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A B S T R A C T   

Exercise intolerance remains a major unmet medical need in patients with heart failure (HF). Skeletal myopathy 
is currently considered as the major limiting factor for exercise capacity in HF patients. On the other hand, 
emerging evidence suggest that physical exercise can decrease morbidity and mortality in HF patients. Therefore, 
mechanistic insights into skeletal myopathy may uncover critical aspects for therapeutic interventions to 
improve exercise performance in HF. Emerging data reviewed in this article suggest that the assessment of 
circulating myokines (molecules synthesized and secreted by skeletal muscle in response to contraction that 
display autocrine, paracrine and endocrine actions) may provide new insights into the pathophysiology, phe-
notyping and prognostic stratification of HF-related skeletal myopathy. Further studies are required to determine 
whether myokines may also serve as biomarkers to personalize the modality and dose of physical training 
prescribed for patients with HF and exercise intolerance. In addition, the production and secretion of myokines in 
patients with HF may interact with systemic alterations (e.g., inflammation and metabolic disturbances), 
frequently present in patients with HF. Furthermore, myokines may exert beneficial or detrimental effects on 
cardiac structure and function, which may influence adverse cardiac remodelling and clinical outcomes in HF 
patients. Collectively, these data suggest that a deeper knowledge on myokines regulation and actions may lead 
to the identification of novel physical exercise-based therapeutic approaches for HF patients.   

1. Introduction 

Exercise intolerance, defined as an impairment in the capacity to 
perform physical exercise accompanied by symptoms of significant 
dyspnea and/or fatigue, is the cardinal manifestation of heart failure 
(HF) and is associated with reduced quality of life (QoL) and poor 
prognosis [1,2]. The determinants of reduced exercise capacity in pa-
tients with HF are multiple and include impaired cardiovascular and 
pulmonary reserve and structural and functional skeletal muscle ab-
normalities (i.e., skeletal myopathy), among others [1]. Additionally, 

most HF patients are elderly, in whom exercise intolerance secondary to 
skeletal muscle wasting and sarcopenia (i.e., loss of muscle mass) is part 
of the aging process [3]. Somewhat surprisingly, the degree of exercise 
intolerance and the severity of accompanying symptoms are not directly 
related to the degree of cardio-pulmonary weakness in HF patients, but 
are often related to abnormalities in skeletal musculature [4]. While 
many classical and novel HF drugs that reduce hospitalizations and 
mortality also influence exercise capacity, the magnitude of improve-
ment is modest and variable [5]. On the other hand, preserving muscle 
functional capacity in patients with HF through physical exercise 
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appears to be associated with a lower risk of cardiovascular and all- 
cause mortality [6]. However, exercise tolerance and activity levels of 
HF patients remain low [7]. 

Identifying the mechanisms by which exercise improves physical 
tolerance and HF prognosis in patients with HF may reinforce the 
therapeutic role of training and contribute to a better individualization 
of its prescription in this patient population. Recently, it has been pro-
posed that the underlying mechanistic pathways of the beneficial effects 
of exercise in HF involve skeletal muscle hypertrophy and enhanced 
mitochondrial quality control, as well as reversal of histological and 
macroscopic adverse cardiac remodelling [8]. In this conceptual 
framework, we will review several issues related to a complementary 
and emerging view of skeletal myopathy as an active player in in the 
pathophysiology and clinical evolution of HF through the dysregulation 
of myokines. The myokines, term coined in 2003 [9], belong to a group 
of factors secreted into circulation by many tissues in response to ex-
ercise and known as “exerkines” [10,11]. In particular, myokines are 
cytokines, small proteins (5–20 KDa), or other proteoglycan peptides 
that are synthesized, expressed and released by muscle fibers (among 
other organs) in response to contraction and exert local autocrine and 
paracrine effects, and distal endocrine effects on a number of organs, 
including the heart [12]. We discuss the potential roles of dysregulated 
myokine secretion in patients with HF and skeletal myopathy, paying 
special attention to its effects not only on skeletal muscle, but also on the 
heart. On the other hand, we discuss how personalized exercise training 
may improve exercise capacity and other clinical aspects in HF patients, 
with myokine regulation being one of the pathophysiological mecha-
nisms involved in the beneficial effects of exercise. 

2. Skeletal myopathy in heart failure 

2.1. General aspects 

At the tissue and biochemical level skeletal myopathy in HF is 
characterized by major structural and metabolic alterations: the former 
can include loss of skeletal muscle bulk due to the reduced number and/ 
or size of myocytes, shifts in fiber type with an increase in easily fati-
gable type IIb fibers, and capillary rarefaction, inflammation and 
fibrosis; the latter are characterized by a decrease in the effective 
mitochondria number and/or function, concomitant with a decrease in 
oxidative capacity and protein synthesis, and an increase in proteolysis, 
as well as with changes in fatty acid and glucose oxidation [8,13]. 
Interestingly, initial evidence from independent studies indicated that 
some, but not all, skeletal muscle alterations are similar between HF 
with reduced ejection fraction (HFrEF) and with preserved EF (HFpEF) 
when compared with healthy controls [13]. However, Seiler et al. [14] 
recently reported that molecular and cellular skeletal muscle alterations 
are exacerbated in HFrEF patients compared to HFpEF patients. 

2.2. Major causes 

Traditionally, the origin of the alterations of skeletal muscle in HF 
was linked to two major mechanisms: hemodynamic and metabolic al-
terations (Fig. 1). 

Blood flow and oxygen (O2) delivery to working muscles is reduced 
in HF, partly due to decreased cardiac output and partly to vasocon-
striction of the small muscular arteries secondary to neurohumoral- 
mediated systemic endothelial dysfunction that accompanies HF 
[13,14]. Although O2 extraction can be increased to account for reduced 
O2 delivery, skeletal muscle maladaptation in HF may blunt diffusive O2 
transport, effectively negating this compensatory response [15]. In this 
regard, skeletal muscle interstitial inflammation and subsequent 
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Fig. 1. Pathophysiological approach to the major mechanisms and consequences of skeletal myopathy in heart failure.  
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fibrosis, as well as intermuscular infiltration of adipose tissue (in pa-
tients with obesity), lead to significant limitations in O2 diffusion and 
extraction [13,16,17]. 

HF is generally associated with systemically increased catabolism 
and decreased anabolism. For example, an increase in blood levels of 
catabolic hormones (e.g., cortisol) and a decrease in anabolic hormones 
(e.g., testosterone and insulin-like growth factor-1) are closely associ-
ated with progressive muscle wasting and cachexia, myopathy severity, 
and poor prognosis in HF [18]. 

2.3. Main consequences 

Recent evidence suggests that, beyond its contribution to exercise 
intolerance in patients with HF, the skeletal muscle may also contribute 
to the pathophysiology of HF at two additional levels: alterations in the 
metaboreflex and alterations in the secretion of myokines (Fig. 1). 

Patients with HF and skeletal muscle alterations show early accu-
mulation of lactic acid during effort and a less efficient use of high- 
energy compounds [13]. These disturbances, in turn, trigger exagger-
ated metaboreflex activation with subsequent sympathetic over-
activation and hemodynamic dysregulation characterized by an increase 
of systemic vascular resistance due to exaggerated peripheral vasocon-
striction. Importantly, cardiac output is not increased due to the 
inability to enhance inotrophy [19]. Thus, it has been proposed that 
skeletal myopathy contributes to neurohumoral activation and impair-
ment of systemic hemodynamics in HF through a hyperactivated 
metaboreflex [20]. 

The concept of skeletal muscle as a secretory organ, developed over 
the last two decades, partly explains how crosstalk between skeletal 
muscle and distant tissues occurs, and how the beneficial effects of ex-
ercise transcend the simple improved skeletal muscle functionality, to 
encompass systemic responses in distal organs such as the heart, kidney, 
brain, adipose tissue and liver [21]. There is now a wealth of data on the 
synthesis, kinetics of release and biological roles of myokines as medi-
ators of muscle-organ crosstalk [12]. In fact, a recent secretome analysis 
of human muscle cells identified several hundred nonredundant secreted 
molecules, of which >300 were classified as potential myokines. Evi-
dence accumulated in recent years suggests that circulating and tissue 
myokines in HF are associated with exercise tolerance, cardiac abnor-
malities and outcomes, and systemic effects at different levels [22]. 
Therefore, it has been hypothesized that myokine dysregulation might 
be part of skeletal myopathy in patients with HF and they emerge as 
potential diagnostic tools and therapeutic targets in this patient popu-
lation (Graphical Abstract) [23]. 

3. Myokines in heart failure 

3.1. Dysregulation of myokines in HF 

Pioneering observations early in this century suggesting that 
interleukin-6 (IL-6) [24] and tumor necrosis factor-α (TNF-α) [25] 
behave as myokines have been confirmed in later studies [26]. Thus, the 
notion that skeletal muscle itself may be a source of molecules recog-
nized to play a role in the pathophysiology of HF [27], provided novel 
insight on the pathogenic contribution of skeletal myopathy to the sys-
temic maladaptations that characterize HF. 

Experimental and clinical studies carried out in the following 15 
years have shown that the regulation of other myokines is also impaired 
in HF; while some of them are upregulated (e.g., myostatin, IL-6, IL-8, 
osteonectin, growth differentiation factor-11 [GDF-11], follistatin- 
related protein 1 [FSTL1]), other are downregulated (e.g., irisin, IL- 
15, brain-derived neurotrophic factor [BDNF], decorin, myonectin and 
fibroblast growth factor-21 [FGF-21]) (reviewed in 21). Myokine pro-
files are variably associated with the severity of skeletal myopathy, 
adverse cardiac remodelling, and poor clinical outcomes [22]. In addi-
tion, the effects of myokines, either detrimental or beneficial, may be 

molecule-dependent [22]. As an illustrative example, a more detailed 
discussion of available data on myostatin and irisin in HF may cast some 
light on the potential roles of myokines in this condition. 

Myostatin (also called growth differentiation factor-8) is a cytokine 
belonging to the transforming growth factor-β (TGF-β) superfamily [28]. 
Myostatin is a negative regulator of muscle mass, inhibiting muscle 
synthesis and augmenting muscle catabolism [29]. The activation of 
myostatin triggers the transcription of catabolic target genes, impairs 
the activation of satellite cells and myogenic factors, and stimulates the 
ubiquitin–proteasome system. Myostatin is mainly expressed in skeletal 
muscle, although basal expression is also detectable in the heart [30]. 
Myostatin gene and protein expression in skeletal muscle biopsies is 
higher in patients with HFrEF than in healthy controls [31,32], and 
higher in patients with HFpEF than in patients with HFrEF (Fig. 2) [32]. 
Moreover, the expression of myostatin [33,34] and that of its receptor 
ActRIIB [34] in left ventricular (LV) samples was higher in patients with 
advanced HF than in healthy subjects, although no correlations were 
found between myocardial myostatin and clinical parameters. Genetic 
elimination of myostatin [35] or blockade of the myostatin receptor [36] 
diminishes cardiomyoyte death and myocardial interstitial fibrosis, 
preserves LV function and increases survival in mice with HF, whereas 
overexpression of myostatin in cardiomyocytes induces the opposite 
effects [37]. There is also evidence that myocardial myostatin is 
increased in the failing mouse heart and that it is secreted into the cir-
culation, where it can exerts systemic effects including inhibition of 
skeletal muscle growth [38]. 

On the other hand, exercise induces the muscle expression of the 
transcriptional coactivator peroxisome proliferator-activated receptor γ 
co-activator 1 α (PGC-1α), which in turn stimulates the expression of the 
transmembrane glycoprotein fibronectin type III domain-containing 5 
(FNDC5) [39]. Irisin is a proteolytic product of FNDC5, and is secreted 
by skeletal muscle in response to exercise. Irisin plays an important role 
in fat metabolism and has been shown to induce the trans-differentiation 
of white adipose tissue into brown adipose tissue (termed browning), 
which increases energy expenditure and improves insulin resistance 
[39,40]. Interestingly, patients with HFrEF with a low aerobic perfor-
mance (peak VO2 ≤ 14 mL/kg/min and VE/VCO2 slope ≥ 34) exhibit a 
reduced FNDC5 and PGC-1α expression in skeletal muscle compared 
with patients with a high aerobic performance (Fig. 2) [41]. These 
clinical findings are supported by experimental data showing abnor-
mally reduced FNDC5 and PGC-1α expression in skeletal muscle from 
rats with HFrEF secondary to ischemic cardiomyopathy [42]. Irisin can 
also be produced by the heart [43]. Compared with wild-type animals, 
Fndc5 gene deletion resulted in exacerbation of LV hypertrophy, 
dysfunction and fibrosis, whereas Fndc5 gene overexpression resulted in 
attenuation of these phenotypes [44]. In addition, administration of 
exogenous irisin mitigated LV hypertrophy, dysfunction and fibrosis in 
diabetic rodents when compared with non-treated animals [45,46]. 
Administration of irisin also improved LV function, decreased car-
diomyocyte apoptosis, and protected mitochondria in rats submitted to 
cardiac ischemia and reperfusion [47]. 

As the field of the “myokinome” expands, studies performed in the 
last years have found that some molecules already known from a long- 
time or others recently identified also behave also as myokines and 
may be potentially involved in the pathophysiology of skeletal myop-
athy, cardiac remodelling and the progression of comorbidities that 
characterize HF. This is the case for apelin, musclin and several non- 
coding RNAs. Apelin is a peptide hormone that by activating its G-pro-
tein coupled receptor (ApelinR) exerts many biological functions and 
whose production is induced by muscle contraction [48]. A number of 
studies have demonstrated that apelin improves skeletal muscle mass 
and function, exerts cardioprotective effects and promotes energy 
expenditure [49]. In the ventricular tissue of patients with advanced 
HFrEF, increased [50] or unchanged apelin levels have been reported 
[51], while ApelinR levels are consistently decreased [50,51]. Reduced 
skeletal muscle musclin levels exaggerate, while its overexpression in 

R. Ramírez-Vélez et al.                                                                                                                                                                                                                        



Metabolism 138 (2023) 155348

4

muscle attenuates cardiac dysfunction and myocardial fibrosis during 
pressure overload [52]. Mechanistically, musclin enhances the abun-
dance of C-type natriuretic peptide, thereby promoting cardiomyocyte 
contractility through protein kinase A and inhibiting fibroblast activa-
tion through protein kinase G signaling [52]. Of interest, reduced 
expression of OSTN, which encodes musclin, has been found in skeletal 
muscle of HF mice and HF patients [52]. On the other hand, the rele-
vance of non-coding RNAs in muscle biology is evidenced by studies 
demonstrating that microRNA and long non-coding RNA profiles are 
dysregulated in a number of conditions associated with impaired exer-
cise capacity [53,54]. Both microRNAs and long non-coding RNAs are 
sensitive to muscle contraction in response to different protocols of ex-
ercise training both in humans and animal models, which points to their 
potential role in the exercise-induced adaptations of skeletal muscle 
[53,54]. In addition, experimental data suggest that some non-coding 
RNAs produced in response to exercise exert direct effects on the 
heart. For instance, whereas microRNA-1192 protects cardiomyocytes 
from hypoxia via targeting caspase 3 [55], it appears that the long non- 
coding ExACT1 facilitates pathological LV hypertrophy [56]. 

In summary, from a mechanistic point of view the hypothesis 
emerges that myokine dysregulation may be involved in the impairment 

of skeletal muscle, heart and other organs in the context of HF 
(Graphical Abstract). However, more thorough studies, both at the 
cellular and pre-clinical levels, are needed to fully resolve the contro-
versies of their exact contribution to skeletal myopathy, adverse cardiac 
remodelling and comorbidities in HF. 

3.2. Myokines as biomarkers in HF 

Taking into account that myokines are secreted and reach the blood 
stream, their potential clinical usefulness as biomarkers in HF has being 
suggested (Fig. 2) [57]. Indeed, supporting this notion, a study per-
formed in a large, heterogeneous cohort of 2329 patients with HF 
showed that circulating IL-6 is abnormally elevated in these patients and 
is associated with cardiac dysfunction severity and poor clinical out-
comes [58]. The prognostic value of elevated circulating IL-6 levels in 
HF was corroborated in a meta-analysis including 28 studies [59]. 
Similarly, increased levels of serum TNF-α were found in patients with 
severe HF presenting with cachexia, advanced adverse cardiac remod-
elling and pronounced exercise intolerance [60,61]. Of interest, since 
the stability of plasma concentrations of soluble TNF-receptors (sTNFR-1 
and -2) is higher than that of TNFα itself, this may be the reason why 
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sTNFR-1 is a better predictor than TNFα in HF patients [61]. 
Regarding serum levels of myostatin three studies reported higher 

concentration in patients with chronic HF than in healthy controls 
[34,62,63], while one study reported similar levels [31] and another 
study reported lower levels [64]. When myostatin was abnormally 
increased, no differences were reported between patients with HFrEF 
and HFpEF [62], or between patients with ischemic HF or with non- 
ischemic dilated cardiomyopathy [63]. Whereas some studies reported 
associations between serum myostatin and severity of HF as assessed by 
the New York Heart Association Class (NYHA) and the plasma levels of 
natriuretic peptides [62,63], others did not find any association 
[31,34,64]. In an analysis of 288 patients with HFrEF and HFpEF and 62 
healthy controls, an independent association was observed between 
myostatin levels and clinical outcomes, with those patients in the 
highest tertile of myostatin presenting the highest rates of hospitaliza-
tion for HF and mortality [62]. Myostatin was also an independent 
predictor of survival in HF patients (Fig. 3) [62]. 

Serum levels of irisin are lower in patients with HFrEF than in 
healthy volunteers [65,66], lower in patients with HFrEF than in those 
with HFpEF [67], and lower in patients with HF and cachexia than in 
those without cachexia [68]. Correlation analyses in patients with HF 
showed that serum levels of irisin correlate directly with LV ejection 
fraction [65,69], and inversely with NYHA class [68], natriuretic pep-
tide levels [68,69], and LV dimensions [66]. Notably, the levels of 
circulating irisin were negatively associated with the severity of sarco-
penia in HF patients (Fig. 3) [66]. 

Altogether, cumulative evidence indicates that circulating levels of 
myokines are altered in HF and associated with features of adverse 
cardiac remodelling and with poor cardiac prognosis, thus reinforcing 
the role of skeletal myopathy in HF evolution and prognosis (Graphical 
abstract). Nevertheless, it is still unclear how strongly related are 
changes in peripheral blood concentrations of myokines in HF with 
skeletal myopathy since, despite their primary skeletal origin, other 
tissues are capable of producing and releasing them. In addition, there is 
limited robust evidence on the independent predictive value of myokine 
signatures and their added value on top of traditional circulating cardiac 
biomarkers. 

4. Exercise in patients with heart failure 

4.1. General aspects 

Exercise intolerance is preceded by an accelerated decline in func-
tional capacity, measured objectively as peak VO2, and manifests clini-
cally as fatigue, dyspnea, and reduced QoL [70]. Therefore, exercise is 
recommended (class 1, level A) for all patients who are able in order to 
improve exercise capacity, QoL, and reduce HF hospitalizations [71,72]. 
A supervised, exercise-based, cardiac rehabilitation programme should 
be also considered (class 2b, level c [71] or class 2b, level b-nr [72]) in 
patients with more severe disease, frailty, or with comorbidities. 

To advance HF therapy in terms of improving clinical outcomes, 
muscle strength, functional capacity and QoL, implementing novel 
strategies based on emerging knowledge and person-centered therapy, 
including individualized and tailored telemedicine and technology- 
based programs seems necessary [73,74]. In this conceptual frame-
work myokines may add a new dimension to the design of personalized 
exercise training in HF patients (Graphical Abstract). 

4.2. Effects of exercise on myokines in HF 

Preliminary studies in patients with cardiovascular conditions, 
including HF, show that physical training-induced myokine changes are 
associated with improvement in exercise tolerance and cardiovascular 
function [75]. Exercise-derived myokines might be involved in the 
beneficial effects of exercise in HF through three main types of effects: 1) 
promoting a systemic anabolic milieu with improvement of skeletal 
myopathy; 2) affording direct cardiac protection; and 3) ameliorating 
disturbances of energy metabolism. For instance, whereas the anabolic 
myokine IGF-1 decreases [76] and the catabolic myokine TNF-α in-
creases [77] in the skeletal muscle of HF patients, skeletal muscle IGF-1 
increases [78] and skeletal muscle TNF-α decreases [77] with endurance 
exercise. High-intensity interval exercise training improved skeletal 
myopathy in patients with chronic heart failure, and these effects were 
associated with increased production of members of member of the IGF- 
1 family and of IGFBP-3 [79]. Direct cardioprotection can be induced by 
a single bout of exercise and can be maintained for months with regular 
exercise; the mechanisms reportedly involved include increased cardiac 
storage of nitric oxide and decreased oxidative stress with resulting 
improvement of endothelial function, activation of pro-survival kinases 
of the reperfusion injury salvage kinase (RISK) pathway, and improved 
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calcium-retaining capacity of mitochondria [21]. Irisin [80], apelin [51] 
and FSTL1 [81] appear to be the myokines more involved in these car-
dioprotective effects. In addition, myokines mediate exercise-stimulated 
muscle lipid oxidation and oxidative metabolism in an autocrine fashion 
(e.g., IL-15 and BDNF), exercise-induced hepatic neoglucogenesis and 
fatty acids uptake (e.g., myonectin) and white adipose tissue lipolysis 
and brown adipose tissue thermogenesis (e.g., irisin and FGF-21) 
through endocrine communication [10,82]. 

The regulation of myokines through exercise can be differential and 
is more or less specific depending on the type of exercise. For instance, 
myostatin is primarily inhibited by concurrent training [83], whereas 
irisin is mostly induced by resistance exercises as well as by heavy 
strength training [84], On the other hand, apelin is stimulated by 
endurance training [50]. Some experimental and clinical observations 
support that these aspects may be relevant for the prescription of 
physical exercise in HF. 

It has been reported that, in patients with HFrEF 12-weeks of con-
current training led to reductions in skeletal muscle myostatin mRNA 
and protein with final values significantly lower than in the group of HF 
patients that continued their sedentary style of life [31]. These findings 
have been corroborated in a rat model of HF [85]. Although there are no 
published data on the effect of physical training on circulating myostatin 
levels, in the only published study showing lower levels in HF patients 
compared to controls most of patients were following an exercise 
training program when they were tested but none of the controls did 
[62]. 

While no data are yet available on the effects of physical training on 
irisin in HF patients, there is evidence on its effects in patients with 
overweight or obesity. In fact, Kim et al. [86] found that in overweight/ 
obese adults circulating irisin was increased in subjects submitted to 
resistance training but did not change in subjects submitted to aerobic 
training. In addition, the authors reported a positive correlation between 
the change of circulating irisin and muscle mass and a negative corre-
lation with fat mass [86]. The potential relevance of these findings in HF 
is given by several observations: 1) obesity is present in 80 % of patients 
with HFpEF [87] and frequently acts as a co-incubator for comorbidities 
such as diabetes mellitus, metabolic syndrome and hypertension [88]; 2) 
sarcopenic obesity, a clinical condition defined by the coexistence of 
obesity with a decline in muscle mass and related strength and func-
tionality, is consistently reported in HFpEF patients and poses as a major 
limitation to exercise capacity [89]; and 3) HFpEF patients with sarco-
penic obesity present with severely reduced exercise capacity due to 
both obesity [90] and sarcopenia [91]. 

5. Roadmap to enhance the potential role of myokines in HF 

Important remaining issues deserve further consideration in order to 
establish the role of myokines in understanding and prescribing exercise 
training as a therapy for HF (Table 1). Regarding the robustness of 
available data some concerns include the lack of consistency between 
the acute and chronic exercise response, discrepancies between patients 
and animal models of exercise, and interpretation challenges due to 
variability in outcomes and sampling, as well in the pre-analytical 
processing of biomaterials under study. Importantly, we must recog-
nize that the current proposal for a potential role of myokines in HF is 
based on information provided by a limited number of small clinical 
trials. Therefore, we make a call to action for designing large trials 
evaluating the aforementioned approach to assess incremental results. 

Despite the acceleration in exerkine-related research since the 
identification of IL-6 as a myokine in 2000 [24], much remains to be 
done in the scientific areas of research, technology and therapeutic in-
terventions. Specifically, a critical need exists to move beyond the 
‘skeletal muscle-centric’ view of myokines and focus more on their roles 
in inter-organ communication, immune regulation, metabolic adapta-
tion, cardiovascular fitness, and overall health in HF patients. The 
multiple cross-talks between myokines and other non-muscle exerkines 

is another aspect that needs to be studied in depth to adequately char-
acterize the role of these molecular mediators in the beneficial effects of 
exercise in HF patients with associated comorbidities. 

It can be expected that through deep omics profiling (transcriptome, 
proteome and metabolome) of biomaterials (including extracellular 
vesicles as carriers of molecular signals and drivers of inter-organ 
crosstalk) from humans and rodents with HF before and after acute 
exercise as well as chronic exercise training many more myokines and 
exerkines will be discovered [92]. In addition to molecular discoveries, 
substantial clinical work remains to decipher the dosage and type of 
exercise needed to elicit positive HF outcomes. 

There is a need to develop novel technologies, including wearable 
technologies and devices, to capture the quantitative and dynamic 
changes of myokines over variable periods of time under the effects of 
physical training in patients with HF. In this regard, the establishment of 
community standards for data reporting and sharing is mandatory to 
effectively advance the translation of research into therapy. 

Finally, as the role of myokines and other exerkines and their bio-
logical effects are increasingly clarified, they may potentially be har-
nessed to mimic the benefits of exercise in individuals who are limited in 
their exercise capacity or to counterbalance a metabolic non-response or 
adverse response to exercise, as it is the case in patients with the diag-
nosis of advanced HF [71,72]. The past decade has witnessed growing 
scientific and commercial interest in the identification of bioactive oral 
compounds that mimic or potentiate the effects of exercise, the so-called 
‘exercise pills’. These compounds have, to date, typically targeted 
skeletal muscle in an attempt to stimulate some of the adaptations to 
exercise induced by endurance training. Accordingly, they fail to impart 
many of the broad health protecting effects of exercise that are seen in 
tissues and organs other than skeletal muscle [93]. Therefore, future 
research in the field must move beyond the current ‘myocentric’ 
paradigm. 

6. Conclusions 

The preliminary data discussed here suggest that the study of myo-
kines may provide new insights into the pathophysiology of HF-related 
skeletal myopathy and that they may be explored as potential bio-
markers for the phenotyping and prognostic stratification of this con-
dition in patients with HF, particularly in patients with HFpEF and 
associated metabolic comorbidities who may especially benefit from 
exercise's ability to induce myokines and other exerkines [94]. In 
addition, it can be hypothesized that myokines might be useful for 
personalizing the modality and dose of physical exercise to be prescribed 
in these patients (see Fig. 2). 

Establishing molecular links between skeletal myopathy and 

Table 1 
A three-step road map for potentiating the usefulness of myokines in patients 
with heart failure.   

1. Deepen in the fundamental knowledge on myokines   

a. Clarify the muscle profile response to different programs of exercise  
b. Characterize their roles in multi-organ cross-talk as part of exerkines  
c. Take advantage of omic technologies to advance in discovery and validation   

2. Expand and strength the available information on myokines in HF   

a. Perform large clinical studies to collect more data in different HF populations  
b. Optimize the methodology and the processing of samples to measure  
c. Develop studies in animal models mimicking human HF   

3. Incorporate myokines into novel technological developments for HF   

a. Implement as parameters for remote monitoring in exercising patients  
b. Incorporate as novel oral compounds in non-exercising patients  
c. Standardize as data for reporting and sharing in telemedicine 

HF, means heart failure. 
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improved HF management can only strengthen the implementation of 
precision medicine-based management of HF. In this context, myokine 
(and other exerkines)-guided physical exercise might contribute to a 
better QoL and likely an improved prognosis, and thus contribute to a 
better health system performance in terms of cost-effectiveness. 
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