained in tests - Part 1

Cardinality
δ0 δ1 δ2 δ3 δ4 δ5

TM 79.41 77.69 79.99 79.61 78.57 80.38
TP 79.02 77.84 80.17 78.90 78.02 80.56+∗

TŁ 77.12 77.09 77.17 76.75 77.24 77.95
TDP 77.19 77.19 77.19 77.19 77.19 77.19
TNM 77.21 77.08 77.72 77.19 76.97 78.27
THP 79.41 77.70 80.16 79.71 78.36 80.26
OB 79.05 77.59 80.08 79.26 78.17 79.97
OmM 78.23 77.15 79.76 78.31 77.47 79.95
Oα 78.80 77.55 80.40+∗ 78.99 77.91 80.27
Odiv 78.97 77.44 79.98 79.36 77.87 80.14
GM 80.33∗ 79.13 80.14 80.40 79.70 80.00
HM 79.64 78.00 80.28 79.75 79.42 80.05
Sin 80.12 80.12∗ 80.12 80.12 80.12 80.12
ORS 80.17 79.02 80.33 80.56+∗ 79.26 80.24
CF 78.52 77.46 79.88 78.98 77.92 80.24+
CL 79.41 77.69 80.13 79.18 78.53 79.83
FGL 80.15 79.26 80.26 79.91 80.21 80.43
FBPC 77.72 77.24 79.30 78.13 77.44 79.72
FBD1 79.60 77.89 80.29 79.64 78.67 79.96
FNA 79.10 77.74 80.38+ 79.24 78.39 79.84
FNA2 80.16 80.11 79.98 80.15 80.34∗ 79.91

Mean 79.02 78.00 79.70 79.11 78.47 79.78
Dirac

δ0 δ1 δ2 δ3 δ4 δ5

TM 79.41 77.44 78.82 78.41 77.78 79.30
TP 79.02 77.44 78.82 78.41 77.78 79.30
TŁ 77.12 77.44 78.82 78.41 77.78 79.30
TDP 77.19 77.44 78.82 78.41 77.78 79.30+
TNM 77.21 77.44 78.82 78.41 77.78 79.30
THP 79.41 77.44 78.82 78.41 77.78 79.30
OB 79.05 77.44 78.82 78.41 77.78 79.30
OmM 78.23 77.44 78.82 78.41 77.78 79.30
Oα 78.80 77.44 78.82 78.41 77.78 79.30
Odiv 78.97 77.44 78.82 78.41 77.78 79.30
GM 80.33∗ 78.27 79.67 79.30 78.75 79.69
HM 79.64 77.52 79.24 78.59 77.86 79.07
Sin 80.12 80.12∗ 80.12 80.12 80.12 80.12∗
ORS 80.17 78.27 79.67 79.30 78.75 79.69
CF 78.52 77.44 78.82 78.41 77.78 79.30
CL 79.41 77.44 78.82 78.41 77.78 79.30
FGL 80.15 79.12 80.40∗ 80.61∗ 80.19∗ 80.02
FBPC 77.72 77.44 78.82 78.41 77.78 79.30
FBD1 79.60 77.51 80.13 79.40 78.60 80.00
FNA 79.10 77.44 78.82 78.41 77.78 79.30
FNA2 80.16 79.96 80.16 80.02 79.89 79.83

Mean 79.02 77.85 79.18 78.81 78.24 79.46

of each RDF. Also, we provide in the last column, #δ Total,
the number of functions where any RDF (δ1 to δ5) enhanced
the mean obtained by the classical difference for a specific
fuzzy measure (consequently the largest number could be 21).

From the results in Table VIII, it is observable that the
usage of the RDFs are suitable since the number of times
where they improve the results of the classical difference is
high (see the last column of the table). It is noticeable in
this analysis that, in 81 out of the 105 combinations (each
fuzzy measure is generalized by 21 different functions), the
achieved mean by any RDF is superior than that of the
classical difference. Among the new RDFs, it is noticeable
the superiority of the δ5 approach, since it provides 43 of
these 81 combinations where a RDF is better than the classical
difference. A satisfactory number of combinations is also
obtained when δ2 is considered.

Another interesting observation can be noticed when com-

TABLE VI: Accuracy mean obtained in tests - Part 2

OWA
δ0 δ1 δ2 δ3 δ4 δ5

TM 79.17 77.44 79.35 78.97 77.98 79.46
TP 78.64 76.76 79.49 78.42 77.19 79.20
TŁ 77.22 76.85 77.17 76.79 77.05 77.00
TDP 77.19 77.19 77.19 77.19 77.19 77.19
TNM 77.23 76.94 76.89 76.97 77.14 77.02
THP 79.40 76.97 79.82 79.02 77.90 79.53
OB 78.89 76.61 79.55 79.06 77.37 79.58
OmM 77.97 77.12 78.60 77.63 76.76 78.63
Oα 78.51 76.68 79.36 78.41 77.09 79.15
Odiv 79.27 77.05 79.26 78.74 77.96 79.48
GM 80.32 78.46 80.04 79.61 78.96 79.84
HM 79.53 77.12 80.05 79.29 78.26 79.72
Sin 80.12 80.12∗ 80.12 80.12 80.12 80.12∗
ORS 80.12 77.69 79.72 79.20 78.83 79.66
CF 78.55 76.79 79.35 78.31 77.26 79.29
CL 79.33 76.83 79.53 78.77 77.93 79.42
FGL 80.50∗ 79.42 80.40∗ 80.33∗ 80.20∗ 79.99
FBPC 78.09 77.41 78.74 77.65 77.13 78.57
FBD1 79.52 78.04 79.88 79.22 78.35 79.99
FNA 79.19 77.07 79.89 79.00 77.97 79.79
FNA2 80.21 79.23 79.64 79.48 79.31 79.61

Mean 79.00 77.51 79.24 78.68 78.00 79.15

paring exclusively the standard CI (with δ0 and TP ) using the
different RDFs (see Tables V, VI and VII). Its noticeable that
for any fuzzy measure, in all cases we have RDFs that have
obtained a superior accuracy mean compared with the CI.

Up to this point, it is clear that the usage of dCF -integrals
is a good alternative when compared with CF -integrals, which
uses the difference operator. However, in order to give a
support to the previous findings, a statistical study by applying
the Aligned Friedman rank test is performed.

In this test, we compare the performance of the 6 RDFs for
each fuzzy measure, analyzing whether a RDF is statistically
better than the remainder ones or not. Since this is a large
study, in Table IX the results considering exclusively the PM
are presented, since this fuzzy measure is the one that achieves
the best synergy with the RDFs (see Subsection VI-B). We
stress out that the complete statistical analysis, considering all
fuzzy measures is also available in the git repository.

In Table IX, for each function F , the RDFs are sorted
from the lowest to the highest obtained rank (the lowest
one is considered as control method and it is compared with
the remaining ones). The APV column indicates if there are
statistical differences between the method in the row and the
control one. When the obtained APV is inferior than 0.10 it
is underlined, indicating that there is a statistical difference in
favor to the control method.

To ease the interpretation of the statistical results, a sum-
mary is provided in Table X. In this table, the rows are the
different RDFs and the columns the fuzzy measures. The value
of each cell is the number of times in which the RDF in
the row is considered as the control method in the Aligned
Friedman rank test (therefore, the best method) for each fuzzy
measure. For instance, taking a look at the column of the PM,
it is observable that count for δ0, δ2 and δ5 are 3, 8 and 8,
respectively, these are the number of times that each RDF, is
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TABLE VII: Accuracy mean obtained in tests - Part 3

Wmean
δ0 δ1 δ2 δ3 δ4 δ5

TM 78.64 77.99 80.17 79.54 78.38 79.90
TP 77.69 77.41 80.12 78.94 77.84 79.97
TŁ 76.86 76.97 77.70 77.51 77.11 77.45
TDP 77.19 77.19 77.19 77.19 77.19 77.19
TNM 77.12 76.88 77.77 77.39 76.92 78.16
THP 78.71 77.66 79.77 79.47 78.60 80.26
OB 78.42 77.62 80.07 79.20 78.17 80.43∗
OmM 77.14 77.39 79.49 78.12 77.53 79.71
Oα 77.86 77.64 79.83 79.24 78.32 80.07
Odiv 78.65 77.64 79.70 79.16 78.15 79.89
GM 79.90 79.01 80.16 80.55+∗ 80.22 80.33
HM 79.37 78.37 80.16 79.83 78.92 79.78
Sin 80.12 80.12 80.12 80.12 80.12 80.12
ORS 79.49 78.64 80.31 79.97 79.26 80.15
CF 77.75 77.57 80.03 79.06 77.73 79.78
CL 78.47 77.64 79.84 79.22 78.45 79.99
FGL 80.32∗ 79.17 80.24 80.13 80.23∗ 79.89
FBPC 77.10 77.39 79.39 78.12 77.58 79.45
FBD1 79.19 77.63 80.32∗ 79.80 78.59 79.91
FNA 78.66 77.83 79.93 79.41 78.61 79.94
FNA2 80.03 80.40∗ 79.90 79.86 80.05 79.84

Mean 78.51 78.01 79.63 79.13 78.47 79.63
PM

δ0 δ1 δ2 δ3 δ4 δ5

TM 79.30 77.73 80.40 79.42 78.54 80.57+∗

TP 79.20 78.06 80.46 79.55 78.49 80.10
TŁ 78.35 77.10 79.32 78.43 78.07 79.65+
TDP 77.19 77.19 77.19 77.19 77.19 77.19
TNM 79.02 77.21 79.83+ 78.31 77.81 79.76
THP 79.74 77.76 80.26 79.47 78.53 80.33+
OB 79.44 77.74 80.49+ 79.61 78.71 79.98
OmM 79.19 77.84 80.06+ 78.99 78.64 80.05
Oα 79.25 77.72 80.16 79.87 78.64 80.19
Odiv 79.26 77.77 80.34+ 79.53 78.61 80.24
GM 80.23 79.22 80.43 80.17 80.02 80.21
HM 80.28 78.32 80.30 79.82 79.06 80.36+
Sin 80.12 80.12 80.12 80.12 80.12 80.12
ORS 80.46 79.20 80.30 80.10 80.19 80.23
CF 79.34 77.79 80.05 79.52 78.47 80.23
CL 79.25 77.56 80.11 79.74 78.68 80.41+
FGL 80.26 79.11 80.50∗ 80.15 80.39∗ 80.34
FBPC 79.19 77.87 80.25+ 79.14 78.21 80.00
FBD1 79.79 77.67 79.98 79.41 78.61 80.43+
FNA 79.64 77.61 80.27 79.43 78.91 79.91
FNA2 80.55+∗ 80.36∗ 79.90 80.36∗ 80.38 79.96

Mean 79.48 78.14 80.03 79.44 78.87 80.01

TABLE VIII: Relation of times that each RDF combined with
the fuzzy measures obtained a bold face among the analysis

.

δ0 δ1 δ2 δ3 δ4 δ5 #δ Total
Cardinality 0 0 6 2 1 10 19
Dirac 6 0 2 1 0 11 14
OWA 6 0 8 0 0 5 13
Wmean 1 1 7 1 0 9 18
PM 2 0 9 0 0 8 17
#Total 15 1 32 4 1 43 81

considered as control method in Table X1. Finally, in the last
row, the number of times (#nDiff) in which the δ0 (baseline)
is statistically outperformed by any RDF is provided.

If the cardinality and PM are used, since they are the fuzzy
measures that achieve the best results (see Sect. VI-B), we see
that δ0 is statistically improved in almost half of the cases.

1We point out that we do not count the results of both functions TDP and
Sin, as all the RDFs are the same, APV = 1.0

Furthermore, in general, δ5 is the best option, followed by δ2.
Another observation can be made by taking an exclusive

look to the CI, which is the function base of this study, in the
statistical analysis. It is observable from the second column of
Table IX, that the δ2 can be considered as statistically superior
than the CI since it have a lowest rank and the obtained APV
when comparing this two cases is small.

In light of the obtained means and the statistical tests, it
is noticeable that the use of dCF -integrals are an interesting
approach in alternative to the CF -integrals. It is also noticeable
that there are many approaches in which there are statistical
differences with respect to the δ0. Therefore, the suitability of
the new approach is empirically proved.

B. Analyzing the synergy among the RDFs, functions F and
fuzzy measures

In this subsection the synergy among the use of RDFs,
functions F and fuzzy measures is analyzed. Taking a look at
Table VIII, it can be observed that the number of functions
F where RDFs achieve a competitive performance is large.
In order to reduce the number of functions and to focus on
the best synergies, in this subsection we only provide a study
using δ2 and δ5 as RDFs and the cardinality and PM as fuzzy
measures. This is due to the fact that their application led to
a general improvement of the dCF -integrals.

To clarify the synergy of the methods, we show in Table XI
for the considered fuzzy measures (rows) and RDFs (columns),
the top 3 (where #Top1 is the highest accuracy, #Top2 is the
second one and #Top3 the third) functions F that achieved the
best averaged behaviours among the 33 considered datasets.
Observe that this ranking is obtained by analyzing the respec-
tive column (fuzzy measure and RDF) in Tables V-VII.

From the results in Table XI some interesting findings
emerge. Considering the functions F , we observe that FGL,
TP and TM appeared two times, while the remaining functions
just once, in specific cases. We highlight that the FGL and
TP appeared for both, δ2 and δ5. We also want to stress that
TM appears in both fuzzy measures when combined with δ5,
which clearly shows the good synergy between this function
and RDF. In fact, observe that the combination of PM with δ5
and TM led to the largest accuracy mean in the study.

VII. CONCLUSION

In this paper, the concept of dCF -integrals was introduced.
These functions generalize the CF -integrals [16] by restricted
dissimilarity functions δ [29], that is, the difference operator
used by the CF -integrals is replaced by restricted dissimilarity
functions. Also, dCF -integrals can be understood as a gen-
eralization of the d-Choquet integral [27] by a function F .
Important properties that the dCF -integrals satisfy, which are
based on characteristics of the function F and the restricted
dissimilarity functions, were shown.

The dCF -integrals were applied as the aggregation-like
operator in the FRM of a state-of-the-art FRBC, in a large ex-
periment, with different analyses, considering several points of
view. Taking into account the obtained results, it is noticeable
that dCF -integrals could be considered as a good alternative
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TABLE IX: Align Friedman rank tests and APV considering PM as fuzzy measure.

TM TP TŁ TDP

Method Rank APV Method Rank APV Method Rank APV Method Rank APV

δ5 58.82 (–) δ2 57.79 (–) δ5 60.80 (–) δ0
(
CTDP

)
99.50 (–)

δ2 69.45 0.45 δ5 72.91 0.28 δ2 71.32 0.45 δ1 99.50 1.00
δ3 94.20 0.02 δ3 89.06 0.05 δ3 104.00 0.00 δ2 99.50 1.00
δ0

(
CTM

)
100.53 0.00 δ0

(
CTP

)
106.03 0.00 δ0

(
CTŁ

)
105.38 0.00 δ3 99.50 1.00

δ4 127.32 0.00 δ4 132.89 0.00 δ4 112.06 0.00 δ4 99.50 1.00
δ1 146.68 0.00 δ1 138.32 0.00 δ1 143.44 0.00 δ5 99.50 1.00

OmM Oα Odiv GM
Method Rank APV Method Rank APV Method Rank APV Method Rank APV

δ5 61.98 (–) δ2 71.11 (–) δ5 69.14 (–) δ2 85.05 (–)
δ2 65.94 0.77 δ5 72.21 1.00 δ2 69.59 0.97 δ0

(
CGM

)
93.08 1.00

δ0
(
COmM

)
99.06 0.01 δ3 79.26 1.00 δ3 88.53 0.33 δ5 95.26 1.00

δ3 107.14 0.00 δ0
(
COα

)
103.15 0.06 δ0

(
COdiv

)
100.18 0.08 δ3 96.32 1.00

δ4 118.29 0.00 δ4 122.73 0.00 δ4 126.74 0.00 δ4 101.61 0.96
δ1 144.59 0.00 δ1 148.55 0.00 δ1 142.82 0.00 δ1 125.70 0.01

CF CL FGL FBPC

Method Rank APV Method Rank APV Method Rank APV Method Rank APV

δ5 68.06 (–) δ5 68.52 (–) δ2 80.82 (–) δ2 60.89 (–)
δ2 77.45 0.50 δ2 68.89 0.97 δ5 87.12 1.00 δ5 68.58 0.58
δ3 88.85 0.28 δ3 80.21 0.81 δ4 90.05 1.00 δ0

(
CFBPC

)
95.89 0.03

δ0
(
CCF

)
94.38 0.18 δ0

(
CCL

)
104.80 0.03 δ0

(
CFGL

)
95.97 0.84 δ3 96.06 0.03

δ4 126.85 0.00 δ4 122.24 0.00 δ3 107.86 0.22 δ4 132.97 0.00
δ1 141.41 0.00 δ1 152.33 0.00 δ1 135.18 0.00 δ1 142.61 0.00

TNM THP OB

Method Rank APV Method Rank APV Method Rank APV

δ2 58.23 (–) δ5 68.09 (–) δ2 62.14 (–)
δ5 62.61 0.75 δ2 69.32 0.93 δ3 85.06 0.19
δ0

(
CTNM

)
84.26 0.13 δ0

(
CTHP

)
83.39 0.55 δ5 85.68 0.19

δ3 113.92 0.00 δ3 94.23 0.19 δ0
(
COB

)
96.02 0.04

δ4 132.76 0.00 δ4 131.38 0.00 δ4 121.38 0.00
δ1 145.23 0.00 δ1 150.59 0.00 δ1 146.73 0.00

HM Sin ORS

Method Rank APV Method Rank APV Method Rank APV

δ0
(
CHM

)
72.26 (–) δ0

(
CSin

)
99.50 (–) δ0

(
CORS

)
81.62 (–)

δ5 78.06 1.00 δ1 99.50 1.00 δ2 93.59 0.83
δ2 78.68 1.00 δ2 99.50 1.00 δ4 94.33 0.83
δ3 92.89 0.43 δ3 99.50 1.00 δ5 96.88 0.83
δ4 128.30 0.00 δ4 99.50 1.00 δ3 99.71 0.79
δ1 146.80 0.00 δ5 99.50 1.00 δ1 130.86 0.00

FBD1 FNA FNA2

Method Rank APV Method Rank APV Method Rank APV

δ5 59.65 (–) δ2 70.24 (–) δ0
(
CFNA2

)
73.39 (–)

δ0
(
CFBD1

)
80.82 0.21 δ5 79.74 0.51 δ1 89.58 0.36

δ2 82.45 0.21 δ0
(
CFNA

)
86.21 0.51 δ4 92.11 0.36

δ3 98.88 0.01 δ3 94.23 0.26 δ3 95.70 0.34
δ4 125.18 0.00 δ4 113.08 0.00 δ2 120.73 0.00
δ1 150.02 0.00 δ1 153.50 0.00 δ5 125.50 0.00

TABLE X: Total of times that each approach is considered as
control variable in the Friedman rank test

Cardinality Dirac OWA Wmean PM
δ0 – 5 8 1 3
δ1 – – – 1 –
δ2 5 2 8 7 8
δ3 2 1 – 1 –
δ4 1 – – – –
δ5 11 11 3 9 8
#nDiff 8 5 0 16 9

to be used instead of CF -integrals in classification problems,
since they improve the performance of the classical difference
operator. We highlight the usage of the RDF δ5 combined with
the function TM and the fuzzy measure PM.

In a broader scenario, our developments showed that the

TABLE XI: Summary of the functions that achieved the top
3 best performance per generalization and fuzzy measure.

δ2 δ5
#Top1 #Top2 #Top3 #Top1 #Top2 #Top3

Cardinality Oα FNA ORS TP FGL TM

PM FGL Ob TP TM FBD1 CL

dCF -integrals can enlarge the flexibility of CF -integrals, since
different combinations of RDFs, functions F and fuzzy mea-
sures can be used, so being adapted to each kind of problem.

Future works are in two directions. For the theoretical part,
we intend to (i) study the relation between the generalizations
of the Choquet integral and the fuzzy t-conorm integral, and
(ii) defined the dCF -integrals in the interval-valued context.
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As for the applied part, we want to study: (i) the application in
the context of multi-criteria decision making; (ii) to consider
methods for learning general fuzzy measures; and (iii) to
analyze the behavior of this new approach when considering
monotone (or not) datasets.
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