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Abstract
Incidence and mortality figures are needed to get a comprehensive overview
of cancer burden. In many countries, cancer mortality figures are routinely
recorded by statistical offices, whereas incidence depends on regional cancer reg-
istries. However, due to the complexity of updating cancer registries, incidence
numbers become available 3 or 4 years later than mortality figures. It is, there-
fore, necessary to develop reliable procedures to predict cancer incidence at least
until the period when mortality data are available. Most of the methods pro-
posed in the literature are designed to predict total cancer (except nonmelanoma
skin cancer) or major cancer sites. However, less frequent lethal cancers, such as
brain cancer, are generally excluded from predictions because the scarce num-
ber of cases makes it difficult to use univariate models. Our proposal comes to
fill this gap and consists of modeling jointly incidence and mortality data using
spatio-temporal models with spatial and age shared components. This approach
allows for predicting lethal cancers improving the performance of individual
models when data are scarce by taking advantage of the high correlation between
incidence and mortality. A fully Bayesian approach based on integrated nested
Laplace approximations is considered for model fitting and inference. A valida-
tion process is also conducted to assess the performance of alternative models.
We use the new proposals to predict brain cancer incidence rates by gender and
age groups in the health units of Navarre and Basque Country (Spain) during the
period 2005–2008.
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1 INTRODUCTION

Cancer incidence predictions play an important role in epidemiology allowing cancer monitoring in a population even
in the absence of specific control plans. For administrative purposes, predictions are also useful to support public health
decision-making processes related to interventions, screening, cancer control programs, treatments, and rehabilitation.
Cancer predictions have different purposes. In countries without a national cancer registry, the interest resides in estimat-
ing or predicting cancer incidence at the national level. For that aim, different prediction techniques have been developed
by Galceran et al. (2017), Uhry et al. (2007), and Ferlay et al. (2018). In some countries, such as Spain, France, or Italy, can-
cer incidence figures are monitored by provincial cancer registries covering only a part of the population (see Figure A.1
in the Appendix); nevertheless, mortality numbers are provided by National Statistical Offices making them available at
different levels (municipality, province, autonomous region, or national level). In this context, different approaches and
statistical models have been developed to estimate national incidence using national mortality and the polled incidence
data provided by the local registries (Møller et al., 2003).
Due to the complexity of updating cancer registries, incidence numbers become available 3 or 4 years later than mor-

tality figures. The completeness of a cancer registry database is a very important quality requirement. Therefore, cancer
registries, researchers, and local health decision-makers are highly interested in developing reliable procedures to com-
plete the registry databases at least up to the periodwhen themortality data are available.Most of themethods proposed in
the literature stem from the recommendations of the International Agency for Research onCancer (IARC) on how realistic
predictions should be done. According to this agency, predictions of cancer incidence should fulfill a list of requirements
(Bray et al., 2013). First, predictions should be smooth over time. Abrupt changes in time trendsmay lead to the appearance
of unexpected or implausible incidence trends within a registry’s dataset. Second, they must be comparable in different
populations or regions. This allows to identify high or low incidence patterns by specific regions. Third, age-specific inci-
dence curves should be provided, including childhood cancer rates. Incidence rates of cancer in children tend to be lower
than the rates in adults, although there are somewell-documented geographical and ethnic differences for certain pediatric
cancers, such as Brain and Central Nervous System cancer (hereafter BCNS) or leukemia (Steliarova-Foucher et al., 2017).
Unexpected drops in age-specific trends may indicate problems with source files, for example, the size of the populations
at risk in the age groups.
Finally, the mortality-to-incidence (M/I) ratio should be taken into account. This ratio compares the number of deaths

due to a specific type of cancer over a specific period of time (usually obtained from a source that is independent of the
registry such as National Statistical Offices) with the number of new cases of that type of cancer registered during the
same period by the cancer registry. This ratio is also an important indicator of completeness as long as the quality of the
mortality data is good. Usually, the observed M/I ratios for a specific registry are compared to the values obtained for a
similar cancer registry or region. M/I ratios higher than expected raise suspicions of incompleteness.
Based on all these recommendations, different methods have been proposed in the literature. The very first procedures

come from the Finnish Cancer Registry (Hakulinen et al., 1986; Teppo et al., 1974), and they are based on the linear extrap-
olation of cancer incidence trends. However, age-period-cohort (APC) models (Holford, 1983; Osmond, 1985) have been
historically the most popular tools (Dyba & Hakulinen, 2000; Møller et al., 2003). Different versions of the APC models
were developed by Møller et al. (2003). In particular, different link functions between rates and covariates were employed
(the log link and the power link), and shorter and longer observed time trends were used. At a local or national level,
research has been conducted to predict cancer incidence rates based on the previous methodologies. Most of the literature
provides incidence and mortality estimates and predictions for total cancer and/or for the most common cancer types
such as breast, prostate, or colorectal cancer (Bezerra-de Souza et al., 2012; Sánchez et al., 2010). Less frequent cancer
sites such as brain, pancreatic, or ovarian cancer are generally excluded from predictions. The main reason to do this is
because the aforementioned APCmodels require a disaggregation of the number of cases by age group and calendar year.
However, data scarcity leads to imprecise incidence forecasts when these methods are used and, therefore, predicting rare
or less frequent cancers becomes a challenge from a methodological point of view. As far as we know, there is no specific
methodology to solve this problem and we therefore propose a joint modeling method with spatial and age-shared com-
ponents that elegantly exploits the correlation between cancer incidence and mortality to improve incidence forecasts of
rare cancer types. Here we illustrate the methodology by predicting BCNS incidence rates in subregions of Navarra and
Basque Country, two northern regions of Spain that have historically presented very high BCNS incidence rates compared
to other regions in Europe (Ferlay et al., 2013). This cancer is very lethal with a high correlation between incidence and
mortality. Hence, it is the necessity of careful monitoring over time. Our approach takes into consideration the previ-
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Regions in Navarre and Basque Country
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1-Gran Bilbao
2-North Biscay
3-South Biscay
4-West Gipuzkoa
5-East Gipuzkoa
6-Donostia-Bajo Bidasoa
7-Alava
8-Mid Navarra
9-Navarra South
10-Navarra North
11-Pamplona

F IGURE 1 Navarre (regions 8–11 on the right)
and the Basque Country (Regions 1–7 on the left),
Spain

ous recommendation of the IARC as different age, time, gender, and spatial-specific terms are considered in the models.
Moreover, our proposal is an interesting strategy to predict incidence for rare and lethal cancers because the multivariate
modeling smartly overcomes sparsity by putting together two sources of information, mortality, and incidence.
The rest of the paper is laid out as follows. In Section 2, an exploratory data analysis is provided to set the problem.

Section 3 describes a set of joint models predicting cancer incidence, and how computation, model parameter estimation,
and prediction are conducted. A validation process is presented in Section 4. Results are shown in Section 5. Finally, the
paper ends with a discussion.

2 BCNS INCIDENCE ANDMORTALITY DATA FROMNORTHERN SPAIN

Navarre and the Basque Country are two regions located in northern Spain ranked among the European regions with
the highest rates of BCNS (Forman et al., 2013). More precisely, Navarre and Basque Country are in the ninth and 19th
position out of 119 in the ranking of regionswith the highest rates (both genders) in Europe. Previous geographical analysis
in Spain also showed a cluster of high risk in these regions. Some of these investigations were motivated by the possible
association between BCNS and the types of soil cover and/or crop and plant protection treatments used in rural areas,
but no evidence was found. Despite the efforts to identify BCNS risk factors, very little progress has been made. Besides
exposure to ionizing radiation, no other definitive risk factor is known (Connelly & Malkin, 2007; Ugarte et al., 2015a).
Our study is based on incidence cases and deaths of brain and central nervous system tumors (C70–C72, International

Classification of Diseases-10) reported by the regional population-based cancer registries of Navarre and the Basque Coun-
try. Data are organized by age group, gender, period, and region. More precisely, data are split by 18 age groups, gender,
regions, and calendar year (1989–2008 for mortality and 1989–2004 for incidence). Figure 1 displays the regions of Navarre
and the Basque Country considered in this paper. The regions are numbered from 1 to 11. Regions 1–7 belong to the Basque
Country (1–3 to the province of Vizcaya, regions 4–6 to the province of Gipuzkoa, and region 7 represents the province of
Alava). Finally, regions 8–11 belong to the province of Navarre.
A total of 3615 cases of malignant brain tumors between 1989 and 2004 (55.29% males and 44.71% females) and 3296

deaths between 1989 and 2008 (55.10%males and 44.90% females) were reported by the two cancer registries, representing
on average 225 incidence and 165 mortality cases per year. Crude incidence andmortality rates of brain cancer per 100,000
inhabitants were calculated using 18 age groups, the two genders, and all the regions. Similar overall crude incidence and
mortality rates were observed (6.8 and 6.20 cases per 100,000 inhabitants, respectively).
Figure 2 shows age-specific incidence (continuous line) and mortality (dashed line) rates for males (blue) and females

(red), respectively, during the study period. Although the distribution is similar in shape in both sexes, differences can
be observed with males having higher incidence and mortality rates in all age groups. Both incidence and mortality rates
peak in the 65–80 age group, decreasing for 80+. There is also a small peak in incidence rates in early childhood (0–4,
and 5–9 age groups) in both sexes. This is not very common in other cancer sites. This exploratory analysis shows that
gender and age at diagnosis are particularly important in characterizing brain cancer. Similar to other research on rare
cancer types (Etxeberria et al., 2017) and to ensure a sufficient number of cases to allow model fitting and prediction, the
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F IGURE 2 Age and gender-specific incidence and mortality rates during the study period
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F IGURE 3 Crude incidence and mortality rates trends by gender

18 groups are now reorganized into the following age groups <40, 40–49, 50–59, 60–69, 70–79, and 80+, and the period
is managed on a biannual basis, 1989–1990, 1991–1992, . . . , 2007–2008. Data scarcity and the consequent huge variability
preclude the analysis if yearly data are considered.
Male (blue) and female (red) global trends of crude incidence and mortality rates are depicted in Figure 3 from 1989

to 2008. Note that incidence is only considered up to 2004. In males, the crude incidence rates increase up to 1994, they
decrease up to 2000 and experience a V-shaped trend up to 2004. Incidence rates for females present an increasing trend
up to 2002 and a slight decrease in the past 2 years. Crude mortality rates show an upward trend throughout the entire
period for both genders.
Top panels in Figure 4 display crude incidence (left) andmortality rates (right) per 100,000 inhabitants by region. In this

figure, regions located in the north and mid-Navarre are the ones presenting the highest incidence and mortality rates.
Overall, the geographical patterns of incidence andmortality are not very different, suggesting a high correlation between
them. This is confirmed by the scatter plot of incidence and mortality rates by region at the bottom panel of Figure 4.
The exploratory data analysis provides a preliminary idea of how brain cancer incidence and mortality behave by age

group, gender, region, and time. This information is very useful to define suitable models that can appropriately fit the
data.
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Crude Incidence and mortality rates for the whole period in Navarre and Basque Country
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F IGURE 4 Crude incidence and mortality rates by region for both genders (top panels) and scatter plot of incidence and mortality rates
by region (bottom panel)

3 MODELS TO PREDICT CANCER INCIDENCE USINGMORTALITY DATA

In this section, different age and gender-specific shared component models are proposed to predict cancer incidence.
These shared component models constitute a simple way of modeling several diseases, and they can be embedded within
the general multivariate framework (MacNab, 2010). For a general review of these types of models in disease mapping,
the reader is referred to some recent work by MacNab (2016a, 2016b). One difference between shared component models
(SCM) and more general multivariate models is that in SCMs, dependence between diseases is assumed a priori whereas
multivariate models are more appropriate if the relationship among diseases is unknown. Here we exploit the correlation
between incidence and mortality in BNCS, and hence we propose shared component models.
The context of our study is the following. Let us define as 𝑂1igjt and 𝑂2igjt the number of incidence

and mortality cases, respectively by health-area 𝑖 = 1, … , 𝑛 = 11, gender 𝑔 (male or female), age group 𝑗 =<

40, 40–49, 50–59, 60–69, 70–79, and 80+ and, time period 𝑡 = 1, … , 10 where 1 = 1989–1990, 2 = 1991–1992, … , 10 =

2007–2008. Incidence data, 𝑂1igjt, are only available for 𝑡 = 1, … , 8. In the first level of the Bayesian hierarchical structure,
the likelihood, we assume that conditional on the rates, 𝑂1igjt and 𝑂2igjt follow the next Poisson distributions

𝑂1igjt|𝑟1igjt ∼ Poisson(𝜇1igjt = 𝑛igjt𝑟1igjt), log 𝜇1igjt = log 𝑛igjt + log 𝑟1igjt, (1)

𝑂2igjt|𝑟2igjt ∼ Poisson(𝜇2igjt = 𝑛igjt𝑟2igjt), log 𝜇2igjt = log 𝑛igjt + log 𝑟2igjt. (1)
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6 ETXEBERRIA et al.

In these expressions, 𝑛igjt is the population at risk (the same for incidence and mortality) and 𝑟1igjt and 𝑟2igjt are the
incidence and mortality rates in region 𝑖, gender 𝑔, age group 𝑗, and period 𝑡. Recall that for 𝑡 = 9, 10 and all 𝑖, 𝑔, 𝑗, the
observed incidence rates are unavailable.
The interest here relies on modeling the log incidence rates (log 𝑟1igjt) and log mortality rates (log 𝑟2igjt) jointly and,

therefore, to get an appropriate posterior predictive distribution for the nonobserved incidence cases. For this aim, a set
of models are proposed. For ease of reading, only some of them are described in this paper. Due to the important role that
gender and age groups play in describing brain cancer incidence andmortality patterns, we considermodels incorporating
space, time, age group, gender, and interactions between them. Let us first start with model 1 (M1) including a gender-
specific shared component spatial term, and age and time effects common to both incidence and mortality.

M1 ∶ log 𝑟1igjt = 𝛿𝑔𝜙ig + 𝛾𝑡 + 𝜉𝑗, log 𝑟2igjt =
1

𝛿𝑔
𝜙ig + 𝛾𝑡 + 𝜉𝑗. (2)

In these expressions, 𝝓males = (𝜙1𝑚,… , 𝜙nm)
′ and 𝝓females = (𝜙1𝑓, … , 𝜙nf)

′ are assumed to follow multivariate normal
distributions. Namely, 𝝓males ∼ 𝑁(𝟎, 𝜎2

𝜙males
𝐐−) and 𝝓females ∼ 𝑁(𝟎, 𝜎2

𝜙females
𝐐−), respectively, where𝐐 is the spatial neigh-

borhood matrix defined by Besag et al. (1991). The symbol − denotes the Moore–Penrose generalized inverse. Here two
areas are considered neighbors if they share a common border. Note that the simplest shared component model defined
by Knorr-Held and Best (2001), includes an additional parameter 𝛿, where 𝛿2 can be interpreted as the ratio between
log-incidence and log-mortality gradients. Prediction models including shared component terms are appropriate as they
allow to monitor how much of the spatial pattern is common to both mortality and incidence, how much is specific to
each one, and to interpret 1∕𝛿2 as a kind of mortality to incidence ratio, something recommended by the IARC.Moreover,
in this work models including gender-specific parameters 𝛿𝑔 = (𝛿males, 𝛿females) are considered. This idea comes from the
work by Etxeberria et al. (2018) in which different spatial shared component models are examined. In particular, they
compare gender-specific shared spatial components in which the same parameter 𝛿 or gender-specific parameters 𝛿𝑔 are
considered. Introducing gender-specific parameters makes the model more flexible, and it provides better results, as the
spatial component is allowed to be different between genders with the same or different precision parameters controlling
the degree of smoothing. Additionally, a common temporal random effect and another common age effect for incidence
and mortality are considered in model 1 (M1) assuming the following distributions for the vectors 𝜸 and 𝝃 :

∙ 𝜸 = (𝛾1, 𝛾2, … , 𝛾10)
′

∼ 𝑁(𝟎, 𝜎2
𝛾𝐐

−
𝑇 ) represents the time-specific random effect and

∙ 𝝃 = (𝜉<40, 𝜉40−49, … .., 𝜉80+)
′

∼ 𝑁(𝟎, 𝜎2
𝜉
𝐐−

𝐽 ) is an age-specific random effect.

Here,𝐐𝑇 is determined by the temporal structure and𝐐𝐽 is the structure matrix for the age effect. For both terms, time
and age, we assume a first-order random walk prior (RW1), as we expect that the effects of contiguous age groups and
the effects of contiguous time points tend to be similar. The temporal effect is supposed to be completely structured (its
covariance matrix does not contain an unstructured term) because temporal trends are typically strong for most diseases
(Knorr-Held, 2000).
To gain flexibility, models including different interactions are also considered. Throughout this investigation, a wide

variety ofmodels including all possible interactions were defined and fitted. For simplicity, themodels proving best results
using this dataset are provided. We would like to emphasize that here the goal is not to propose a model for all situations,
but a battery of models based on shared components that exploit the relationship between incidence and mortality. Con-
sequently, using other dataset a different model could be chosen. Now, we extend M1 including a gender-specific time
trend (model M2). Model 3 (M3) expands M1 with an outcome-specific age term, and, finally, models 4 (M4) and 5 (M5)
also broaden M1 by incorporating gender-specific temporal and age random effects, and gender-specific temporal terms
and outcome-specific age effects, respectively. We would like to comment that models including outcome-specific linear
trends were also studied, but they did not provide good results.

M2 ∶ log 𝑟1igjt = 𝛿𝑔𝜙ig + 𝜌gt + 𝜉𝑗, log 𝑟2igjt =
1

𝛿𝑔
𝜙ig + 𝜌gt + 𝜉𝑗, (3)

M3 ∶ log 𝑟1igjt = 𝛿𝑔𝜙ig + 𝛾𝑡 + 𝜁1𝑗, log 𝑟2igjt =
1

𝛿𝑔
𝜙ig + 𝛾𝑡 + 𝜁2𝑗, (4)
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ETXEBERRIA et al. 7

M4 ∶ log 𝑟1igjt = 𝛿𝑔𝜙ig + 𝜌gt + 𝜅gj, log 𝑟2igjt =
1

𝛿𝑔
𝜙ig + 𝜌gt + 𝜅gj, (5)

M5 ∶ log 𝑟1igjt = 𝛿𝑔𝜙ig + 𝜌gt + 𝜁1𝑗, log 𝑟2igjt =
1

𝛿𝑔
𝜙ig + 𝜌gt + 𝜁2𝑗, (6)

The vectors 𝝆, 𝜻 , and 𝜿 are given next:

∙ 𝝆 = (𝜌1,1, … , 𝜌1,10, 𝜌2,1, … , 𝜌2,10)
′

∼ 𝑁(𝟎, 𝜎2
𝜌(𝐈2 ⊗ 𝐐−

𝑇 )) is a gender-specific time random effect.
∙ 𝜻 = (𝜁1,<40, 𝜁1,40−49, … , 𝜁1,80+, 𝜁2,<40, 𝜁2,40−49, … , 𝜁2,80+)

′

∼ 𝑁(𝟎, 𝜎2
𝜁
(𝐈2 ⊗ 𝐐−

𝐽 )); is an outcome-specific age random
effect.

∙ 𝜿 = (𝜅1,<40, 𝜅1,40−49, … , 𝜅1,80+, 𝜅2,<40, 𝜅2,40−49, … , 𝜅2,80+)
′

∼ 𝑁(𝟎, 𝜎2
𝜅(𝐈2 ⊗ 𝐐−

𝐽 )) is a gender-specific age random effect.

Looking at Figures 2 and 3, some kind of proportionality is observed between the distribution of crude rates by age
group and the crude temporal trends. Then, it seems sensible to assume shared component models for the age and time
effects. Based on this, model 6 (M6) and model 7 (M7) include shared component terms for age and time, respectively.
In these cases, additional parameters 𝜆 and 𝜍 are considered for the age and time shared component terms. A detailed
description of the models is provided below.

M6 ∶ log 𝑟1igjt = 𝛿𝑔𝜙ig + 𝜌gt + 𝜆𝜉𝑗, log 𝑟2igjt =
1

𝛿𝑔
𝜙ig + 𝜌gt +

1

𝜆
𝜉𝑗, (7)

M7 ∶ log 𝑟1igjt = 𝛿𝑔𝜙ig + 𝜍𝛾𝑡 + 𝜉𝑗, log 𝑟2igjt =
1

𝛿𝑔
𝜙ig +

1

𝜍
𝛾𝑡 + 𝜉𝑗. (8)

Finally, a model including spatially unstructured random effects for incidence (asymmetric formulation) is also consid-
ered. This term could explain incidence-specific variability due to region-specific factors occurring before diagnosis, such
as screening, improvements in diagnostic techniques (tomography and magnetic resonance imaging in the diagnosis of
brain tumors), or improvements in the completeness of the cancer registry (Ellis et al., 2014). Model 8 (M8) introduces this
unstructured term as follows:

M8 ∶ log 𝑟1igjt = 𝛿𝑔𝜙ig + 𝜌gt + 𝜆𝜉𝑗 + 𝑤1𝑖, log 𝑟2igjt =
1

𝛿𝑔
𝜙ig + 𝜌gt +

1

𝜆
𝜉𝑗. (9)

In this expression, 𝑤1𝑖 represents spatially unstructured random effects for incidence. Denoting by 𝐰 = (𝑤1, … ,𝑤𝑛)
′,

these random effects are assumed to follow a multivariate normal distribution, 𝐰 ∼ 𝑁(𝟎, 𝜎2
𝑤𝐈𝑛). It is noteworthy that

models including other interactions (such as space-time interactions) were also considered in this work, but they did not
improve results.

3.1 Computation, parameter estimation, and prediction

Model fitting, inference, and prediction were carried out using Bayesian methodology, specifically, integrated nested
Laplace approximations (INLA) (Rue et al., 2009). The use of this methodology is increasing in disease mapping (Blan-
giardo et al., 2013; Goicoa et al., 2016; Riebler et al., 2016; Schrödle & Held, 2011) due to its effectiveness and high-speed
computations in latent GaussianMarkov random fields with sparse precisionmatrices. The computationswere performed
in the R version 3.6.3 (2020-03-31) (R Core Team, 2020) through the R-package R-INLA (Martino & Rue, 2010), version
19.05.19, on a Windows personal computer (4 × Intel Xeon Processor E5-2620 v3 (24 cores) 12 × 16GB DDR4-2133 (96GB)
3.5″ SATA3 500GB). The fitting time for each model varied between 1 and 9 min approximately.
In this paper, we were interested in obtaining predictions using INLA. The reader is referred to Etxeberria et al. (2014)

and Ugarte et al. (2012) to see how predicted values were obtained when the models are presented under the umbrella
of generalized linear-mixed models from an empirical Bayes approach. In INLA, predictions are obtained as a part of the
model-fitting itself. As prediction is the same as fitting a model with some missing data, we can simply set y[i] = NA
for those unobserved values we want to predict. In our case, we were interested in getting predictions using the same
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8 ETXEBERRIA et al.

TABLE 1 DIC values for the different models

Model M1 M2 M3 M4 M5 M6 M7 M8
8493.778 8486.577 8401.266 8486.896 8394.209 8487.111 8499.073 8395.496

Using this dataset M5 and M8 exhibit the lowest values of DIC (in bold).

TABLE 2 Global absolute relative bias computed using one step ahead predictions

Global absolute relative bias
M𝟏 M𝟐 M𝟑 M𝟒 M𝟓 M𝟔 M𝟕 M𝟖

Global 0.0970 0.0910 0.0884 0.0877 0.0764 0.0877 0.1244 0.0110
Males 0.0892 0.1052 0.0701 0.0984 0.0744 0.1156 0.1218 0.0203
Females 0.1063 0.0743 0.1100 0.0750 0.0787 0.0546 0.1275 0.0481

likelihood already used to fit the data. A detailed description of how predictions were obtained caA detailed description
n can be found in Appendix A.1. The full code to fit the models will be available on the GitHub of our research group
(https://github.com/spatialstatisticsupna).
Prior distributions on the precision parameters (inverse of variance components) are required to fully specify the mod-

els. In this case, PC-priors (Simpson et al., 2017) were used for the precision parameters 𝜏𝜙males
= 1∕𝜎2

𝜙males
, 𝜏𝜙females

=

1∕𝜎2
𝜙females

, 𝜏𝛾 = 1∕𝜎2
𝛾, 𝜏𝜉 = 1∕𝜎2

𝜉
, 𝜏𝜌 = 1∕𝜎2

𝜌, 𝜏𝜁 = 1∕𝜎2
𝜁
, 𝜏𝜅 = 1∕𝜎2

𝜅, and, 𝜏𝑤 = 1∕𝜎2
𝑤. The reader is referred to Etxeberria

et al. (2018) for a thorough insight into the sensitivity analysis conducted to assess the impact of different sets of hyper-
priors (PC-priors, log gamma priors, and improper uniform priors on the standard deviations) on the final estimates of
shared component models. In this study, sensitivity issues were not found. Besides, log gamma priors (the priors provided
by default in INLA) were used for the additional parameters 𝛿males, 𝛿females, 𝜆, and 𝜍 in the shared components. Finally,
as the models do not include an intercept, sum to zero constraints were imposed in all the terms but the shared spatial
effect to ensure model identifiability (Goicoa et al., 2018).
The Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002) and theWatanabe–Akaike Information Criterion

(WAIC) (Watanabe, 2010) were used asmodel selection criteria. The logarithmic score (LS) (Gneiting & Raftery, 2007) was
used as an indicator of the predictive ability of the models. As suggested by one reviewer, only DIC values are displayed
in Table 1, as the WAIC and LS measures ranked the models in a similar way (see Table A.1 in the Appendix). Note that
using this dataset M5 and M8 exhibit the lowest values of DIC (and also WAIC and LS). To go into greater depth on the
predictive performance of these models, a validation procedure is carried out in the next section.

4 VALIDATING CANCER INCIDENCE PREDICTIONS

To assess the predictive ability of all the models, one-step ahead predictions were computed based on different fitting
periods. Here, as the time period used is biannual, we considered one-step ahead predictions to assess predictive ability.
More precisely, the following processwas used to generate predictions. Incidence predictions for the period 1997–1998were
based on models fitted in the period 1989–1996 (the minimum data we used to fit the model are four 2-year time periods).
Predictions for 1999–2000 were based on data from 1989 to 1998 and so on. A total of six rounds of cross-validations were
done to assess the predictive ability of the models by using the global absolute relative bias (GARB).

GARB =

||||||
∑
𝑖𝑔𝑗𝑡

𝑂1𝑖𝑔𝑗𝑡 −
∑
𝑖𝑔𝑗𝑡

𝑂1𝑖𝑔𝑗𝑡

||||||∑
𝑖𝑔𝑗𝑡

𝑂1𝑖𝑔𝑗𝑡

. (10)

In this expression,𝑂1igjt represents the observed incidence cases and𝑂1igjt is the predicted incidence cases for each area
𝑖, age group 𝑗, and time period 𝑡. To look into more detailed results, gender absolute relative biases were also computed.
Results are shown in Table 2.
Figures in Table 2 clearly indicate that M8 provides the best results in terms of GARB, with the overall bias in this

model (0.011) being about 7 times lower than the second best model (M5). By gender, M8 is also the best one. For males,
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ETXEBERRIA et al. 9

F IGURE 5 Age-specific relative biases in one-step ahead predictions

the GARB is 0.0203 (about 3 times lower than inM3 andM5, two competitivemodels), and for females the GARB is 0.0481,
the lowest value among all models. At this point, it is important to emphasize that what differentiates M8 from the rest
of the model is the age-specific shared term plus the spatially unstructured random effects for incidence. It appears that
including these last terms in the model substantially improves predictive ability. More specifically, we have observed that
models without spatially unstructured random effects for incidence underestimate the number of brain cancer incidence
cases. Therefore, introducing this term in the model seems to improve prediction results.
Finally, as incidence varies by age group and region, it is important to assess how models predict over these groups.

For health researchers, it is relevant to know if the models provide similar bias by age group and region or if there are
subgroups that are better predicted than others. To gain understanding of this, age- and region-specific relative biases are
computed in the next subsection.

4.1 Validation by age groups and regions

Here, age-specific and region-specific relative biases are computed for each model using the following expressions:

By age groups ARB𝑗 =
|∑igt 𝑂1igjt −

∑
igt 𝑂1igjt|∑

igt 𝑂1igjt
By regions ARB𝑖 =

|∑gjt 𝑂1igjt −
∑

gjt 𝑂1igjt|∑
gjt 𝑂1igjt

.

Figure 5 shows interesting results on how the best twomodels M5 andM8 perform by age groups. In general, model M8
seems to perform best as it provides biases below 10% in all the age groups. This model provides reasonable bias results
even in the more difficult age groups < 40 and 80+. For the rest of models, U-shaped biases are observed indicating a bad
performance for the oldest age groups. We should not be overly concerned about providing poor predictions for the 80+
age group, as BCNS estimates in the elderly are less important than in other age groups. Brain cancer in elderly people
presents some particularities. In most cases, they are not treated as they are usually asymptomatic and brain tumors in
this age group have a slow growth rate. Some of the elderly patients present also multiple comorbidities, low tolerance to
chemotherapy, high risk for radiation-induced neurotoxicity, and very limited life expectancies (Nayak & Iwamoto, 2010).
This is the reason why brain cancer tumors are just followed up among elderly patients rather than treated. In contrast,
the age group < 40 is important as brain cancer is the second most frequent cancer in children and young people after
leukemia. Hence, providing good predictions is key to better organize resources for treatment and thus to avoid premature
deaths (Ugarte et al., 2015b). In this age-group model, M8 performs the best.
Figure 6 gives region-specific relative biases for the best two models M5 and M8. By regions, again model M8 is clearly

the best in terms of bias. Using this model, Southern Biscay and Western Gipuzkoa are the regions with the highest
bias followed by Northern Biscay and Northern Navarre. In summary, model M8 would be the most suitable model for
providing incidence predictions as it shows more accurate results both globally and by age groups and regions.
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10 ETXEBERRIA et al.

Region−specific bias in one step ahead predictions

M5 M8

[0,0.05) [0.05,0.1) [0.1,0.15) [0.15,0.2) [0.2,0.25]

F IGURE 6 Region-specific relative biases in one-step
ahead predictions

TABLE 3 Observed versus the predicted number of brain cancer incidence cases per period

Males Females
Period Observed Fitted 95% Credible interval Observed Fitted 95% Credible interval
1989–1990 196 206 182 230 159 176 155 201
1991–1992 222 223 199 253 177 182 160 209
1993–1994 274 250 220 285 189 195 174 219
1995–1996 264 261 232 302 205 218 189 252
1997–1998 254 262 235 301 218 227 198 259
1999–2000 268 264 231 302 219 240 210 272
2001–2002 234 261 230 302 237 249 216 281
2003–2004 287 286 250 324 212 238 209 271

Predicted 95% Credible interval Predicted 95% Credible interval
2005–2006 - 290 249 327 - 254 218 295
2007–2008 - 302 254 346 - 255 218 296

5 REAL DATA ANALYSIS

In this section, model M8 is considered to provide BCNS cancer incidence predictions in Navarre and the Basque Coun-
try by region, age group, gender, and period. This election is based on model selection criteria together with the good
performance in the validation process. Using M8, we will focus on predicting incidence cases in periods when mortality
figures are already available (2005–2006 and 2007–2008). First of all, the observed and the fitted number of incidence cases
and their corresponding 95% credible intervals by period and gender are shown in Table 3. Predicted incidence cases (pos-
terior means) for periods 2005–2006 and 2007–2008 in both genders and 95% credible intervals are also provided. Among
males, 592 cases are predicted (290 in 2005–2006 and 302 in 2007–2008) while among females 509 are predicted (254 in
2005–2006 and 255 in 2007–2008). It can be observed that for females the fitted values are all above the observed ones. One
reason may be a kind of shrinkage effect. Incidence rates for females are in general lower than in males (see Figure 3), but
the difference is getting smaller with time. Hence it seems that the model tends to push female incidence towards males
incidence, and hence we observed predicted incidence rates for females above the observed.
Figure 7 displays temporal incidence trends and predicted values with their 95% credible bands for 2005–2008 for both

genders. This figure shows an increasing trend for both genders during the study period, and this trend could continue in
the forthcoming periods for males. On the other hand, the trend seems to stabilize for women from 2005 onwards. Note
that, usually the long-term forecast values present more uncertainty than forecasts for the near future. In our case, this
is not relevant for two main reasons: First, under M8 both incidence and mortality have the same gender trends, 𝜌gt, and
the estimated mortality trend will be used to forecast incidence and, therefore, the uncertainty will not widen. Second,
the incidence forecast is anchored around the observed mortality, which reduces uncertainty. This is a very important
advantage of this modeling versus univariate incidence modeling approaches.
Figures 8 and 9 display the posterior means of predicted incidence rates for each region in the last time period (2007–

2008) by age groups (rows) and gender (columns). Each region is specifically colored regarding the predicted rates per
105 inhabitants, so that it is easy to see its ranking within the different age groups and genders. To indicate the variability
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F IGURE 7 Gender-specific temporal trends and predicted rates for 2005–2006 and 2007–2008 obtained with M8

Prediction for males less than 40 
 2007−2008

Prediction for females less than 40 
 2007−2008

[0,1)
[1,2)
[2,3)
[3,4)
[4,5)
[5,6]

Prediction for males 40−49 
 2007−2008

Prediction for females 40−49 
 2007−2008

[0,5)
[5,10)
[10,15)
[15,20)
[20,25)
[25,30)
[30,46]

Prediction for males 50−59 
 2007−2008

Prediction for females 50−59 
 2007−2008

[0,5)
[5,10)
[10,15)
[15,20)
[20,25)
[25,30)
[30,46]

F IGURE 8 Maps of predicted incidence rates for age group < 40, 40–49, and, 50–59 for 2007–2008 period for the 11 health regions. Note
that the rate scale used for < 40 is different from that used for 40–49 and, 50–59.
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12 ETXEBERRIA et al.

Prediction for males 60−69 
 2007−2008

Prediction for females 60−69 
 2007−2008

[0,5)
[5,10)
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[20,25)
[25,30)
[30,46]

Prediction for males 70−79 
 2007−2008

Prediction for females 70−79 
 2007−2008

[0,5)
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[15,20)
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[25,30)
[30,46]

Prediction for males 80+ 
 2007−2008

Prediction for females 80+ 
 2007−2008

[0,5)
[5,10)
[10,15)
[15,20)
[20,25)
[25,30)
[30,46]

F IGURE 9 Maps of predicted incidence rates for age groups 60–69, 70–79, and 80+ for 2007–2008 period for the 11 health regions

of the predictions, maps of the coefficients of variation, are displayed in Figure A.2 in Appendix A.2. The coefficient of
variation is computed as the posterior standard deviation of the predicted distribution divided by the posterior mean. One
of the most important findings of this study is that neither the region nor age groups are equally affected. These maps
provide valuable results as the region of Pamplona (main city of Navarre, region number 11 in Figure 1) seems to be the
area with the highest rate in almost all age groups in both genders. Then, in a hypothetical brain cancer prevention plan,
this area should be considered of high priority. In contrast, Southern Navarre (region number 9 in Figure 1) is the region
with the lowest rate for most age groups and both genders.
Little variation within regions is observed for age groups< 40, 40–49, and 50–59where rates remain below 20 cases per

105 (below 5 cases per 105 for < 40). For the 60–69 age group, males living in Pamplona and Donostia-Bajo Bidasoa, the
capital city of the province of Gipuzkoa, are the most affected.
Brain cancer rates reach their maximum in the 70–79 age group, in which some geographical differences are found.

Regions located on the coast of the Bay of Biscay, Alava, Pamplona, and Mid-Navarre are the ones with the highest rates
in males. In females, West Gipuzkoa, Navarra North, and Pamplona are the areas with the highest rates. In both genders,
Southern Navarre is the one with the lowest rates. Finally, rates decrease slightly for the 80+ age group with maps more
similar to those for the 60–69 age group.
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ETXEBERRIA et al. 13

6 DISCUSSION

High-quality and preferably long-termpopulation-based data on cancer incidence andmortality are crucial for cancer con-
trol and prevention. Compared with mortality figures, incidence cases are usually available after approximately 3 years
due to administrative and procedural delays. Consequently, health policymakers consider alternative information, usually
relying on predictions based on statistical models. Approaches based on age-period-cohort models are usually employed
in the literature to provide predictions of cancer mortality or incidence counts, but these methods are not useful for rare
and lethal cancers such as BCNS or pancreatic cancer due to data scarcity. Our proposal comes to fill this gap. In this
paper, gender- and age-specific shared component models are proposed to predict incidence when mortality is already
available. The high correlation between incidence and mortality in brain cancer supports the joint modeling of both pro-
cesses increasing the effective sample size. The major advantage of our method is that it elegantly exploits the correlation
between incidence and mortality allowing disaggregated predictions by region, age groups, and gender, variables playing
an important role in BCNS epidemiology (Miranda-Filho et al., 2016). This would be impossible if a univariate prediction
model for incidence had been considered due to the scarce number of cases in certain regions and age groups.
Although model-based predictions should be interpreted in light of data limitations and modeling assumptions, we

found that our proposed model provides accurate results (with a posterior coefficient of variations under 15%) in general,
and in particular in the sensitive age group < 40. Brain tumors are an important type of cancer in children and young
adults, and understanding their epidemiology is essential for clinicians and for those involved in the care of patients or
investigating the cause of primary brain tumors in these age groups (McNeill, 2016). It should be noted that only a small
proportion of brain tumors can be explained by established risk factors (exposure to ionizing radiation, rare mutations of
penetrant genes, and familial history) (Fisher et al., 2007).
We expect that predictions at a very disaggregated level will contribute to complete the cancer data series improving

health system planning and management of lethal cancers. The results presented in this study also indicate important
regional variations in BCNS incidence predictions among Navarre and Basque Country. Projected gender-specific trends
indicate that males will have higher incidence rates of BCNS than females. This is consistent with the results obtained in
other regions in which the male-to-female ratio ranges from 1.0 to 2.7 (Miranda-Filho et al., 2016). It has been suggested
that gender differences could be due to sex hormones and genetic features (McKinley et al., 2000). Like any forecasting
method, our proposal also has some limitations. First, not all the regions and age groups are predicted equally well. Data
scarcity in some age groups is really an obstacle to provide accurate predictions. Second, the predicted trends are based
on the observed ones that do not capture the effects of future events. For example, the implementation of new screening
programs, improvements in the data registration, or any change in the definition of a particular malignancy could affect
the number of incidence cases to a large extent. Finally, we are aware that our data are not very updated but unfortunately
we do not have access to more recent incidence data yet. However, despite these limitations, the methodology presented
in this article is a promising alternative to existing techniques when predicting rare and lethal cancer types by age, gender,
and region. This paper will provide regional cancer registries with a valuable predictive tool.
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APPENDIX
A.1 Model Parameter estimation and prediction using INLA
Let us define 𝜽 = (𝝓∗, 𝜸, 𝜹, …) the vector of parameters assuming a Gaussian Markov random field prior to 𝜽 with mean 0
and precision matrix 𝐆 which depends on some hyperparameters 𝜆𝑘.
The objectives of the Bayesian computation are the following posterior marginal distributions (p.m.d):

A 𝜋(𝜃𝑖|𝐲) = ∫
𝝀
𝜋(𝜃𝑖|𝝀, 𝐲)
⏟⎴⏟⎴⏟(𝐴)

𝜋(𝝀|𝐲)
⏟ ⏟⏟(𝐵)

d𝝀 p.m.d. of the parameters vector 𝜽.

B 𝜋(𝜆𝑘|𝐲) = ∫
𝝀
𝜋(𝝀|𝐲)
⏟ ⏟⏟(𝐵)

d𝜆−𝑘 p.m.d of the hyperparameter 𝜆𝑘.

Thus, we need to compute (A) and (B)
Term (B) The approximation of the posterior marginal distribution of the hyper-parameters 𝝀 is given by

�̃�(𝝀|𝐲) ∝ 𝜋(𝜽, 𝝀, 𝐲)

�̃�(𝜽|𝝀, 𝐲) |𝜽=𝜽∗(𝝀), (A.1)
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F IGURE A . 1 Geographic distribution of the
general cancer registries (all cancer sites and all ages)
available in Europe. Figure available at The European
Network of Cancer Registries-Joint Research Centre
project. (See https://www.encr.eu/ for more detail. Last
accessed November 2021).

TABLE A . 1 Model selection criteria and predictive ability for the different models.

Model DIC
DIC
incidence

DIC
mortality Dbar pD

pD
incidence

pD
mortality WAIC LS

M1 8493.778 4010.64 4483.13 8461.169 32.608 14.11 18.50 8502.196 1.789
M2 8486.577 4007.49 4479.09 8449.097 37.480 16.06 21.42 8496.557 1.788
M3 8401.266 3976.18 4425.08 8363.698 37.568 16.97 20.59 8409.711 1.770
M4 8486.896 4006.26 4480.64 8444.421 42.474 18.25 24.23 8498.831 1.788
M5 8394.209 3973.10 4421.11 8351.786 42.423 18.95 23.47 8403.822 1.768
M6 8487.111 4004.72 4482.39 8452.065 35.046 15.00 20.04 8496.891 1.788
M7 8499.073 4007.90 4491.18 8465.631 33.441 14.32 19.12 8508.602 1.791
M8 8395.496 3970.43 4425.06 8351.438 44.058 20.78 23.27 8404.358 1.769

Abbreviations: DIC, Deviance InformationCriterion; LS, logarithmic score;WAIC,Watanabe–Akaike InformationCriterion; Dbar, Posteriormean of the deviance;
pD, Effective number of parameters in the model.

where �̃�(𝜽|𝝀, 𝐲) is the Gaussian approximation of the full conditional distribution of 𝜽 (Rue & Held, 2005) and 𝜽∗(𝝀) is
the mode of the full conditional distribution of 𝜽 for a given 𝝀.
Term (A) Rue et al. (2009) propose three approaches to approximate 𝜋(𝜃𝑖|𝝀, 𝐲): (1) a Gaussian approximation, (2) a full

Laplace approximation, and (3) a simplified Laplace approximation. According to Rue and Martino (2007), the Gaussian
approximation gives quite satisfactory results in a short time.
Once both terms are approximated, the p.m.d. of the parameters vector 𝜽 is given by

�̃�(𝜃𝑖|𝐲) =
∑
𝑘

�̃�(𝜃𝑖|𝜆𝑘, 𝐲)�̃�(𝜆𝑘|𝐲)Δ𝑘, (A.2)

where Δ𝑘 is an area weight assigned to each 𝜆𝑘. Its size depends on the actual strategy of choosing appropriate 𝜆𝑘s. The
INLA approach is available in an R package named R-INLA (www.r-inla.org).
To compute the prediction, we rely on the posterior predictive distribution given by

�̃�(𝑦miss|𝑦) ∝ �̃�(𝑦miss|𝜃)�̃�(𝜃|𝑦) (A.3)

∙ �̃�(𝑦miss|𝜃) is the likelihood function (the same as for the observed 𝑦).
∙ �̃�(𝜃|𝐲) is the posterior distribution of the parameter vector 𝜃 given 𝐲 computed by (A).
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A.2 Coefficients of variation of the predicted rates by regions and age groups obtained as the posterior
standard deviation of the rates divided by the posterior mean

CV for males less than 40 
 2007−2008

CV for females less than 40 
 2007−2008

CV for males 40−49 
 2007−2008

CV for females 40−49 
 2007−2008

CV for males 50−59 
 2007−2008

CV for females 50−59 
 2007−2008

CV for males 60−69 
 2007−2008

CV for females 60−69 
 2007−2008

CV for males 70−79 
 2007−2008

CV for females 70−79 
 2007−2008

CV for males 80+ 
 2007−2008

CV for females 80+ 
 2007−2008

[0,0.07) [0.07,0.09) [0.09,0.11) [0.11,0.14]

F IGURE A . 2 Coefficients of variation by regions and age groups obtained as the posterior standard deviation of the rates divided by the
posterior mean.

 15214036, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bim

j.202200017 by U
niversidad Publica D

e N
avarra, W

iley O
nline L

ibrary on [12/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense


	Using mortality to predict incidence for rare and lethal cancers in very small areas
	Abstract
	1 | INTRODUCTION
	2 | BCNS INCIDENCE AND MORTALITY DATA FROM NORTHERN SPAIN
	3 | MODELS TO PREDICT CANCER INCIDENCE USING MORTALITY DATA
	3.1 | Computation, parameter estimation, and prediction

	4 | VALIDATING CANCER INCIDENCE PREDICTIONS
	4.1 | Validation by age groups and regions

	5 | REAL DATA ANALYSIS
	6 | DISCUSSION
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT
	OPEN RESEARCH BADGES

	ORCID
	REFERENCES
	SUPPORTING INFORMATION
	APPENDIX
	A.1 | Model Parameter estimation and prediction using INLA
	A.2 | Coefficients of variation of the predicted rates by regions and age groups obtained as the posterior standard deviation of the rates divided by the posterior mean



